

Java Turns 25

What’s next for the original “write once,
run anywhere” programming language?

Publication Date: 04 May 2020 | Product code: INT002-000282

Bradley Shimmin

Java Turns 25

Summary

Catalyst
On May 23 this year, the Java programming language will turn 25 years old.
Created by James Gosling at Sun Microsystems in 1995 as a means of supporting
an anticipated market for interactive televisions and other “living room” devices,
Java has since evolved into an overwhelmingly dominant programming
powerhouse, infuencing nearly every facet of corporate and consumer software
development.

What’s left, then, for Java and its current caretaker, Oracle Corp? It has been a
full 10 years since the company acquired Sun Microsystems and with that the
Java programming language. As it turns out, there is plenty of opportunity left on
the table, assuming Oracle wishes the language to retain its leadership position
and not fall prey to old rivals and emerging disruptors alike. In this report, Omdia
takes a close look at the Java programming language on its 25th birthday and
discusses how this important language will need to evolve in the face of an
enterprise market that is rapidly moving beyond the very notions that brought
Java into existence and have allowed it to remain relevant to this day.

Omdia view
Every year new programming languages come into existence and vie for the
attention of software developers. Market estimates from various sources put the
current count of available languages at just over 700! And like snowfakes, no
two of these 700-plus programming languages look or behave exactly alike.
While most adhere to some basic agreements revolving around language syntax
and approach (functional, procedural, or object oriented), each language
emerges with a unique approach to anticipated market demands or as yet
unresolved technical challenges. Over the long term, the success or failure of
each new language depends on how well it can evolve to meet those demands
and challenges year after year, customer after customer, and developer after
developer.

So far, the object-oriented Java programming language has fared quite well in
this regard. Even though the initial demand for set-top boxes sputtered back in
1995, when Java was frst introduced, the language has shown time and again
that its unique approach to platform agnosticism via the Java Virtual Machine
(JVM) can evolve to successfully tackle unanticipated market turns while
supporting a wide array of enterprise-class workloads running on everything from
tiny embedded systems to hyperscale cloud platforms.

However, nothing remains a certainty – the market is currently undergoing a
tectonic shift as enterprise developers look for tools well suited to the unique
demands found within machine learning (ML), Internet of Things (IoT), and cloud-
frst software development. Because Oracle functions as both a caretaker and

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 2

Java Turns 25

heavy consumer of the Java language itself, developing most of its software in
Java, the company has a lot to lose.

In Omdia’s opinion, the work Oracle began a few years ago in moving to a six-
month update cycle and introducing a new level of modularity, puts the vendor
in good stead with its constituency of approximately 12 million developers.
However, Oracle and the Java programming language need an ongoing series of
innovative, must-have, and “delightful” features that make the language even
more user friendly and cloud capable. These will keep existing Java developers
happy while steering potential Java developers away from newer languages like
Rust and Kotlin.

Key messages
 Oracle has been working over the past two years to modernize Java

through speed and modularity.

 Now on a six-month update cycle, the newest iteration of Java (version 14)
emphasizes fexibility, efciency, and above all geniality.

 Via several projects driven by the Java community and supported by
Oracle, Java is slowly evolving into a cloud-frst language.

 Despite a rising tide of competitors, Java appears ready for the next 25
years thanks to its enduring fexibility, vibrant ecosystem, and Oracle’s
continued eforts as its caretaker.

Vendor recommendations
 Target data scientists .With many modern languages (Go, Scala, etc.)

targeting current challenges faced by data scientists in bringing ML
workloads to production, Oracle should accelerate its eforts to help bring
enterprise scale, security, and speed to ML workloads in production. Such
eforts will dovetail efectively with the company’s related work to store ML
artifacts and resources within Oracle Autonomous Database Warehouse.

 Emphasize community .The long-term success of Java will depend not
just on careful stewardship from Oracle but also from the continued
engagement among the more than 1,000 participants developing the
technical specifcations for Java, and the more than 12 million
programmers working in Java itself. Even though Oracle drives the
innovation that eventually turns into JDK Enhanced Proposals (JEPs) and
broader projects such as Valhalla and Loom, the company must push its
community to the forefront of innovation, allowing for and supporting as
many user-driven language development eforts as possible.

 Keep Java free and open .Since Sun Microsystems frst released
OpenJDK as an open source project in 2007, this important, community-
owned technology has served as more than a mere reference platform for
Oracle’s implementation of Java, Java Standard Edition (Java SE). OpenJDK

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 3

Java Turns 25

in many ways “is” Java in terms of developer perception. For this reason,
Oracle must work to maintain developer trust in its willingness to keep
Oracle both free and open. Oracle can best build trust by communicating
transparently with users regarding the evolution of Java, something the
vendor has done well. But it must also steer clear of litigation (as with its
ongoing row with Google), as these actions send a message that Oracle
prioritizes ownership over innovation.

 Tread carefully with subscriptions. During the summer of 2018, Oracle
transitioned from its previous high-cost perpetual commercial license for
Java to a low-cost subscription-based model, covering both the Java
binaries and support. This puts the onus of maintaining developer
confdence squarely on Oracle’s shoulders, as the vendor will need to
prove the value of Java as well as its ability to support customers with
every six-month update. The best way for Oracle to do this is to continue
investing in and driving innovation within Java, bringing new features to
market rapidly and, most importantly, by delivering predictable quarterly
security updates, backed up by the company’s enterprise-class support
infrastructure.

 Bring the “wow.” As demonstrated by the introduction of features such
as multiline text blocks and higher-level switch statements, Oracle has
prioritized the “developer experience,” making Java not just more efcient
but also more delightful to use. This may not sound that important, but it
can be argued that the reason for the continued dominance of venerable
languages such as Python and the rapid emergence of TypeScript is
programmer afnity. With Python, for example, this revolves around the
language’s numerous inventive features such as the recently introduced
walrus operator (e.g., “:=”) and long-running list comprehension
capability. For TypeScript, developer afection stems from its ability to
retain the simplicity of JavaScript while fxing its inherent limitations.
Oracle should, therefore, prioritize the introduction of features that capture
the heart as well as the mind.

Technology overview

Reimagining Java, or how to turn an ocean liner
into a speedboat
Two unshakable realities exist within the enterprise technology marketplace.
First, at least one pithy quote exists for every market trend. Second, for every
market trend, there exists at least two “preferred” programming languages. To
illustrate, back in 2011, Marc Andreessen famously said that “software will eat
the world,” presaging the rise of Amazon as the world’s biggest bookseller,
where even its physical bookshelves themselves turned into software with the
advent of the Kindle e-reader. It is interesting to note, therefore, that the

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 4

Java Turns 25

Android-based Kindle Fire OS itself was written in three languages: C (for the core
of the skinned Linux-based platform), C++ (for various services), and Java (for
the user experience). Apparently, when software eats the world, it eats itself as
well, at least when it comes to programming languages.

Why are there three programming languages for Kindle Fire OS? Many reasons
drive organizations to co-mingle languages within a given project, involving the
reuse of legacy code, language-specifc capabilities, developer familiarity, etc.
From the developer’s perspective, language selection comes down to afnity,
familiarity, skill, etc. The point is that there is always a choice. For a company
like Oracle, however, which ofcially owns what is arguably the world’s most
popular programming language, there is no ostensible choice. It’s Java or bust.
Oracle needs Java to succeed in the long term because doing so will keep the
vendor in close proximity to one of the world’s largest developer ecosystems,
totaling more than 12 million in all.

More than that, the success of Java and Oracle are both inexorably intertwined,
as Oracle has rewritten a great deal of its internal software in Java and made Java
a key component of Oracle Database and Oracle Gen 2 Cloud Infrastructure. The
same holds true for millions of enterprises that rely on Java to drive mission-
critical software. For Oracle, this extends to the company’s push to the cloud.
Thanks to numerous language-specifc tools and ample supportive services, the
Oracle Gen 2 Cloud Infrastructure platform stands as the best place to run
enterprise Java code – and that is code not running on the 45 billion Java Virtual
Machines (JVMs) currently executing Java code around the globe.

With so much at stake, it’s tempting to anticipate that Oracle would look to make
a big splash in celebrating the 25th anniversary of Java this coming May 23. On
the contrary, Oracle’s most recent release, Java 14, which will forever be
associated with this important milestone, does not try to take on the world in one
go. Rather, Omdia sees in that release a gentle acceleration and further
realization of some very big gambles made by Oracle back in 2017 and 2018. In
short, during those two years, Oracle introduced the concept of modules (Java 9)
and moved the language to a six-month release cycle (Java 10). So far, the Java
community has responded quite positively to these changes, as they seek frst
and foremost to make Java a more fexible language.

With the introduction of Java 9 Platform Module System (JPMS), Oracle converted
Java from a monolithic one-size-fts-all solution to a “composable” platform
where discrete functionality could be managed independently from the main Java
codebase, making the language instantly more manageable at scale and nimbler
in gaining new functionality. Relatedly, with release 10, Oracle abandoned a
monolithic, feature-driven approach to language updates where major releases
appeared every two years on average.

Together, these two large-scale changes enabled Java to evolve beyond its roots
as a “write once, run anywhere (WORA)” programming language to become a
“write once, run anywhen” programming language. Both technical partners and
enterprise developers alike can now rely on a steadier stream of updates with

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 5

Java Turns 25

much less worry than major, monolithic changes might break running software.
Of course, this also means that Oracle itself cannot look very far ahead in
creating a roadmap for Java, as many new features might fall in or out of a given,
six-month update. Even so, a more modular and more interactive language
allows Oracle to stay in closer proximity to evolving market trends and customer
demands.

It is also important to note a third major gamble by Oracle: the introduction of a
straightforward annual licensing and support plan, Oracle Java SE Subscription.
Introduced 18 months ago, this new plan grants full 24/7 support on a per-
desktop, per-server annual subscription basis. That is just for Java on its own. For
customers of Oracle Gen 2 Cloud Infrastructure platform or Oracle Fusion
applications, this full support program is included as a part of those
subscriptions. Importantly, licensed and supported updates for this program
emerge in lockstep with Oracle’s six-month release cycle as well, forming a very
simple means for enterprise customers to take advantage of new features as
they reach maturity.

What makes Java 14 special?
What does this mean for the latest incarnation of Java? Perhaps surprisingly,
there are only a handful of major features within Java 14, as compared with
earlier, more monolithic editions. The last multi-year release, version 9,
contained 91 JEPs. Note that JEPs are simply collections of “non-trivial” changes,
as defned by Oracle and the Java development community at large.
Comparatively, all subsequent Java releases, which come out twice yearly,
contain an average of only 10 JEPs (see Figure 1).

Figure 1: Number of new features introduced with each release of Java

Source: Oracle

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 6

Java Turns 25

Broadly speaking, since moving to a six-month update cycle, Oracle has
somewhat narrowed the scope of features introduced with each release,
delivering only sixty JEPs after version 9. However, more features delivered as a
huge clump does not guarantee timeliness or innovation. With a rolling set of
delivery opportunities every six months, however, Oracle expects to deliver more
topical features more frequently without sacrifcing the quality, as new features
are still vetted by both Oracle and the Java development community at large.
The JEP process itself usually begins with Oracle solving a discrete problem
internally and then taking that to the broader OpenJDK community as a JEP. Each
JEP will join the main code tree of the Java standard in preview or fnal form at
the most opportune time – neither being rushed into nor languishing between
infrequent, monolithic releases.

With this in mind, the new set of 16 JEP features delivered as a part of release 14
seem more evolutionary than revolutionary. New features include the
deprecation of support for Solaris and Sparc, the ability to use Z Garbage
Collector (ZGC) on MacOS and Windows platforms, and the addition of NUMA-
Aware Memory Allocation for G1 garbage collection. These all concern, quite
literally, the maintenance of the Java platform. On their own, these won’t keep
Java at the forefront of enterprise software development.

Oracle and Java both need to regularly win over the Java developer community to
keep existing developers happy and productive while encouraging would-be Java
developers to invest the time necessary to learn Java. On the whole, release 14
endeavors to answer this challenge by introducing features that make Java more
fexible, efcient, and above all friendly. Here’s a short rundown of four standard
and preview features released with Java 14 that fll this bill. Note that a JEP
preview feature denotes functionality that may evolve from release to release.
Standard JEP features are considered a stable part of the Java specifcation going
forward.

 JEP 361: Switch Expressions . This capability frst showed up in Java 12
and is now a standard feature. It extends the switch expression, allowing it
to function as either a statement or as an expression. Historically, the Java
switch expression, which closely follows C and C++ switch expressions,
works best on very low-level comparative operations. JEP 361 frees the
switch expression to better support higher-level contexts with less
overhead. In the long term this is important, because it paves the way for
the following feature, JEP 305.

 JEP 305: Pattern Matching for instanceof . Included as a preview
feature in Java 14, this improvement to the switch statement lets
developers look for and test against various object structures in a more
concise and less error-prone manner than previously. Other modern
languages use this same sort of capability, most notably Java rivals Haskell
and C#. Once this enhancement becomes a standard component, Oracle
will work on more advanced pattern-matching constructs, using switch
expressions and statements.

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 7

Java Turns 25

 JEP 359: Records . Also in preview, this JEP takes aim at a common
complaint among Java developers, namely that the language is too
verbose, particularly when it comes to handling classes that simply carry
data. Python has tuples, and Scala has case classes, for example, which
simplify this sort of requirement. Not looking to simply copy these
approaches, Oracle is instead looking to introduce similar levels of
simplicity with a class type as a transparent holder for data that does not
demand a high degree of boilerplate information.

 JEP 368: Text Blocks . Available as a preview (for the second time), this
feature seems innocuous in allowing developers to reference text that
spans more than one line without having to make use of escape
characters. Text Blocks frst and foremost makes Java code more readable
but, more importantly, it lets developers reference external code blocks
(HTML, XML, SQL, or JSON, etc.) without having to break up code using
highly illegible and error-inducing escape codes. This makes Java a more
friendly player among cloud-frst software, where developers routinely
work with multi-line text blocks in messaging between applications.

As you can see from this limited set of features, Oracle and the Java
development community are working on a number of related threads across
numerous release cycles. Often, new capabilities will morph or even move
between JEPs, as was the case with JEP 368 (Text Blocks). This was initially
proposed as a part of JEP 355, which was previewed in the previous Java release.
Subsequent feedback from Java 13 users prompted the reassessment and
extension of this preview for release with Java 14.

What’s next for the Java programming language?
Looking forward to Java 15 and immediately beyond, Oracle will continue with
this same mix of enhancements, balancing those that keep Java running and
relevant as an enterprise-grade development platform with those that delight
and empower Java developers. For example, slated for release 15, JEP 372 will
fnally remove the Nashorn JavaScript script engine and APIs, which had proven
difcult to maintain over time. With JEP 371 (also slated for version 15), Oracle
will introduce hidden classes, which are classes that cannot be accessed directly
by the bytecode found in other classes. This will help Java to better handle ideas
like code generated at runtime as found in Lambda functions and serverless
computing.

Such enhancements solidify Oracle’s role as a conscientious caretaker of this
important language, which is one variable in a complex equation. A more
impactful and still undecided (possibly confounding) variable concerns the “wow”
factor. This is where JEP 368 (Text Blocks, which were mentioned above) comes
into play as a singular example of exactly what Oracle needs to make Java
successful over the long term – that is, appeal to developers working in cloud-
frst environments where apps communicate via JSON, and users interact with
HTML, not Java.

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 8

Java Turns 25

Fortunately, Oracle is pushing Java in this direction, as evidenced by an as yet
unscheduled JEP 369, which will efectively move the open source rendition of
Java (OpenJDK) to the popular version control system, GitHub. The company has
a lot more of this sort of contemporary thinking in mind, housed within a series
of incubator-style projects, each designed to tackle specifc opportunities across
multiple JEPs. Below is a short look into the current status of a few key projects:

 Project Panama . Built to create better connections between the Java
JVM and external, non-Java programming languages, Project Panama
brings together a number of eforts headlined by native function calls for C
and C++ from within the JVM. This project recently saw an important
supportive element enter production with the Java 14 release, namely
Foreign-Memory Access API enhancement (JEP 370).

 Project Valhalla . Initiated back in 2014, this ambitious project focuses
on bringing Java into closer alignment with modern hardware, particularly
in how the language accesses data across cache and memory stores. This
is a key notion when considering Java as a platform for ML endeavors,
where hardware optimization is crucial. In support of this project, in August
2019, Oracle made available to developers an early access build of the
language that included key Valhalla capabilities, namely L-World Inline
Types. The vendor intends to bring more preview functionality to the Java
community throughout 2020 as well.

 Project Loom . This project changes the way Java handles concurrent
programming via threads by introducing the notion of fbers. This idea,
which lets a thread basically wait for a number of asynchronous responses
without consuming a great deal of system resources, will help Java play
better with large-scale cloud-frst projects where rival languages like Kotlin
shine. As with Project Valhalla, there are early access developer builds of
Loom available for testing now.

 Project Amber . One of the most active Java community projects in terms
of delivering JEPs into production, Project Amber aims to make Java
developers more productive. Targeting the way developers write code with
enhancements such as Switch Expressions (JEP 361), Records (JEP 359),
Pattern Matching for instanceof (JEP 375), and Text Blocks (JEP 368), Amber
carries the most weight in terms of both delighting existing Java
developers and enticing new recruits to invest the energy necessary to
learn a new programming language.

Clearly, as the lead contributor to, and steward of, the Java language, Oracle is
playing the long game when it comes to initiating and supporting forward-looking
projects. And yet, the biggest danger and challenge for Oracle rests not so much
within the evolution of the Java language itself, but rather in the way
programming languages in general have evolved since the early 1990s, when Mr
Gosling and his colleagues began working on the Java language.

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 9

Java Turns 25

Programming languages are not binary decisions
Because Java functions as both a programming language and as an execution
environment (via the JVM), it has actually helped to spawn new programming
languages outside of Java itself. As the foundation for WORA development, the
JVM has become a ready home to numerous languages that both augment and
compete with Java. The most notable of these is Kotlin. A recent creation (circa
2010), Kotlin is a statically typed language that can be compiled to run as either
JavaScript, natively as its own binary, or within a JVM (with 100% Java
compatibility).

This afnity for the JVM, coupled with a number of cloud-frst, productivity-
friendly features like Lambda expressions + Inline functions, has helped Kotlin
quickly gain developer support, particularly among Google Android developers.
This in turn has led Google in 2019 to nominate Kotlin as its preferred language
for Android app developers. Java developers working in Google Android Studio
can work with both Java and Kotlin code natively, mixing the two and even
converting from one language to the other.

For Android developers in particular, this sets the bar of entry into Kotlin and exit
from Java pretty low, as they can decide on a project-by-project basis how best to
write and run their software. If Java developers decide that they would rather
write in Kotlin because it purportedly requires 20% less code, employs a time-
saving feature like operator overloading, or better supports the idea of functional
programming, then there is very little standing in their way.

Even so, Oracle sees languages like Kotlin as vital to its overall success. First,
anything that enhances the value of Java’s JVM as a deployment platform helps
ensure the long-term viability of both Java and JVM alike. Second, Oracle is
actively learning from projects like Kotlin now it can improve both language and
platform alike. In a way, Kotlin itself can be seen as a low-risk, innovation
sandbox, where innovations that might fnd their way into Java can be explored
more freely among the Java community at large.

There is a broader, more existential threat that Oracle must face as well. As
demonstrated by Kotlin, it does not take 25 years for a language to shift the
hearts and minds of the developer community at large. Within the well-regarded
TIOBE Programming Community index, which measures the popularity of
programming languages, Java is currently ranked as the world’s number one
programming language. Note that Kotlin shows up as a meager 30th on this
same list. Comparatively, the top four most beloved languages, as defned by
Stack Overfow’s 2019 survey of more than 90,000 technology practitioners,
were (in order): Rust, Python, TypeScript, and Kotlin. None of these languages,
save Python, existed before 2011.

Do these studies paint a picture of Java as an incumbent leader under threat?
Are Java developers likely to jump ship to work in more “beloved” languages like
Rust, TypeScript, or Python? On any given day in response to a specifc given
project, developers might choose Rust over Java if they require complete

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 10

Java Turns 25

memory safety in a very small footprint. They might choose TypeScript over Java
if they are dedicated to the Microsoft developer ecosystem and hate JavaScript
but still need to build JavaScript-type applications. They might choose Python
over Java if they are data scientists looking to quickly build and iterate an ML
model. Actually, for Python developers, Java would not come up as an everyday
competitor, except as an alternative to the JVM-based Scala language as a
means of deploying a very highly performant inferencing engine for use cases
like fraud detection.

Does this mean Java needs to do more to compete with Scala in order to win over
data scientists? That would not hurt. As mentioned above, Oracle is working
actively on modifcations to the Java language that will make it more appealing
within the use cases where Python developers thrive. But that is not the most
important thing. For any given situation, enterprise developers will select the
language that best meets the needs of the current project at hand, answering
three important questions:

 Do the developers have the necessary experience and/or supportive tools
at hand (libraries, frameworks, etc.) to build that project in time?

 Will the language provide the required scale, performance, and security?

 Will the language run as desired on the target platforms (mobile, web,
etc.) and access the desired resources (database, hardware, etc.)?

For any given project in any given enterprise, out of the approximately 700
available programming languages, maybe only a handful will meet all of these
needs – and that list will change from project to project. As mentioned at the
outset, for any given need there are at least two languages that will get the job
done. But that is actually the very crux of Java’s success. What has allowed Java
to thrive for so many years and to remain in a dominant market position can be
summarized in one word: fexibility.

Java’s main calling card has been, and continues to be, its ability to
accommodate the task at hand to say “yes” to those three questions. This
fexibility is echoed in the varied and infuential list of top Java community
contributors, which includes Red Hat, SAP, Tencent, Google, Intel, IBM, and
Amazon. So long as Oracle keeps Java freely available across more than 45 billion
active JVMs, nurtures its community of more than 12 million developers, and
steers Java in lockstep with the enterprise marketplace, Java will thrive.

For now, that means evolving Java to play more efectively with cloud-frst
methodologies, to take better advantage of new hardware architectures, and to
help developers get more done with less. That will require Oracle to embrace
opportunities like ML by focusing on aspects such as concurrency and threading
(where such scripting languages as Python fall down) and tackling cloud-frst
communications by playing nice with asynchronous communications via JSON.

Tomorrow is likely to present a new set of challenges – perhaps even the
challenge to move beyond Java itself just as TypeScript did as a superset of
JavaScript. Perhaps Java will push Scala out of the way as the preferred means of

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 11

Java Turns 25

analyzing data at scale among data scientists. Perhaps we could even see Java
emerge as a preferred foundation for low-code/no-code development where
programming takes a back seat to drag-and-drop app assembly. All options are
open. Until then, it is safe to say that Java and the global Java development
community are in good hands with Oracle.

Appendix

Methodology
This report was written drawing on briefngs, customer events, and industry
events with decision-makers, technology and IT services vendors, and end users
across a number of geographies. This is combined with desk research and
Omdia’s ICT Enterprise Insights.

Further reading
2020 Trends to Watch: Cloud Computing, INT003-000402 (October 2019)

2020 Trends to Watch: Cloud-Native Development, INT003-000416 (December
2019)

2020 Trends to Watch: Data Center Technologies, INT003-000405 (November
2019)

“Red Hat Quarkus is making Java relevant for the Kubernetes age,” INT003-
000363 (May 2019)

Author
Bradley Shimmin, Distinguished Analyst, Data Management and Analytics

askananalyst@omdia.com

Citation Policy
Request external citation and usage of Omdia research and data via
citations@omdia.com.

Omdia Consulting
We hope that this analysis will help you make informed and imaginative business
decisions. If you have further requirements, Omdia’s consulting team may be
able to help you. For more information about Omdia’s consulting capabilities,
please contact us directly at consulting@omdia.com.

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 12

mailto:askananalyst@omdia.com
mailto:consulting@ovum.com
mailto:consulting@ovum.com

Java Turns 25

Copyright notice and disclaimer
The Omdia research, data and information referenced herein (the “Omdia
Materials") are the copyrighted property of Informa Tech and its subsidiaries or
afliates (together “Informa Tech”) and represent data, research, opinions or
viewpoints published by Informa Tech, and are not representations of fact.

The Omdia Materials refect information and opinions from the original
publication date and not from the date of this document. The information and
opinions expressed in the Omdia Materials are subject to change without notice
and Informa Tech does not have any duty or responsibility to update the Omdia
Materials or this publication as a result.

Omdia Materials are delivered on an “as-is” and “as-available” basis. No
representation or warranty, express or implied, is made as to the fairness,
accuracy, completeness or correctness of the information, opinions and
conclusions contained in Omdia Materials.

To the maximum extent permitted by law, Informa Tech and its afliates, ofcers,
directors, employees and agents, disclaim any liability (including, without
limitation, any liability arising from fault or negligence) as to the accuracy or
completeness or use of the Omdia Materials. Informa Tech will not, under any
circumstance whatsoever, be liable for any trading, investment, commercial or
other decisions based on or made in reliance of the Omdia Materials.

© Omdia. All rights reserved. Unauthorized reproduction prohibited. Page 13

CONTACT US

omdia.com

askananalyst@omdia.com

mailto:askananalyst@omdia.com
https://omdia.com

	Summary
	Catalyst
	Omdia view
	Key messages

	Vendor recommendations
	Technology overview
	Reimagining Java, or how to turn an ocean liner into a speedboat
	What makes Java 14 special?
	What’s next for the Java programming language?
	Programming languages are not binary decisions

	Appendix
	Methodology
	Further reading
	Author
	Citation Policy
	Omdia Consulting
	Copyright notice and disclaimer

