
Design Patterns for
Scalable JavaScript Application

Starting from the Scalable Javascript Application Architecture by Nicholas Zakas [1], this 
document gets one level deeper, describing the design patterns useful to implement it.

The document is intended for a technical audience.

Executive Summary

The  design  patterns  proposed  to  implement  the  Scalable  JavaScript  Application 
Architecture fall into two different categories: general Design Patterns from the Gang of 
Four [2] and other sources, and Design Patterns specific to JavaScript.

General Design Patterns

• Proxy [3] to impose strict rules on modules ; the sandbox objects act as proxies 
between user interface modules and the application core Facade

• Builder [19] to assemble the Sandbox API from separate parts, each defined by a 
separate Plug-in [20].

• Facade [4] to provide a single entry point to the methods part of the application 
core programming interface

• Mediator [5] to ensure loose coupling, all communication between user interface 
modules  is  channeled  through  the  application  core  Facade.  Through  this  link, 
modules send messages to the application core Facade, never to each other.

• Observer [6]  mechanism provided by the application core Facade lets  modules 
subscribe  to events to get  notified when these  events  occur.  Each user interface 
module is an Observer of events broadcast by the application core Facade.

• Adapter [7]  to  translate  messages  from  the  objects  used  in  the  JavaScript 
application to the format used for communication with the server, and vice versa

Design Patterns Specific to JavaScript

• JavaScript Module Pattern [8] to  create a distinct scope and namespace for 
each module, while keeping the global scope clean of all but one global object

• Portlet [9] user interface modules designed as independent applications keeping 
track of their independent state

• Cross-Browser Component [10] as a strong foundation for the architecture, to 
abstract differences between browsers

Javascript Application Design Patterns 1/23



Document Metadata

Authors: Eric Bréchemier, Marc Delhommeau

Version: 2011-08-14

Copyright:

Eric Bréchemier © 2011, Some rights reserved.

Legal-Box © 2010-2011, All rights reserved.

License:

BSD License

http://creativecommons.org/licenses/BSD/

Introduction

The initial version of this document, circa April  2010, documented the design study in 
preparation of the development of the Scalable Web Application framework at Legal-Box.

In the course of this development, the design shifted slowly apart from this design, while  
keeping true to the underlying principles.

In  this  new version (2010-05-07),  I  have chosen to  keep the  description of  the  initial  
design, while describing for each section how the actual implementation differs. You will 
find below one section describing the collaboration overview in the initial design, followed 
with a section explaining the differences in the actual implementation. In the second part 
of the document, “JavaScript Application Components”, I followed the same pattern at the 
level of subsections.

It is my hope that this presentation will convey a revealing perspective on the choices I  
made during the design and development of the Scalable JavaScript Application.

Javascript Application Design Patterns 2/23



Collaboration Overview (Initial Design)

The UML collaboration diagram below exemplifies how the communication between user 
interface modules is channeled through the application core.

Sequence of Messages:

• 1-6: each user interface module subscribes through the Sandbox to events published 
by the Application Core Facade (Proxy and Observer patterns)

• 7-9: one user interface module calls through the Sandbox one of the methods of the 
Application Core API, which triggers a corresponding processing in one application 
core module (Proxy, Mediator and Facade patterns)

Javascript Application Design Patterns 3/23



• 10-11: the Application Core Module sends a request to the server, which is translated 
by  the  Adapter  into  a  suitable  format,  and  processed  by  a  Cross-Browser 
Component (Adapter and Cross-Browser Component patterns)

• 12-13: the asynchronous response from the server is translated by the Adapter into a 
JavaScript  object  and  provided  to  the  Application  Core  Module  for  further 
processing. (Adapter and Cross-Browser Component patterns)

• 14: the Application Core Module publishes a new event on the Application Core 
Facade (Observer pattern) as a result of its processing

• 15-20: each user interface module that subscribed to this event gets notified through 
its  Sandbox,  and  updates  its  display  in  a  completely  independent  way  (Proxy, 
Observer and Portlet patterns)

Collaboration Overview (Actual Implementation)

In  the  actual  implementation,  there  is  no  clear  cut  difference  between  User  Interface 
Modules and Application Core Modules. All  modules are just  custom modules:  specific 
code following  severe  guidelines  by channeling all  its  interactions  with  the  rest  of  the 
application through a dedicated Sandbox instance.

In this new collaboration schema, the Application Core Facade has been replaced with the 
Publisher  object,  which  is  responsible  for  the  management  of  subscribers  and  the 
broadcasting of published events. There is a single Publisher for the whole application.

Instead of  registering itself  on the Facade,  the  Sandbox now creates  a  new Subscriber 
instance for each subscription. This Subscriber is initialized with a filter; only matching 
events will trigger the associated callback function.

Javascript Application Design Patterns 4/23



Each Sandbox instance is now a Facade on its own; it handles interactions with adapter 
modules, e.g. lb.base.ajax for asynchronous communication with the host server.

Sequence of Messages:

• 1-6: each custom module subscribes through its Sandbox to events published by the 
Core Events Publisher (Proxy and Publisher/Subscriber patterns)

• 7-8:  the  first  module  publishes  a  new  event  through  its  Sandbox  (Proxy  and 
Publisher/Subscriber patterns)

• 9-11:  the  new  event  is  broadcast  by  the  Publisher  to  all  Subscribers.  The  first  
module, which did not include this type of event in its subscription filter,  is not 
notified. The second module was interested in this kind of event, and it gets notified 
through configured callback. (Proxy and Publisher/Subscriber patterns)

• 12-14: the second module is responsible for posting update messages to the host 
server.  It  sends  a  new message  through its  Sandbox,  which  gets  serialized  and 
transferred  to  the  server.  (Proxy,  Adapter  and  Cross-Browser  Component  
patterns)

• 15-17:  when  the  asynchronous  answer  from  the  server  is  received,  the  callback 
provided in the request, receive(), is triggered, and the module gets the answer as a 
JavaScript object (Proxy, Adapter and Cross-Browser Component patterns)

Javascript Application Design Patterns 5/23



JavaScript Architecture Components

The UML diagram below summarizes the different types of components present in the 
JavaScript  Application  Architecture.  I  annotated  each  type  of  component  with  the 
corresponding Design Patterns, using <<stereotypes>>.

Initial Design

In the initial design,

• User Interface Modules are expected to be different and distinct from Application 
Core Modules

• the Sandbox is part of the User Interface layer

• the Application Core Facade holds many responsibilities

Javascript Application Design Patterns 6/23



Actual Implementation

In the actual implementation,

• all modules are custom modules, whether they are intended to handler interactions 
in User Interface or in Data Model.

• the  Sandbox  is  now  part  of  the  core  layer  and  interacts  directly  with  adapter 
modules and other parts of the core.

• instead of a single Facade with many responsibilities, a Core Application in charge 
of managing modules life cycle and a Publisher responsible of events broadcasting

• Adapter  Modules  are  considered  a  separate  layer,  intended  for  portability  over 
different base libraries of cross-browser components.

Javascript Application Design Patterns 7/23



(Initial Design)

Intended as a guideline for the design of these components, each type of component is 
described in its own section below.

Design of User Interface Modules (Initial Design)

Each module shall live in its own namespace, by using the JavaScript Module Pattern. Let's 
call the top-level namespace lb (for Legal-Box). Within lb, two different namespaces will 
differentiate User Interface modules in lb.ui from Application Core modules in lb.core.

Following JavaScript convention,  User Interface  module names start  with a  lower-case 
letter because they are closure creator functions, not constructor functions to be called 
with new.

To clarify the intent in current design, I chose to rename the init() and destroy() functions 
in  Nicholas  Zakas'  examples  to  start()  and  stop().  Similarly,  I  renamed  the 
handleNotification() function to notify() for consistency with the Observer Pattern.

Each module may define any specific method needed for its own use. These methods shall 
remain in its private scope.

Javascript Application Design Patterns 8/23



Design of Custom Modules (Actual Implementation)

In the actual implementation, two kinds of modules are expected to behave in the same 
way: User Interface Modules, living in the namespace lb.ui, and Data Model modules, in 
the namespace lb.data.

The difference between User Interface modules and Data Model modules may get fuzzier:  
it  is  possible that some module end up having both the responsibility of handling user 
interactions and keeping a record of underlying data objects specific to the domain.

The notify() method has been removed from the expected interface, – it is now a callback 
provided as parameter in subscribe() –, and the stop() method has been renamed to end() 
to clarify the intent: it is expected to terminate the life cycle of the module, this is not a 
mere pause of module interactions. Both start() and end() are optional.

Javascript Application Design Patterns 9/23



Design of the Sandbox (Initial Design)

For the purpose of enforcing security, the Sandbox as defined by Nicholas Zakas acts as a 
Proxy  between User  Interface  modules  and the  Application  Core  Facade.  As  such,  the 
Sandbox must expose each public method of the Application Core API. The Sandbox shall 
be updated to reflect any change in this API.

Besides, the Sandbox acts as a filter in the communication of each User Interface module 
with  the  rest  of  the  application.  Using  the  Observer  pattern  implemented  with  the 
subscribe() and notify() methods allows to have loose coupling between each module and 
the application.

Design of the Sandbox (Actual Implementation)

In the actual implementation, the Sandbox is the sole provider of the core API, and acts 
both as a Proxy and a Facade for the Core Application. Providing a separate instance to 
each module avoids naughty bugs by pollution of the API [16].

The Sandbox API is modular. Three methods are defined directly by the Sandbox module:

• sandbox.getId()

• sandbox.getBox()

• sandbox.isInBox()

Other methods are defined by plug-ins. The Sandbox Builder creates new instances of the 
Sandbox and applies each plug-in in turn to assemble the complete API. It is possible to 
configure a different sandbox builder to customize the Sandbox API by loading additional 
or alternative modules.

Javascript Application Design Patterns 10/23





Each plug-in defines a set of related methods:

1. CSS Plug-in –  Cascading Style Sheets utilities

• sandbox.css.getClasses()

• sandbox.css.addClass()

• sandbox.css.removeClass()

2. DOM Plug-in – Document Object Model utilities

• sandbox.dom.$()

• sandbox.dom.element()

• sandbox.dom.fireEvent()

• sandbox.dom.cancelEvent()

• sandbox.dom.getListeners()

• sandbox.dom.addListener()

• sandbox.dom.removeListener()

• sandbox.dom.removeAllListeners()

3. Events Plug-in – for loose coupling with other modules

• sandbox.events.subscribe()

• sandbox.events.unsubscribe()

• sandbox.events.publish()

4. I18n Plug-in – for internationalization

• sandbox.i18n.getLanguageList()

• sandbox.i18n.getSelectedLanguage()

• sandbox.i18n.selectLanguage()

• sandbox.i18n.addLanguageProperties()

• sandbox.i18n.get()

• sandbox.i18n.getString()

• sandbox.i18n.filterHtml()

5. Server Plug-in – for asynchronous communication with a remote server

• sandbox.server.send()

6. URL Plug-in – URL and local navigation

• sandbox.url.getLocation()

• sandbox.url.setHash()

• sandbox.url.onHashChange()

7. Utils Plug-in – general utilities

Javascript Application Design Patterns 12/23



• sandbox.utils.has()

• sandbox.utils.is()

• sandbox.utils.getTimestamp()

• sandbox.utils.setTimeout()

• sandbox.utils.clearTimeout()

• sandbox.utils.trim()

• sandbox.utils.log()

• sandbox.utils.confirm()

As  a  Proxy,  the  Sandbox  hides  details  of  the  implementation:  for  example,  the  DOM 
methods  check  that  target  elements  are  part  of  the  box  assigned  to  the  module,  and 
methods to create elements, listeners and events on DOM elements work in collaboration 
with a customizable factory which may extend the DOM elements with enhanced behaviors 
to provide the experience of Rich Internet Application Widgets.

Javascript Application Design Patterns 13/23



Design of the Application Core Facade (Initial Design)

The design of the Application Core Facade crystallizes many different facets into a single 
module.

1. It provides methods to manage the life cycle of modules:

• register() to register (declare) a new module

• startAll() to start all registered modules at the start of the web application

• stopAll() to stop all started modules at the end of the web application

To simplify, I chose to remove the start() and stop() functions from these public methods. 
They are now functions of each module.

2. For the purpose of loose coupling, it manages an event broadcasting system:

• subscribe() to start a subscription to some kind of events

• notifyAll() to broadcast an event to all subscribed Observers

3. It provides a single entry point for the Application Core Programming Interface. The 
details of this API are outside of the scope of the current document.

Javascript Application Design Patterns 14/23



Design of the Events Publisher and Subscribers
(Actual Implementation)

In  the  actual  implementation,  the  Observer  pattern  was  replaced  by  a  similar 
Publisher/Subscriber Design Pattern.

The publisher (a single instance for the application) manages subscribers and broadcasts 
published events to all subscribers.

The Subscriber (one instance for each filter/callback group, there might be several for a  
single module) filters incoming events and triggers a callback if needed.

An important feature of the Subscriber in the actual implementation is to clone incoming 
events before propagation to custom modules. It avoids undesired interactions between 
modules through shared objects [16] and allows each module to keep and modify the event 
data freely, event after the broadcasting of the event completes.

Javascript Application Design Patterns 15/23



Design of the Core Application (Actual Implementation)

The Core  Application was  not  part  of  the  initial  design.  It  is  a  fork from parts  of  the 
Application Core Facade.

It is in charge of managing the life cycle of modules. The Core Application is intended to be 
used by custom applications to manage a set of custom modules:

• the  custom  application  creates  and  adds  modules  of  its  choice  to  the  Core 
Application

• a call to run() registers startAll() on the page load to start all modules, and endAll()  
on the page unload event to terminate all modules.

Two methods appear in the Core Application in this version (2010-05-18), designed as an 
extension point for Rich Internet Application Widgets:

• setFactory() to configure a new factory for DOM elements, listeners and events

• getFactory() used by Sandboxes to retrieve the configured factory

While the default factory simply creates regular DOM elements, a custom factory would 
typically initialize widgets on top of these elements. For example, in a custom factory, all  
ul/ol elements with the class “menu” can be enhanced with a drop-down menu behavior.

A custom factory must implement methods to create elements, listeners and events, as well 
as corresponding methods to destroy these objects at the end of life of the module.

The communication with Rich Internet Application Widgets is based on custom events 
using the same Sandbox methods used for regular DOM events: addListener() to create 
and register a listener and fireEvent() to create and trigger an event, or cancelEvent() to 
prevent a default action associated with the event, e.g. the submission of a form.

Javascript Application Design Patterns 16/23



Design of Application Core Modules (Initial Design)

Application Core Modules shall define functions for all the functionalities of the Legal-Box 
system accessible from a browser. These functions are specific to Legal-Box system and 
will be reflected, in a somewhat summarized form, in the Legal-Box API exposed in the 
Application Core Facade.

Design of Application Core Modules (Actual Implementation)

The  Core  Application  does  not  work  directly  with  instances  of  custom  modules,  but 
through generic  wrappers,  the  Core  Modules,  which  handle  errors  and the  absence  of 
optional methods. On the contrary of the initial design, there are no methods specific to 
each module.

Javascript Application Design Patterns 17/23



Design of Adapter Modules (Initial Design)

The  responsibilities  of  the  Adapter  Modules  are  to  abstract  the  details  of  the 
communication with the server, in terms of format and protocol used.

Using the Adapter pattern has the following advantages:

• defining our own methods lowers the coupling with the underlying Cross-Browser 
components used

• the data conversion step ensures that no module relies on the specifics of the format 
used for the communication with the server (e.g. XML vs JSON vs key/values  in 
application/x-www-form-urlencoded or in multipart/form-data)

The send() method is intended for the communication of a single asynchronous message 
from the  browser  to  the  server,  with  a  callback  provided  as  parameter  to  provide  the 
converted response.

Additional methods may be needed for different types of messages, e.g. to send a file as 
opposed to sending data.

Javascript Application Design Patterns 18/23



Design of Adapter Modules (Actual Implementation)

There are different kinds of adapter modules in actual implementation, related to different 
domains:

• AJAX communication with the host server

• Internationalization (i18n)

• JSON parsing and serialization

• DOM manipulations

• Logging

• HTML and Text Templates

• Utilities for native JavaScript: string, array, object

These adapters provide a portability layer over the chosen base library.

Javascript Application Design Patterns 19/23



Do Not Design Cross-Browser Components (Initial Design)

We shall not design new Cross-Browser components because:

• reliable Cross-Browser components are widely available [11] [12] [13] [14] [15]

• the cost of development and maintenance for such components is very high

Do Not Design Cross-Browser Components (Actual Implementation)

I actually did not design any cross-browser component, but the selection process for a  
suitable base library was harder than expected. Although many comprehensive libraries of 
cross-browser components available indeed, most (if not all) of them pollute the global  
namespace, the prototype of native JavaScript objects or the DOM nodes they manipulate 
in some way or another.

I selected Google Closure [17] for its modular nature, its completeness, and its appearance 
of  high  quality.  I  extracted  only  the  files  of  interest  with  the  help  of  a  dependency 
calculation tool distributed with the library.

Still, I had to edit the base file to move some global configuration parameters to the goog 
namespace.

Javascript Application Design Patterns 20/23



Conclusion and Directions for Further Work
(Initial Design)

This  document  lays  the  ground  foundation  for  the  implementation  of  the  Scalable 
JavaScript Application Architecture by Nicholas Zakas [1].

From this point,

• the Application Core API specific to Legal-Box system must be specified

• Cross-Browser components must be selected based on requirements

to fill the gaps in current design.

Conclusion and Directions for Further Work
(Actual Implementation)

With the current implementation of the framework, there is no need for the design of a  
complete Application Core API specific to Legal-Box. Custom modules can be designed 
iteratively, and define events of interest.

From this point,

• a  set  of  guidelines  should  be  defined  for  the  format  of  event  objects:  naming 
conventions and semantic for a lingua franca

• cross-browser Rich Internet Application components should be integrated in the 
framework, by creating useful abstractions in adapters over a base library such as 
Ext JS [18]

Javascript Application Design Patterns 21/23



References

[1] Scalable JavaScript Application Architecture by Nicholas Zakas

http://www.slideshare.net/nzakas/scalable-javascript-application-architecture

[2]  Design Patterns: Elements of Reusable Object-Oriented Software by Gang of Four: 
Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

http://en.wikipedia.org/wiki/Design_Patterns

[3] Proxy Pattern – from Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Proxy_pattern

[4] Facade Pattern – from Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Facade_Pattern

[5] Mediator Pattern – from Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Mediator_Pattern

[6] Observer Pattern – from Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Observer_Pattern

[7] Adapter Pattern – from Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Adapter_Pattern

[8] JavaScript Module Pattern: In-Depth by Ben Cherry

http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth

[9] Portlet by Michael Mahemoff

http://ajaxpatterns.org/Portlet

[10] Cross-Browser Component by Michael Mahemoff

http://ajaxpatterns.org/Cross-Browser_Component

[11] jQuery: The Write Less, Do More, JavaScript Library

http://jquery.com/

Javascript Application Design Patterns 22/23

http://www.slideshare.net/nzakas/scalable-javascript-application-architecture
http://jquery.com/
http://ajaxpatterns.org/Cross-Browser_Component
http://ajaxpatterns.org/Portlet
http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth
http://en.wikipedia.org/wiki/Adapter_Pattern
http://en.wikipedia.org/wiki/Observer_Pattern
http://en.wikipedia.org/wiki/Mediator_Pattern
http://en.wikipedia.org/wiki/Facade_Pattern
http://en.wikipedia.org/wiki/Proxy_pattern
http://en.wikipedia.org/wiki/Design_Patterns


[12] MooTools - a compact javascript framework

http://mootools.net/

[13] The Dojo  Toolkit - Unbeatable JavaScript Tools

http://www.dojotoolkit.org/

[14] Prototype  JavaScript framework: Easy Ajax and DOM manipulation for dynamic  
web applications

http://www.prototypejs.org/

[15] YUI Library

http://developer.yahoo.com/yui/

[16] Maintainable JavaScript: Don’t modify objects you don’t own by Nicholas Zakas

http://www.nczonline.net/blog/2010/03/02/maintainable-javascript-dont-modify-
objects-you-down-own/

[17] Closure Library – Google code

http://code.google.com/closure/library/

[18] Ext JS — JavaScript Framework and RIA Platform

http://extjs.com/

[19] Builder Pattern – from Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Builder_pattern

[20] The Plug-in Pattern by Frans Faase

http://www.iwriteiam.nl/PlugInPattern.html

Javascript Application Design Patterns 23/23

http://www.iwriteiam.nl/PlugInPattern.html
http://en.wikipedia.org/wiki/Builder_pattern
http://extjs.com/
http://code.google.com/closure/library/
http://www.nczonline.net/blog/2010/03/02/maintainable-javascript-dont-modify-objects-you-down-own/
http://www.nczonline.net/blog/2010/03/02/maintainable-javascript-dont-modify-objects-you-down-own/
http://developer.yahoo.com/yui/
http://www.prototypejs.org/
http://www.dojotoolkit.org/
http://mootools.net/

	Design Patterns for
Scalable JavaScript Application
	Executive Summary
	General Design Patterns
	Design Patterns Specific to JavaScript

	Document Metadata
	Introduction
	Collaboration Overview (Initial Design)
	Sequence of Messages:

	Collaboration Overview (Actual Implementation)
	Sequence of Messages:

	JavaScript Architecture Components
	Initial Design
	Actual Implementation
	Design of User Interface Modules (Initial Design)
	Design of Custom Modules (Actual Implementation)
	Design of the Sandbox (Initial Design)
	Design of the Sandbox (Actual Implementation)
	Design of the Application Core Facade (Initial Design)
	Design of the Events Publisher and Subscribers
(Actual Implementation)
	Design of the Core Application (Actual Implementation)
	Design of Application Core Modules (Initial Design)
	Design of Application Core Modules (Actual Implementation)
	Design of Adapter Modules (Initial Design)
	Design of Adapter Modules (Actual Implementation)
	Do Not Design Cross-Browser Components (Initial Design)
	Do Not Design Cross-Browser Components (Actual Implementation)

	Conclusion and Directions for Further Work
(Initial Design)
	Conclusion and Directions for Further Work
(Actual Implementation)
	References


