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Intro
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Welcome back!
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By the end of today...

- Understand Javascript's syntax

- Get to know jQuery

- How to get DOM element using Javascript

- How to create HTML elements and add them 
to the DOM

- How to attach events to objects
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Our first JS script
<html>
<head>
� <script>
� � alert("Hello, world.");
� </script>
</head>
<body>
</body>
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A brief history of JS
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Origins

- Created in 1995 by Brendan Eich for 
Netscape

- Named “JavaScript” to capture Java's 
momentum at the time

- Microsoft implements JScript soon after
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Since then...

- Incredibly popular 

- Has gotten a bit of a bad rap

- Most problems are with browser 
implementations, rather than language 
itself
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Javascript in 2009

- Toolkits: jQuery, Dojo, Prototype, Yahoo! 
User Interface library

- Plugins for these toolkits, like jQuery 
Touch
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JS Basics
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Variable assignment
//assigning a variable
var a = "Hello";
var b = 5;

// comment one line with two slashes
/* comment 
� blocks
� with slashes and
� stars
/*
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For loops
/* for loop */
for (var i = 0; i < 10; i++) {
� // do something
}

/* for each loop, useful for arrays*/
for (var i in obj) {
� alert(obj[i]);
� // i is the name of the property,
� // *not* the object represented
� // by that property
}
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Defining functions
function doStuff(argument1, argument2...) {
� alert(argument1);
}

or in line:
function doStuff(argument1) {
� var f = function() {
� � // function inside a function
� }
� f(); // calling a function
}
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Javascript is Loosely Typed

- Everything is assigned to vars

- Be careful: ("5" + 10) = 510 (the 10 is 
coerced to a string)
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Coercing types
var a = 5;
var b = "10"; // came from somewhere else
a + b;
... 510
a + parseInt(b);
... 15
b = "10.5";
parseInt(b) -> 10
parseFloat(b) -> 10.5
a.toString() -> "5"
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Booleans
true and false

var a = 5;
var b = 5;
a == b;
>>> true

var a = 1;
var b = true;
a == b;
>>> true

a === b;
>>> false

== is a “loose” comparison
=== is strict
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Objects

- Objects are the building blocks for 
everything else in Javascript

- Reference properties inside objects with 
a period (obj.propertyname) or brackets:    
obj['propertyname']
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Objects
var a = {
� property1: "value",
� property2: "othervalue"
}
alert(a.property1); -> "value"
a.property2 = "what?";
alert(a.property2); -> "what?"
alert(a['property2']); -> "what?"
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Arrays

- Ordered lists

- Grows dynamically as things are added 
to it

- Can have any number of different things 
in it (numbers, strings, objects...)
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Arrays Syntax
var a = []; //creates an empty Array
a.push("hi");
console.log(a); -> ["hi"];
var b = a.pop();
console.log(b); -> "hi";
console.log(a); -> [];
a.push("okay");
console.log(a[0]); -> "okay"
var c = {
� propname: "value";
}
a.push(c);
console.log(a); -> ["okay", {propname:"value"}];
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Going through elements
var arr = [1,2,5,7,10];
for(var i = 0; i < arr.length; i++) {
� // do something with arr[i]
}

// common pattern!
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Variable scope

- In browser, global scope is the window

- functions define new scope

- var declares variable in that scope

- Scope means: what variables can I 
access at this point in the app?
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The scope chain
// define a new variable a, in the current scope
// which, since we're not in a function, is window
var a = 5;

// get a variable a, in the current scope or a parent 
//scope
console.log(a);
>>> 5

console.log(window.a);
>>> 5

function newFunction(){
� alert(a); // refers to global a
� var b = 3; // creates b in newFunctions' scope
}
console.log(b); // undefined, because b is out of scope

Thursday, October 15, 2009



Scope exercises
var a = 5;
var b = 10;
var x = function() {
� var a = 10;
� b = 5;
}
x();

what does a equal after x runs?
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Scope exercises
var a = 5;
var b = 10;
var x = function() {
� var a = 10;
� b = 5;
}
x();

what does a equal after x runs?
Answer: 5
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Scope exercises
var a = 5;
var b = 10;
var x = function() {
� var a = 10;
� b = 5;
}
x();

what does b equal after x runs?
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Scope exercises
var a = 5;
var b = 10;
var x = function() {
� var a = 10;
� b = 5;
}
x();

what does b equal after x runs?
Answer: 5
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What the browser does

- Checks the currently running function for 
a declaration of the requested variable

- If not found, go up one in the scope 
chain, until we hit the window
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Object-oriented?

- Javascript is Object-oriented, but not 
class-oriented

- Instead, uses prototypical inheritance
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Creating instances
function Building(location) {
� this.location = location;
� this.getLocation = function(){
� � return this.location;
� }
}
// calling a function with new treats
// the called function as a prototype
// and makes a new instance
var Gates = new Building("353 Serra");
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Changing prototype on 
the fly

var Gates = new Building("353 Serra");
Building.prototype.getStreet = function() {
� return this.location.split(" ")[1];
}

Gates.getStreet();
>> "Serra"
// prototypes can be changed on the fly,
// and anyone based on that prototype will
// pick up the changes
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What is 'this'?

- Defines the context that a function is 
being executed in
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Examples
this;
>> DOMWindow
Building.prototype.getThis = function(){
� return this;
}

Gates.getThis();
>> Gates
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Functions are just objects

window.getThis = Gates.getThis;
// now there's a "getThis" function defined 
// on the window
getThis();
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Functions are just objects

window.getThis = Gates.getThis;
// now there's a "getThis" function defined 
// on the window
getThis();
>> DOMWindow
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This means...

- Be very aware when using "this" inside 
your functions
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More on 'this'

- We'll see more of this later today when 
we do events
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Timing events
// execute one function, delayed:
window.setTimeout( function, delayInMilliseconds);

// execute a function at regular intervals:
var timer = window.setInterval(function, delayBetweenInMillis);

// stop the timer
window.clearInterval(timer);
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Example
function onLoad() {
� window.setTimeout(function(){
� � var dv = document.createElement("div");
� � dv.innerHTML = "created by setTimeout";
� � document.body.appendChild(dv);
� }, 5000); //add something after 5 seconds

� window.setInterval(function(){
� � var dv = document.createElement("div");
� � dv.innerHTML = "created by setInterval";
� � document.body.appendChild(dv);
� }, 500) // add something every half a second
�
}

window.onload = onLoad;
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Demo
timers.html
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Javascript in the Browser
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the <script> tag
<head>
� <script>
� // your in-file JS
� </script>
� <script src="jsfile.js"></script>
</head>
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When is JS executed?

- As it occurs in the DOM

- So, in the <head> you don't have access 
to any of the elements in your body at 
first

- Solution? hooking up to onload
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Hook up to onload 
using JS

<head>
<script>
� function onloadActions() {
� � // hook up events, etc;
� }
� window.onload = onloadActions;
</script>
</head>
<body>...
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jQuery
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Javascript Frameworks

- Abstract away common functions that 
are slightly different across browsers

- Simplify common tasks like showing & 
hiding elements

- Help build features like a tab menu, a 
“CoverFlow” type menu, drag and drop
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Why jQuery?

- Good fit for our class—syntax is very 
CSS-selector based

- We'll use jQueryTouch plugin next week
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If you're interested...

- We can cover Javascript “guts” in the last 
week of class
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jQuery crash course

- Global jQuery() function that selects 
elements to act on

- Shortcut $( ) function that we'll use 
instead
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Interacting with the 
DOM
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CSS Flashback

- #name (selects by id)

- .name (selects by class)

- tagname (selects by tag)
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CSS Flashback

- #name -> $("#name");

- .name -> $(".name");

- tagname (selects by tag) -> $("tagname");
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Onload function
$(document); // selects the whole document
$(document).ready( func ); // sets func to be executed onload
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Selecting By Id

<head>
� <script src="../jquery.js" type="text/javascript" 
charset="utf-8"></script>
� <script>
� function onloadActions(){
� � var a = $("#selectme");
� � console.log(a);
� }
� $(document).ready(onloadActions);
� </script>
</head>
<body>
� <div id="selectme"></div>
</body>

< jQuery object
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By Class
<head>
� <script src="../jquery.js" type="text/javascript" 
charset="utf-8"></script>
� <script>
� function onloadActions(){
� � var a = $(".main");
� � console.log(a);
� }
� $(document).ready(onloadActions);
� </script>
</head>
<body>
� <div class="main" id="selectme"></div>
� <div class="main" id="selectmetoo"></div>
</body>
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By Tag
<head>
� <script src="../jquery.js" type="text/javascript" 
charset="utf-8"></script>
� <script>
� function onloadActions(){
� � var a = $("div");
� � console.log(a);
� }
� $(document).ready(onloadActions)
� </script>
</head>
<body>
� <div id="selectme"></div>
</body>
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Acting on selector results
function actOnElement(index, element) {
� console.log(index, element);
}

$(".main").each( actOnElement );
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One gotcha

- Sometimes jQuery returns a "jQuery 
wrapped" object that responds to jQuery 
commands like .each, .click, etc

- Other times it's just the raw DOM 
element

- Use $( ) to convert back to jQ wrapped
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Examples
var a = $("#selectme"); // a is jQ object array
>>> Object
� 0: HTMLDivElement
� context: HTMLDocument
� length: 1
� selector: "#selectme"

a[0];
>>> <div class= "main" id= "selectme"> This is the first div. </div>

$(a[0]);
>>> Object
� 0: HTMLDivElement
� context: HTMLDivElement
� length: 1
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Specifying context
<div id="firstcontainer">
� <div class="main" id="selectme">This is the first div.</div>
� <div class="main" id="selectmetoo">This is the second div.</div>
</div>
<div id="secondcontainer">
� <div class="main" id="selectmethree">This is the third div.</div>
� <div class="main" id="selectmefour">This is the fourth div.</div>
</div>

// if we want to select just the .main divs in second container:
$(".main", "#secondcontainer");
>>> Object
� 0: HTMLDivElement
� 1: HTMLDivElement
� context: HTMLDocument
� length: 2
� prevObject: Object
� selector: "#secondcontainer .main"
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Traversing the DOM

- Use parent(), children(), next(), 
prevObject
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Traversing the DOM
<script>
function onloadActions(){
� var a = 
$("#container");
� console.log(a.children());
� console.log(a.children()[0]);
� console.log($(a.children()[0]).parent());
}
window.onload = onloadActions;
</script>
</head>
<body>
� <div id="container">
� � <div id="selectme"></div>
� � <div id="selectmetoo"></div>
� </div>
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Chaining
/* $() usually returns the object acted on, 
� which lets you do things like:
*/
$("#mydiv").css("background-color", 
"red").click(function(){ alert('hi')}).show()
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Creating & Adding 
Elements

Thursday, October 15, 2009



Task

- Trying to insert objects into the DOM 
dynamically

- For example, a "Loading..." indicator
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$("htmlstring")
var el = $("<div></div>");

Accepts: a string representing the HTML to create

Returns: the created Element (which hasn't been added to 
the DOM)
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$.append
var a = $("<div>Loading</div>");
var container = $("#container");

container.append(a);

append is called on an element, accepts an 
element, returns the original element

you can also do:
a.appendTo("#container"); // or,
a.appendTo($("#container"));

appendTo returns the element being appended
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Setting the content
/* use .html() */

var el = $("<div></div>");
el.html("Loading...");

$(document).append(el);
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Changing styles
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Styling from JS

- All jQuery elements have a .css() function

- Either call it with .css("property", "value"), 
or pass in an object like so:

.css({

	 	 	 'prop1': 'value',

	 	 	 'prop2': 'value'

	 	 })
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Examples
Black background: $("#selectme").css("background-
color", "black")

12px font -> $("#selectme").css("font-size", "12px");

5px rounded corners -> $("#selectme").css("-webkit-
border-radius", "5px")

//All together:
$("#selectme").css({
� "background-color": "black",
� "font-size": "12px",
� "-webkit-border-radius": "5px"
});
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Showing / hiding
var el = $("#loading");

el.hide();
el.show();

el.hide(true); //with animation
el.show(true); //with animation

Thursday, October 15, 2009



Example
<script src="../jquery.js" type="text/javascript" charset="utf-8"></script>
<script>
function onloadActions(){
� var a = $(".main");
� a.each(function(i, el) {
� � $(el).css({
� � � 'width': '200px',
� � � '-webkit-border-radius': '10px',
� � � 'border': "1px solid #333"
� � })
� });
� $(".main").click(function(){
� � $(this).hide(true);
� })
}
function showAll() {
� $(".main").show(true);
}
$(document).ready(onloadActions);
</script>
<div id="firstcontainer">
� <div class="main" id="selectme">This is the first div.</div>
� <div class="main" id="selectmetoo">This is the second div.</div>
</div>
<input type="button" onclick='showAll()' value="show all"/>
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Demo
showhide.html
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Changing classes
$("#id").addClass("classname");
$("#id").removeClass("classname");
$("#id").toggleClass("classname");
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Example
<script src="../jquery.js" type="text/javascript" 
charset="utf-8"></script>
<style type="text/css" media="screen">
� .highlight { background-color: yellow;}
</style>
<script type="text/javascript" charset="utf-8">
� $(document).ready(function(){
� � $("#clickme").click(function(){
� � � $(this).addClass("highlight");
� � })
� })
</script>
<script type="text/javascript" charset="utf-8">
� <div id="clickme">Click to highlight</div>
</script>
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Demo
classnames.html
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Firebug is your friend
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Interactive console

- Use it whenever you want to test 
something out
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Create element, and appendTo the top bar
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Clicking on DOM 
element inspects it
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Event-driven 
architecture
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Event-driven vs polling

- Two different approaches to UI 
programming: polling & event-driven
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Polling

- Scripts that are interested in changes 
have to go: "did anything change? did 
anything change? did anything change?" 
every n seconds
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Event-driven

- Interested listeners register themselves 

- When an event occurs, source notifies 
its listeners
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In Javascript

- addEventListener('eventName', 
function, ...);

- in jQuery, we do .bind('eventname', 
callbackFn) or the actual event, 
so .click(callbackFn), .hover, etc
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Example: hooking up to 
listen to a click

<script src="../jquery.js" type="text/javascript" 
charset="utf-8"></script>
<script type="text/javascript" charset="utf-8">
� function doSomething(event) {
� � alert("hi!");
� }

� function init() {
� � var el = $('#clickme');
� � el.click(doSomething);
� }
� $(document).ready(init);
</script>
<body>
� <div id="clickme">Click me!</div>
</body>
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Does...
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Hover

- element.hover(onMouseOverCallback, 
onMouseOutCallback);

(first function called on entering the 
element, other called on leaving)
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Hover
<script src="../jquery.js" type="text/javascript" charset="utf-8"></
script>
<script type="text/javascript" charset="utf-8">
� function doOnMouseOver(event) {
� � $(event.target).css("background-color", "blue");
� }
� function doOnMouseOut(event) {
� � $(event.target).css("background-color", "white")
� }

� function init() {
� � var el = $('#hoverme');
� � console.log(el);
� � el.hover(doOnMouseOver, doOnMouseOut);
� � el.css("-webkit-transition", "background-color 1s ease");
� }
� $(document).ready(init);
</script>
<body>
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Demo

hover.html
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Events worth watching for
click
hover
load
mousemove (useful for drag & drop)
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Inline Functions
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Overview

- Functions can be defined anonymously 
in line

- This is most helpful for event handlers
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Example
function init() {
� $("#clickme").click(function(event){
� � // do something on click
� })
}

// we've defined an anonymous function
// that will execute on click
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Closures

- Functions defined anonymously inside 
other functions will have that their parent 
function's context
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Example
function init() {
� var saying = "Hello";
� $("#clickme").click(function(){
� � alert(saying);
� })
}

// Even though that function executes way
// after init() is done running, it can 
// access init's variables
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Closures gone wrong

function init() {
� for(var i = 0; i < 3; i++){
� � $("<div>" + i + "</div>").appendTo("#container");
� }
}
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Closures gone wrong

for(var i = 0; i < 3; i++){
� var newDiv = $("<div>Box #" + i + "</div>");
� newDiv.appendTo("#container");
� newDiv.click(function(){
� � alert(i);
� })
}

What happens when I click on Box #0?
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Uh oh...
function init() {
� for(var i = 0; i < 3; i++){
� � var newDiv = $("<div>Box #" + i + "</div>");
� � newDiv.appendTo("#container");
� � newDiv.click(function(){
� � � alert(i);
� � })
� }
}

Our click closure points back to init(), but in init
(), the i variable equals 3 because the for loop 
kept going after the event handler was 
attached to box #0 
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Workarounds

- There are ways to do this, but they're 
complicated

- We can cover in last week if interested

- For now, don't rely on values you expect 
to change in original function, use event 
or this instead (example next)
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The code
<script src="../jquery.js" type="text/javascript" 
charset="utf-8"></script>
<script type="text/javascript" charset="utf-8">
�
</script>
<body>
You are Goldilocks. What would you like to do next?
<div class="actionlink" id="firstbed">Try the first bed.</div>
<div class="actionlink" id="secondbed">Try the middle bed.</div>
<div class="actionlink" id="thirdbed">Try the last bed.</div>
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Attaching listeners
$(document).ready(function(){
� var message = "this bed is ";
� $(".actionlink").click(function(event){
� � var whichBed = event.target.id;
� � var result;
� � if(whichBed == 'firstbed') {
� � � result = "too small!";
� � } else if (whichBed == 'secondbed') {
� � � result = "too big!";
� � } else {
� � � result = "just right!";
� � }
� � alert(message + result);
� });

})
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Demo
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What context is that 
callback being executed in?
$(".actionlink").click(function(event){
� alert(this);
});
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What's going on?

- Event function is attached to the div

- When div fires event, function fires with 
the div as context

- It's a closure, so still has access to scope 
it was created in (but this has changed)
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So if we wanted to use 'this'
$(".actionlink").click(function(event){
� // this callback is attached to each div,
� // and 'this' is the clicked div
� var whichBed = this.id;
� var result;
� if(whichBed == 'firstbed') {
� � result = "too small!";
� } else if (whichBed == 'secondBed') {
� � result = "too big!";
� } else {
� � result = "just right!";
� }
� alert(result);
});
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Portfolio 4
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Refresher
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Goal

- Hook up the subpages, too
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Strategy

- Minimize page loads on the iPhone

- All links lead to current page but with an 
anchor in the hash ("page.html#id")

- Use setInterval to watch for changes in 
the hash and update page
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Step 1: adding content
<div id="how-might-we" class='content subpage'>
� This is some great work I did for the How Might We? 
Assignment.
</div>
<div id="inspiration" class='content subpage'>
� Wow, that was super inspirational.
</div>
<div id="discovery" class='content subpage'>
� Can you discover?
</div>
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Step 2: Hooking up links
<li><a href="#how-might-we">How Might We?</a></li>
<li><a href="#inspiration">Inspiration</a></li>
<li><a href="#discovery">Discovery</a></li>

Thursday, October 15, 2009



Step 3: watching for 
hash changes

var loop = setInterval(function(){
� var curid = currentPage.attr('id');
� if (location.hash == '') {
� � location.hash = '#' + curid;
� } else if (location.hash != '#' + curid) {
� � goPage(location.hash)
� }
}, 100);

// jQTouch will take care of this next week
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Step 4: Changing Pages
function goPage () {
� var pageToLoad = window.location.hash;
� var prevFound = false;
� for(var i = 0; i < pageHistory.length; i++) {
� � if (pageHistory[i] == pageToLoad) {
� � � $(pageToLoad).removeClass("parentpage");
� � � $(currentPage).addClass("subpage");
� � � prevFound = true;
� � � pageHistory.pop();
� � }
� } 
� if(!prevFound) {
� � $(currentPage).addClass("parentpage");
� � $(pageToLoad).removeClass("subpage");
� � pageHistory.push("#"+currentPage.attr("id"));
� }
� currentPage = $(pageToLoad);
� return false;
}
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Step 5: CSS Classes
.subpage {
� left: 360px !important;
}
.parentpage {
� left: -360px !important;
}
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Demo
week04.html in portfolio folder

bug when on iPhone, will fix and update
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