
Javascript, part 1

CS147L Lecture 4
Mike Krieger

Thursday, October 15, 2009

Intro

Thursday, October 15, 2009

Welcome back!

Thursday, October 15, 2009

By the end of today...

- Understand Javascript's syntax

- Get to know jQuery

- How to get DOM element using Javascript

- How to create HTML elements and add them
to the DOM

- How to attach events to objects

Thursday, October 15, 2009

Our first JS script
<html>
<head>
� <script>
� � alert("Hello, world.");
� </script>
</head>
<body>
</body>

Thursday, October 15, 2009

A brief history of JS

Thursday, October 15, 2009

Origins

- Created in 1995 by Brendan Eich for
Netscape

- Named “JavaScript” to capture Java's
momentum at the time

- Microsoft implements JScript soon after

Thursday, October 15, 2009

Since then...

- Incredibly popular

- Has gotten a bit of a bad rap

- Most problems are with browser
implementations, rather than language
itself

Thursday, October 15, 2009

Javascript in 2009

- Toolkits: jQuery, Dojo, Prototype, Yahoo!
User Interface library

- Plugins for these toolkits, like jQuery
Touch

Thursday, October 15, 2009

JS Basics

Thursday, October 15, 2009

Variable assignment
//assigning a variable
var a = "Hello";
var b = 5;

// comment one line with two slashes
/* comment
� blocks
� with slashes and
� stars
/*

Thursday, October 15, 2009

For loops
/* for loop */
for (var i = 0; i < 10; i++) {
� // do something
}

/* for each loop, useful for arrays*/
for (var i in obj) {
� alert(obj[i]);
� // i is the name of the property,
� // *not* the object represented
� // by that property
}

Thursday, October 15, 2009

Defining functions
function doStuff(argument1, argument2...) {
� alert(argument1);
}

or in line:
function doStuff(argument1) {
� var f = function() {
� � // function inside a function
� }
� f(); // calling a function
}

Thursday, October 15, 2009

Javascript is Loosely Typed

- Everything is assigned to vars

- Be careful: ("5" + 10) = 510 (the 10 is
coerced to a string)

Thursday, October 15, 2009

Coercing types
var a = 5;
var b = "10"; // came from somewhere else
a + b;
... 510
a + parseInt(b);
... 15
b = "10.5";
parseInt(b) -> 10
parseFloat(b) -> 10.5
a.toString() -> "5"

Thursday, October 15, 2009

Booleans
true and false

var a = 5;
var b = 5;
a == b;
>>> true

var a = 1;
var b = true;
a == b;
>>> true

a === b;
>>> false

== is a “loose” comparison
=== is strict

Thursday, October 15, 2009

Objects

- Objects are the building blocks for
everything else in Javascript

- Reference properties inside objects with
a period (obj.propertyname) or brackets:
obj['propertyname']

Thursday, October 15, 2009

Objects
var a = {
� property1: "value",
� property2: "othervalue"
}
alert(a.property1); -> "value"
a.property2 = "what?";
alert(a.property2); -> "what?"
alert(a['property2']); -> "what?"

Thursday, October 15, 2009

Arrays

- Ordered lists

- Grows dynamically as things are added
to it

- Can have any number of different things
in it (numbers, strings, objects...)

Thursday, October 15, 2009

Arrays Syntax
var a = []; //creates an empty Array
a.push("hi");
console.log(a); -> ["hi"];
var b = a.pop();
console.log(b); -> "hi";
console.log(a); -> [];
a.push("okay");
console.log(a[0]); -> "okay"
var c = {
� propname: "value";
}
a.push(c);
console.log(a); -> ["okay", {propname:"value"}];

Thursday, October 15, 2009

Going through elements
var arr = [1,2,5,7,10];
for(var i = 0; i < arr.length; i++) {
� // do something with arr[i]
}

// common pattern!

Thursday, October 15, 2009

Variable scope

- In browser, global scope is the window

- functions define new scope

- var declares variable in that scope

- Scope means: what variables can I
access at this point in the app?

Thursday, October 15, 2009

The scope chain
// define a new variable a, in the current scope
// which, since we're not in a function, is window
var a = 5;

// get a variable a, in the current scope or a parent
//scope
console.log(a);
>>> 5

console.log(window.a);
>>> 5

function newFunction(){
� alert(a); // refers to global a
� var b = 3; // creates b in newFunctions' scope
}
console.log(b); // undefined, because b is out of scope

Thursday, October 15, 2009

Scope exercises
var a = 5;
var b = 10;
var x = function() {
� var a = 10;
� b = 5;
}
x();

what does a equal after x runs?

Thursday, October 15, 2009

Scope exercises
var a = 5;
var b = 10;
var x = function() {
� var a = 10;
� b = 5;
}
x();

what does a equal after x runs?
Answer: 5

Thursday, October 15, 2009

Scope exercises
var a = 5;
var b = 10;
var x = function() {
� var a = 10;
� b = 5;
}
x();

what does b equal after x runs?

Thursday, October 15, 2009

Scope exercises
var a = 5;
var b = 10;
var x = function() {
� var a = 10;
� b = 5;
}
x();

what does b equal after x runs?
Answer: 5

Thursday, October 15, 2009

What the browser does

- Checks the currently running function for
a declaration of the requested variable

- If not found, go up one in the scope
chain, until we hit the window

Thursday, October 15, 2009

Object-oriented?

- Javascript is Object-oriented, but not
class-oriented

- Instead, uses prototypical inheritance

Thursday, October 15, 2009

Creating instances
function Building(location) {
� this.location = location;
� this.getLocation = function(){
� � return this.location;
� }
}
// calling a function with new treats
// the called function as a prototype
// and makes a new instance
var Gates = new Building("353 Serra");

Thursday, October 15, 2009

Changing prototype on
the fly

var Gates = new Building("353 Serra");
Building.prototype.getStreet = function() {
� return this.location.split(" ")[1];
}

Gates.getStreet();
>> "Serra"
// prototypes can be changed on the fly,
// and anyone based on that prototype will
// pick up the changes

Thursday, October 15, 2009

What is 'this'?

- Defines the context that a function is
being executed in

Thursday, October 15, 2009

Examples
this;
>> DOMWindow
Building.prototype.getThis = function(){
� return this;
}

Gates.getThis();
>> Gates

Thursday, October 15, 2009

Functions are just objects

window.getThis = Gates.getThis;
// now there's a "getThis" function defined
// on the window
getThis();

Thursday, October 15, 2009

Functions are just objects

window.getThis = Gates.getThis;
// now there's a "getThis" function defined
// on the window
getThis();
>> DOMWindow

Thursday, October 15, 2009

This means...

- Be very aware when using "this" inside
your functions

Thursday, October 15, 2009

More on 'this'

- We'll see more of this later today when
we do events

Thursday, October 15, 2009

Timing events
// execute one function, delayed:
window.setTimeout(function, delayInMilliseconds);

// execute a function at regular intervals:
var timer = window.setInterval(function, delayBetweenInMillis);

// stop the timer
window.clearInterval(timer);

Thursday, October 15, 2009

Example
function onLoad() {
� window.setTimeout(function(){
� � var dv = document.createElement("div");
� � dv.innerHTML = "created by setTimeout";
� � document.body.appendChild(dv);
� }, 5000); //add something after 5 seconds

� window.setInterval(function(){
� � var dv = document.createElement("div");
� � dv.innerHTML = "created by setInterval";
� � document.body.appendChild(dv);
� }, 500) // add something every half a second
�
}

window.onload = onLoad;

Thursday, October 15, 2009

Demo
timers.html

Thursday, October 15, 2009

Javascript in the Browser

Thursday, October 15, 2009

the <script> tag
<head>
� <script>
� // your in-file JS
� </script>
� <script src="jsfile.js"></script>
</head>

Thursday, October 15, 2009

When is JS executed?

- As it occurs in the DOM

- So, in the <head> you don't have access
to any of the elements in your body at
first

- Solution? hooking up to onload

Thursday, October 15, 2009

Hook up to onload
using JS

<head>
<script>
� function onloadActions() {
� � // hook up events, etc;
� }
� window.onload = onloadActions;
</script>
</head>
<body>...

Thursday, October 15, 2009

jQuery

Thursday, October 15, 2009

Javascript Frameworks

- Abstract away common functions that
are slightly different across browsers

- Simplify common tasks like showing &
hiding elements

- Help build features like a tab menu, a
“CoverFlow” type menu, drag and drop

Thursday, October 15, 2009

Why jQuery?

- Good fit for our class—syntax is very
CSS-selector based

- We'll use jQueryTouch plugin next week

Thursday, October 15, 2009

If you're interested...

- We can cover Javascript “guts” in the last
week of class

Thursday, October 15, 2009

jQuery crash course

- Global jQuery() function that selects
elements to act on

- Shortcut $() function that we'll use
instead

Thursday, October 15, 2009

Interacting with the
DOM

Thursday, October 15, 2009

CSS Flashback

- #name (selects by id)

- .name (selects by class)

- tagname (selects by tag)

Thursday, October 15, 2009

CSS Flashback

- #name -> $("#name");

- .name -> $(".name");

- tagname (selects by tag) -> $("tagname");

Thursday, October 15, 2009

Onload function
$(document); // selects the whole document
$(document).ready(func); // sets func to be executed onload

Thursday, October 15, 2009

Selecting By Id

<head>
� <script src="../jquery.js" type="text/javascript"
charset="utf-8"></script>
� <script>
� function onloadActions(){
� � var a = $("#selectme");
� � console.log(a);
� }
� $(document).ready(onloadActions);
� </script>
</head>
<body>
� <div id="selectme"></div>
</body>

< jQuery object

Thursday, October 15, 2009

By Class
<head>
� <script src="../jquery.js" type="text/javascript"
charset="utf-8"></script>
� <script>
� function onloadActions(){
� � var a = $(".main");
� � console.log(a);
� }
� $(document).ready(onloadActions);
� </script>
</head>
<body>
� <div class="main" id="selectme"></div>
� <div class="main" id="selectmetoo"></div>
</body>

Thursday, October 15, 2009

By Tag
<head>
� <script src="../jquery.js" type="text/javascript"
charset="utf-8"></script>
� <script>
� function onloadActions(){
� � var a = $("div");
� � console.log(a);
� }
� $(document).ready(onloadActions)
� </script>
</head>
<body>
� <div id="selectme"></div>
</body>

Thursday, October 15, 2009

Acting on selector results
function actOnElement(index, element) {
� console.log(index, element);
}

$(".main").each(actOnElement);

Thursday, October 15, 2009

One gotcha

- Sometimes jQuery returns a "jQuery
wrapped" object that responds to jQuery
commands like .each, .click, etc

- Other times it's just the raw DOM
element

- Use $() to convert back to jQ wrapped

Thursday, October 15, 2009

Examples
var a = $("#selectme"); // a is jQ object array
>>> Object
� 0: HTMLDivElement
� context: HTMLDocument
� length: 1
� selector: "#selectme"

a[0];
>>> <div class= "main" id= "selectme"> This is the first div. </div>

$(a[0]);
>>> Object
� 0: HTMLDivElement
� context: HTMLDivElement
� length: 1

Thursday, October 15, 2009

Specifying context
<div id="firstcontainer">
� <div class="main" id="selectme">This is the first div.</div>
� <div class="main" id="selectmetoo">This is the second div.</div>
</div>
<div id="secondcontainer">
� <div class="main" id="selectmethree">This is the third div.</div>
� <div class="main" id="selectmefour">This is the fourth div.</div>
</div>

// if we want to select just the .main divs in second container:
$(".main", "#secondcontainer");
>>> Object
� 0: HTMLDivElement
� 1: HTMLDivElement
� context: HTMLDocument
� length: 2
� prevObject: Object
� selector: "#secondcontainer .main"

Thursday, October 15, 2009

Traversing the DOM

- Use parent(), children(), next(),
prevObject

Thursday, October 15, 2009

Traversing the DOM
<script>
function onloadActions(){
� var a =
$("#container");
� console.log(a.children());
� console.log(a.children()[0]);
� console.log($(a.children()[0]).parent());
}
window.onload = onloadActions;
</script>
</head>
<body>
� <div id="container">
� � <div id="selectme"></div>
� � <div id="selectmetoo"></div>
� </div>

Thursday, October 15, 2009

Chaining
/* $() usually returns the object acted on,
� which lets you do things like:
*/
$("#mydiv").css("background-color",
"red").click(function(){ alert('hi')}).show()

Thursday, October 15, 2009

Creating & Adding
Elements

Thursday, October 15, 2009

Task

- Trying to insert objects into the DOM
dynamically

- For example, a "Loading..." indicator

Thursday, October 15, 2009

$("htmlstring")
var el = $("<div></div>");

Accepts: a string representing the HTML to create

Returns: the created Element (which hasn't been added to
the DOM)

Thursday, October 15, 2009

$.append
var a = $("<div>Loading</div>");
var container = $("#container");

container.append(a);

append is called on an element, accepts an
element, returns the original element

you can also do:
a.appendTo("#container"); // or,
a.appendTo($("#container"));

appendTo returns the element being appended

Thursday, October 15, 2009

Setting the content
/* use .html() */

var el = $("<div></div>");
el.html("Loading...");

$(document).append(el);

Thursday, October 15, 2009

Changing styles

Thursday, October 15, 2009

Styling from JS

- All jQuery elements have a .css() function

- Either call it with .css("property", "value"),
or pass in an object like so:

.css({

	 	 	 'prop1': 'value',

	 	 	 'prop2': 'value'

	 	 })

Thursday, October 15, 2009

Examples
Black background: $("#selectme").css("background-
color", "black")

12px font -> $("#selectme").css("font-size", "12px");

5px rounded corners -> $("#selectme").css("-webkit-
border-radius", "5px")

//All together:
$("#selectme").css({
� "background-color": "black",
� "font-size": "12px",
� "-webkit-border-radius": "5px"
});

Thursday, October 15, 2009

Showing / hiding
var el = $("#loading");

el.hide();
el.show();

el.hide(true); //with animation
el.show(true); //with animation

Thursday, October 15, 2009

Example
<script src="../jquery.js" type="text/javascript" charset="utf-8"></script>
<script>
function onloadActions(){
� var a = $(".main");
� a.each(function(i, el) {
� � $(el).css({
� � � 'width': '200px',
� � � '-webkit-border-radius': '10px',
� � � 'border': "1px solid #333"
� � })
� });
� $(".main").click(function(){
� � $(this).hide(true);
� })
}
function showAll() {
� $(".main").show(true);
}
$(document).ready(onloadActions);
</script>
<div id="firstcontainer">
� <div class="main" id="selectme">This is the first div.</div>
� <div class="main" id="selectmetoo">This is the second div.</div>
</div>
<input type="button" onclick='showAll()' value="show all"/>

Thursday, October 15, 2009

Demo
showhide.html

Thursday, October 15, 2009

Changing classes
$("#id").addClass("classname");
$("#id").removeClass("classname");
$("#id").toggleClass("classname");

Thursday, October 15, 2009

Example
<script src="../jquery.js" type="text/javascript"
charset="utf-8"></script>
<style type="text/css" media="screen">
� .highlight { background-color: yellow;}
</style>
<script type="text/javascript" charset="utf-8">
� $(document).ready(function(){
� � $("#clickme").click(function(){
� � � $(this).addClass("highlight");
� � })
� })
</script>
<script type="text/javascript" charset="utf-8">
� <div id="clickme">Click to highlight</div>
</script>

Thursday, October 15, 2009

Demo
classnames.html

Thursday, October 15, 2009

Firebug is your friend

Thursday, October 15, 2009

Interactive console

- Use it whenever you want to test
something out

Thursday, October 15, 2009

Thursday, October 15, 2009

Thursday, October 15, 2009

Create element, and appendTo the top bar

Thursday, October 15, 2009

Clicking on DOM
element inspects it

Thursday, October 15, 2009

Event-driven
architecture

Thursday, October 15, 2009

Event-driven vs polling

- Two different approaches to UI
programming: polling & event-driven

Thursday, October 15, 2009

Polling

- Scripts that are interested in changes
have to go: "did anything change? did
anything change? did anything change?"
every n seconds

Thursday, October 15, 2009

Event-driven

- Interested listeners register themselves

- When an event occurs, source notifies
its listeners

Thursday, October 15, 2009

In Javascript

- addEventListener('eventName',
function, ...);

- in jQuery, we do .bind('eventname',
callbackFn) or the actual event,
so .click(callbackFn), .hover, etc

Thursday, October 15, 2009

Example: hooking up to
listen to a click

<script src="../jquery.js" type="text/javascript"
charset="utf-8"></script>
<script type="text/javascript" charset="utf-8">
� function doSomething(event) {
� � alert("hi!");
� }

� function init() {
� � var el = $('#clickme');
� � el.click(doSomething);
� }
� $(document).ready(init);
</script>
<body>
� <div id="clickme">Click me!</div>
</body>

Thursday, October 15, 2009

Does...

Thursday, October 15, 2009

Hover

- element.hover(onMouseOverCallback,
onMouseOutCallback);

(first function called on entering the
element, other called on leaving)

Thursday, October 15, 2009

Hover
<script src="../jquery.js" type="text/javascript" charset="utf-8"></
script>
<script type="text/javascript" charset="utf-8">
� function doOnMouseOver(event) {
� � $(event.target).css("background-color", "blue");
� }
� function doOnMouseOut(event) {
� � $(event.target).css("background-color", "white")
� }

� function init() {
� � var el = $('#hoverme');
� � console.log(el);
� � el.hover(doOnMouseOver, doOnMouseOut);
� � el.css("-webkit-transition", "background-color 1s ease");
� }
� $(document).ready(init);
</script>
<body>

Thursday, October 15, 2009

Demo

hover.html

Thursday, October 15, 2009

Events worth watching for
click
hover
load
mousemove (useful for drag & drop)

Thursday, October 15, 2009

Inline Functions

Thursday, October 15, 2009

Overview

- Functions can be defined anonymously
in line

- This is most helpful for event handlers

Thursday, October 15, 2009

Example
function init() {
� $("#clickme").click(function(event){
� � // do something on click
� })
}

// we've defined an anonymous function
// that will execute on click

Thursday, October 15, 2009

Closures

- Functions defined anonymously inside
other functions will have that their parent
function's context

Thursday, October 15, 2009

Example
function init() {
� var saying = "Hello";
� $("#clickme").click(function(){
� � alert(saying);
� })
}

// Even though that function executes way
// after init() is done running, it can
// access init's variables

Thursday, October 15, 2009

Closures gone wrong

function init() {
� for(var i = 0; i < 3; i++){
� � $("<div>" + i + "</div>").appendTo("#container");
� }
}

Thursday, October 15, 2009

Closures gone wrong

for(var i = 0; i < 3; i++){
� var newDiv = $("<div>Box #" + i + "</div>");
� newDiv.appendTo("#container");
� newDiv.click(function(){
� � alert(i);
� })
}

What happens when I click on Box #0?

Thursday, October 15, 2009

Thursday, October 15, 2009

Uh oh...
function init() {
� for(var i = 0; i < 3; i++){
� � var newDiv = $("<div>Box #" + i + "</div>");
� � newDiv.appendTo("#container");
� � newDiv.click(function(){
� � � alert(i);
� � })
� }
}

Our click closure points back to init(), but in init
(), the i variable equals 3 because the for loop
kept going after the event handler was
attached to box #0

Thursday, October 15, 2009

Workarounds

- There are ways to do this, but they're
complicated

- We can cover in last week if interested

- For now, don't rely on values you expect
to change in original function, use event
or this instead (example next)

Thursday, October 15, 2009

Thursday, October 15, 2009

The code
<script src="../jquery.js" type="text/javascript"
charset="utf-8"></script>
<script type="text/javascript" charset="utf-8">
�
</script>
<body>
You are Goldilocks. What would you like to do next?
<div class="actionlink" id="firstbed">Try the first bed.</div>
<div class="actionlink" id="secondbed">Try the middle bed.</div>
<div class="actionlink" id="thirdbed">Try the last bed.</div>

Thursday, October 15, 2009

Attaching listeners
$(document).ready(function(){
� var message = "this bed is ";
� $(".actionlink").click(function(event){
� � var whichBed = event.target.id;
� � var result;
� � if(whichBed == 'firstbed') {
� � � result = "too small!";
� � } else if (whichBed == 'secondbed') {
� � � result = "too big!";
� � } else {
� � � result = "just right!";
� � }
� � alert(message + result);
� });

})

Thursday, October 15, 2009

Demo

Thursday, October 15, 2009

What context is that
callback being executed in?
$(".actionlink").click(function(event){
� alert(this);
});

Thursday, October 15, 2009

Thursday, October 15, 2009

What's going on?

- Event function is attached to the div

- When div fires event, function fires with
the div as context

- It's a closure, so still has access to scope
it was created in (but this has changed)

Thursday, October 15, 2009

So if we wanted to use 'this'
$(".actionlink").click(function(event){
� // this callback is attached to each div,
� // and 'this' is the clicked div
� var whichBed = this.id;
� var result;
� if(whichBed == 'firstbed') {
� � result = "too small!";
� } else if (whichBed == 'secondBed') {
� � result = "too big!";
� } else {
� � result = "just right!";
� }
� alert(result);
});

Thursday, October 15, 2009

Thursday, October 15, 2009

Portfolio 4

Thursday, October 15, 2009

Refresher

Thursday, October 15, 2009

Goal

- Hook up the subpages, too

Thursday, October 15, 2009

Strategy

- Minimize page loads on the iPhone

- All links lead to current page but with an
anchor in the hash ("page.html#id")

- Use setInterval to watch for changes in
the hash and update page

Thursday, October 15, 2009

Step 1: adding content
<div id="how-might-we" class='content subpage'>
� This is some great work I did for the How Might We?
Assignment.
</div>
<div id="inspiration" class='content subpage'>
� Wow, that was super inspirational.
</div>
<div id="discovery" class='content subpage'>
� Can you discover?
</div>

Thursday, October 15, 2009

Step 2: Hooking up links
How Might We?
Inspiration
Discovery

Thursday, October 15, 2009

Step 3: watching for
hash changes

var loop = setInterval(function(){
� var curid = currentPage.attr('id');
� if (location.hash == '') {
� � location.hash = '#' + curid;
� } else if (location.hash != '#' + curid) {
� � goPage(location.hash)
� }
}, 100);

// jQTouch will take care of this next week

Thursday, October 15, 2009

Step 4: Changing Pages
function goPage () {
� var pageToLoad = window.location.hash;
� var prevFound = false;
� for(var i = 0; i < pageHistory.length; i++) {
� � if (pageHistory[i] == pageToLoad) {
� � � $(pageToLoad).removeClass("parentpage");
� � � $(currentPage).addClass("subpage");
� � � prevFound = true;
� � � pageHistory.pop();
� � }
� }
� if(!prevFound) {
� � $(currentPage).addClass("parentpage");
� � $(pageToLoad).removeClass("subpage");
� � pageHistory.push("#"+currentPage.attr("id"));
� }
� currentPage = $(pageToLoad);
� return false;
}

Thursday, October 15, 2009

Step 5: CSS Classes
.subpage {
� left: 360px !important;
}
.parentpage {
� left: -360px !important;
}

Thursday, October 15, 2009

Demo
week04.html in portfolio folder

bug when on iPhone, will fix and update

Thursday, October 15, 2009

