
JavaScript Programs

Jerry Cain
CS 106AJ

October 3, 2018
slides courtesy of Eric Roberts

Once upon a time . . .

The World Wide Web

• One of the strengths of JavaScript is its

integration with the World Wide Web,

which was invented by Tim Berners-Lee

at the CERN laboratory in Switzerland

in 1989.

• In honor of his contributions to the web,

Berners-Lee received the Turing Award

in 2016. Named after computer scientist

Alan Turing, the Turing Award is the

highest honor in the computing field.

• The ideas behind the the World Wide Web have a long history

that begins before the computing age. Contributors to the idea

of a world-wide interconnected repository of data include the

Belgian bibliographer Paul Otlet, the MIT-based engineer and

scientist Vannevar Bush, and computer visionary Ted Nelson.

Tim Berners-Lee (1955–)

JavaScript Programs

The "Hello World" Program

1.1 Getting Started
The only way to learn a new programming

language is to write programs in it. The first
program to write is the same for all languages:

Print the words
hello, world

This is the big hurdle; to leap over it you have to
be able to create the program text somewhere,
compile it, load it, run it, and find out where your
output went. With these mechanical details
mastered, everything else is comparatively easy.

In C, the program to print “hello, world” is
#include <stdio.h>

main() {
printf("hello, world");

}

• In 1978, Brian Kernighan and Turing
Award winner Dennis Ritchie wrote
the reference manual for the C
programming language, one of the
forerunners of JavaScript.

• On the first page of their book, the
authors suggest that the first step in
learning any language is to write a
simple program that prints the words
"hello, world" on the display. That
advice remains sound today.

• In Monday’s class, you learned how to execute JavaScript
functions in the console window. Today, your goal is to learn
how to create and execute a complete JavaScript program.

HelloWorld in JavaScript
• The code for the HelloWorld program in JavaScript is similar

to the C version from 1978 and looks like this:

function HelloWorld () {
console.log("hello, world");

}

The HelloWorld function asks JavaScript to display the string
"hello, world" on the console log. So far, so good.

• From here, you need to do the following things:
– Learn how to store this function in a file.

– Understand how to get JavaScript to execute the function.
– Figure out where the output goes.

• These steps are different in JavaScript than they are in most
languages because JavaScript relies on a web-based model.

The Web’s Client-Server Model

O

1. The user starts a web browser.
2. The user requests a web page.
3. The browser sends a network request for the page.
4. The server sends back a text file containing the HTML.
5. The browser interprets the HTML and renders the page image.

http://cs106aj.stanford.edu

index.html

client browser web server

The Three Central Web Technologies

• Modern web pages depend on three technological tools:
HTML (Hypertext Markup Language), CSS (Cascading Style
Sheets), and JavaScript.

• These tools are used to control different aspects of the page:
– HTML is used to specify content and structure.
– CSS is used to control appearance and formatting.
– JavaScript is used to animate the page.

• You will have a chance to learn even more about HTML and
CSS later in the quarter. For now, all you need to know is
how to write a simple index.html file that will read and
execute your JavaScript code.

The Structure of an HTML File
• An HTML file consists of the text to be displayed on the

page, interspersed with various commands enclosed in angle
brackets, which are known as tags.

• HTML tags usually occur in pairs. The opening tag begins
with the name of the tag. The corresponding closing tag has
the same name preceded by a slash. The effect of the tag
applies to everything between the opening and closing tag.

• The only HTML tags you will need to use for most of the
course appear in the template on the next page, which
describes the structure of the HTML index file, which is
conventionally called index.html.

Standard index.html Pattern

<!DOCTYPE html>
<html>
<head>
<title>title of the page</title>
One or more script tags to load JavaScript code.

</head>
<body onload="function()">

Contents of the page, if any.
</body>

</html>

• The following components of index.html are standardized:
– Every file begins with a <!DOCTYPE html> tag
– The entire content is enclosed in <html> and </html> tags.
– The file begins with a <head> section that specifies the title

and JavaScript files to load.
– The file includes a <body> section that specifies the page.

Creating the JavaScript Program File
• The first step in running a JavaScript program is creating a

file that contains the definitions of the functions, along with
comments that give human readers a better understanding of
what the program does.

• Here, for example, is the complete HelloWorld.js file:

/*
* File: HelloWorld.js
* -------------------
* This program displays "hello, world" on the console. It
* is inspired by the first program in Brian Kernighan and
* Dennis Ritchie's classic book, The C Programming Language.
*/

function HelloWorld() {
console.log("hello, world");

}

Creating the HTML File (Version 1)

• A simple HTML file that loads the HelloWorld.js program
looks like this:

<!DOCTYPE html>
<html>
<head>
<title>Hello World</title>
<script type="text/javascript" src="HelloWorld.js"></script>
</head>
<body onload="HelloWorld()"></body>
</html>

• This file asks the browser to load the file HelloWorld.js and
then call the function HelloWorld once the page is loaded.

• The problem with this strategy is that it is hard "to find out
where your output went" as Kernighan and Ritchie advise.

Creating the HTML File (Version 2)
• The output from the console log appears in different places in

different browsers and usually requires the user to take some
explicit action before it is visible.

• To make the console log easier to find, we have provided a
library called JSConsole.js that redirects the console log to
a much more visible area of the web page.

<!DOCTYPE html>
<html>
<head>
<title>Hello World</title>
<script type="text/javascript" src="JSConsole.js"></script>
<script type="text/javascript" src="HelloWorld.js"></script>

</head>
<body onload="HelloWorld()"></body>
</html>

Simple Graphics
• In addition to JSConsole.js, CS 106AJ also supports a

library called JSGraphics.js that makes it easy to write
graphical programs.

• The structure of the index.html file for graphics programs is
similar to the one used for HelloWorld. The BlueRectangle
program introduced later uses the following index.html:

<!DOCTYPE html>
<html>
<head>
<title>Blue Rectangle</title>
<script type="text/javascript" src="JSGraphics.js"></script>
<script type="text/javascript" src="BlueRectangle.js"></script>
</head>
<body onload="BlueRectangle()"></body>
</html>

The Graphics Model
• The JSGraphics.js library uses a graphics model based on

the metaphor of a collage.
• A collage is similar to a child’s felt board that serves as a

backdrop for colored shapes that stick to the felt surface. As
an example, the following diagram illustrates the process of
adding a blue rectangle and a red oval to a felt board:

• Note that newer objects can obscure those added earlier. This
layering arrangement is called the stacking order.

The BlueRectangle Program
function BlueRectangle() {

let gw = GWindow(500, 200);
let rect = GRect(150, 50, 200, 100);
rect.setColor("Blue");
rect.setFilled(true);
gw.add(rect);

}

BlueRectangle

rect

function BlueRectangle() {
let gw = GWindow(500, 200);
let rect = GRect(150, 50, 200, 100);
rect.setColor("Blue");
rect.setFilled(true);
gw.add(rect);

}

rect

The JavaScript Coordinate System

• Positions and distances on the screen are measured in terms of
pixels, which are the small dots that cover the screen.

• Unlike traditional mathematics, JavaScript defines the origin
of the coordinate system to be in the upper left corner. Values
for the y coordinate increase as you move downward.

pixels
(0, 0)

(150, 50)

200 pixels

10
0

pi
xe

ls

BlueRectangle

Systems of Classification

Carl Linnaeus (1707–1778)

• In the mid-18th century, the
Scandinavian botanist Carl Linnaeus
revolutionized the study of biology
by developing a new system for
classifying plants and animals in a
way that revealed their structural
relationships and paved the way for
Darwin’s theory of evolution a
century later.

• Linnaeus’s contribution was to
recognize that organisms fit into a
hierarchy in which the placement of
individual species reflects their
anatomical similarities.

Biological Class Hierarchy

Crustacea ArachnidaInsecta

Annelida Brachiopoda Mollusca ChordataArthropoda

Plants FungiAnimals

Living ThingsLiving Things

Animals

Arthropoda

Insecta

Hymenoptera

Formicidae

Iridomyrmex

purpureus

Kingdom

Phylum

Order

Class

Family

Genus

Species

Classification of the red ant
Iridomyrmex purpureus

Every red ant is also an animal,
an arthropod, and an insect, as
well as the other superclasses in
the chain.

Instances vs. Patterns
Drawn after you, you pattern of all those.

—William Shakespeare, Sonnet 98

• In thinking about any classification scheme—biological or
otherwise—it is important to draw a distinction between a
class and specific instances of that class. In the most recent
example, the designation Iridomyrmex purpureus is not itself
an ant, but rather a class of ant. There can be (and usually
are) many ants, each of which is an individual of that class.

• Each of these fire ants is an instance of a particular class of
ants. Each instance is of the species purpureus, the genus
Iridomyrmex, the family Formicidae (which makes it an ant),
and so on. Thus, each ant is not only an ant, but also an
insect, an arthropod, and an animal.

The GObject Hierarchy

GObject

GRect GOval GLine

• The classes that represent graphical objects form a hierarchy,
part of which looks like this:

• The GObject class represents the collection of all graphical
objects.

• The three subclasses shown in this diagram correspond to
particular types of objects: rectangles, ovals, and lines. Any
GRect, GOval, or GLine is also a GObject.

Creating a GWindow Object
• The first step in writing a graphical program is to create a

window using the following function declaration, where width
and height indicate the size of the window:

let gw = GWindow(width, height);

gw.add(object)
Adds an object to the window.

gw.remove(object)
Removes the object from the window.

gw.add(object, x, y)
Adds an object to the window after first moving it to (x, y).

gw.getWidth()
Returns the width of the graphics window in pixels.

gw.getHeight()
Returns the height of the graphics window in pixels.

• The following operations apply to a GWindow object:

Operations on the GObject Class

object.getX()
Returns the x coordinate of this object.

• The following operations apply to all GObjects:

• All coordinates and distances are measured in pixels.
• Each color is a string, such as "Red" or "White". The names

of the standard colors are defined in Figure 4-5 on page 125.

object.getY()
Returns the y coordinate of this object.

object.getWidth()
Returns the width of this object.

object.getHeight()
Returns the height of this object.

object.setColor(color)
Sets the color of the object to the specified color.

Drawing Geometrical Objects
Functions to create geometrical objects:
GRect(x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size.
GOval(x, y, width, height)

Creates an oval that fits inside the rectangle with the same dimensions.

Methods shared by the GRect and GOval classes:
object.setFilled(fill)

If fill is true, fills in the interior of the object; if false, shows only the outline.

object.setFillColor(color)
Sets the color used to fill the interior, which can be different from the border.

GLine(x0, y0, x1, y1)
Creates a line extending from (x0, y0) to (x1, y1).

The GRectPlusGOval Program
function GRectPlusGOval() {

let gw = GWindow(500, 200);
let rect = GRect(150, 50, 200, 100);
rect.setFilled(true);
rect.setColor("Blue");
gw.add(rect);
let oval = GOval(150, 50, 200, 100);
oval.setFilled(true);
oval.setColor("Red");
gw.add(oval);

}

GRectPlusGOval

ovalrect

function GRectPlusGOval() {
let gw = GWindow(500, 200);
let rect = GRect(150, 50, 200, 100);
rect.setFilled(true);
rect.setColor("Blue");
gw.add(rect);
let oval = GOval(150, 50, 200, 100);
oval.setFilled(true);
oval.setColor("Red");
gw.add(oval);

}

ovalrect

The DrawDiagonals Program
/* Constants */

const GWINDOW_WIDTH = 500;
const GWINDOW_HEIGHT = 200;

function DrawDiagonals() {
let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
gw.add(GLine(0, 0, GWINDOW_WIDTH, GWINDOW_HEIGHT));
gw.add(GLine(0, GWINDOW_HEIGHT, GWINDOW_WIDTH, 0));

}

DrawDiagonals

/* Constants */

const GWINDOW_WIDTH = 500;
const GWINDOW_HEIGHT = 200;

function DrawDiagonals() {
let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
gw.add(GLine(0, 0, GWINDOW_WIDTH, GWINDOW_HEIGHT));
gw.add(GLine(0, GWINDOW_HEIGHT, GWINDOW_WIDTH, 0));

}

The End

