
Final spine = 1.078”

Tom Negrino and Dori Smith have demystified the web for non-geeks since 1995.
Tom, a longtime contributor to Macworld magazine, has authored dozens of books.
Dori cofounded the Web Standards Project, founded the Wise-Women community,
and has programmed computers for decades. Together, they’ve written Styling
Web Pages with CSS: Visual QuickProject Guide and the best-selling Dreamweaver:
Visual QuickStart Guide. They live in California’s wine country.

• Easy visual approach uses pictures to guide you through bringing your

websites to life with JavaScript and show you what to do step by step.

• Concise steps and explanations let you get up and running in no time.

• Essential reference guide keeps you coming back again and again.

• Whether you’re a JavaScript newbie or an experienced veteran, this

book will teach you all you need to know—from the basics of making

your website interactive to adding advanced features with jQuery—

and much more!

• Visit the companion website at www.javascriptworld.com to

download sample scripts and more.

In full color

Learn JavaScript—
the quick and easy way!

V I S U A L Q U I C K S TA R T G U I D E VISUAL QUICKSTART GUIDE

FOR COMPUTERS USING:
Safari 4 or later, Internet Explorer 9 or later,
Firefox 3 or later, Chrome 9 or later

CATEGORY: JavaScript / Programming Languages

LEVEL: Beginning / Intermediate

AUTHOR PHOTO: Morgen Benoit Photography
COVER IMAGE: Nina_Susik/Shutterstock.com

ISBN-13:
ISBN-10:

978-0-321-99670-1
0-321-99670-4

9 7 8 0 3 2 1 9 9 6 7 0 1

5 3 9 9 9

US $39.99 CAN $45.99 UK £21.99Peachpit Press
www.peachpit.com T O M N E G R I N O

D O R I S M I T H

JavaScrip
t

N
inth Ed

itio
n

V
IS

U
A

L
 Q

U
IC

K
S

TA
R

T
 G

U
ID

E
N

E
G

R
IN

O
SM

IT
H

JavaScript
Ninth Edition

 LEARN THE QUICK AND EASY WAY!

VISUAL QUICKSTART GUIDE

Peachpit Press

V I S U A L Q U I C K S TA R T G U I D E

JavaScript
NINTH EDITION

TOM NEGRINO • DORI SMITH

Visual QuickStart Guide
JavaScript, Ninth Edition
Tom Negrino and Dori Smith

Peachpit Press

Find us on the web at www.peachpit.com
To report errors, send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education

Copyright © 2015 by Tom Negrino and Dori Smith

Project Editor: Nancy Peterson
Development Editor: Scholle Sawyer McFarland
Production Editor: Danielle Foster
Copyeditor: Scout Festa
Indexer: Emily Glossbrenner
Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press
Interior Design: Peachpit Press
Logo Design: MINE™ www.minesf.com

Notice of rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of liability
The information in this book is distributed on an “As is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the authors nor Peachpit Press, shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education. Many of
the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit Press was aware of a trademark claim, the
designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN 13: 978-0-321-99670-1
ISBN 10: 0-321-99670-4

0 9 8 7 6 5 4 3 2 1

Printed in the United States of America

http://www.peachpit.com
http://www.minesf.com

Dedication
To the memory of Bill Horwitz and Dorothy Negrino, because they loved learning.

Special Note
Way back in 1997, when we were writing Chapter 1 of our first edition of this book, we were
searching for a way to make the concept of JavaScript objects clear, and found inspiration
in the then-newest member of our family, our cat Pixel. Over the years since then, countless
readers have told us how our “cat object” helped them to understand JavaScript better. Pixel
became the mascot for many of our books. In the Fall of 2013, after a long and happy life,
we lost him to old age. We miss him very much.

Pixel, on his last day with us.

Special Thanks to:
Big thanks to our editor Nancy Peterson;
her expert touch, serenity, and compassion
made this edition a pleasant one to create.
Extra-special thanks for her above-the-call
understanding when we were faced with a
personal crisis.

Thanks also go to our other editor, Scholle
McFarland, who stepped in and kept the
project on an even keel when Nancy was
overscheduled.

Thanks to Scout Festa for her skillful copy-
editing. Our heartfelt thanks to Danielle
Foster, the book’s production editor, who
laid out the book and pulled off the job
with grace and aplomb, and to the indexer,
Emily Glossbrenner, who should be
thanked for doing a thankless job.

As always, we’re grateful to Peachpit’s
Nancy Ruenzel and Nancy Davis for
their support.

We’d like to express our special thanks to
all of the high school, college, and univer-
sity instructors who chose to use the previ-
ous editions of this book as a textbook for
their classes.

Contents at a Glance v

Contents at a Glance

 Introduction . .xiii

Chapter 1 Getting Acquainted with JavaScript1

Chapter 2 Start Me Up! . 21

Chapter 3 Your First Web App . 49

Chapter 4 Working with Images 81

Chapter 5 Windows and Frames 115

Chapter 6 Form Handling . 133

Chapter 7 Forms and Regular Expressions 171

Chapter 8 Handling Events . 193

Chapter 9 JavaScript and Cookies 219

Chapter 10 Objects and the DOM 241

Chapter 11 Making Your Pages Dynamic 261

Chapter 12 Applied JavaScript 285

Chapter 13 Introducing Ajax . 325

Chapter 14 Toolkits, Frameworks, and Libraries 365

Chapter 15 Designing with jQuery 385

Chapter 16 Building on jQuery 411

Chapter 17 Scripting Mobile Devices 425

Chapter 18 Bookmarklets . 441

Appendix A JavaScript Genealogy and Reference 469

Appendix B JavaScript Reserved Words 491

Appendix C Cascading Style Sheets Reference 495

Appendix D Where to Learn More 507

 Index 515

This page intentionally left blank

Table of Contents vii

Table of Contents

 Introduction. xiii

Chapter 1 Getting Acquainted with JavaScript 1

What JavaScript Is . 2
JavaScript Isn’t Java. . 3
Where JavaScript Came From 5
What JavaScript Can Do 6
What JavaScript Can’t Do. 7
JavaScript and More . 8
The Snap-Together Language 11
Handling Events . .14
Values and Variables . 15
Writing JavaScript-Friendly HTML17
What Tools to Use? . 20

Chapter 2 Start Me Up! .21

Where to Put Your Scripts 23
About Functions . 25
Using External Scripts. 26
Putting Comments in Scripts 29
Alerting the User . 31
Confirming a User’s Choice 33
Prompting the User . 35
Redirecting the User with a Link 37
Using JavaScript to Enhance Links 39
Using Multi-Level Conditionals 43
Handling Errors . 46

Chapter 3 Your First Web App. .49

Around and Around with Loops 50
Passing a Value to a Function 55
Detecting Objects . 57
Working with Arrays . 59
Working with Functions That Return Values 61
Updating Arrays . 62

viii Table of Contents

Using Do/While Loops 64
Calling Scripts Multiple Ways 66
Combining JavaScript and CSS 68
Checking State. 71
Working with String Arrays 77

Chapter 4 Working with Images81

Creating Rollovers. . 83
Creating More Effective Rollovers 85
Building Three-State Rollovers. 91
Triggering Rollovers from a Link 93
Making Multiple Links Change a Single Rollover 96
Working with Multiple Rollovers 99
Creating Cycling Banners 104
Adding Links to Cycling Banners 106
Building Wraparound Slideshows108
Displaying a Random Image 111
Cycling Images with a Random Start 113

Chapter 5 Windows and Frames 115

Keeping a Page out of a Frame 117
Setting a Target . 118
Loading iframes with JavaScript 120
Working with iframes . 122
Creating Dynamic iframes 124
Sharing Functions Between Documents 126
Opening a New Window 128
Loading Different Contents into a Window 131

Chapter 6 Form Handling . 133

Select-and-Go Navigation 135
Changing Menus Dynamically 140
Making Fields Required. 142
Checking Fields Against Each Other 147
Identifying Problem Fields 149
Putting Form Validation into Action 151
Working with Radio Buttons 156
Setting One Field with Another 159
Validating Zip Codes . 162
Validating Email Addresses 166

Table of Contents ix

Chapter 7 Forms and Regular Expressions 171

Validating an Email Address with
Regular Expressions 173

Validating a File Name 178
Extracting Strings .180
Formatting Strings. . 183
Formatting and Sorting Strings 186
Formatting and Validating Strings 188
Replacing Elements Using Regular Expressions. 191

Chapter 8 Handling Events . 193

Handling Window Events 194
Mouse Event Handling201
Form Event Handling 209
Key Event Handling . 213
Advanced Event Handling216

Chapter 9 JavaScript and Cookies 219

Baking Your First Cookie 221
Reading a Cookie . 225
Showing Your Cookies 226
Using Cookies as Counters 228
Deleting Cookies . 231
Handling Multiple Cookies 233
Displaying “New to You” Messages 235

Chapter 10 Objects and the DOM 241

About Node Manipulation 242
Adding Nodes . 244
Deleting Nodes . 246
Deleting Specific Nodes 248
Inserting Nodes . 251
Replacing Nodes . 254
Writing Code with Object Literals 257

Chapter 11 Making Your Pages Dynamic 261

Putting the Current Date into a Webpage 262
Working with Days. 264
Customizing a Message for the Time of Day 265

x Table of Contents

Displaying Dates by Time Zone 266
Converting 24-Hour Time to 12-Hour Time 272
Creating a Countdown 274
Hiding and Displaying Layers 278
Moving an Object in the Document 281
Date Methods . 283

Chapter 12 Applied JavaScript . 285

Using Sliding Menus 286
Adding Pull-Down Menus. 289
Enhancing Pull-Down Menus. 293
A Slideshow with Captions 297
A Silly Name Generator 301
A Bar Graph Generator 306
Style Sheet Switcher 315

Chapter 13 Introducing Ajax . 325

Ajax: Pinning It Down 327
Reading Server Data 331
Parsing Server Data . 339
Refreshing Server Data 346
Getting Data From a Server 349
Previewing Links with Ajax 353
Auto-Completing Form Fields 356
Checking Whether a File Exists 362

Chapter 14 Toolkits, Frameworks, and Libraries 365

Adding jQuery . 367
Updating a Page with jQuery 370
Interacting with jQuery 371
Interacting and Updating 374
Striping Tables . 376
Sorting Tables . 380

Chapter 15 Designing with jQuery 385

Highlighting New Elements 386
Creating Accordion Menus 389
Creating Smarter Dialogs. 392

Table of Contents xi

Auto-Completing Fields 396
Adding Sortable Tabs 398
Using Check Boxes as Buttons 401
Adding a Calendar to Your Page. 404
Using ThemeRoller to Customize Your Look 409

Chapter 16 Building on jQuery . 411

Using jQuery as a Foundation 412
Dragging and Dropping Elements 414
Using jQuery with External Data. 417
Using jQuery Plugins 420
Adding a jQuery Audio Plugin 423

Chapter 17 Scripting Mobile Devices 425

Changing Your Orientation 426
Handling Touch Events 433
Differentiating Devices 436
Locating Your Device 438

Chapter 18 Bookmarklets . 441

Your First Bookmarklet 442
Resetting a Webpage’s Background 447
Changing a Page’s Styles. 448
Word Lookups . 451
Viewing Images . 454
Displaying ISO Latin Characters 456
Converting RGB Values to Hex 459
Converting Values. 461
A Bookmarklet Calculator 463
Shortening URLs. 465
Validating Pages. 466
Mailing Pages . 467
Resizing Pages. 468

Appendix A JavaScript Genealogy and Reference 469

JavaScript Versions . 470
ECMAScript . 472
The Big Object Table 473

xii Table of Contents

Appendix B JavaScript Reserved Words 491

Appendix C Cascading Style Sheets Reference 495

Appendix D Where to Learn More 507

Finding Help Online . 508
Offline Resources . 511
Troubleshooting Tips . 512

 Index 515

Introduction xiii

Introduction

Welcome to JavaScript! Using this easy-
to-learn programming language, you’ll be
able to add interest and interaction to your
webpages and make them more useful for
you and for your site’s visitors. We’ve writ-
ten this book as a painless introduction to
JavaScript, so you don’t have to be a geek
or a nerd to write a script. Pocket protec-
tors will not be necessary at any time. As
a friend of ours says, “We’re geeky, so you
don’t have to be!”

We wrote this
book for you
We figure that if you’re interested in
JavaScript, then you’ve already got some
experience in creating HTML pages and
websites, and you want to take the next
step by adding some interactivity to your
sites. We don’t assume that you know any-
thing about programming or scripting. We
also don’t assume that you are an HTML
expert (though if you are, that’s just fine).
We do assume that you’ve got at least the
basics of building webpages down, and

that you have some familiarity with com-
mon HTML, such as links, images, and
forms. Similarly, we assume basic knowl-
edge of the other major building block of
modern websites: CSS.

We include some extra explanation of
HTML in sidebars called “Just Enough
HTML.” You won’t find these sidebars in
every chapter, just the ones where we
think you’ll need a quick reference. Having
this information handy means you won’t
need multiple books or webpages open
just to remember the syntax of a particular
HTML attribute.

If you already know something about pro-
gramming, you should be aware that we
don’t take the same approach to JavaScript
as you might have seen in other books. We
don’t delve deeply into JavaScript’s syntax
and structure, and we don’t pretend that
this book is a comprehensive language
reference (though you’ll find some valuable
reference material in Appendix A in the
back of the book). There are several other
books on the market that do that job admi-
rably, and we list them in Appendix D at the
end of this book. The difference between

xiv Introduction

those books and this one is that instead
of getting bogged down in formalism, we
concentrate on showing you how to get
useful tasks done with JavaScript without a
lot of extraneous information.

In previous editions we added coverage
of Ajax and jQuery, which use JavaScript
and other common web technologies to
add extra interactivity to webpages and
to improve the user experience of your
websites. In this edition, we’ve added even
more examples and techniques using the
popular jQuery framework.

How to use this book
Throughout the book, we’ve used some
devices that should make it easier for
you to work both with the book and with
JavaScript itself.

In the step-by-step instructions that
make up most of the book, we’ve used a
special type style to denote either HTML,
CSS, or JavaScript code, like this:

<div id="thisDiv">
➝ window.onload = initLinks;

You’ll also notice that we show the HTML
and the JavaScript in lowercase. We’ve
done that because all of the scripts in this
edition are compliant with the HTML5 stan-
dard from the W3C, the World Wide Web
Consortium. Whenever you see a quote
mark in a JavaScript, it is always a straight
quote (like ' or "), never curly quotes (aka
“smart” quotes, like ’ or ”). Curly quotes will
prevent your JavaScript from working, so
make sure that you avoid them when you
write scripts.

In the illustrations accompanying the step-
by-step instructions, we’ve highlighted the
part of the scripts that we’re discussing in
red, so you can quickly find what we’re
talking about. We often also highlight parts
of the screen shots of web browser win-
dows in red, to indicate the most important
part of the picture.

Because book pages are narrower than
computer screens, some of the lines of
JavaScript code are too long to fit on the
page. When this happens, we’ve broken
the line of code up into one or more seg-
ments, inserted this gray arrow ➝ to indi-
cate that it’s a continued line, and indented
the rest of the line. Here’s an example of
how we show long lines in scripts.

dtString = "Hey, just what are you
➝ doing up so late?";

You say browser,
we say kumbaya
Beginning with the sixth edition of this
book, we made a big change: we ended
our support for browsers that are very old
or that don’t do a good job of supporting
web standards. We’d found that virtually all
web users have upgraded and are enjoy-
ing the benefits of modern browsers, ones
that do a good-to-excellent job of support-
ing commonly accepted web standards like
HTML, CSS2, and the Document Object
Model. That covers Internet Explorer 9 or
later; all versions of Firefox; all versions of
Safari and Chrome; and Opera 7 or later.

We’ve tested our scripts in a wide variety
of browsers, on several different operat-
ing systems, including Windows (mostly

Introduction xv

Windows 7 and, in a few cases, Windows 8;
like Microsoft, we’ve dropped support for
Windows XP and Vista), OS X (10.8.5 and
later), and Ubuntu Linux (we tested scripts
in Firefox, Ubuntu’s default browser).

We used the former 600-pound gorilla
of the browser world, Microsoft Internet
Explorer for Windows, to test virtually
everything in the book (we used versions
9, 10, and 11). For this edition, we added
testing in the frequently updated versions of
Google Chrome for both Mac and Windows.
We also tested the scripts with recent ver-
sions of Firefox (which updated every few
weeks, ending with version 29) for Mac and
Windows, and with Safari for Mac versions 6
and 7 (as Apple has discontinued develop-
ment of Safari for Windows, we’ve dropped
it from our testing regimen). Working with
the latter browser means that our scripts
should also work in any browsers based on
the WebKit engine, and on browsers (such
as Konqueror for Linux) based on KHTML,
the open-source rendering engine from
which Safari got its start. WebKit is also
the basis for browsers in mobile operating
systems, such as Apple’s iOS, Google’s
Android, the Amazon Kindle Fire tablets,
and BlackBerry Limited’s Blackberry 10. So
far as mobile devices go, we mainly tested
scripts on iPhones and iPads.

Don’t type that code!
Some JavaScript books print the scripts
and expect you to type in the examples.
We think that’s way too retro for this day
and age. It was tough enough for us to
do all that typing, and there’s no reason

you should have to repeat that work.
So we’ve prepared a companion web-
site for this book—one that includes all of
the scripts in the book, ready for you to
just copy and paste into your own web-
pages. If we discover any mistakes in the
book that got through the editing process,
we’ll list the updates on the site, too.
You can find our companion site at
javascriptworld.com.

If for some reason you do plan to type in
some script examples, you might find that
the examples don’t seem to work, because
you don’t have the supporting files that we
used to create the examples. For example,
in a task where an onscreen effect hap-
pens to an image, you’ll need image files.
No problem. We’ve put all of those files up
on the book’s website, nicely packaged for
you to download. You’ll find one download-
able file that contains all of the scripts,
HTML files, CSS files, and any media files
we used. If you have any questions, please
check the FAQ (Frequently Asked Ques-
tions) page on the companion website.
It’s clearly marked.

If you’ve read the FAQ and your question
isn’t answered there, you can contact us
via email at js9@javascriptworld.com.
We regret that because of the large vol-
ume of email that we get, we cannot, and
will not, answer email about the book sent
to our personal email addresses. We can
only guarantee that messages sent to the
js9@javascriptworld.com address will
be answered.

On the other hand, typing code by hand is
likely to give you a more thorough learning
experience—so don’t rule it out entirely!

xvi Introduction

Time to get started
One of the best things about JavaScript is
that it’s easy to start with a simple script
that makes cool things happen on your
webpage, then add more complicated stuff
as you need it. You don’t have to learn a
whole book’s worth of information before
you can start improving your webpages.
But by the time you’re done with the book,
you’ll be adding advanced interactivity to
your sites with JavaScript and jQuery.

Of course, every journey begins with the
first step, and if you’ve read this far, your
journey into JavaScript has already begun.
Thanks for joining us; please keep your
hands and feet inside the moving vehicle.
And please, no flash photography.

4
Working with

Images
One of the best (and most common) uses
of JavaScript is to add visual interest
to webpages by animating graphics,
and that’s what this chapter is all about.
Making an image on a webpage change
when the user moves the mouse over
the image, thereby making the page
react to the user, is one of the most
common—and effective—tricks you can
learn in JavaScript. This rollover, as it is
called, is easy to implement yet has many
applications, as you’ll see.

Rollovers are a great tool, but you can do
much more than rollovers with JavaScript,
such as automatically change images,
create ad banners, build slideshows, and
display random images on a page.

In this chapter, you’ll learn how to make
JavaScript do all of these image tricks.
Let’s get started.

In This Chapter
Creating Rollovers 83

Creating More Effective Rollovers 85

Building Three-State Rollovers 91

Triggering Rollovers from a Link 93

Making Multiple Links Change a
Single Rollover 96

Working with Multiple Rollovers 99

Creating Cycling Banners 104

Adding Links to Cycling Banners 106

Building Wraparound Slideshows 108

Displaying a Random Image 111

Cycling Images with a Random Start 113

82 Chapter 4

TABLE 4.1 Just Enough HTML—Images

Tag Attribute Meaning

img Contains the attributes that describe the image to be displayed by the browser

src Contains the URL of the image, relative to the URL of the webpage

width Contains the width (in pixels) at which the browser will display the image

height Contains the height (in pixels) at which the browser will display the image

alt Used for non-visual browsers in place of the image

Working with Images 83

Creating Rollovers
The idea behind rollovers is simple. You have
two images. The first, or original, image is
loaded and displayed along with the rest
of the webpage by the user. When the user
moves the mouse over the first image, the
browser quickly swaps out the first image for
the second, or replacement, image, giving
the illusion of movement or animation.

Listing 4.1 gives you the bare-bones roll-
over; the whole thing is done within a stan-
dard image link. First a blue arrow is loaded
A, and then it is overwritten by a red arrow
when the user moves the mouse over the
image B. The blue arrow is redrawn when
the user moves the mouse away.

Some styles get applied to elements on the
page, and we’ve broken those styles out into
a separate CSS file, as seen in Listing 4.2.

To create a rollover:
1.	 <a	href="next.html"

The link begins by specifying where the
browser will go when the user clicks
the image, in this case to the page
next.html.

2.	onmouseover="document.	
➝ images['arrow’].src=	
➝ ’ images/arrow_on.gif’"

When the user moves the mouse over
the image (the src of the arrow id),
the replacement image arrow_on.gif,
which is inside the images directory, is
swapped into the document.

3.	onmouseout="document.	
➝ images['arrow’].src=	
➝'images/arrow_off.gif’">

Then, when the mouse moves away, the
image arrow_off.gif is swapped back in.

continues on next page

A The first image, before the user moves the
mouse over it.

B When the mouse is over the image, the script
replaces the first image with the second image.

Listing 4.1 Here’s the simplest way to do a rollover,
within a link tag.

<!DOCTYPE html>
<html>
<head>
 <title>A Simple Rollover</title>
 <link rel="stylesheet"
 ➝ href="script01.css">
</head>
<body>
 <a href="next.html" onmouseover=
 ➝ "document.images['arrow'].src=
 ➝ 'images/arrow_on.gif'" onmouseout=
 ➝ "document.images['arrow'].src=
 ➝ 'images/arrow_off.gif'"><img src=
 ➝ "images/arrow_off.gif" id="arrow"
 ➝ alt="arrow">
</body>
</html>

84 Chapter 4

Listing 4.2 This CSS file is used to style elements
throughout many of the examples in this chapter.

body {
 background-color: #FFF;
}

img {
 border-width: 0;
}

img#arrow, img#arrowImg {
 width: 147px;
 height: 82px;
}

#button1, #button2 {
 width: 113px;
 height: 33px;
}

.centered {
 text-align: center;
}

#adBanner {
 width: 400px;
 height: 75px;
}

Disadvantages to This Kind of Rollover
This method of doing rollovers is very simple, but you should be aware that there are several prob-
lems and drawbacks with it.

 . Because the second image is downloaded from the server at the time the user rolls over the
first image, there can be a perceptible delay before the second image replaces the first one,
especially for people browsing your site with a slower connection.

 . Using this method causes an error message in ancient browsers, such as Netscape 2.0 or ear-
lier, Internet Explorer 3.0 or earlier, or the America Online 2.7 browser. Since there are so few of
these vintage browsers still in use, it’s not much of a problem these days.

Instead of using this method, we suggest that you use the following way to create rollovers, in the
“Creating More Effective Rollovers” section, which solves all these problems and more.

4.	<img	src="images/arrow_off.gif"		
➝ id="arrow"	alt="arrow">

The image link defines the source of
the original image for the page.

 We have included the alt attribute
inside the image tag because alt attributes
(which give non-graphical browsers a name
or description of an image) are required if you
want your HTML to be compliant with the W3C
standards, and because using alt attributes
helps make your page accessible to disabled
users, such as visually impaired users who
browse using screen readers.

 Make sure that the “on” versions of all
your images exist—if they don’t, your page will
display a broken image icon when the user
hovers over the link.

 This example uses both single and
double quotes, so you might be wondering
what the difference is. Basically, it’s the same
rule as English: if you’re quoting something
inside a phrase that’s already within double
quotes, switch to single quotes.

Outside of that restriction, JavaScript doesn’t
care if you use single or double quotes. Just
keep in mind that quotes need to come in
pairs; that is, an opening double quote needs
to be ended with another double quote, and
the same goes for single quotes.

Working with Images 85

Creating More
Effective Rollovers
To make the illusion of animation work,
you need to make sure that the replace-
ment image appears immediately, with no
delay while it is fetched from the server.
To do that, you use JavaScript to place the
images into variables used by your script,
which preloads all the images into the
browser’s cache (so that they are already
on the user’s hard disk when they are
needed). Then, when the user moves the
mouse over an image, the script swaps
out one variable containing an image for
a second variable containing the replace-
ment image. Listing 4.3 shows how it’s
done. The visible result is the same as in
A and B from the previous exercise, but
the apparent animation is smoother.

To keep your JavaScript more manage-
able, we’ll extract the JavaScript code from
the HTML page and put it in an external
.js file, as in Listing 4.4 (see Chapter 2 for
more about .js files).

Listing 4.3 The only JavaScript on this HTML page
is the pointer to the external .js file.

<!DOCTYPE html>
<html>
<head>
 <title>A More Effective Rollover</title>
 <script src="script02.js"></script>
 <link rel="stylesheet"
 ➝ href="script01.css">
</head>
<body>
 <img src=
 ➝ "images/button1_off.gif" alt="button1"
 ➝ id="button1">
 <img src=
 ➝ "images/button2_off.gif" alt="button2"
 ➝ id="button2">
</body>
</html>

Listing 4.4 This is a better way to do rollovers than
in Listing 4.1, because it is much more flexible.

window.onload = rolloverInit;

function rolloverInit() {
 for (var i=0; i<document.images.length;
 ➝ i++) {
 if (document.images[i].parentNode.
 ➝ tagName == "A") {
 setupRollover(document.images[i]);
 }
 }
}

function setupRollover(theImage) {
 theImage.outImage = new Image();
 theImage.outImage.src = theImage.src;
 theImage.onmouseout = function() {
 this.src = this.outImage.src;
 }

 theImage.overImage = new Image();
 theImage.overImage.src =
 ➝ "images/" + theImage.id + "_on.gif";
 theImage.onmouseover = function() {
 this.src = this.overImage.src;
 }
}

86 Chapter 4

To create a better rollover:
1.	 <script	src="script02.js"></script>

This tag is in Listing 4.3, the HTML
page. It uses the src attribute to tell
the browser where to find the external
.js file, which is where the JavaScript
resides.

2.	<img	src=	
➝"images/button1_off.gif"		
➝ alt="button1"	id="button1">	
➝ 	
<img		
➝ src="images/button2_off.gif"		
➝ alt="button2"	id="button2">

Still in Listing 4.3, these are two typical
link tags for the buttons, with image tags
embedded in them. The href attribute
describes the destination of the link
when the user clicks it. In the img tag,
the src attribute provides the path to
the image before the user rolls over it.
The link tags also define the image’s alt
text. Note that each of the two buttons
also has an id attribute; as described
in Chapter 1, the id must be unique for
each object. The script uses the image’s
id to make the rollover work.

3.	window.onload	=	rolloverInit;

Moving to Listing 4.4, the window.onload
event handler is triggered when the
page has finished loading. The handler
calls the rolloverInit() function.

This handler is used here to make
sure that the script doesn’t execute
before the page is done loading. That’s
because referring to items on the page
before the page has finished loading
can cause errors if some of the page’s
elements haven’t yet been loaded.

Working with Images 87

4. function	rolloverInit()	{	
	 for	(var	i=0;	i<document.	
	 ➝ images.length;	i++)	{

The rolloverInit() function scans
each image on the page, looking to see
if the tag around the image is an <a>
tag, indicating that it is a link. The first
of these two lines begins the function.
The second begins a for…next loop
that goes through all of the images. The
loop begins by setting the counter vari-
able i to 0. Then, each time the loop
goes around, if the value of i is less
than the number of images in the docu-
ment, increment i by 1.

5. if	(document.images[i].parentNode.	
➝ tagName	==	"A")	{

This is where we test to see if the tag
surrounding the image is an anchor
tag. We do it by looking at an object
and seeing if the object’s value is A
(the anchor tag). Let’s break that object
apart a bit. The first part of the object,
document.images[i], is the current
image. Its parentNode property is the
container tag that surrounds it, and
tagName then provides the name of that
container tag. So in English, you can
read the part of the line in the parenthe-
ses as “For this particular image, is the
tag around it an ‘A’?”

6. setupRollover(document.images[i]);

If the result of the test in step 5 is true,
then the setupRollover function is
called and passed the current image.

continues on next page

88 Chapter 4

7. function	setupRollover(theImage)	{

Take a minute to look at the whole func-
tion before we go through it line by line.
Here’s the overview: this function adds
two new properties to the image object
that’s passed in. The new properties
are outImage (the version of the image
when you’re not on it) and overImage
(the version of the image when you are
on it), both of which are image objects
themselves. Because they’re image
objects, once they’re created, we can
add their src property. The src for
outImage is the current (off) image src.
The src value for overImage is calcu-
lated based on the id attribute of the
original image.

This line starts off the function with
the image that was passed to it by the
rolloverInit() function.

8. theImage.outImage	=	new	Image();

This line takes the image object that
was passed in and adds the new
outImage property to it. Because you
can add a property of any kind to an
object, and because properties are just
objects themselves, what’s happening
here is that we’re adding an image
object to an image. The parentheses
for the new image object are optional,
but it’s good coding practice to include
them; if needed, you can set properties
of the new image object by passing
certain parameters.

Working with Images 89

9. theImage.outImage.src	=		
➝ theImage.src;

Now we set the source for the new
outImage to be the same as the source
of theImage. The default image on the
page is always the version you see
when the cursor is off the image.

10. theImage.onmouseout	=		
➝ function()	{	
	 this.src	=	this.outImage.src;	
}

The first line here starts off what’s
called an anonymous function—that is,
it’s a function without a name. We could
name it (say, rollOut), but as it’s only
one line, why bother?

In this section, we’re telling the browser
to trigger what should happen when
the user moves the mouse away from
the image. Whenever that happens,
we want to set the image source back
to the initial source value, that is, the
outImage version of the image.

11. theImage.overImage	=	new	Image();	
theImage.overImage.src	=		
➝"images/"	+	theImage.id	+		
➝"_on.gif";

In the first line, we create a new image
object that will contain the overImage	
version of the image. The second line
sets the source for overImage. It builds
the name of the source file on the fly,
concatenating “images/” with the id of
the image (remember, in Listing 4.3, we
saw that those ids were button1 and
button2) and adding "_on.gif".

continues on next page

90 Chapter 4

12. theImage.onmouseover	=		
➝ function()	{	
	 this.src	=	this.overImage.src;	
}

Here we have another anonymous
function. This one tells the browser that
when the user moves the cursor over
the image, it should reset the current
image’s source to that of the overImage
version, as seen in A and B.

 When you prepare your graphics for
rollovers, make sure that all your GIF or PNG
images are not transparent. If they are, you
will see the image you are trying to replace
beneath the transparent image—and that’s
not what you want.

 Both the original and the replacement
images need to have identical dimensions.
Otherwise, some browsers resize the images
for you, and you probably won’t like the dis-
torted result.

 In the previous example, the rollover
happened when you moved the cursor over
the link; here, the rollover happens when you
move the cursor over the image—that is, the
onmouseover and onmouseout are now
attached to the image, not the link. While
these methods usually give the same effect,
there’s one big difference: some older brows-
ers (Netscape 4 and earlier, IE 3 and earlier)
don’t support onmouseover and onmouseout
on the img tag.

 You might think that, because all of
the tags on the HTML page are lowercase,
tagName should be compared to a lowercase
“a”. That’s not the way it works; tagName
always returns an uppercase value.

 There are many different ways to script
rollovers. We prefer this one due to its flexibil-
ity: images can be added to or subtracted from
associated HTML pages without any code
needing to be changed.

A You can also put multiple rollovers on the
same page.

B Hovering over the second rollover.

Working with Images 91

Building Three-
State Rollovers
A three-state rollover is one where the
rollover has three versions. Besides
the original image and the version that
appears when the user places the cursor
over the image, there is a third version of
the image when the button itself is clicked,
as shown in A.

Listing 4.5, the HTML file, looks almost
exactly the same as Listing 4.3 from the
previous task. In fact, the only differences
are the document’s title and the name of
the external JavaScript file that is being
called. That’s it. This is an example of why
putting all your JavaScript into an external
file is so powerful; you can add functional-
ity to your pages without having to rework
your HTML pages.

In Listing 4.6, the external JavaScript
file, there are only a few changes from
Listing 4.4. Rather than go through the
whole script again, we’ll just focus on the
changes. Remember, the parts of the script
that we’re covering are shown in red in
the code.

A When the button is clicked, you get a third
image (hard to see in this grayscale image; check
our companion website for the full effect).

Listing 4.5 By putting your JavaScript in an
external file, the HTML for a three-state rollover is
virtually identical to a two-state rollover.

<!DOCTYPE html>
<html>
<head>
 <title>Three-state Rollovers</title>
 <script src="script03.js"></script>
 <link rel="stylesheet"
 ➝ href="script01.css">
</head>
<body>
 <img src=
 ➝ "images/button1_off.gif" alt="button1"
 ➝ id="button1">
 <img src=
 ➝ "images/button2_off.gif" alt="button2"
 ➝ id="button2">
</body>
</html>

92 Chapter 4

To build a three-state rollover:
1. theImage.clickImage	=	new	Image();	

theImage.clickImage.src	=		
➝"images/"	+	theImage.id	+		
➝"_click.gif";

In the setupRollover() function, we
now need to add a third image prop-
erty for the click state. In the first line,
we create a new image object that will
contain the clickImage version of the
image. The second line sets the source
for clickImage. It builds the name of
the source file on the fly, concatenating
"images/" with the id of the image, and
adding "_click.gif".

2. theImage.onclick	=	function()	{	
	 this.src	=	this.clickImage.src;	
}

This tells the browser what to do when
the user clicks the mouse on the image:
in this case, we want to set the image
source to its clickImage version.

 If you’re thinking about using a script
like this on your own site, a more complete
version is Listing 7.9, in “Replacing Elements
Using Regular Expressions,” and its final
version is Listing 13.19, in “Checking Whether
a File Exists.”

Listing 4.6 This script powers the three-state
rollover.

window.onload = rolloverInit;

function rolloverInit() {
 for (var i=0; i<document.images.length;
 ➝ i++) {
 if (document.images[i].parentNode.
 ➝ tagName == "A") {
 setupRollover(document.images[i]);
 }
 }
}

function setupRollover(theImage) {
 theImage.outImage = new Image();
 theImage.outImage.src = theImage.src;
 theImage.onmouseout = function() {
 this.src = this.outImage.src;
 }

 theImage.clickImage = new Image();
 theImage.clickImage.src = "images/" +
 ➝ theImage.id + "_click.gif";
 theImage.onclick = function() {
 this.src = this.clickImage.src;
 }

 theImage.overImage = new Image();
 theImage.overImage.src = "images/" +
 ➝ theImage.id + "_on.gif";
 theImage.onmouseover = function() {
 this.src = this.overImage.src;
 }
}

Working with Images 93

Triggering Rollovers
from a Link
In earlier examples, the user triggered
the rollover by moving the mouse over an
image. But you can also make a rollover
occur when the user hovers over a text
link, as in A and B. The HTML is an unex-
citing page with one link and one image,
shown in Listing 4.7. We’ll do the rollover
by modifying the script used in previous
examples, as in Listing 4.8.

A The text link is the triggering device for this
rollover.

B When the user points at the link, the graphic
below changes.

Listing 4.7 This script shows the HTML for a
rollover from a text link.

<!DOCTYPE html>
<html>
<head>
 <title>Link Rollover</title>
 <script src="script04.js"></script>
 <link rel="stylesheet"
 ➝ href="script01.css">
</head>
<body>
 <h1>
 ➝ Next page</h1>
 <img src="images/arrow_off.gif"
 ➝ id="arrowImg" alt="arrow">
</body>
</html>

94 Chapter 4

To trigger a rollover from a link:
1. function	rolloverInit()	{	

	 for	(var	i=0;	i<document.links.	
	 ➝ length;	i++)	{

After beginning the rolloverInit()
function, we start a loop, much like
previous examples in this chapter.
But there we were looking for
images (document.images.length),
and here we’re looking for links
(document.links.length). The loop
begins by setting the counter variable i
to zero. Every time around, if the value
of i is less than the number of links in
the document, increment i by 1.

2. var	linkObj	=	document.links[i];

We create the linkObj variable and set
it to the current link.

3. if	(linkObj.id)	{	
	 var	imgObj	=	document.	
	 ➝ getElementById(linkObj.id	+		
	 ➝"Img");

If linkObj has an id, then we check to
see if there’s another element on the
page that has an id that’s the same
plus Img. If so, put that element into the
new variable imgObj.

4. if	(imgObj)	{	
	 setupRollover(linkObj,imgObj);

If imgObj exists, then call the
setupRollover() function, passing it
the link object and the image object.

Listing 4.8 Here is the JavaScript for a rollover
from a text link.

window.onload = rolloverInit;

function rolloverInit() {
 for (var i=0; i<document.links.length;
 ➝ i++) {
 var linkObj = document.links[i];
 if (linkObj.id) {
 var imgObj = document.
 ➝ getElementById(linkObj.id +
 ➝ "Img");
 if (imgObj) {
 setupRollover(linkObj,imgObj);
 }
 }
 }
}

function setupRollover(theLink,theImage) {
 theLink.imgToChange = theImage;
 theLink.onmouseout = function() {
 this.imgToChange.src =
 ➝ this.outImage.src;
 }
 theLink.onmouseover = function() {
 this.imgToChange.src =
 ➝ this.overImage.src;
 }

 theLink.outImage = new Image();
 theLink.outImage.src = theImage.src;

 theLink.overImage = new Image();
 theLink.overImage.src = "images/" +
 ➝ theLink.id + "_on.gif";
}

Working with Images 95

5. function	setupRollover	
➝ (theLink,theImage)	{	
	 theLink.imgToChange	=	theImage;

The setupRollover() function begins
with the link and image parameters that
were passed to it in step 4. Then we
add a new property, imgToChange, to
the link object. JavaScript needs some
way of knowing what image is to be
changed when the link is moused over,
and this is where it’s stored.

6. theLink.onmouseout	=	function()	{	
	 this.imgToChange.src	=		
	 ➝ this.outImage.src;	
}	
theLink.onmouseover	=	function()	{	
	 this.imgToChange.src	=		
	 ➝ this.overImage.src;	
}

When the mouseover and mouseout are
triggered, they’re slightly different from
the previous examples in this chapter:
now, this.imgToChange.src is being
reset instead of this.src itself.

 This technique is useful when you want
to provide the user with a preview of what
they will see if they click the link at which they
are pointing. For example, say you have a
travel site describing trips to Scotland, Tahiti,
and Cleveland. On the left of the page could
be a column of text links for each destination,
while on the right could be a preview area
where an image appears. As the user points
at the name of a destination, a picture of that
place appears in the preview area. Clicking
the link takes the user to a page detailing their
fabulous vacation spot.

96 Chapter 4

Making Multiple
Links Change a
Single Rollover
Up to now, you’ve seen how mousing
over a single area can trigger a rollover
effect. But you can also have several dif-
ferent areas that trigger a rollover. This
can be very useful, for example, when
you have several images that you want
to annotate; that is, where rolling over
each of the images makes the descrip-
tion of that image appear. In this example,
we’ve done just this with images of three
of Leonardo da Vinci’s inventions. As
you roll over each image, the description
of that image appears elsewhere. The
description itself is another image. Actu-
ally, it’s three images, one for each of the
three inventions. A shows Listing 4.9

A This page has three interactive images: a flying
machine, a tank, and a helicopter. When you roll
over an image, its description appears under
Leonardo’s face.

Listing 4.9 Note that the links and images on this page all have unique ids.

<!DOCTYPE html>
<html>
<head>
 <title>Multiple Links, Single Rollover</title>
 <script src="script05.js"></script>
 <link rel="stylesheet" href="script02.css">
</head>
<body>
 <div id="captionDiv">

 </div>
 <div id="inventionDiv">

 <img src="images/flyer.gif"
 ➝ width="293" height="165" alt="Flying Machine" id="flyerImg">
 <img src="images/tank.gif"
 ➝ width="325" height="92" alt="Tank" id="tankImg">
 <img src="images/helicopter.gif"
 ➝ width="224" height="160" alt="Helicopter" id="helicopterImg">
 </div>
</body>
</html>

Working with Images 97

Listing 4.10 In this CSS file, we define the classes
we reference in the HTML.

body {
 background-color: #EC9;
}

img {
 border-width: 0;
}

#captionDiv {
 float: right;
 width: 210px;
 margin: auto 50px;
}

#captionField {
 margin: 20px auto;
 width: 208px;
 height: 27px;
}

#inventionDiv {
 width: 375px;
 margin-left: 20px;
}

#heading {
 margin-bottom: 20px;
 width: 375px;
 height: 26px;
}

(HTML), Listing 4.10 (CSS), and Listing 4.11
(JavaScript) in action. As with most of the
scripts in this book, it builds on previous
examples, so we’ll just explain the new
concepts. There are just a few lines that
are different between Listing 4.8 and
Listing 4.11.

98 Chapter 4

To make multiple links
change a single rollover:
1.	 if	(linkObj.className)	{	

	 var	imgObj	=	document.	
	 ➝ getElementById(linkObj.	
	 ➝ className);

We can’t use the id of the rolled-over
images to calculate the id of the
changed image—that’s because an id
has to be unique, and all of the rolled-
over images have to come up with the
same value for the changed image
destination. Instead, we’re using the
class attribute (because you can have
multiple page elements sharing the
same class). In this line, we’re looking
for the className of the link object.

2.	function	setupRollover(theLink,	
➝ textImage)	{	
	 theLink.imgToChange	=	textImage;

The setupRollover() function is
passed the current link object (theLink)
and the image object, which we’re
calling textImage. Note that when we
passed these objects (which can also
be referred to as variables) in, we called
them linkObj and imgObj, respectively.

The rest of the script works the same
way as the previous examples in
this chapter.

Listing 4.11 This script shows you how to use
multiple links to trigger a single rollover.

window.onload = rolloverInit;

function rolloverInit() {
 for (var i=0; i<document.links.length;
 ➝ i++) {
 var linkObj = document.links[i];
 if (linkObj.className) {
 var imgObj = document.
 ➝ getElementById(linkObj.
 ➝ className);
 if (imgObj) {
 setupRollover(linkObj,imgObj);
 }
 }
 }
}

function setupRollover(theLink,textImage) {
 theLink.imgToChange = textImage;
 theLink.onmouseout = function() {
 this.imgToChange.src =
 ➝ this.outImage.src;
 }
 theLink.onmouseover = function() {
 this.imgToChange.src =
 ➝ this.overImage.src;
 }

 theLink.outImage = new Image();
 theLink.outImage.src = textImage.src;

 theLink.overImage = new Image();
 theLink.overImage.src = "images/" +
 ➝ theLink.id + "Text.gif";
}

Working with Images 99

Working with
Multiple Rollovers
What if you want the image that triggers
the rollover to also be a rollover itself?
A builds on the last example and shows
how we’ve added this feature. When you
roll over one of the invention images, it
makes the description image appear, as
before, but this time also swaps out the
invention image for another image with a
drop shadow. This gives the user visual
feedback about what they’re pointing at
(as if the mouse pointer isn’t enough!).
Listing 4.12 is the HTML page (no changes
except for the title and the name of the
external JavaScript file being called), and
Listing 4.13 shows the additions to the
JavaScript from the previous example.

A When you roll over one of the images, a
description appears and a drop shadow appears
around the image itself.

Listing 4.12 This HTML is identical to Listing 4.9, except for the title and reference to the external script.

<!DOCTYPE html>
<html>
<head>
 <title>Multiple Links, Multiple Rollovers</title>
 <script src="script06.js"></script>
 <link rel="stylesheet" href="script02.css">
</head>
<body>
 <div id="captionDiv">

 </div>
 <div id="inventionDiv">

 <img src="images/flyer.gif"
 ➝ width="293" height="165" alt="Flying Machine" id="flyerImg">
 <img src="images/tank.gif"
 ➝ width="325" height="92" alt="Tank" id="tankImg">
 <img src="images/helicopter.gif"
 ➝ width="224" height="160" alt="Helicopter" id="helicopterImg">
 </div>
</body>
</html>

100 Chapter 4

Listing 4.13 This script handles the multiple rollovers.

window.onload = rolloverInit;

function rolloverInit() {
 for (var i=0; i<document.links.length; i++) {
 var linkObj = document.links[i];
 if (linkObj.className) {
 var imgObj = document.getElementById(linkObj.className);
 if (imgObj) {
 setupRollover(linkObj,imgObj);
 }
 }
 }
}

function setupRollover(theLink,textImage) {
 theLink.imgToChange = new Array;
 theLink.outImage = new Array;
 theLink.overImage = new Array;

 theLink.imgToChange[0] = textImage;
 theLink.onmouseout = rollOut;
 theLink.onmouseover = rollOver;

 theLink.outImage[0] = new Image();
 theLink.outImage[0].src = textImage.src;

 theLink.overImage[0] = new Image();
 theLink.overImage[0].src = "images/" + theLink.id + "Text.gif";

 var rolloverObj = document.getElementById(theLink.id + "Img");
 if (rolloverObj) {
 theLink.imgToChange[1] = rolloverObj;

 theLink.outImage[1] = new Image();
 theLink.outImage[1].src = rolloverObj.src;

 theLink.overImage[1] = new Image();
 theLink.overImage[1].src = "images/" + theLink.id + "_on.gif";
 }
}

function rollOver() {
 for (var i=0;i<this.imgToChange.length; i++) {
 this.imgToChange[i].src = this.overImage[i].src;
 }
}

function rollOut() {
 for (var i=0;i<this.imgToChange.length; i++) {
 this.imgToChange[i].src = this.outImage[i].src;
 }
}

Working with Images 101

To work with multiple rollovers:
1.	 theLink.imgToChange	=	new	Array;	

theLink.outImage	=	new	Array;	
theLink.overImage	=	new	Array;

These lines were added because
the script has more images to work
with (two for each rollover). In each
line, we’re creating a new property of
theLink, each of which is an array.

2.	theLink.imgToChange[0]	=		
➝ textImage;

In the previous task, imgToChange
was an image, but in this task, it’s an
array that will contain images. Here,
textImage is stored in the first element
of imgToChange.

3. theLink.outImage[0]	=	new	Image();	
theLink.outImage[0].src	=		
➝ textImage.src;

As previously, we need to store the out
(off) version of the image, but this time
it’s stored in the first element of the
outImage array.

4. theLink.overImage[0]	=		
➝ new	Image();	
theLink.overImage[0].src	=		
➝"images/"	+	theLink.id	+		
➝"Text.gif";

Similarly, the over (on) version of the
image is calculated and stored in the
first element of overImage.

continues on next page

102 Chapter 4

5. var	rolloverObj	=	document.	
➝ getElementById(theLink.id	+		
➝"Img");	
if	(rolloverObj)	{

Now we need to figure out if this roll-
over will trigger multiple images, not
just an individual image. If that’s the
case, there will be an element on the
HTML page whose id is the same as
this one, but with Img appended. That
is, if we’re working on flyer, we’ll be
checking to see if there’s a flyerImg
element on the page. If there is, it’s
saved in rolloverObj, and we should
do the next three steps.

6. theLink.imgToChange[1]	=		
➝ rolloverObj;

In the same way that we set
imgToChange[0] above, we now
set imgToChange[1] (the second
element in the array) to the new
rolloverObj. When the onmouseout
and onmouseover event handlers are
triggered, both images swap to their
alternate versions, as we’ll see later.

7. theLink.outImage[1]	=	new	Image();	
theLink.outImage[1].src	=		
➝ rolloverObj.src;

This sets the second array element
of outImage to the out (off) version of
the image.

8. theLink.overImage[1]	=		
➝ new	Image();	
theLink.overImage[1].src	=		
➝"images/"	+	theLink.id	+		
➝"_on.gif";

And here, the over (on) version of the
image is calculated and stored in the
second element of overImage.

Working with Images 103

If, for some reason, we wanted a third
image to also change during this same
rollover, we’d repeat steps 6–8 with the
third image object.

9. for	(var	i=0;	i<this.imgToChange.	
➝ length;	i++)	{	
	 this.imgToChange[i].src	=		
	 ➝ this.overImage[i].src;	
}

Here inside the rollOver() function
is where the images get swapped.
Because one or more images can be
changed, we need to start by asking how
many images we have stored—that’s
the value of this.imgToChange.length.
Here, the value is 2, because we
want two images to change. We then
loop through two times, setting the
source of imgToChange[0] and then
imgToChange[1] to their respective
over values.

10. for	(var	i=0;	i<this.imgToChange.	
➝ length;	i++)	{	
	 this.imgToChange[i].src	=		
	 ➝ this.outImage[i].src;	
}

This code in the rollOut() function is
virtually the same as that in the previ-
ous step; the only difference is that
we’re now resetting those images to
their out source values.

 It’s important to remember that every
image that ever gets rolled over must have a
unique id.

 What if you want some of the links
on your page to trigger multiple rollovers,
but others to be individual rollovers? No
problem—you don’t even need to change a
line of JavaScript. So long as the check in
step 5 doesn’t find the alternate id on the
page, no second element is stored, and the
rollOver() and rollOut() loops only
animate the initial image.

104 Chapter 4

Creating Cycling
Banners
When you surf the web, it’s common to
see advertising banners that periodically
switch between images. Some of these
are animated GIF files, which are GIF files
that contain a number of frames that play
in succession; others are Flash animations.
If you want to have a page that cycles
through a number of GIFs (either animated
or not), you can use JavaScript to do the
job, as in Listing 4.15. This example uses
three GIFs and cycles repeatedly through
them, as shown in A, B, and C. The
simple HTML page is shown in Listing 4.14.

To create cycling banners:
1.	 var	theAd	=	0;	

var	adImages	=	new	Array	
➝ ("images/reading1.gif",		
➝"images/reading2.gif",		
➝"images/reading3.gif");

Our script starts by creating theAd, which
is given its beginning value in this code.
The next line creates a new array called
adImages. In this case, the array con-
tains the names of the three GIF files
that make up the cycling banner.

2.	function	rotate()	{

We start off with a new function called
rotate().

3.	theAd++;

Take the value of theAd, and add one
to it.

4.	if	(theAd	==	adImages.length)	{	
	 theAd	=	0;

This code checks to see if the value of
theAd is equal to the number of items in
the adImages array; if it is, then set the
value of theAd back to zero.

A The first image, which starts the cycling
banner…

B …the second image…

C …the final image. Once the page loads and the
banner begins cycling, the animation continues
with no user intervention required.

Working with Images 105

5.	document.getElementById	
➝ ("adBanner").src	=		
➝ adImages[theAd];

The image on the web that is being
cycled has the id adBanner; you define
the name as part of the img tag, as
shown in Listing 4.14. This line of code
says that the new sources for adBanner
are in the array adImages, and the value
of the variable theAd defines which of
the three GIFs the browser should use
at this moment.

6.	setTimeout(rotate,	3	*	1000);

This line tells the script how often to
change GIFs in the banner. The built-in
JavaScript command setTimeout() lets
you specify that an action should occur
on a particular schedule, always mea-
sured in milliseconds. In this case, the
function rotate() is called every 3000
milliseconds, or every 3 seconds, so
the GIFs will cycle in the banner every
three seconds.

 You might be wondering why you
would want to use JavaScript for a cycling
banner, rather than just create an animated
GIF. One good reason is that it lets you use
JPEGs or PNGs in the banner, which gives you
higher-quality images. With these higher-
quality images, you can use photographs in
your banners.

 Unlike in some of the previous examples
in this chapter, the images in this task are
not pre-cached. Each downloads from the
server the first time that it’s displayed. This
is because you might have any number of
images in your ad array, and it’s not polite to
force users to download, for example, 100
images if they’re only going to see 2 or 3
of them.

Listing 4.14 The HTML loads the first image in the
cycling banner; the JavaScript handles the rest.

<!DOCTYPE html>
<html>
<head>
 <title>Cycling Banner</title>
 <script src="script07.js"></script>
 <link rel="stylesheet"
 ➝ href="script01.css">
</head>
<body>
 <div class="centered">
 <img src="images/reading1.gif"
 ➝ id="adBanner" alt="Ad Banner">
 </div>
</body>
</html>

Listing 4.15 You can use JavaScript to cycle
between images in a banner.

window.onload = rotate;

var theAd = 0;
var adImages = new Array("images/
➝ reading1.gif","images/reading2.gif",
➝ "images/reading3.gif");

function rotate() {
 theAd++;
 if (theAd == adImages.length) {
 theAd = 0;
 }
 document.getElementById("adBanner").
 ➝ src = adImages[theAd];

 setTimeout(rotate, 3 * 1000);
}

106 Chapter 4

Adding Links to
Cycling Banners
Banners are often used in advertising, and
you’ll want to know how to make a banner
into a link that will take a visitor some-
where when the visitor clicks the banner.
Listing 4.16 shows the HTML page, which
differs from the last example only in that it
adds a link around the img tag. Listing 4.17
shows a variation of the previous script. In
this script, we’ll add a new array. This new
array contains destinations that users will
be sent to when they click the banner. In
this case, the “Eat at Joe’s” banner takes
you to negrino.com, “Drink More Java”
goes to sun.com, and “Heartburn” goes to
microsoft.com, as shown in A. No edito-
rial comments implied, of course.

To add links to cycling banners:
1.	 window.onload	=	initBannerLink;

When the window finishes loading, trig-
ger the initBannerLink() function.

A Each of these three images is a link, and
clicking each image takes you to one of three
different websites.

Listing 4.16 The HTML needed for an ad banner.

<!DOCTYPE html>
<html>
<head>
 <title>Cycling Banner with Links</title>
 <script src="script08.js"></script>
 <link rel="stylesheet"
 ➝ href="script01.css">
</head>
<body>
 <div class="centered">
 <img src=
 ➝ "images/banner1.gif" id="adBanner"
 ➝ alt="ad banner">
 </div>
</body>
</html>

Working with Images 107

2.	if	(document.getElementById	
➝ ("adBanner").parentNode.tagName		
➝ ==	"A")	{	
	 document.getElementById	
	 ➝ ("adBanner").parentNode.	
	 ➝ onclick	=	newLocation;	
}	
rotate();

This code, inside the initBannerLink()
function, first checks to see if the
adBanner object is surrounded by a link
tag. If so, when the link is clicked, the
newLocation() function will be called.
Finally, the rotate() function is called.

3. document.location.href	=		
➝"http://www."	+	adURL[theAd];	
return	false;

Inside newLocation(), we set the
document.location.href object (in
other words, the current document
window) to the value of the text string
"http://www." (notice the period), plus
the value of one item from adURL. Since
adURL is an array, you need to specify
a member of the array. That’s stored
in theAd, and the resulting string can
be any of the three links, depending
on when the user clicks. Last, it returns
false, which tells the browser that
it should not also load in the href.
Otherwise, the browser would do
both. We’ve handled everything within
JavaScript, so the href doesn’t need to
be loaded.

 The adURL array needs to have the same
number of array items as the adImages array
for this script to work correctly.

Listing 4.17 This script shows how you can turn
cycling banners into real, clickable ad banners.

window.onload = initBannerLink;

var theAd = 0;
var adURL = new Array("negrino.com",
➝ "sun.com","microsoft.com");
var adImages = new Array("images/
➝ banner1.gif","images/banner2.gif",
➝ "images/banner3.gif");

function initBannerLink() {
 if (document.getElementById("adBanner").
 ➝ parentNode.tagName == "A") {
 document.getElementById("adBanner").
 ➝ parentNode.onclick = newLocation;
 }

 rotate();
}

function newLocation() {
 document.location.href = "http://www." +
 ➝ adURL[theAd];
 return false;
}

function rotate() {
 theAd++;
 if (theAd == adImages.length) {
 theAd = 0;
 }
 document.getElementById("adBanner").
 ➝ src = adImages[theAd];

 setTimeout(rotate, 3 * 1000);
}

108 Chapter 4

Building Wraparound
Slideshows
Slideshows on websites present the
user with an image and let the user
control the progression (either forward or
backward) of the images. JavaScript gives
the user the interactive control needed.
Listing 4.18 shows the HTML needed, and
the JavaScript in Listing 4.19 has what you
need to add slideshows to your pages.

This script builds a slideshow that wraps
around—that is, if you go past the end of
the list you go back to the beginning and
vice versa. A shows the new slideshow.

Listing 4.18 This HTML page creates a slideshow.

<!DOCTYPE html>
<html>
<head>
 <title>Image Slideshow</title>
 <script src="script09.js"></script>
 <link rel="stylesheet"
 ➝ href="script01.css">
</head>
<body>
 <div class="centered">
 <h1>Welcome, Robot Overlords!</h1>
 <img src="images/robot1.jpg"
 ➝ id="myPicture" width="200"
 ➝ height="400" alt="Slideshow">
 <h2><a href="previous.html"
 ➝ id="prevLink"><< Previous
 ➝ <a href="next.html"
 ➝ id="nextLink">Next >></h2>
 </div>
</body>
</html>

Listing 4.19 This script builds a slideshow that the user can click through using links to control movement
forward and back.

window.onload = initLinks;

var thePic = 0;
var myPix = new Array("images/robot1.jpg","images/robot2.jpg","images/robot3.jpg");

function initLinks() {
 document.getElementById("prevLink").onclick = processPrevious;
 document.getElementById("nextLink").onclick = processNext;
}

function processPrevious() {
 if (thePic == 0) {
 thePic = myPix.length;
 }
 thePic--;
 document.getElementById("myPicture").src = myPix[thePic];
 return false;
}

function processNext() {
 thePic++;
 if (thePic == myPix.length) {
 thePic = 0;
 }
 document.getElementById("myPicture").src = myPix[thePic];
 return false;
}

Working with Images 109

A Clicking the Previous or Next link calls the processPrevious() or processNext() function, respectively.

To build a wraparound slideshow:
1.	 window.onload	=	initLinks;

When the window finishes loading,
trigger the initLinks() function.

2.	function	initLinks()	{	
	 document.getElementById	
	 ➝ ("prevLink").onclick	=		
	 ➝ processPrevious;	
	 document.getElementById	
	 ➝ ("nextLink").onclick	=		
	 ➝ processNext;	
}

This function sets up the onclick event
handlers for the Previous and Next links.

continues on next page

110 Chapter 4

3.	function	processPrevious()	{	
	 if	(thePic	==	0)	{	
	 	 thePic	=	myPix.length;

This function makes the slideshow run
in the Previous direction. This first part
checks to see if thePic is equal to 0.
If it is, the function gets the number of
pictures in the myPix array.

4.	thePic--;	
document.getElementById	
➝ ("myPicture").src	=		
➝ myPix[thePic];

The first line reduces the value of
thePic by 1. The next line sets the src
of myPicture to the element of the
myPix array represented by the current
value of thePic.

5.	thePic++;	
if	(thePic	==	myPix.length)	{	
	 thePic	=	0;	
}	
document.getElementById	
➝ ("myPicture").src	=		
➝ myPix[thePic];

This code, inside the processNext()
function, makes the slideshow run in
the Next direction and is much like the
processPrevious() function. The first
thing it does is increment the value of
thePic by 1. Then it checks to see if
the value of thePic is the same as the
number of items in the myPix array. If
so, it sets thePic back to 0. The next
line sets the src of myPicture.

Working with Images 111

Displaying a
Random Image
If your site is rich with graphics, or if you
are displaying digital artwork, then you may
want to have a random image from your
collection appear when the user enters
your site. Once again, JavaScript to the
rescue! The extremely simple Listing 4.20
shows the required HTML, and Listing 4.21
provides the JavaScript. A shows the
result of the script, in this case images of a
stuffed lion, tiger, and bear (oh, my!).

A Depending on the value of the random number
generated by the script, the user is presented with
the lion, the tiger, or the bear.

112 Chapter 4

To display a random image:
1.	 var	myPix	=	new	Array	

➝ ("images/lion.jpg",	"images/	
➝ tiger.jpg",	"images/bear.jpg");

Here we build an array of three images,
and stuff it into the variable myPix.

2.	var	randomNum	=	Math.floor	
➝ (Math.random()	*	myPix.length);

The variable called randomNum gets
the value of a math expression that’s
best read from the inside outwards.
Math.random generates a random
number between 0 and 1, which is then
multiplied by myPix.length, which is
the number of items in the array (in this
case, it’s 3). Math.floor rounds the
result down to an integer, which means
that the number must be between 0
and 2.

3.	 document.getElementById	
➝ ("myPicture").src	=		
➝ myPix[randomNum];

This says that the source of the image
myPicture is set based on the array
myPix, and the value at this moment is
dependent on the value of randomNum.

Listing 4.20 This simple HTML creates the page
for a random image.

<!DOCTYPE html>
<html>
<head>
 <title>Random Image</title>
 <script src="script10.js"></script>
 <link rel="stylesheet"
 ➝ href="script01.css">
</head>
<body>
 <img src="images/spacer.gif" width="305"
 ➝ height="312" id="myPicture"
 ➝ alt="some image">
</body>
</html>

Listing 4.21 You can display random images on
your page with this script, which uses JavaScript’s
Math.random method to generate a random number.

window.onload = choosePic;

var myPix = new Array("images/lion.jpg",
➝ "images/tiger.jpg","images/bear.jpg");

function choosePic() {
 var randomNum = Math.floor
 ➝ (Math.random() * myPix.length);
 document.getElementById("myPicture").
 ➝ src = myPix[randomNum];
}

Working with Images 113

Cycling Images with
a Random Start
If you have a number of images that you
want to display, you may not want to dis-
play them beginning with the same image
each time the page is loaded. Listing 4.22
has the HTML, and Listing 4.23 combines
the code used earlier for the cycling ad
banners with the random image code.

Listing 4.22 There’s a spacer GIF in the HTML
file, which is a placeholder until the ad banner
appears.

<!DOCTYPE html>
<html>
<head>
 <title>Cycling Random Banner</title>
 <script src="script11.js"></script>
 <link rel="stylesheet"
 ➝ href="script01.css">
</head>
<body>
 <div class="centered">
 <img src="images/spacer.gif"
 ➝ id="adBanner" alt="Ad Banner">
 </div>
</body>
</html>

Listing 4.23 This script allows you to start your cycling image show with a random image.

window.onload = choosePic;

var theAd = 0;
var adImages = new Array("images/reading1.gif","images/reading2.gif","images/reading3.gif");

function choosePic() {
 theAd = Math.floor(Math.random() * adImages.length);
 document.getElementById("adBanner").src = adImages[theAd];

 rotate();
}

function rotate() {
 theAd++;
 if (theAd == adImages.length) {
 theAd = 0;
 }
 document.getElementById("adBanner").src = adImages[theAd];

 setTimeout(rotate, 3 * 1000);
}

114 Chapter 4

To start images cycling
from a random start:
1. var	adImages	=	new	Array("images/	

➝ reading1.gif",	"images/reading2.	
➝ gif",	"images/reading3.gif");

As in previous examples, set up the
array and the variable that contains the
number of items in the array.

2. function	rotate()	{

This function is similar to the rotate()
function in Listing 4.15. See that expla-
nation for the details of how it works.

Index 515

Index

. (dot/period) character, 12, 19, 177
/ (slash) operator, 15, 173
// (comment indicators), 29
/= (division) assignment, 16
/* and */ (comment indicators), 29
; (semicolon) character, 23–24, 441, 450
? (question mark) character, 34, 175, 177
@media queries, 430
[] (brackets), 174, 177
\ (backslash), 123, 174, 177
^ (caret) character, 174, 177
{} (braces), 25, 34, 175, 177
| (or) character, 70, 76, 177
|| (or) comparison, 16, 74
1-up calendars, 404–405
2-digit year, 277, 405
2-up calendars, 404–405
3-state rollovers, 91–92, 191
4-digit year, 277, 405
12-hour time format, 272
24-hour time format, 272

A
<a> (anchor) tags, 22, 87, 118, 119
abs() method, 54
abort() method, 333
acceleration property, 432
accelerationIncludingGravity property,

432
accented characters, 456–458
accessibility, 192, 296
accordion menus, 389–391, 398
acos() method, 54
action attribute, 134
ActiveX, 332, 338
Adaptive Path, 327
addEventListener() method, 216, 218, 333

Symbols
= (equals sign) assignment, 15, 16, 34
== (equivalence) comparison, 16
=== (identical) comparison, 16
> (greater than) comparison, 16
>= (greater than) comparison, 16
< (less than) comparison, 16
<= (less than) comparison, 16
% (modulus) operator, 15
%= (modulus) assignment, 16
! (not) character, 16
!= (not equivalent) comparison, 16
!== (not identical) comparison, 16
" (quotes)

in bookmarklets, 447
enclosing string values in, 15, 59
in open() command, 130
single vs. double, 84, 447, 451
in user alerts, 32

(hash symbol) character, 19
$ (dollar sign) character, 176, 177, 367–368
& (and) operator, 70, 76
&& (and) comparison, 16, 74
 (non-breaking space), 51
() (parentheses)

in functions, 25, 28
in methods, 12
in regular expressions, 174–175, 177

* (asterisk) character, 15, 175, 177
*= (multiplication) assignment, 16
+ (plus sign) character, 15, 174, 177
++ (increment) operator, 15, 53
+= (addition) assignment, 16
- (minus sign) operator, 15
-- (decrement) operator, 15
-= (subtraction) assignment, 16

516 Index

AOL (America Online), 42, 84
Apache, 172
appendChild() method, 244, 253
Apple

iOS simulator, 431
and Macworld Expo, 80
map services, 440
Maps app, 438
Safari browser (See Safari)

applets, Java, 4, 5
apps, launching mobile, 440
arithmetic operators, 15
arrays

defined, 59
updating, 62–63
using string, 77–80

asin() method, 54
assignment operators, 16
asterisk (*), 15, 175, 177
Asynchronous JavaScript and XML, 9, 327.

See also Ajax
atan() method, 54
Atom feeds, 340
attributes
action, 134
alt, 82, 84
autocomplete, 357
class, 18–19, 69–70, 72, 74, 99
deprecated, 24
for, 134
height, 82
href, 22
language, 24
maxlength, 134
name, 116, 119, 134
selected, 134
size, 134
src, 22, 26, 82, 116
style, 70
target, 118–119
type, 24, 134
value, 134
width, 82

audio-player plugin, 423–424
autocomplete attribute, 357
auto-completing fields, 356–361, 396–397

Adobe
Dreamweaver, 20, 138, 172
Fireworks, 459
Flash, 4, 104
Photoshop, 306, 459

advertising banners, 104–107, 113–114
Ajax, 325–364

article about, 327
auto-completing form fields with, 356–361
and back buttons, 330
browser considerations, 329
and caching, 338, 348
checking whether file exists with, 362–364
coining of term, 9, 327
drawbacks/problems, 329–330, 338, 348
how it works, 328–329
and jQuery, 412–413
and JSON format, 260, 349
parsing server data with, 339–345, 349–352
previewing links with, 353–356
purpose of, 8–9
refreshing server data with, 346–348
requesting/reading server data with, 331–338,

349–352
and server-side technologies, 330
testing, 338
ways of using, 325–326
web technologies included in, 9–10, 327, 361

alert boxes, 215
alert() method, 32
alert windows, 31–32
alpha property, 432
alphabetizing names, 186–187
alt attribute, 82, 84
altKey property, 432
ampersand (&, &&), 16, 70, 74, 76
AM/PM, adding to time, 271, 273
anchor (<a>) tags, 22, 87, 118, 119
and (&) operator, 70, 76
and (&&) operator, 16, 74
Android devices, 431, 437, 440. See also

mobile devices
animated GIFs, 104, 105
animation, 81, 83, 85, 104–105
annotating scripts, 29–30
anonymous functions, 89, 90, 136, 386

Index 517

for converting RGB values to hex, 459–460
creating

in Chrome, 444
in Firefox, 442
in Internet Explorer, 445
in Safari, 443

defined, 441
for displaying ISO Latin characters, 456–458
for doing complex calculations, 463–464
and IE security, 446
for looking up words, 451–453
for mailing webpages, 467
origin of, 443
repositioning, 443
for resetting page background, 447
for resizing pages, 468
for shortening URLs, 465
troubleshooting, 468
use of semicolons in, 441, 450
use of single vs. double quotes in, 447
for validating pages, 466
for viewing images, 454–455
vs. other JavaScript code, 441

bookmarklets.com, 443
books

Dreamweaver: Visual QuickStart Guide,
20, 138

HTML and CSS: Visual QuickStart Guide,
2, 430

JavaScript, The Definitive Guide, 511
ppk on JavaScript, 511
Pro JavaScript Techniques, 511
Styling Web Pages with CSS: Visual

QuickProject Guide, 496
Boolean values, 15, 61, 63, 70, 77, 217
border properties (CSS), 499
box properties (CSS), 504
braces ({}), 25, 34, 175, 177
brackets ([]), 174, 177
browser compatibility, 412
browser detection, 58
browser objects, 11. See also objects
browser security settings, 129
browser windows, 128

B
back button, 117, 330
background color, changing page’s, 447,

448–450
background properties (CSS), 498
backslash (\), 123, 174, 177
banners, 104–107, 113–114
bar graph generator, 306–314
Bare Bones Software, 20
BBEdit, 20, 172
beta property, 432
binary math, 70, 74, 75–76
binary values, 70, 71
Bingo cards

adding interactivity to, 68–70
applying styles to, 52, 68–70
avoiding duplicate numbers in, 62–63, 64
checking for winning state, 71–74
creating skeleton for, 50–51
limiting range of values in, 59
possible winning patterns for, 75
range of allowable numbers for, 52, 59
using loop to create table for, 53–54

bit.ly, 465
bits, 70, 71, 75–76
bitwise arithmetic, 70, 72, 75–76
Blackberry devices, 437. See also mobile

devices
blind users, 296
Blink, 472
block-level elements, 18
blog.jquery.com, 384
blogs

DailyJS, 510
jQuery, 384
Mozilla Hacks, 509
QuirksMode, 510
Safari, 509

blur() method, 132
body scripts, 23
<body> tags, 22, 23
bookmarklets, 441–468

for changing page’s styles, 448–450
for converting kilometers to miles, 461–462

518 Index

browsers. See also specific browsers
and Ajax, 329, 348
and alert boxes, 32
and browser detection, 58
and caching, 348
and case-sensitivity, 494
and cookies, 219–220
and daylight savings time, 271
developer tools for, 473–474
and the DOM, 242
and ECMAScript, 472
and event handlers, 69
and external JavaScript files, 28
and JavaScript toolkits, 373
and JavaScript versions, 470
and jQuery versions, 366
mouse click codes for, 203
and name attribute, 119
performing word lookups in, 451–453
and pop-up windows, 127, 129
and resizing of images, 90
and rollovers, 84, 90
and security problems, 446
testing scripts in different, 130
viewing code in, 474
viewing document tree structure in, 13
and Year 2000 Problem, 277

bubbling, event, 216, 218
buttons

back, 117, 330
radio, 156–158
submit, 133, 139, 142, 209
updating with jQuery, 374–375
using check boxes as, 401–403

Buzzword Bingo game, 77–80

C
C#, 3
C/C++, 3
cache files, 28, 85, 136, 138, 338, 348
calculators, 463–464
calendar widget, 404–408
calendars

adding to webpages, 404–408
Google, 10

one-up, 404–405
two-up, 406–408

callback function, 352
calling functions, 25
caniuse.com, 496, 513
capitalizing names, 183–184
captions, slideshow, 297–300
capturing events, 216, 218
caret (^), 174, 177
Cascading Style Sheets. See CSS
case statements, 43–45
case-sensitivity, 15, 90, 494
Castro, Elizabeth, 2, 430
catch statements, 46, 47, 48, 464
CDN. See Content Delivery Network
ceil() method, 54, 277
cell phones. See mobile devices; phones
characters, displaying ISO Latin, 456–458
charts, 306–314

code for drawing, 308–311
HTML page for generating, 306
script containing styles for, 307
source of statistics for, 314

check boxes, 11, 12, 151, 401–403, 410
checkers applet, 4
child frames, 117
Chrome

and browser detection, 58
creating bookmarklets in, 444, 446
developer tools, 473–474
and DOM-2, 242
and ECMAScript, 472
and external JavaScript files, 28
and JavaScript alert boxes, 32
and JavaScript toolkits, 373
and key events, 214
and mouse handling events, 202
and user prompts in new dialogs, 36
viewing document tree structure in, 13
window defaults, 130
and window events, 199

class attribute, 18–19, 69–70, 72, 74, 98
classes, CSS pseudo-, 496
clientX property, 432
clientY property, 432
client machines, reading/writing files on, 7

Index 519

country pop-up menus, 140
createElement() method, 244
createTextNode() method, 244
CSS (Cascading Style Sheets)

and Ajax, 9, 327
background properties, 498
basic concepts, 496
border properties, 499
box properties, 504
color properties, 506
combining JavaScript and, 68–70
font properties, 500–501
generated content properties, 506
and jQuery, 366, 370, 387
list properties, 506
and object literals, 257
page properties, 496
pseudo-elements/classes, 496
purpose of, 17
recommended books on, 2, 430, 496
reference, 495–506
table properties, 500
text properties, 502–503
tools for creating, 20
units, 502
user interface properties, 497
visual effects properties, 498
visual formatting properties, 505

CSS 2.0 specification, 495
CSS 2.1 specification, 495
CSS 3 specification, 495–496
.css file extension, 20
ctrlKey property, 432
curly braces ({}), 25, 34
cycling banners, 104–107, 113–114

D
DailyJS blog, 510
data

accessing other people’s, 345
automatic entry of, 356–361
parsing, 339–345, 349–352
presenting tabular, 49, 376–379
refreshing, 346–348
requesting/reading, 331–338, 349–352
using jQuery with external, 417–419

client-side languages, 7
client-side programs, 4, 6
Cocoa-based programs, 453
code-checking tool, 513
code-writing tool, 513
coding, for mobile vs. desktop devices, 426
color

changing page background, 447, 448–450
properties (CSS), 506

color-picker script, 371–372
comment indicators (//, /*, and */), 29
commenting scripts, 29–30
Communicator, Netscape, 470
comparison operators, 16
compile() method, 185
conditionals
if/then/else, 33–34, 43
multi-level, 43–45, 276
switch/case, 43–45, 276
use of && and || in, 74

confirm() method, 33–34
constructor property, 185
container tags, 23
Content Delivery Network (CDN), 369, 394,

410, 422
cookies, 219–240

counting, 219, 228–230
defined, 219
deleting, 231–232
displaying “New to You” message with,

235–240
format for typical, 221
handling multiple, 223, 233–234
how browsers handle, 219
misconceptions about, 219–220
reading, 225
setting, 6, 221–224
showing, 226–227
ways of using, 219

Coordinated Universal Time. See Greenwich
Mean Time

Core JavaScript Reference/Guide, 508
cos() method, 54
countdown script, 274–277
counter programs, 230
counters, 50, 53, 228–230

520 Index

date methods, 283–284
datepicker widget, 404–408
dates

comparing two, 277
displaying by time zone, 266–271
distinguishing between weekdays/weekends,

264
dynamically displaying on webpage,

262–263
how JavaScript stores, 277

daylight saving time, 271
day/month pop-up menus, 140–141
Debugger

Firebug, 512
Venkman, 508–509

debugging mobile devices, 431
decimal math, 74
deprecated attributes, 24
detection methods, 58
developer tools, browser, 473–474
DeviceMotionEvent object, 432
DeviceOrientationEvent object, 432
DHTML. See Dynamic HTML
dialing phone numbers, 440
dialogs, creating smarter, 392–395
dictionary-lookup script, 451–453
<div> tags, 18
Document Object Model. See DOM
document tree structure, 13, 243
documentation

JavaScript, 508
jQuery, 384
node manipulation, 260

document.write() method, 28
Dojo, 373
dollar sign ($), 176, 177, 367–368
DOM (Document Object Model)

and Ajax, 9, 327
defined, 13
and nodes, 13, 241–243
scripting, 42
and W3C, 242, 243
and web browsers, 242

DOM Inspector, 13
DOM-2 event handlers, 216
DOM-2, 242–243

DOM-3, 243
dot syntax, 12–13, 194
do/while loops, 64–65, 78
drag-and-drop page elements, 414–416
draggable dialogs, 393
Dreamweaver, 20, 138, 172
Dreamweaver: Visual QuickStart Guide,

20, 138
drop shadows, 99
Dynamic HTML, 42, 373
dynamic menus, 140–141

E
ECMA-262 specification, 472
ECMAScript

and 4-digit years, 277
bindings, 243
and JavaScript versions, 470
and Netscape, 472
official specification for, 472
reserved words, 492–493
versions, 472

ejohn.org, 384
element nodes, 13, 243, 244
elements

block-level vs. inline, 18
CSS pseudo-, 496
highlighting page, 386–388
identifying, 19
modifying, 19
moving around on page, 433–435

else statements, 34, 43
Emacs, 20
email, sending webpages via, 467
email addresses

validating, 166–170, 173–176
verifying, 170

equals sign (=) assignment, 15, 16, 34
error messages, 46–48, 200
error-handling script, 46–48
escaping characters, 174
event bubbling, 216, 218
event capturing, 216, 218
event handlers, 195–218

advanced, 216–218
defined, 14, 193

Index 521

exec() method, 184, 185
exp() method, 54
external data, using jQuery with, 417–419
external scripts, 26–28
extracting strings, 180–182

F
FaceTime app, 440
favelets, 441
favorites, 441
fields

auto-completing, 356–361, 396–397
checking one against another, 147–148
identifying/marking problem, 149–150
making them required, 142–146
setting one with another, 159–161
validating email addresses in, 166–170,

173–176
validating zip codes in, 162–165

file names, validating, 178–179
files, checking for existence of, 362–364
finally {} block, 48
Firebug Debugger, 512
Firebug Lite, 512
Firefox

and alert boxes, 32
creating bookmarklets in, 442
debugger, 508–509, 512
DOM Inspector, 13
and DOM-2, 242
and external JavaScript files, 28
and focus() method, 211
and JavaScript, 470
and JavaScript toolkits, 373
and name attribute, 119
non-standard window event handlers, 138
and oncontextmenu events, 203
and onkeydown events, 214
and onload events, 136, 138
and onmousedown events, 203
and page caching, 136, 138
performing word lookups in, 453
and user prompts in new dialogs, 36
window defaults, 130
and Year 2000 Problem, 277

Fireworks, 459

for form events, 209–212
onblur, 210–211
onchange, 209, 211
onclick, 210
onfocus, 212
onreset, 209
onselect, 209
onsubmit, 209

importance of, 193
for key events, 213–215
onkeydown, 213–215
onkeypress, 215
onkeyup, 215

list of common, 14
for mouse events, 201–208
onclick, 208
oncontextmenu, 201–203
ondblclick, 208
onmousedown, 201–203
onmousemove, 204–206, 207
onmouseout, 207
onmouseover, 207, 353
onmouseup, 204, 208

reference, 473–490
for window events, 194–200
onabort, 199
onbeforeunload, 198–199
onblur, 200
onDOMContentLoaded, 200
onerror, 200
onfocus, 200
onload, 14, 195–197
onmove, 199
onresize, 199
onscroll, 200
onunload, 14, 136, 198

for XMLHttpRequest object, 333, 490
event property, 69
events. See also event handlers

defined, 14
form, 209–212
key, 213–215
mobile, 432
mouse, 201–208
window, 194–200

Excel, 306

522 Index

Flanagan, David, 511
Flash animations, 4, 104
Flickr

displaying data from, 417–419
popularity of, 325
reading/parsing server data from, 339–345,

349–352
refreshing server data from, 346–348

floor() method, 54, 112, 347
focus() method, 132, 211
font properties (CSS), 500–501
font-compatibility list, 437
fonts, 315, 318, 437
for attribute, 134
for loops, 50, 52, 53–54
form event handlers, 209–212
onblur, 210–211
onchange, 209, 211
onclick, 210
onfocus, 212
onreset, 209
onselect, 209
onsubmit, 209

<form> tags, 134, 139
form validation, 133, 209
formatting

properties (CSS), 505
strings, 183–190

list of names, 183–187
phone numbers, 188–190

time, 272–273
form-handling scripts

changing menus dynamically, 140–141
checking one field against another, 147–148
creating select-and-go menu, 135–138
identifying problem fields, 149–150
making fields required, 142–146
making sure user picks radio button, 156–158
setting field value automatically, 159–161
validating email addresses, 166–170, 173–176
validating multi-element form, 151–155
validating zip codes, 162–165

forms, 133–170
auto-completing fields in, 356–361, 396–397
checking one field against another in,

147–148

how they work, 133
identifying problem fields in, 149–150
for jumping from one page to another, 139
making fields required in, 142–146
purpose of, 133
and regular expressions, 171–172
setting field values automatically in, 159–161
tags/attributes, 134
UI design considerations, 146
using radio buttons in, 156–158
validating email addresses in, 166–170,

173–176
validating file names in, 178–179
validating multi-element, 151–155
validating URLs in, 178–179
validating zip codes in, 162–165

forum.jquery.com, 384
forums, jQuery, 384
four-digit year, 277, 405
frames

HTML tags/attributes, 116
inline, 118 (See also iframes)
keeping pages out of, 117
reduced popularity of, 115
setting target for, 118–119
sharing functions between, 126–127

framesets, 117, 118
frameworks, JavaScript, 365–366, 369, 385
function values, 15
functions

anonymous, 89, 136, 386
calling, 25
components of, 25
defined, 25
naming, 25, 494
passing values to, 55–56
sharing between documents, 126–127
use of parentheses in, 28

G
gamma property, 432
Garrett, Jesse James, 9, 327
generated content properties (CSS), 506
geolocation, 438–440
gesturechange event, 432
gestureend event, 432

Index 523

preparing for rollovers, 90
programs, 459

Greenwich Mean Time (GMT), 266, 283, 284
grep, 171
gs.statcounter.com, 314

H
<h1>...<h6> tags, 22
hash symbol (#), 19
<head> tags, 22, 23
header scripts, 23
hexadecimal, converting RGB values to,

459–460
hide() method, 387
highlighting new elements, 386–388
hijacking pages, 117
hit counters, 230
hover() method, 374
href attribute, 22, 440
HTML

and Ajax, 9, 327
attributes, 22, 49, 82, 116, 134
and case, 90
and CSS, 17
evolution of, 1
forms, 133
recommended book on, 2, 430
separating JavaScript from, 41, 43
tags, 22, 49, 82, 116, 134
tools for writing, 20
and W3C validation, 17
writing JavaScript-friendly, 17–19

HTML and CSS: Visual QuickStart Guide,
2, 430

.html file extension, 20
HTML Source mode, 20
<html> tags, 22
Hyslop, Bruce, 2, 430

I
id attribute

and frames, 116, 119
and images, 82, 103
manipulating cell contents with, 51
purpose of, 18, 19

identifier property, 432

GestureEvent object, 432
gesturestart event, 432
getAllResponseHeaders() method, 333
getDate() method, 283
getDay() method, 283
getElementById() method, 27
getElementsByTagName() method, 245,

246, 247
getfirebug.com, 512
getFullYear() method, 277, 283
getHours() method, 265, 283
getMilliseconds() method, 283
getMinutes() method, 283
getMonth() method, 283
getResponseHeader() method, 333
getSeconds() method, 283
getTime() method, 277, 283
getTimezoneOffset() method, 283
getUTCDate() method, 283
getUTCDay() method, 283
getUTCFullYear() method, 283
getUTCHours() method, 283
getUTCMilliseconds() method, 283
getUTCMinutes() method, 283
getUTCMonth() method, 283
getUTCSeconds() method, 283
getYear() method, 277, 283
GIF images, 90, 104, 105
global property, 185
Global Statistics, StatCounter’s, 314
Gmail, 10, 325
GMT. See Greenwich Mean Time
goo.gl, 465
Google

and Ajax, 10
Android emulator, 431
Calendar, 10
Docs, 10
Gmail, 10, 325
Instant, 361
Maps, 9, 10, 325, 440
Maps Mania, 10

googlemapsmania.blogspot.com, 10
graphics. See also images

animating, 81
displaying, 111

524 Index

IE. See Internet Explorer
if/else conditionals, 33–34, 43, 57
iframes

creating content for, 122–123
creating dynamic, 124–125
defined, 118
loading, with JavaScript, 120–121

ignoreCase property, 185
image () tags, 82, 86, 90
image rollovers, 191, 208, 362. See also

rollovers
images, 81–114

annotating, 96
checking for alternate versions of, 362–364
creating illusion of animation with, 85
in cycling banners, 105
cycling with random start, 113–114
displaying random, 111–112
forcing users to download, 105
HTML tag/attributes for, 82
preparing for rollovers, 90
presenting as slideshows, 108–110
for simple rollovers, 83–84
for three-state rollovers, 91–92, 191, 192
viewing table of, 454–455

increment step, for loop, 53
index number, 59
initDeviceMotionEvent() method, 432
initDeviceOrientationEvent() method, 432
initEvent() method, 217
initGestureEvent() method, 432
initTouchEvent() method, 432
initialization step, for loop, 53
inline elements, 18
innerHTML property, 27, 28, 42, 245, 355
input property, 185
<input> tags, 134
insertBefore() method, 253
interactivity, 1, 6, 8, 68–70, 371–375
internal scripts, 26
Internet Explorer (IE)

and alert boxes, 32
creating bookmarklets in, 445
debugger, 512
and DOM-2, 242
and ECMAScript, 472

and event handlers, 69
and external JavaScript files, 28
and getFullYear() method, 277
and JavaScript toolkits, 373
and JScript, 471
mouse click codes, 203
and name attribute, 119
and oncontextmenu events, 203
and onkeydown events, 214
and onmousedown events, 203
and pop-up windows, 129
and rollovers, 84, 90
scripting capabilities, 5
and security, 129, 446
and tabbed browsing, 129
viewing document tree structure in, 13
window defaults, 130
and XMLHttpRequest object, 332, 338
Year 2000 Problem, 277

Internet time server, 271
interval property, 432
iOS devices, 431, 437, 440
iPad/iPhone, 80, 431, 438, 440. See also

mobile devices
is.gd, 465
isNaN() method, 47
ISO Latin characters, 456–458

J
Java, 3–4, 5, 172
java.com, 3
JavaScript

adding visual interest to webpages with, 81
and AOL, 42
applying styles with, 68–70
and browser compatibility, 412
calculator, 463–464
case-sensitivity of, 15
as client-side language, 7
combining CSS and, 68–70
and cookies, 219–220
documentation, 508
and the DOM, 13, 243
enhancing links with, 39–41
evolution of, 1
frameworks, 365–366, 369, 385

Index 525

CDN, 369, 394, 410, 422
and CSS, 366, 370, 387
designing with

adding calendar to page, 404–408
adding sortable tabs, 398–400
creating accordion menus, 389–391
creating custom themes, 409–410
creating smarter dialogs, 392–395
highlighting new elements, 386–388
using check boxes as buttons, 401–403

documentation, 384
and dollar sign ($), 367–368
downloading, 384
as foundation, 411, 412–413
and JSON, 411, 412–413
plugins, 384, 411, 413, 420–424
purpose of, 8, 366
resources, 384
serving, 369
sorting tables with, 380–383
strengths of, 366, 373, 412
striping tables with, 376–379
support for older browsers, 366
themes, 391, 394–395, 409–410
tutorials, 384
updating buttons with, 374–375
updating page with, 370
user interface (See jQuery UI)
using with external data, 417–419
versions, 366, 368, 369
and “yellow fade”, 385, 386

jQuery Mobile, 384
jQuery UI

adding to pages, 386–388
avoiding overhead of, 388
CSS files, 394
plugins, 422
purpose of, 385
resources, 384
themes, 389, 392, 394–395
versions, 394

.js file extension, 20, 26, 203
JSBin, 514
JScript, 5, 42, 471, 509
jscript.dll, 471
JSFiddle, 514

hiding from users, 28, 201–203
how events are handled in, 14
inventor of, 1
limitations of, 7
loading iframes with, 120–121
Math object, 54, 463–464, 481
Microsoft version of, 5, 42
modifying document tree structure with, 13
month numbering in, 277
and Netscape, 1, 5, 42, 470
object table, 473–490
as object-oriented language, 11
operators, 15–16
as programming language, 2
purpose of, 1, 17
recommended books on, 511
and regular expressions, 171, 172
reserved words, 491–494
resources, 507–514
rewriting with object literals, 257–260
as scripting language, 2
terminology, 42
toolkits, 8, 365–366, 373
tools for writing, 20, 365–366
use of semicolons in, 24
using functions in, 25
value types, 15
versions, 470
vs. Java, 3
ways of using, 6

JavaScript, The Definitive Guide, 511
JavaScript Center, 508
JavaScript Guide, Netscape, 443
JavaScript Object Notation, 260
javascriptworld.com, 2, 507
Jobs, Steve, 80
jordanm.co.uk, 437
JPEG images, 105
jQuery, 365–424

adding to page, 367–368
adding user interaction with, 371–375
and Ajax, 412–413
alternatives to, 373
auto-completing fields with, 396–397
and browser compatibility, 412
calendar widget, 404–408

526 Index

JSHint, 513
JSON format, 10, 260, 349–352, 411, 412–413
jsperf.com, 366
jump menus, 138

K
Kangas, Steve, 443
key event handlers, 213–216
keywords
this, 41, 260
var, 35, 36

kilometers-to-miles converter, 461–462
Koch, Peter-Paul, 510, 511

L
<label> tags, 134
landscape orientation, 426, 427
language attribute, 24
languages

client-side, 7
object-oriented, 11
scripting, 2, 5

lastIndex property, 185
lastMatch property, 185
lastParen property, 185
Latin characters, ISO, 456–458
latitude attribute, 438, 439, 440
layers, hiding/displaying, 278–280
leap year, 141
left-click codes, 203
leftContext property, 185
length units (CSS), 502
 tags, 288
light-table script, 414–418
limiting step, for loop, 53
link enhancement script, 39–40
links. See also URLs

adding to cycling banners, 106–107
changing single rollover from multiple, 96–98
enhancing with JavaScript, 39–41
mailto, 440, 467
previewing, 95, 353–356
redirecting users with, 37–38
triggering rollovers from, 93–98

Linux, 3

list properties (CSS), 506
lists, 288
literal values, 16
LiveScript, 5, 470
log() method, 54
longitude attribute, 438, 439, 440
loops

counters for, 50, 53
creating Bingo card with, 50–54
creating table’s contents with, 53–54
importance of, 50
specific types
do/while, 64–65, 78
for loops, 50, 52, 53–54

M
Mac OS X. See OS X
Macintosh

browsers, 373
and JScript, 471
mouse click codes, 203
toolkits, 373

Macworld Expo, 80
Mail app, 440
mailing webpages, 467
mailto links, 440, 467
map apps, 438, 440. See also Google Maps
mashups, 10
match() method, 185
math, binary vs. decimal, 74
Math object

and bookmarklet calculator, 463–464
methods/properties, 54, 481

max() method, 54
maxlength attribute, 134
@media queries, 430
menus

accessibility considerations, 296
accordion, 389–391, 398
changing dynamically, 140–141
horizontal vs. vertical, 293
jump, 138
outline-style, 285
pop-up, 140–141
pull-down, 289–296

Index 527

mouse click codes, 203
mouse event handlers, 201–208
onclick, 208
oncontextmenu, 201–203
ondblclick, 2070
onmousedown, 201–203
onmousemove, 204–206, 207
onmouseout, 207, 375
onmouseover, 207, 353
onmouseup, 204, 208

Mozilla, 58, 470, 508–509
Mozilla Hacks blog, 509
MSIE. See Internet Explorer
multi-level conditionals, 43–45, 276
multiline property, 185
My Yahoo, 10

N
name attribute, 116, 119, 134
navigation menus, 135
Navigator, Netscape

and ECMAScript, 472
and JavaScript, 1, 5, 42, 470
and LiveScript, 5, 470
and Year 2000 Problem, 277

nested if statements, 43
Netscape

Communicator (See Communicator)
and external JavaScript files, 28
JavaScript Guide, 443
Navigator (See Navigator)
and rollovers, 84, 90

node manipulation, 241, 242–243, 260
nodes, 241–260

adding, 244–245
defined, 13
deleting, 246–250
and the DOM, 13, 241–243
inserting, 251–253
replacing, 254–256
types of, 13, 243
vs. innerHTML, 245

non-breaking space (), 51
<noscript> tags, 32
Notepad, 20

select-and-go, 135–138
sliding, 286–288
sortable tabs in, 398–400

metaKey property, 432
meta characters, 176
methods

combining with objects/properties, 12–13
defined, 12
for DeviceMotionEvent object, 432
for DeviceOrientationEvent object, 432
distinguishing from properties, 12
for GestureEvent object, 432
for Math object, 54, 481
reference, 473–490
for RegExp object, 185
for strings, 185
for TouchEvent object, 432
use of parentheses in, 12
for XMLHttpRequest object, 333, 490

Microsoft
and ECMAScript, 472
Excel (See Excel)
Internet Explorer (See Internet Explorer)
and Java, 3
and JScript, 5, 42, 471
JScript Language site, 509
Windows (See Windows)
Word (See Word)

min() method, 54
mobile apps, launching, 440
mobile devices, 425–440

changing orientation, 426–430
debugging, 431
differentiating, 436–437
font considerations, 437
handling touch events, 433–435
help building websites for, 384
launching apps for, 440
locating, 438–440
popularity of, 425

mobile events, 432
modal dialogs, 392–393
modifiers, regular expression, 177
month/day pop-up menus, 140–141
MooTools, 373

528 Index

null values, 15, 35
number sign (#), 19
numbers

random, 54, 347
validating, 189–190

numeric values, 15

O
object detection, 57–58
object literals, 257–260

sample scripts, 258–259, 371, 375
similarity to CSS, 257
use of this with, 260
vs. standard procedural JavaScript, 257, 260

object table, 473–490
<object> tags, 4
object values, 15
object-based languages, 11
object-oriented languages, 11
objects

combining with properties/methods, 12–13
defined, 11
detecting, 57–58
displaying/hiding, 280
methods of, 12
moving, 281–282
naming, 11
properties of, 12
reference, 473–490

offline resources, 511
onabort events, 14, 199
onbeforeunload events, 198–199
onblur events, 14, 200, 210–211
onchange events, 14, 209, 211
onclick events, 14, 38, 208, 210
oncontextmenu events, 201–203
ondblclick events, 208
onDOMContentLoaded events, 200
onerror events, 14, 200
one-up calendars, 404–405
onfocus events, 14, 200, 212
onkeydown events, 213–215
onkeypress events, 215
onkeyup events, 215
online pastebins, 514

online resources, 508–510, 512–514
onload events, 14, 195–197, 333
onloadend events, 333
onloadstart events, 333
onmousedown events, 201–203
onmousemove events, 204–206, 207
onmouseout events, 14, 90, 207
onmouseover events, 14, 90, 207, 353
onmouseup events, 204, 208
onmove events, 199
onpagehide events, 138
onpageshow events, 138
onreadystatechange events, 333
onreset events, 209
onresize events, 199
onscroll events, 200
onselect events, 14, 209
onsubmit events, 14, 209
ontimeout events, 333
onunload events, 14, 136, 198
open() method, 128, 130, 333
Opera, 58, 512
operators, 15–16, 70, 171
<option> tags, 134
or (|) comparison, 16, 70, 74, 76, 177
orientationChange event, 432
orientation changes, 426–430
OS X

alert boxes, 32
and daylight saving time, 271
dictionary/thesaurus window, 453
and Java, 3
text editors, 20

outline-style menus, 285
overrideMimeType() method, 333

P
pageX property, 432
pageY property, 432
page properties (CSS), 496
paragraphs, 245
parameters, passing, 35, 55
parentheses. See () (parentheses)
parse() method, 269, 283
parseInt() method, 228, 240

Index 529

Prototype, 373
pseudo-classes (CSS), 496
pseudo-elements (CSS), 496
pull-down menus, 289–296
Python, 172

Q
question mark (?), 34, 175, 177
QuirksMode blog, 510
quotes. See " (quotes)

R
radio buttons, 156–158
random images, 111–114
random() method, 54, 112, 347
random numbers, 54, 127, 347
ready() method, 368
readyState property, 333, 334
redirection, 21, 37–38
RegExp object, 171, 185, 484
regular expressions, 171–192

alternate names for, 171
defined, 171
extracting strings with, 180–182
formatting strings with, 183–190
modifiers for, 177
purpose of, 171
replacing elements with, 191–192
sorting strings with, 186–187
special characters for, 177
validating email addresses with, 173–176
validating file names with, 178–179
validating strings with, 188–190
validating URLs with, 178–179

removeEventListener() method, 217
replace() method, 117, 185
replaceChild() method, 254
reserved words, 491–494
Resig, John, 384, 511
resizable dialogs, 393
resizeTo() method, 468
resizing windows, 468

passing information, 55–56
password-checking script, 142, 147–148
pastebins, 514
period (.), 12, 19, 177
Perl, 7, 172
phone numbers, formatting/validating, 188–190
phones. See also mobile devices

app for dialing, 440
differentiating between, 436–437
font considerations, 437
free simulators, 431
handling orientation changes, 426–430
locating, 438–440

Photoshop, 306, 459
PHP, 7, 172
plugins, jQuery, 384, 411, 413, 420–424
plugins.jquery.com, 384, 413
plus sign (+), 15, 53, 174, 177
PNG images, 105
pop-up killers, 127
pop-up menus, 140–141
pop-up windows, 127, 195, 198, 278
portrait orientation, 426, 427
postal codes, validating, 162–165
pow() method, 54
ppk on JavaScript, 511
preventDefault() method, 217
Pro JavaScript Techniques, 511
programming languages, 2, 3, 172
progressive enhancement, 42
prompt() method, 35
properties

combining with objects/methods, 12–13
defined, 12
for DeviceMotionEvent object, 432
for DeviceOrientationEvent object, 432
distinguishing from methods, 12
for GestureEvent object, 432
reference

CSS, 496–506
JavaScript, 473–490

for RegExp object, 185
touch, 432
for TouchEvent object, 432
for XMLHttpRequest object, 333, 490

530 Index

resources
books

CSS, 2, 430, 496
Dreamweaver, 138
HTML, 2, 430
JavaScript, 511
@media queries, 430

websites
Android SDK, 431
Bare Bones Software, 20
bit.ly, 465
bookmarklets.com, 443
caniuse.com, 496, 513
dailyjs.com, 510
Dojo, 373
ECMA International, 472
Firebug Debugger, 512
font-compatibility list, 437
Google Maps Mania, 10
is.gd, 465
java.com, 3
JavaScript Center, 508
javascriptworld.com, 2, 507
jQuery, 384
jQuery Mobile, 384
jQuery plugins, 413
JSBin, 514
JScript Language, 509
JSFiddle, 514
JSHint, 513
jsperf.com, 366
Modernizr, 373
MooTools, 373
Mozilla Hacks, 509
Prototype, 373
QuirksMode, 510
Resig, John (ejohn.org), 384
slidesjs.com, 422
StatCounter’s Global Statistics, 314
Surfin’ Safari, 509
tablesorter.com, 383
tinyURL.com, 465
toolkits, 373
URL-shortening services, 465
Venkman Debugger, 508–509

W3C validation tool, 17, 466
Web Standards Project, 42
Wikipedia, 373
Willison, Simon (simonwillison.net), 197
Xcode developer tools, 431
YUI, 373

response property, 333
responseText property, 333, 335
responseXML property, 333, 335
right-click codes, 203
rightContext property, 185
rollovers, 83–103

browser considerations, 84, 90
building three-state, 91–92, 191
checking whether image exists, 362–364
defined, 6, 81
preparing images for, 90

rotation property, 432
rotationRate property, 432
round() method, 54
RSS feeds, 340

S
Safari

and alert boxes, 32
blog, 509
and browser detection, 58
creating bookmarklets in, 443
debugger, 512
and debugging mobile devices, 431
development tools, 431
and DOM-2, 242
and ECMAScript, 472
and external JavaScript files, 28
and iPhone, 80
iPhone/iPad Simulator, 431
and JavaScript toolkits, 373
and onkeydown events, 214
and onload events, 136, 138
and page caching, 136, 138
performing word lookups in, 453
viewing document tree structure in, 13
Web Inspector, 431
window defaults, 130

Index 531

moving objects, 281
putting current date on webpage, 262–263

event handlers
checking for double clicks with ondblclick,

208
hiding code with onmousedown, 201–203
preventing wayward field entries with

onfocus, 212
setting multiple onload attributes, 194–197
triggering slide change with

addEventListener(), 216
triggering slide change with onkeydown, 215
using onblur to force field entry, 210–211
using onblur to trigger action when user

leaves field, 211
form handling

changing menus dynamically, 140–141
checking one field against another, 147–148
creating select-and-go menu, 135–138
identifying problem fields, 149–150
making fields required, 142–146
making sure user picks radio button,

156–158
setting field value automatically, 159–161
validating email addresses, 166–170,

173–176
validating multi-element form, 152–155
validating zip codes, 162–165

frames
creating content for iframes, 122–123
keeping pages out of frames, 117
loading iframes with JavaScript, 120–121
setting target for frames, 118–119

images
displaying as slideshow, 108–110
displaying random, 111–112
rollover, making multiple links change

single, 96–98
rollovers, building three-state, 91–92
rollovers, creating simple, 83–84

JavaScript applied
adding pull-down menus, 289–292
allowing user to switch between style

sheets, 315–324
generating bar graph, 306–314
using sliding menus, 286–288

sample scripts
Ajax

auto-completing fields, 356–361
checking whether file exists, 362–364
parsing server data, 339–345, 349–352
previewing links, 353–356
refreshing server data, 346–348
requesting/reading server data, 331–338,

349–352
bookmarklets

changing page’s styles, 448–450
converting kilometers to miles, 461–462
converting RGB values to hex, 459–460
creating in Chrome, 444
creating in Firefox, 442
creating in Internet Explorer, 445
creating in Safari, 443
displaying ISO Latin characters, 456–458
looking up words, 451–453
mailing webpages, 467
resetting page background, 447
resizing pages, 468
shortening URLs, 465
using JavaScript calculator, 463–464
validating pages, 466
viewing images, 454–455

cookies
counting cookies, 228–230
deleting cookies, 231–232
displaying “New to You” message, 235–240
handling multiple cookies, 233–234
reading cookies, 225
setting cookies, 221–224
showing cookies, 226–227

cycling banners
adding links, 106–107
creating, 104–105

dynamic pages
converting 24-hour to 12-hour time,

272–273
creating countdown, 274–277
customizing message for time of day, 265
displaying dates by time zone, 266–271
hiding/displaying layers, 279–280
identifying weekday vs. weekend, 264

532 Index

sample scripts (continued)
JavaScript basics

alerting users, 31–32
commenting scripts, 29–30
confirming user choice, 33–34
enclosing script in <script> and </script>

tags, 23–24
enhancing links, 39–40
handling errors, 46–48
prompting users, 35–36
redirecting users with link, 37–38
referencing external JavaScript files, 26–28
using conditionals, 33–34, 43–45

JavaScript language essentials
applying styles with JavaScript, 68–70
calling scripts multiple ways, 66–67
checking states, 71–74
detecting objects, 57–58
passing values to functions, 55–56
returning values from functions, 61–62
updating arrays, 62–63
using arrays, 59–60
using do/while loops, 64–65, 78
using for loops, 50–54
using string arrays, 77–80

jQuery
adding calendar to page, 404–408
adding jQuery to page, 367
adding sortable tabs, 398–400
adding user interaction/updates, 371–373
audio-player plugin, 423–424
auto-completing fields, 396–397
creating accordion menus, 389–391
creating sortable tables, 380–383
dragging/dropping elements, 414–416
highlighting new elements, 386–388
slideshow plugin, 420–422
striping tables, 376–379
updating page, 370
using check boxes as buttons, 401–403

mobile devices
changing orientation, 426–430
differentiating devices, 436–437
handling touch events, 433–435
locating device, 438–440

objects and the DOM
adding text nodes, 244–245
deleting text nodes, 246–250
inserting nodes, 251–253
replacing nodes, 254–256
using object literals, 258–260

regular expressions
capitalizing names, 183–184
extracting strings, 180–182
formatting strings, 183–184
formatting/sorting strings, 186–187
formatting/validating strings, 188–190
replacing page elements, 191–192
sorting names, 186–187
validating email addresses, 173–176
validating file names, 178–179
validating phone numbers, 188–190
validating URLs, 178–179

windows
loading different contents into, 131–132
opening new, 128–129

sans-serif fonts, 315, 318
scale property, 432
scope, variable, 36, 450
screenX property, 432
screenY property, 432
screen size, 468
script errors, 129
<script> tags, 2, 23, 24, 117
scripting, unobtrusive, 41, 42
scripting languages, 2, 5
scripts. See also sample scripts

allowing users to run, 66–67
anticipating user actions in, 14
calling functions in, 25
defined, 2
how web browsers handle, 2
internal vs. external, 26
putting comments in, 29–30
testing, 130
triggering when page loads, 14
using external, 26–28
where to put, 23
writing your first, 23

search() method, 185

Index 533

showing captions in, 297–300
triggering slide changes in, 215, 216

SlidesJS plugin, 420–422
sliding menus, 286–288
smartphones. See mobile devices
SMS app, 440
sortable tabs, 398–400
sorting tables, 380–383
source property, 185
 tags, 18
special characters, 174, 177, 456–458
split() method, 185, 222, 223
sqrt() method, 46–47, 54
square root calculator, 46–48
src attribute, 22, 26, 82, 116
srcElement property, 69
standards

ECMAScript, 472
web, 17, 373, 466

StatCounter’s Global Statistics, 314
state names, auto-completing, 356–361,

396–397
status property, 333
statusText property, 333
SteveNote Bingo, 80
stopPropagation() method, 217
string arrays, 77–80
string methods, 180, 185
strings, 180–190

comparing, 16
defined, 15
returning, from functions, 61
use of quotes with, 15, 59

striping tables, 376–379
style attribute, 70
style sheet switcher, 315–324
styles

applying, with JavaScript, 68–70
changing, with bookmarklet, 448–450

Styling Web Pages with CSS: Visual
QuickProject Guide, 496

submit buttons, 133, 139, 142, 212
substring() method, 237, 240
Sun Microsystems, 3
Surfin’ Safari blog, 509

search-and-replace feature, 50
Searles, Nathan, 422
security problems, Internet Explorer, 446
security settings, browser, 129
<select> tags, 134
select-and-go navigation, 135–138
selected attribute, 134
semantic chunks, breaking content into, 18
semicolon (;), 23–24, 441, 450
send() method, 333
serif fonts, 315, 318
server data

parsing, 339–345, 349–352
refreshing, 346–348
requesting/reading, 331–338, 349–352

server machines, writing files on, 7
server-side programs, 6, 241, 330
server-side scripts, 133, 139, 148
server-side technologies, 330, 361
setDate() method, 284
setFullYear() method, 284
setHours() method, 284
setMillseconds() method, 284
setMinutes() method, 284
setMonth() method, 284
setRequestHeader() method, 333
setSeconds() method, 284
setTime() method, 284
setTimeout() method, 197, 346
setUTCDate() method, 284
setUTCFullYear() method, 284
setUTCHours() method, 284
setUTCMillseconds() method, 284
setUTCMinutes() method, 284
setUTCMonth() method, 284
setUTCSeconds() method, 284
setYear() method, 284
shiftKey property, 432
simonwillison.net, 197
sin() method, 54
size attribute, 134
slash (/), 15, 173
slideshows

building wraparound, 108–110
plugin, 420–422

534 Index

switch/case statements, 43–45, 276
syntax, dot, 12–13, 194
syntax errors, 129

T
tabbed browsing settings, 129
table properties (CSS), 500
<table> tags, 49
tables

sorting, 380–383
striping, 376–379
viewing page images in, 454–455

tablesorter plugin, 383
tablets, 425, 431. See also mobile devices
tabs, sortable, 398–400
tabular data, 49, 376. See also tables
tagName, 87, 90
tags

basic, 22
form, 134
frame, 116
image, 82
table, 49

tan() method, 54
target attribute, 118–119
target property, 432
<td> tags, 49
terminology

DOM 2, 243
JavaScript, 42
node manipulation, 242–243

test() method, 185
testing scripts, 130
text editors, 20
text nodes, 13, 243, 244–250
text properties (CSS), 502–503
text property, 336
textContent property, 336
TextMate, 172
TextWrangler, 20
<th> tags, 49
ThemeRoller, 409–410
themes

creating custom, 409–410
jQuery UI’s built-in, 391, 394–395

this keyword, 41, 260
three-state rollovers, 91–92, 191
throw statements, 46, 47, 464
Thunderbird, 509
time

adding AM/PM to, 271, 273
converting 24-hour to 12-hour, 272–273
customizing messages for, 265
dealing with daylight saving time, 271
JavaScript’s inconsistent handling of, 263

timeout property, 333
time server, 271
time zone, displaying dates by, 266–271
tinyURL.com, 465
<title> tags, 22
toggle() method, 388
toolkits, JavaScript, 8, 365–366, 373
toGMTString() method, 284
toLocaleString() method, 284
toSource() method, 185
toString() method, 185, 284
toUTCString() method, 284
touchcancel event, 432
touchend event, 432
touchmove event, 432
touchstart event, 432
touch events, 433–435
Touch properties, 432
TouchEvent object, 432
<tr> tags, 49
tree structure, 13, 243
true/false values, 15, 57, 70
try statements, 46, 47, 463, 464
tutorials, jQuery, 384
Twitter, 465
two-digit year, 277, 405
two-up calendars, 406–408
type attribute, 24, 134

U
UI, jQuery. See jQuery UI
 tags, 288
units (CSS), 502
Universal Time (UT). See Greenwich Mean

Time

Index 535

var keyword, 35, 36
variables

assigning values to, 16
checking against multiple values, 43
comparing values of, 16
declaring, 35
defined, 15
defining scope of, 36, 450
naming, 15, 182, 494
use of equals sign with, 15

Venkman Debugger, 508–509
verifying email addresses, 170
Vista, 446
visual effects properties (CSS), 498
visual formatting properties (CSS), 505
visually-impaired users, 296
void() method, 447, 450

W
W3C

and CSS 3 properties, 495
deprecation of attributes by, 24
and DOM scripting, 42
and DOM-2, 242
and DOM-3, 243
and innerHTML property, 28
and node manipulation, 241, 242, 243
validation tool, 17, 466

web
browsers (See browsers)
dynamic nature of, 1, 325
sites (See websites)
standard layout language for, 17
standards, 17, 42, 373, 466

Web 2.0, 328, 342, 385
Web Inspector, Safari, 431
Web Standards Project, 42
web-based applications

and Ajax, 9, 10
and JavaScript, 6
and jQuery, 413

web-based email, 10
web-based slideshows, 108–110, 414–416
webkitCompassAccuracy property, 432
webkitCompassHeading property, 432

Unix, 3, 20
unobtrusive scripting, 41, 42
unordered lists, 288, 398
upload property, 333
URLs. See also links

shortening, 465
updates to this book’s, 507
validating, 178–179

user interface, jQuery. See jQuery UI
user interface properties (CSS), 497
users

alerting, 31–32
allowing control of scripts by, 66–67
confirming choices of, 33–34
prompting for response, 35–36
redirecting with links, 37–38

UT (Universal Time). See Greenwich Mean
Time

UTC() method, 284
UTC (Coordinated Universal Time).

See Greenwich Mean Time

V
validating

email addresses, 166–170, 173–176
file names, 178–179
forms, 151–155, 209
JavaScript, 512
phone numbers, 188–190
strings, 171, 188–190
URLs, 178–179
webpages, 17, 466
zip codes, 162–165

validator.w3.org, 17, 466
value attribute, 134
valueOf() method, 185, 284
values

adding, 15
assigning to variables, 16
binary, 70, 71
checking variables against multiple, 43
comparing, 16, 70
literal, 16
passing to functions, 55–56
types of, 15

536 Index

WebKit, 472, 509
weblogs. See blogs
websites

debugging, 431
for specific companies/topics (See resources)

while statements, 64–65
width attribute, 82
Wikipedia, 373
Willison, Simon, 197
window event handlers, 194–200
onabort, 199
onbeforeunload, 198–199
onblur, 200
onDOMContentLoaded, 200
onerror, 200
onfocus, 200
onload, 14, 195–197
onmove, 199
onresize, 199
onscroll, 200
onunload, 14, 136, 198

Windows
browsers, 373
and Java, 3
and JScript, 471
Phone, 437
text editor, 20
Vista (See Vista)
XP Service Pack 2, 446

windows, 125–132
adding parameters to, 130
alert, 31–32
closing, 7
elements of standard browser, 128
how JavaScript deals with, 115
importance of, 115
loading different contents into, 131–132
opening new, 128–129
pop-up, 195, 198
sharing functions between, 126–127

withCredentials property, 333
Word, Microsoft, 20, 172
WYSIWYG editors, 20, 41, 138

X
Xcode developer tools, 431
XML

and Ajax, 9, 10, 327
benefits of using, 417
file request example, 331–338
forcing call to return, 338
reading/storing, 340, 348
vs. JSON, 351

XMLHttpRequest object, 331–338
and Ajax, 10, 327
event handlers, 333, 490
and Internet Explorer, 332, 338
methods, 333, 490
properties, 333, 490
purpose of, 10, 327
retrieving/displaying server data with, 413

Y
Yahoo, 10, 373
Yahoo Mail, 10
Year 2000 Problem, 277
yellow fade, 385, 386
YouTube app, 440
YUI, 373

Z
zebra-striped tables, 376–379
z-index, 278
zip codes, 162–165
zooming in/out, on maps, 440

	Table of Contents
	Introduction
	Chapter 4 Working with Images
	Creating Rollovers
	Creating More Effective Rollovers
	Building Three-State Rollovers
	Triggering Rollovers from a Link
	Making Multiple Links Change a Single Rollover
	Working with Multiple Rollovers
	Creating Cycling Banners
	Adding Links to Cycling Banners
	Building Wraparound Slideshows
	Displaying a Random Image
	Cycling Images with a Random Start

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

