BEYOND IT SECURITY

@)tsec

Mltlgatlng Overflows using
Defense |n Depth

What can your compiler do for you?

Wno arn 17

© Javier Tallon — @javiertallon

© More than 12 years working in IT
Security

© Full-stack khaeker wannabe
© Common Criteria Expert

© Also PCI-PTS, FIPS 140-2, ISO
27K1, SOC2...

© Cyber Security Teacher at UGR
© CISSP Certified

© jtsec Beyond IT Security - @jtsecES
© Services

© Lightweight ITSEF (LINCE)

© Certification Consultancy

© Ethical hacking
© Created inJuly’17 ~ 12 Employees

© Based in Spain (Granada and
Madrid)

© careers@jtsec.es a

A
\@/

) jtsec]

Vulnerabilities By Year

2156

894 mzmﬁ??.

6610 6520

4935
1697 2451

56325736 5297 5191

I I 55I

7946

6484 6447

14714

16556

12174

1999 394
= 2000 1020
M 2001 1677
M 2002 2156
2003 1527
2004 2451
2005 4935
M 2006 6610
M 2007 6520
" 2008 5632
2009 5736
I 2010 4652
M 2011 4155
M 2012 5297
2013 5191
2014 7946
2015 6484
M 2016 6447
B 2017 14714
" 2018 16556
2019 12174

rrrrrrrrrrrrrrr

1 Is possible to program in a correct way?

1 Is possible to demonstrate that a program is
free of bugs?

@ jtsec]

@/

Code breakthrough delivers safer computing

September 25, 2009

(PhysOrg.com) - Computer researchers at UNSW and NICTA have achieved a breakthrough in software which
will deliver significant increases in security and reliability and has the potential to be a major commercialisation

success.
Professor Gernot Heiser, the John Lions Chair in Computer Science in the School of Computer Science and (7500 / 6) / 5 =
Engineering and a senior principal researcher with NICTA, said for the first time a team had been able to prove .

with mathematical rigour that an operating-system kernel - the code at the heart of any computer or 250 IlneS/ma n/yea r

microprocessor - was 100 per cent bug-free and therefore immune to crashes and failures.

The breakthrough has major implications for improving the reliability of critical systems such as medical
machinery, military systems and aircraft, where failure due to a software error could have disastrous results.

“A rule of thumb is that reasonably engineered software has about 10 bugs per thousand lines of code, with WlndOWS haS d bOUt 50
really high quality software you can get that down to maybe one or three bugs per thousand lines of code” m|”S IineS Of code
Professor Heiser said.

“That can mean there are a lot of bugs in a system. What we've shown is that it's possible to make the lowest
level, the most critical, and in a way the most dangerous part of the system provably fault free.”

“I think that's not an exaggeration to say that really opens up a completely new world with respect to building new
systems that are highly trustworthy, highly secure and safe.”

Verifying the kernel - known as the selL4 microkernel - involved mathematically proving the correctness of about
7,500 lines of computer code in an project taking an average of six people more than five years.

“The NICTA team has achieved a landmark result which will be a game changer for security-and-safety-critical
software,” Professor Heiser said.

“The verification provides conclusive evidence that bug-free software is possible, and in the future, nothing less
should be considered acceptable where critical assets are at stake.”

@ itsec |

Cost of {ixing software ougs

120
100
'
@
o 80
=
o
=60
Fa
0
il
240
=
220
0

Requirements

Design

Code
SDLC Phase

Test

Maintenance

(@]tsec]

Cost of {ixing software ougs

J What if it is a security bug?

J Reputation

(d Loss of sales

(J Damage to the client (responsibilities)
J Stock exchange market fall

Difference bhetween normal oug
ane security bug

d Users don't "have fun" looking for functional bugs

A complex bug (to exercise) causes problems only to the user who
finds it

d Programmers are committing less and less functional bugs

(d Emphasis is on what the app should do (mostly positive
requirements)

d Can be tested more easily

l @jtsec |

Buiffer Overilows

Vulnerabilities By Type
B Denial of Service 23603
B Execute Code 32718

" Overflow 18081
M :ss 15303

L] Directory Traversal 4130

Bypass Something 6375
(ain Information 10989

™ Gain Privilege 5006

32718

23603

18081
15303

gl Injection 7853
10969 7853 File Inclusion 2235
4130 6375 5006 5339 [] Memory Corruption 5339

. 2235 . 2521 166 CSRF 2521
Http Response Splitting 166

Buiffer Overilows

#include <string.h>
void foo (char *bar) {

char c[12];

strcpy(c, bar); [/ no bounds checking...
}

int main (int argc, char **argv) {
foo(argv[1]);

@ itsec |

Buiffer Overilows

Unallocated Stack Space

#include <string.h>

void foo (char *bar) {
char c[12]; Char c[12]
strcpy(c, bar); [/ no bounds checking...

}

int main (int argc, char **argv) {
foo(argv[1]);

Stack Growth

Char *bar

sassalppy AMowspy

}

Saved Frame pointer

Parent Routine's Stack

@ itsec |

Buiffer Overilows

Unallocated Stack Space

#include <string.h>
void foo (char *bar) {
char c[12];
strcpy(c, bar); [/ no bounds checking...

: Char c[12] i

int main (int argc, char **argv) {
foo(argv[1]);

Stack Growth
PRY

Char *bar E

;

Saved Frame pointer

Parent Routine's Stack

(@ jtsec]

Buiffer Overilows

Unallocated Stack Space

Address
0xB80C03508

-

#include <string.h>
void foo (char *bar) {

char c[12];

strcpy(c, bar); [/ no bounds checking...
}

int main (int argc, char **argv) {
foo(argv[1]);

Stack Growth

}

Little End
0x80C03!

—

Parent Routine's Stack

tsec]

Buiffer Overilows

Extreme risk

gets

High risk

L]

strcpy
strcat
sprintf
scanf
sscanf
fscanf
viscanf
vsscanf

streadd

[source:

strecpy

strtrns

realpath

syslog
getenv

getopt

getopt long

getpass

Moderate risk

Dangerous C system calls

getchar
fgetc
getc
read

bcopy

Low risk

« fgets

* memcpy

* snprintf
* strccpy
* strcadd
* strncpy
* strncat

* wvsnprintf

Building secure software, J. Viega & G. McGraw, 2002]

@itsec |

The approaches to cormputer security

O Security by correctness

d Security by isolation @)

 Security by obscurity

U Security by randomization s

3
o
D

i

S

-
o]0)]
c

‘n
@)
@)

<
o
>

=

O

Daifanca-

@itsec)

Miitlgations

d According to the SDL
(d Designed to stop the attacker
d If the countermeasure does not stop the
attacker, it is a vulnerable
countermeasure.

@ (d Designed to slow the attacker

o= Microsoft

@itsec |

Miitlganions

J Good effectiveness / effort balance

(J Can be located at...

@ d ... the compiler
d ... the operating system

... the hardware .

—

(@]tsec]

Compller mitigations for burier overflows

Visual
Studio

LLVM / CLANG

Saifer function calls

d Enable warnings:

d -Warray-bounds: Compile time out of bounds checks
d -Wformat=2 -Wformat-security: Format string warnings

@ itsec]

rrrrrrrrrrrrrrr

Saifer function calls @

(d -FORTIFY_SOURCE (buffer overflow detection).

d works by computing the number of bytes that are going
to be copied

1 provides buffer overflow checks for the following
functions (and wide character variants):

d memcpy, mempcpy, memmove, memset, strcpy,
stpcpy, strncpy, strcat, strncat, sprintf, vsprintf,
snprintf, vsnprintf, gets.

(argument consistency is checked

Saifer function calls

(d -D_FORTIFY_SOURCE=1 - checks that shouldn't change the

behavior of conforming programs are performed. Checks at
compile-time only.

(d -D_FORTIFY_SOURCE=2 - some more checking is added,
but some conforming programs might fail. Checks at
compile-time and runtime.

@itsec)

Saifer funciion calls m

O /WE4789

d Warns about buffer overrun when specific C run-time
(CRT) functions are used, parameters are passed, and
assignments are performed, such that the data sizes are
known at compile time. This warning is for situations
that might elude typical data-size mismatch detection.
d strcpy, memset, memcpy, wmemcpy

(@]tseC]

Saifer function calls

(d Replace with secure version of the functions

#define CRT SECURE_CPP_OVERLOAD STANDARD NAMES 1
#define CRT SECURE_CPP_OVERLOAD STANDARD NAMES_COUNT 1

(@jtsec]

Stack Canaries

d The compiler place a value before the return address when
a function is called and check that the value has not
changed when the function finalize

J Terminator Canaries
J Random Canaries
(J Random XOR Canaries

CANARY BIRDS WERE
TAKEN INTO THE EARLY
MINES IN CAGES IN ORDER
TO DETECT THE PRESENCE
OF THE ODORLESS AND
LETHAL GAS. CARBON
MONOXIDE

Stack Canaries

J

DOO00

Deprecated:
d StackGuard
d ProPolice (reorders variables)

-fstack-protector: Buffer size > 8B && functions that call alloc
-fstack-protector-explicit: stack_protect attrb.
-fstack-protector-all: Al © €5

-fstack-protector-strong: paranoid conditions (good performance)

Function calls alloca() If any of its local variable’s address is
taken, as part of the RHS of an
assignment

Function contains buffers larger than 8 If any of its local variable’s address is

bytes taken as part of a function argument

Orif it has an array, regardless of array
type or length

Or if it has a struct / union which contains
an array, regardless of array type or length

Or if function has registered local
variables

Stack Canaries

(d AddressSanitizer (en gcc desde 4.8)
d -fsanitize=address @

 UndefinedBehaviorSanitizer (UBSan)

-fsanitize=undefined All kind of undefined behaviours
-fsanitize=integer undefined or suspicious integer behavior
-fsanitize=nullability While violating nullability does not have
undefined behavior, it is often unintentional
-fsanitize=bounds Detects out-of-bounds access of arrays.
-fsanitize=bounds-strict Enables strict checking

J ThreadSanitizer
] -fsanitize=thread Detects data races @

OO0 000

Stack Canaries

1 Microsoft Visual C++ 2003

d /GS Stack-Based Buffer Overrun Detection
O Microsoft Visual C++ 2005 "m"“'"'GS'""':"""'_::'::"“ —
D BUfferS reordering With GS in Visual Studio 2008)

= parameter shadowing - 2y e Y

d Microsoft Visual C++ 2005 SP1 e
d #pragma strict_gs_check(on)
(d More aggressive heuristics

Arguments

@ itsec |

Stack Canaries m

d Microsoft Visual C++ 2010
d wider scope of protected functions
d optimize away the unneeded security cookies
[disable for specific functions with __declspec(safebuffers)
[choose different level of GS protections through /GS:n:
d /GS:1 VC++ 2005 and 2008
J /GS:2 widened scope (default)

d Microsoft Visual C++ 2011
(d Detects range violation

if({{unsigned int)} cch) »= MAX) {

buf[cch] = "\a'; — _ report_rangecheckfailure();
}
buf[cch] = "\a';

@ itsec |

Stack Canaries N

J /SAFESEH

1 /GS does not protect exception handler records

1 Instead of protection the stack (by putting a cookie before
the return address), modules compiled with this flag will
include a list of all known addresses that can be used as
exception handler functions.

1 If an exception occurs, the application will check if the
address in the SEH chain records belongs to the list with
"known" functions, if the address belongs to a module
that was compiled with SafeSEH. If that is not the case,
the application will be terminated without jumping to the
corrupted handler.

(@]tseC]

Stack Canaries (not exactly) m

d /RTC Runtime error checks @
d /RTCs: stack-frame runtime error checking
1 /RTCu: variable used before initialization

 /RTCc: value assigned to a smaller data type
d /RTC1 === /RTCsu

@itsec)

Byoassing Stack Canaries

1 Incorrect implementations

D
o®e
1 It can be a statistical problem

d Windows: SEH overwriting
d Protected by SafeSEH and so on...

@ itsec |

Non-execuiaole stack (DER)

d Code is code and data is SEPARA

data 7

d Hardware mechanism
widely deployed (every
computer since 2001)

e megeneratorn;

(@ jtsec]

Non-execuiaole stack (DER)

d Enabled by default in all modern compilers

-z,noexecstack, -z,noexecheap /NXCompat

@itsec |

Byoassing Non-axecutanle stack (DEPR)

(d Save the payload in the heap
(Return into libc attacks

d ROP

Retmd (18

=Nz PROIRZ MNing

iSLiK2 [{iasolma ZoT=AENT
ISi€ad @f c Ufiiint@ Clt L ELLeRS
oM ERAG . VEnes Yi
CULiing (8l NSCRYUCHIONS FrOM
&R H36mEn.S

ASLR

(d Address Space Layout Randomization

d The code is loaded in different memory regions each time
d Implemented by the operating system

(d To be of any use, you must also have DEP enabled

(d But code needs to be “position independant”

ASLR

d Compiled with
d -fPIE -pie for binaries

(] -fPIC for shared libraries.

@itsec)

ASLR Dq

d By default, Windows® will only juggle system components
around. If you want your image to be moved around by the
operating system (highly recommended), then you should link
with:

d /DYNAMICBASE (since VS 2005 SP1)
d /HIGHENTROPYVA (since VS 2012) uses ASLR with 64 bits
addresses

J It also randomizes the stack

@itsec |

Bypassing ASLR

It could be an statistical question (again)

d Maybe not all the libraries are randomly loaded

E‘hey cracked ASLR! Another Security
Layer Ridiculized?

Control Flow Intagrity

(J Restricts the control-flow of an application
to valid execution traces. CFl enforces this property by
monitoring the program at runtime and comparing its
state to a set of precomputed valid states. If an invalid
state is detected, an alert is raised, usually terminating the
application.

d CFI detects control-flow hijacking attacks by limiting the
targets of control-flow transfers. In a control-flow hijack
attack an attacker redirects the control-flow of the
application to locations that would not be reached in a
benign execution, e.g., to injected code or to code that is
reused in an alternate context.

@ itsec |

Control Flow Intagrity

O -fsanitize=cfi
d Optimized for performance

1 To allow the checks to be implemented efficiently, the
program must be structured such that certain object files are
compiled with CFl enabled, and are statically linked into the
program. This may preclude the use of shared libraries in
some cases.

d -fvisibility=hidden otherwise would disable CFI checks for
classes without visibility attributes

@itsec)

Control Flow lntegrity N

d Control Flow Guard: operates by creating a per-process
bitmap, where a set bit indicates that the address is a valid
destination. Before performing each indirect function call, the
application checks if the destination address is in the bitmap.
If the destination address is not in the bitmap, the program
terminates.

d /guard:cf linker flag (VS2015)

(Requires OS support: Windows 10 or 8.1 U3

Virtual Tavle Verification

d C++ polymorphism = vtables

d An attacker could exploit an use-after-free error to hijack
the vtable using heap spraying (80% attacks)

J Detects modifications in the vtable

@ itsec |

—0

Virtual Table Verification m

Celement:: vftable’

Extra entry added to vtable
ASLR makes this entry’s value unknown to the
attacker

J
J

VirtualMethod1

VirtualMethod2 J Check added:
d if vtable[vtguard_vte] != vtguard then
terminate the process

vtguard

rrrrrrrrrrrrrrr

Virtual Tavle Verification @

d gcec>4.9
d -fvtable-verify=std
d -fvtable-verify=preinit

(d Much more complex implementation by Google team
(d Not dependent on ASLR

A https://gcc.gnu.org/wiki/cauldron2012?action=AttachF
ile&do=get&target=cmtice.pdf

@ itsec |

Otner compller options

d Partial RELRO -WI,-z,relro:
d non-PLT GOT is read-only
d the ELF sections are reordered so that the ELF internal
data sections (.got, .dtors, etc.) precede the program's
data sections (.data and .bss)

d Full RELRO -z,now: tell the dynamic linker to resolve all
symbols when the program is started, or when the shared
library is linked to using dlopen. Improves the effectiveness
of RELRO
d the entire GOT is also (re)mapped as read-only

d -ftrapv: Generates traps for signed overflow (may interfere
with UBSAN)

@ itsec |

Otner compller options

d

U O

-mmitigate-rop: Attempt to compile code without
unintended return addresses, making ROP just a little
harder.

-z,nodlopen and -z,nodump: Might help in reducing an
attacker's ability to load and manipulate a shared object.
-fomit-frame-pointer: difficult reversing and debugging?
-fstack-check: Prevents the stack-pointer from moving into
another memory region without accessing the stack guard-
page.

-Wall -Wextra: enables many warnings

Otner cormoiler optlons

d --analyze: performs various analysis of LLVM assembly
code or bytecode and prints the results on standard
output

Otner compller options

(d /INTEGRITYCHECK places a flag in the binary that instructs
the loader to verify the module's signature at load time.
JHOTPATCH Enables binary hot patching

/SDL enables a superset of the baseline security checks

d enables some warnings as errors:

d enables the strict mode of /GS run-time buffer overrun detection,

d performs runtime limited pointer sanitization

O automatically initializes all class members to zero on object
instantiation

(d /ANALYZE Enterprise static code analysis (freely available

with Windows SDK for Windows Server 2008 and .NET

Framework 3.5).
See https://randomascii.wordpress.com/2011/10/15/try-analyze-for-free/

U O

Conclusions

1 Compilers provide built-in defenses to mitigate overflows
d Techniques are more powerful when used together

d Attackers always develop techniques to bypass the new
countermeasures

d Stay updated!

@itsec)

Backup slices

(d Beware of optimization unstable code!

void getPassword(void) {
char pwd[64];
if (GetPassword{pwd, sizeof(pwd))) {
/* Checking of password, secure operations, etc. */

}
memset(pwd, @, sizeof(pwd));

}

(@]tsec]

Backup slices

(d Beware of optimization unstable code!

char *buf = ...;
char *buf_end = ...;
unsigned int len = ...;
if (buf + len >= buf_end)
return; /% len too large */
if (buf + len < buf)
return; /* overflow, buf+len wrapped around */
/* write to buf[@®..len-1] */

Figure 1: A pointer overflow check found in several code bases.
The code becomes vulnerable as gee optimizes away the second if
statement [13].

rrrrrrrrrrrrrrr

Contact data

jtsec: Beyond IT Security
Avenida de la Constitucion 20, Of. 208
CP 18012 Granada — Spain

hello@jtsec.es

@jtsecES

www.jtsec.es

mailto:hello@jtsec.es

