

Javier Tallón – @javiertallon

More than 12 years working in IT
Security

Full-stack hacker wannabe

Common Criteria Expert

Also PCI-PTS, FIPS 140-2, ISO
27K1, SOC2…

Cyber Security Teacher at UGR

CISSP Certified

jtsec Beyond IT Security - @jtsecES

Services

Lightweight ITSEF (LINCE)

Certification Consultancy

Ethical hacking

Created in July’17 ~ 12 Employees

Based in Spain (Granada and
Madrid)

careers@jtsec.es

❑ Is possible to program in a correct way?

❑ Is possible to demonstrate that a program is
free of bugs?

(7500 / 6) / 5 =
250 lines/man/year

Windows has about 50
mills lines of code

❑ What if it is a security bug?

❑ Reputation
❑ Loss of sales
❑ Damage to the client (responsibilities)
❑ Stock exchange market fall

❑ Users don't "have fun" looking for functional bugs

❑ A complex bug (to exercise) causes problems only to the user who
finds it

❑ Programmers are committing less and less functional bugs

❑ Emphasis is on what the app should do (mostly positive
requirements)

❑ Can be tested more easily

❑ Security by correctness

❑ Security by isolation

❑ Security by obscurity

❑ Security by randomization

❑ Why choosing?

❑ According to the SDL
❑ Designed to stop the attacker
❑ If the countermeasure does not stop the

attacker, it is a vulnerable
countermeasure.

❑ Designed to slow the attacker

❑ Good effectiveness / effort balance

❑ Can be located at…
❑ … the compiler
❑ … the operating system
❑ … the hardware

LLVM / CLANG

❑ Enable warnings:

❑ -Warray-bounds: Compile time out of bounds checks
❑ -Wformat=2 -Wformat-security: Format string warnings

❑ -FORTIFY_SOURCE (buffer overflow detection).
❑ works by computing the number of bytes that are going

to be copied
❑ provides buffer overflow checks for the following

functions (and wide character variants):
❑ memcpy, mempcpy, memmove, memset, strcpy,

stpcpy, strncpy, strcat, strncat, sprintf, vsprintf,
snprintf, vsnprintf, gets.

❑ argument consistency is checked

❑ -D_FORTIFY_SOURCE=1→ checks that shouldn't change the
behavior of conforming programs are performed. Checks at
compile-time only.

❑ -D_FORTIFY_SOURCE=2→ some more checking is added,
but some conforming programs might fail. Checks at
compile-time and runtime.

❑ /WE4789

❑ Warns about buffer overrun when specific C run-time
(CRT) functions are used, parameters are passed, and
assignments are performed, such that the data sizes are
known at compile time. This warning is for situations
that might elude typical data-size mismatch detection.
❑ strcpy, memset, memcpy, wmemcpy

❑ Replace with secure version of the functions

#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1
#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT 1

❑ The compiler place a value before the return address when
a function is called and check that the value has not
changed when the function finalize

❑ Terminator Canaries
❑ Random Canaries
❑ Random XOR Canaries

❑ Deprecated:
❑ StackGuard
❑ ProPolice (reorders variables)

❑ -fstack-protector: Buffer size > 8B && functions that call alloc

❑ -fstack-protector-explicit: stack_protect attrb.

❑ -fstack-protector-all: All ☺

❑ -fstack-protector-strong: paranoid conditions (good performance)

❑ AddressSanitizer (en gcc desde 4.8)
❑ -fsanitize=address

❑ UndefinedBehaviorSanitizer (UBSan)
❑ -fsanitize=undefined All kind of undefined behaviours
❑ -fsanitize=integer undefined or suspicious integer behavior
❑ -fsanitize=nullability While violating nullability does not have

undefined behavior, it is often unintentional
❑ -fsanitize=bounds Detects out-of-bounds access of arrays.
❑ -fsanitize=bounds-strict Enables strict checking

❑ ThreadSanitizer
❑ -fsanitize=thread Detects data races

❑ Microsoft Visual C++ 2003
❑ /GS Stack-Based Buffer Overrun Detection

❑ Microsoft Visual C++ 2005
❑ Buffers reordering
❑ Parameter Shadowing

❑ Microsoft Visual C++ 2005 SP1
❑ #pragma strict_gs_check(on)
❑ More aggressive heuristics

❑ Microsoft Visual C++ 2010
❑ wider scope of protected functions
❑ optimize away the unneeded security cookies
❑ disable for specific functions with __declspec(safebuffers)
❑ choose different level of GS protections through /GS:n:
❑ /GS:1 VC++ 2005 and 2008
❑ /GS:2 widened scope (default)

❑ Microsoft Visual C++ 2011
❑ Detects range violation

❑ /SAFESEH
❑ /GS does not protect exception handler records
❑ Instead of protection the stack (by putting a cookie before

the return address), modules compiled with this flag will
include a list of all known addresses that can be used as
exception handler functions.

❑ If an exception occurs, the application will check if the
address in the SEH chain records belongs to the list with
"known" functions, if the address belongs to a module
that was compiled with SafeSEH. If that is not the case,
the application will be terminated without jumping to the
corrupted handler.

❑ /RTC Runtime error checks
❑ /RTCs: stack-frame runtime error checking
❑ /RTCu: variable used before initialization
❑ /RTCc: value assigned to a smaller data type
❑ /RTC1 === /RTCsu

❑ Incorrect implementations

❑ It can be a statistical problem

❑ Windows: SEH overwriting
❑ Protected by SafeSEH and so on…

❑ Code is code and data is
data

❑ Hardware mechanism
widely deployed (every
computer since 2001)

❑ Enabled by default in all modern compilers

-z,noexecstack, -z,noexecheap /NXCompat

❑ Save the payload in the heap
❑ Return into libc attacks
❑ ROP

❑ Address Space Layout Randomization
❑ The code is loaded in different memory regions each time
❑ Implemented by the operating system
❑ To be of any use, you must also have DEP enabled

❑ But code needs to be “position independant”

❑ Compiled with

❑ -fPIE -pie for binaries

❑ -fPIC for shared libraries.

❑ By default, Windows® will only juggle system components
around. If you want your image to be moved around by the
operating system (highly recommended), then you should link
with:
❑ /DYNAMICBASE (since VS 2005 SP1)
❑ /HIGHENTROPYVA (since VS 2012) uses ASLR with 64 bits

addresses

❑ It also randomizes the stack

❑ It could be an statistical question (again)

❑ Maybe not all the libraries are randomly loaded

❑ Restricts the control-flow of an application
to valid execution traces. CFI enforces this property by
monitoring the program at runtime and comparing its
state to a set of precomputed valid states. If an invalid
state is detected, an alert is raised, usually terminating the
application.

❑ CFI detects control-flow hijacking attacks by limiting the
targets of control-flow transfers. In a control-flow hijack
attack an attacker redirects the control-flow of the
application to locations that would not be reached in a
benign execution, e.g., to injected code or to code that is
reused in an alternate context.

❑ -fsanitize=cfi

❑ Optimized for performance

❑ To allow the checks to be implemented efficiently, the
program must be structured such that certain object files are
compiled with CFI enabled, and are statically linked into the
program. This may preclude the use of shared libraries in
some cases.

❑ -fvisibility=hidden otherwise would disable CFI checks for
classes without visibility attributes

❑ Control Flow Guard: operates by creating a per-process
bitmap, where a set bit indicates that the address is a valid
destination. Before performing each indirect function call, the
application checks if the destination address is in the bitmap.
If the destination address is not in the bitmap, the program
terminates.

❑ /guard:cf linker flag (VS2015)

❑ Requires OS support: Windows 10 or 8.1 U3

❑ C++ polymorphism → vtables

❑ An attacker could exploit an use-after-free error to hijack
the vtable using heap spraying (80% attacks)

❑ Detects modifications in the vtable

❑ Extra entry added to vtable
❑ ASLR makes this entry’s value unknown to the

attacker

❑ Check added:
❑ if vtable[vtguard_vte] != vtguard then

terminate the process

Celement::`vftable´

VirtualMethod1

VirtualMethod2

…

vtguard

❑ gcc > 4.9
❑ -fvtable-verify=std
❑ -fvtable-verify=preinit

❑ Much more complex implementation by Google team
❑ Not dependent on ASLR

❑ https://gcc.gnu.org/wiki/cauldron2012?action=AttachF
ile&do=get&target=cmtice.pdf

❑ Partial RELRO -Wl,-z,relro:
❑ non-PLT GOT is read-only
❑ the ELF sections are reordered so that the ELF internal

data sections (.got, .dtors, etc.) precede the program's
data sections (.data and .bss)

❑ Full RELRO -z,now: tell the dynamic linker to resolve all
symbols when the program is started, or when the shared
library is linked to using dlopen. Improves the effectiveness
of RELRO
❑ the entire GOT is also (re)mapped as read-only

❑ -ftrapv: Generates traps for signed overflow (may interfere
with UBSAN)

❑ -mmitigate-rop: Attempt to compile code without
unintended return addresses, making ROP just a little
harder.

❑ -z,nodlopen and -z,nodump: Might help in reducing an
attacker's ability to load and manipulate a shared object.

❑ -fomit-frame-pointer: difficult reversing and debugging?
❑ -fstack-check: Prevents the stack-pointer from moving into

another memory region without accessing the stack guard-
page.

❑ -Wall -Wextra: enables many warnings

❑ --analyze: performs various analysis of LLVM assembly
code or bytecode and prints the results on standard
output

❑ /INTEGRITYCHECK places a flag in the binary that instructs
the loader to verify the module's signature at load time.

❑ /HOTPATCH Enables binary hot patching
❑ /SDL enables a superset of the baseline security checks

❑ enables some warnings as errors:
❑ enables the strict mode of /GS run-time buffer overrun detection,
❑ performs runtime limited pointer sanitization
❑ automatically initializes all class members to zero on object

instantiation

❑ /ANALYZE Enterprise static code analysis (freely available
with Windows SDK for Windows Server 2008 and .NET
Framework 3.5).
See https://randomascii.wordpress.com/2011/10/15/try-analyze-for-free/

❑ Compilers provide built-in defenses to mitigate overflows

❑ Techniques are more powerful when used together

❑ Attackers always develop techniques to bypass the new
countermeasures

❑ Stay updated!

❑ Beware of optimization unstable code!

❑ Beware of optimization unstable code!

jtsec: Beyond IT Security

Avenida de la Constitución 20, Of. 208

CP 18012 Granada – Spain

hello@jtsec.es

@jtsecES

www.jtsec.es

mailto:hello@jtsec.es

