JEE(MAIN) - 2015 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 04 ${ }^{\text {th }}$ APRIL, 2015)
 PART A - PHYSICS

1. Distance of the centre of mass of a solid uniform cone from its vertex is z_{0}. If the radius of its base is R and its height is h then z_{0} is equal to :-
(1) $\frac{5 h}{8}$
(2) $\frac{3 h^{2}}{8 R}$
(3) $\frac{h^{2}}{4 R}$
(4) $\frac{3 h}{4}$

Ans. (4)

Sol.

for solid cone c.m. is $\frac{h}{4}$ from base
so $\mathrm{z}_{0}=\mathrm{h}-\frac{\mathrm{h}}{4}=\frac{3 \mathrm{~h}}{4}$
2. A red LED emits light at 0.1 watt uniformly around it. The amplitude of the electric field of the light at a distance of 1 m from the diode is:-
(1) $5.48 \mathrm{~V} / \mathrm{m}$
(2) $7.75 \mathrm{~V} / \mathrm{m}$
(3) $1.73 \mathrm{~V} / \mathrm{m}$
(4) $2.45 \mathrm{~V} / \mathrm{m}$

Ans. (4)
Sol. $\quad I_{a v}=\frac{1}{2} \quad \varepsilon_{0} \mathrm{E}^{2} \mathrm{C}=\frac{\mathrm{P}}{4 \pi \mathrm{r}^{2}}$
$\mathrm{E}=\sqrt{\frac{2 \mathrm{P}}{4 \pi \mathrm{r}^{2} \varepsilon_{0} \mathrm{c}}}$
On putting value we get

$$
=2.45 \mathrm{v} / \mathrm{m}
$$

3. A pendulum made of a uniform wire of cross sectional area A has time period T. When an additional mass M is added to its bob, the time period changes to T_{M}. If the Young's modulus of the material of the wire is Y then $\frac{1}{\mathrm{Y}}$ is equal to :- ($\mathrm{g}=$ gravitational acceleration)
(1) $\left[1-\left(\frac{T_{M}}{T}\right)^{2}\right] \frac{\mathrm{A}}{\mathrm{Mg}}$
(2) $\left[1-\left(\frac{T}{T_{M}}\right)^{2}\right] \frac{\mathrm{A}}{\mathrm{Mg}}$
(3) $\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right] \frac{\mathrm{A}}{\mathrm{Mg}}$
(4) $\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right] \frac{M g}{\mathrm{~A}}$

Ans. (3)
Sol. $T=2 \pi \sqrt{\frac{L}{g}}$
$\mathrm{T}_{\mathrm{M}}=2 \pi \sqrt{\frac{\mathrm{~L}+\Delta \mathrm{L}}{\mathrm{g}}}$
$Y=\frac{F / \mathrm{A}}{\Delta \mathrm{L} / \mathrm{L}}$
$\Delta \mathrm{L}=\frac{\mathrm{FL}}{\mathrm{AY}}$
Putting (3) in (2)
solving the equation we get the value of $\frac{1}{Y}$ as

$$
\left[\left(\frac{\mathrm{T}_{\mathrm{M}}}{\mathrm{~T}}\right)^{2}-1\right] \frac{\mathrm{A}}{\mathrm{mg}}
$$

JEE (Main + Advanced) Leader Course (Target-2016) for XII Passed / Appeared students Start on 15th April 2015 (English / Hindi Medium) and JEE (Main) Leader Course (Target-2016) for XII Passed / Appeared students Start on 15th April 2015 (English / Hindi Medium) at Kota Centre only.
4. For a simple pendulum, a graph is plotted between its kinetic energy (KE) and potential energy (PE) against its displacement d. Which one of the following represents these correctly ? (graphs are schematic and not drawn to scale)
(1)

(2)

(3)

(4)

Ans. (4)
Sol. $\mathrm{KE}=\frac{1}{2} \mathrm{~m} \omega^{2}\left[\mathrm{~A}^{2}-\mathrm{d}^{2}\right]$, downward parabola $P E=\frac{1}{2} m \omega^{2} \mathrm{~d}^{2}, \quad$ upward parabola.

KE

PE

5. A train is moving on a straight track with speed $20 \mathrm{~ms}^{-1}$. It is blowing its whistle at the frequency of 1000 Hz . The percentage change in the frequency heard by a person standing near the track as the train passes him is (speed of sound $=320 \mathrm{~ms}^{-1}$) close to :-
(1) 18%
(2) 24%
(3) 6%
(4) 12%

Ans. (4)
Sol. $\quad f^{\prime}=f\left(\frac{v}{v-v_{S}}\right)$
$f^{\prime \prime}=f\left(\frac{v}{v+v_{S}}\right)$
$\frac{f^{\prime \prime}}{f^{\prime}}=\frac{v-v_{S}}{v+v_{S}}$
$\frac{f^{\prime \prime}-f^{\prime}}{f^{\prime}} \times 100=\frac{v-v_{S}-v-v_{S}}{v+v_{S}} \times 10$
$=-\frac{2 v_{S}}{v+v_{S}}$
$=-\frac{2}{1+\frac{\mathrm{v}}{\mathrm{v}_{\mathrm{S}}}} \times 100$
$\simeq 12 \%$
6. When 5 V potential difference is applied across a wire of length 0.1 m , the drift speed of electrons is $2.5 \times 10^{-4} \mathrm{~ms}^{-1}$. If the electron density in the wire is $8 \times 10^{28} \mathrm{~m}^{-3}$, the resistivity of the material is close to :-
(1) $1.6 \times 10^{-6} \Omega \mathrm{~m}$
(2) $1.6 \times 10^{-5} \Omega \mathrm{~m}$
(3) $1.6 \times 10^{-8} \Omega \mathrm{~m}$
(4) $1.6 \times 10^{-7} \Omega \mathrm{~m}$

Ans. (2)
Sol. $\quad \mathrm{V}=\mathrm{iR}=\left(\operatorname{neAV}_{\mathrm{d}}\right)\left(\frac{\rho \ell}{\mathrm{A}}\right)$

$$
\mathrm{V}=\mathrm{neV}_{\mathrm{d}} \ell
$$

$\rho=\frac{V}{n e V_{d} \ell}$
On putting values are got the answer $=1.6 \times 10^{-5} \Omega \mathrm{~m}$

[^0]7.

Two long current carrying thin wires, both with current I, are held by the insulating threads of length L and are in equilibrium as shown in the figure, with threads making an angle ' θ ' with the vertical. If wires have mass λ per unit length then the value of I is :-
($\mathrm{g}=$ gravitational acceleration)
(1) $2 \sqrt{\frac{\pi g L}{\mu_{0}} \tan \theta}$
(2) $\sqrt{\frac{\pi \lambda g L}{\mu_{0}} \tan \theta}$
(3) $\sin \theta \sqrt{\frac{\pi \lambda g L}{\mu_{0} \cos \theta}}$
(4) $2 \sin \theta \sqrt{\frac{\pi \lambda \mathrm{gL}}{\mu_{0} \cos \theta}}$

Ans. (4)

$B=\frac{\mu_{0} I}{2 \pi r}=\frac{\mu_{0} I}{2 \pi(2 \ell \sin \theta)}$
$\tan \theta=\frac{f_{B}}{\lambda g}$ where f_{B} is force per unit length $(B i)$
$\lambda g \tan \theta=\frac{\mu_{0} \mathrm{I}}{2 \pi(2 \ell \sin \theta)} \times I$
on solving
$I=2 \sin \theta \sqrt{\frac{\pi \lambda g \ell}{\mu_{0} \cos \theta}}$
8.

In the circuit shown, the current in the 1Ω resistor is :-
(1) 0.13 A , from Q to P
(2) 0.13 A , from P to Q
(3) 1.3 A , from P to Q
(4) 0 A

Ans. (1)
Sol.

$\mathrm{E}=\frac{\frac{6}{3}+\frac{0}{1}-\frac{9}{5}}{\frac{1}{3}+\frac{1}{1}+\frac{1}{5}}=\frac{2-\frac{9}{5}}{\frac{5+15+3}{15}}=\frac{3}{23}$
$i=\frac{E}{R}=\frac{3}{23}=0.13$
from + ve to $-v e$
Q to P
9. Assuming human pupil to have a radius of 0.25 cm and a comfortable viewing distance of 25 cm , the minimum separation between two objects that human eye can resolve at 500 nm wavelength is :-
(1) $100 \mu \mathrm{~m}$
(2) $300 \mu \mathrm{~m}$
(3) $1 \mu \mathrm{~m}$
(4) $30 \mu \mathrm{~m}$

Ans. (4)
Sol. $\frac{\mathrm{d}_{0}}{\mathrm{~d}_{1}}=\theta=\frac{1.22 \lambda}{\mathrm{~d}}$
$\mathrm{d}_{0}=\frac{1.22 \times 500 \times 10^{-9}}{0.5 \times 10^{-2}} \times 25 \times 10^{-2}$
$\mathrm{d}_{0}=1.22 \times 25 \times 10^{-6}$
$\mathrm{d}_{0} \simeq 30 \mu \mathrm{~m}$
10. An inductor $(\mathrm{L}=0.03 \mathrm{H})$ and a resistor $(\mathrm{R}=0.15 \mathrm{k} \Omega)$ are connected in series to a battery of 15 V EMF in a circuit shown below. The key K_{1} has been kept closed for a long time. Then at $t=0, K_{1}$ is opened and key K_{2} is closed simultaneously. At $\mathrm{t}=1 \mathrm{~ms}$, the current in the circuit will be $\left(\mathrm{e}^{5} \cong 150\right)$:-

(1) 6.7 mA
(2) 0.67 mA
(3) 100 mA
(4) 67 mA

Ans. (2)
Decay of current

$$
\begin{aligned}
& I=I_{0} e^{-\frac{\mathrm{TR}}{\mathrm{~L}}} \\
& =\frac{15}{150} \mathrm{e}^{-\frac{-10^{-3} \times 150}{0.03}} \\
& =\frac{1}{10} \mathrm{e}^{-5} \\
& =\frac{1}{1500} \\
& =6.66 \times 10^{-4} \\
& =0.666 \times 10^{-3} \\
& =0.67 \mathrm{~mA}
\end{aligned}
$$

11. An LCR circuit is equivalent to a damped pendulum. In an LCR circuit the capacitor is charged to Q_{0} and then connected to the L and R as shown below :-

If a student plots graphs of the square of maximum charge $\left(\mathrm{Q}_{\mathrm{Max}}^{2}\right)$ on the capacitor with time (t) for two different values L_{1} and L_{2} $\left(L_{1}>L_{2}\right)$ of L then which of the following represents this graph correctly ? (plots are schematic and not drawn to scale)
(1)

(2)

(3)

(4)

Ans. (3)

Sol. As damping is happening its amplitude would vary as

The oscillations decay exponentially and will be proportional to $\mathrm{e}^{-\gamma \mathrm{t}}$ where γ depends inversely on L.
So as inductance increases decay becomes slower
\therefore for

12. In the given circuit, charge Q_{2} on the $2 \mu \mathrm{~F}$ capacitor changes as C is varied from $1 \mu \mathrm{~F}$ to $3 \mu \mathrm{~F} . \mathrm{Q}_{2}$ as a function of ' C ' is given properly by: (figures are drawn schematically and are not to scale) :-

(2)

(3)

(4)

Charge

Ans. (4)
Sol.

$\mathrm{Q}_{2}=\frac{2 \mathrm{CE}}{(\mathrm{C}+3)} \quad=\frac{3 \mathrm{CE}}{(\mathrm{C}+3)}$
$=2 \mathrm{E}\left[1-\frac{3}{\mathrm{C}+3}\right]$
$\mathrm{Q}_{2 / \text { when } \mathrm{C}=1 \mu \mathrm{~F}}=2 \mathrm{E}\left[\frac{1}{4}\right]=\frac{\mathrm{E}}{2}$
$\mathrm{Q}_{2 / \text { when } \mathrm{C}=3 \mu \mathrm{~F}}=2 \mathrm{E}\left[\frac{1}{2}\right]=\mathrm{E}$
$\frac{\mathrm{dQ}}{\mathrm{dC}}=-\frac{2 \mathrm{E} \cdot 3}{(\mathrm{C}+3)}(-1)=\frac{6 \mathrm{E}}{(\mathrm{C}+3)^{2}}>0$
$\frac{\mathrm{d}^{2} \theta}{\mathrm{dC}^{2}}=\frac{6 \mathrm{E}(-2)}{(\mathrm{C}+3)^{3}}=-\frac{12 \mathrm{E}}{(\mathrm{C}+3)^{2}}<0$
13. From a solid sphere of mass M and radius R a cube of maximum possible volume is cut. Moment of inertia of cube about an axis passing through its centre and perpendicular to one of its faces is:-
(1) $\frac{4 \mathrm{MR}^{2}}{9 \sqrt{3} \pi}$
(2) $\frac{4 \mathrm{MR}^{2}}{3 \sqrt{3} \pi}$
(3) $\frac{\mathrm{MR}^{2}}{32 \sqrt{2} \pi}$
(4) $\frac{\mathrm{MR}^{2}}{16 \sqrt{2} \pi}$

Ans. (1)
Sol.

Let mass and side of cube be M^{\prime} and $a \sqrt{3} a=2 R$
$M^{\prime}=\frac{M}{\frac{4}{3} 2 R^{3}} a^{3}$
Moment of Inertia of cube $=\frac{M^{\prime} a^{2}}{6}$

$$
=\left(\frac{\mathrm{M}}{\frac{4}{3} 2 \mathrm{R}^{3}} \mathrm{a}^{3}\right) \frac{\mathrm{a}^{2}}{6}=\frac{4 \mathrm{MR}^{2}}{4 \sqrt{3} \pi}
$$

14. The period of oscillation of a simple pendulum is $T=2 \pi \sqrt{\frac{L}{g}}$. Measured value of L is 20.0 cm known to 1 mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1 s resolution. The accuracy in the determination of g is :
(1) 1%
(2) 5%
(3) 2%
(4) 3%

Ans. (4)
Sol. $\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}$
$\mathrm{g}=\frac{4 \pi^{2} \ell}{\mathrm{~T}^{2}}$

$$
\begin{aligned}
& \frac{\Delta \mathrm{g}}{\mathrm{~g}}=\frac{\Delta \ell}{\ell}+2 \frac{\Delta \mathrm{~T}}{\mathrm{~T}} \\
& \frac{\Delta \mathrm{~g}}{\mathrm{~g}}=\frac{1 \times 10^{-3}}{20 \times 10^{-2}}+2 \times \frac{1}{100 \times \frac{90}{100}} \\
& \therefore \quad \frac{\Delta \mathrm{~g}}{\mathrm{~g}} \times 100=2.722 \% \approx 3 \%
\end{aligned}
$$

15. On a hot summer night, the refractive index of air is smallest near the ground and increases with height from the ground. When a light beam is directed horizontally, the Huygens' principle leads us to conclude that as it travels, the light beam :
(1) bends downwards
(2) bends upwards
(3) becomes narrower
(4) goes horizontally without any deflection

Ans. (2)
Sol.

$\mu_{2}>\mu_{1}$
\therefore light bends towards normal
\therefore light beam bends upwards (as $\mu \uparrow$ with height)
16. A single of 5 kHz frequency is amplitude modulated on a carrier wave of frequency 2 MHz . The frequencies of the resultant signal is/are -
(1) $2005 \mathrm{kHz}, 2000 \mathrm{kHz}$ and 1995 kHz
(2) 2000 kHz and 1995 kHz
(3) 2 MHz only
(4) 2005 kHz and 1995 kHz

Ans. (1)
Sol. Frequency present after modulation

$$
\mathrm{f}_{\mathrm{c}}, \mathrm{f}_{\mathrm{c}} \pm \mathrm{f}_{\mathrm{s}}
$$

$\Rightarrow 2000 \mathrm{KHz}, 2005 \mathrm{KHz}$ and 1995 KHz
17. A solid body of constant heat capacity $1 \mathrm{~J}^{\circ} / \mathrm{C}$
is being heated by keeping it in contact with reservoirs in two ways -
(i) Sequentially keeping in contact with 2 reservoirs such that each reservoir supplies same amount of heat.
(ii) Sequentially keeping in contact with 8 reservoirs such that each reservoir supplies same amount of heat.
In both the cases body is brought from initial temperature $100^{\circ} \mathrm{C}$ to final temperature $200^{\circ} \mathrm{C}$. Entropy change of the body in the two cases respectively is -
(1) $\ln 2,2 \ln 2$
(2) $2 \ln 2,8 \ln 2$
(3) $\ln 2,4 \ln 2$
(4) $\ln 2, \ln 2$

Ans. (4)
Sol. $\Delta \mathrm{S}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{nc}\left(\frac{\mathrm{dT}}{\mathrm{T}}\right)$
$\Delta \mathrm{S}_{1}=\int_{100}^{200} 1\left(\frac{\mathrm{dT}}{\mathrm{T}}\right)=\ell \mathrm{n} 2$
$\Delta \mathrm{S}_{2}=\int_{100}^{200} 1\left(\frac{\mathrm{dT}}{\mathrm{T}}\right)=\ln 2$
18. Consider a spherical shell of radius R at temperature T . The black body radiation inside it can be considered as an ideal gas of photons with internal energy per unit volume $\mathrm{u}=\frac{\mathrm{U}}{\mathrm{V}} \propto \mathrm{T}^{4}$ and pressure $\mathrm{p}=\frac{1}{3}\left(\frac{\mathrm{U}}{\mathrm{V}}\right)$. If the shell now undergoes an adiabatic expansion the relation between T and R is -
(1) $T \propto \frac{1}{R}$
(2) $\mathrm{T} \propto \frac{1}{\mathrm{R}^{3}}$
(3) $T \propto e^{-R}$
(4) $\mathrm{T} \propto \mathrm{e}^{-3 R}$

Ans. (1)
Sol.

$$
\begin{aligned}
& P=\frac{1}{3}\left(\frac{U}{V}\right) \\
& P \propto T^{4} \\
& \text { using } P V=n R T \\
& \frac{1}{V} \propto T^{3} \\
& \Rightarrow T \propto \frac{1}{R}
\end{aligned}
$$

19. Two stones are thrown up simultaneously from the edge of a cliff 240 m high with initial speed of $10 \mathrm{~m} / \mathrm{s}$ and $40 \mathrm{~m} / \mathrm{s}$ respectively. Which of the following graph best represents the time variation of relative position of the second stone with respect to the first ?
(Assume stones do not rebound after hitting the ground and neglect air resistance, take $\mathrm{g}=$ $10 \mathrm{~m} / \mathrm{s}^{2}$)
(The figure are schematic and not drawn to scale)
(1)

(2)

(3)

(4)

Ans. (1)
Sol. For particle 1

JEE (Main + Advanced) Leader Course (Target-2016) for XII Passed / Appeared students Start on 15th April 2015 (English / Hindi Medium) and JEE (Main) Leader Course (Target-2016) for XII Passed / Appeared students Start on 15th April 2015 (English / Hindi Medium) at Kota Centre only.
$-240=+10 \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$
$5 t^{2}-10 t-240=0$
$\mathrm{t}_{1}=8 \mathrm{sec}$
For particle 2

$-240=40 \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$
$5 \mathrm{t}^{2}-40 \mathrm{t}-240=0$
$\mathrm{t}_{2}=12 \mathrm{sec}$
for $0<\mathrm{t}<8 \mathrm{sec} \rightarrow \mathrm{a}_{\mathrm{rel}}=0$
straight line x -t graph
for $8<\mathrm{t}<12 \mathrm{sec} \rightarrow \mathrm{a}_{\mathrm{rel}}=-\mathrm{g}$
downward parabola
for $\mathrm{t}>12 \mathrm{sec} \rightarrow$ Both particles comes to rest
20. A uniformally charged solid sphere of radius R has potential V_{0} (measured with respect to ∞) on its surface. For this sphere the equipotential surfaces with potentials $\frac{3 \mathrm{~V}_{0}}{2}, \frac{5 \mathrm{~V}_{0}}{4}, \frac{3 \mathrm{~V}_{0}}{4}$ and $\frac{\mathrm{V}_{0}}{4}$ have radius R_{1}, R_{2}, R_{3} and R_{4} respectively. Then
(1) $\mathrm{R}_{1}=0$ and $\mathrm{R}_{2}<\left(\mathrm{R}_{4}-\mathrm{R}_{3}\right)$
(2) $2 R<R_{4}$
(3) $\mathrm{R}_{1}=0$ and $\mathrm{R}_{2}>\left(\mathrm{R}_{4}-\mathrm{R}_{3}\right)$
(4) $\mathrm{R}_{1} \neq 0$ and $\left(\mathrm{R}_{2}-\mathrm{R}_{1}\right)>\left(\mathrm{R}_{4}-\mathrm{R}_{3}\right)$

Ans. (1 or 2)

Sol. for $\mathrm{r}<\mathrm{R}$

$$
\mathrm{V}=\frac{\mathrm{kQ}}{2 \mathrm{R}}\left(3-\frac{\mathrm{r}^{2}}{\mathrm{R}^{2}}\right)
$$

$\&$ for $r>R \quad V=\frac{k Q}{r}$
at $\mathrm{r}=\mathrm{R} \quad \mathrm{V}_{0}=\frac{\mathrm{kQ}}{\mathrm{R}}$
at $\mathrm{r}=0 \quad \mathrm{~V}_{0}=\frac{3}{2} \frac{\mathrm{kQ}}{\mathrm{R}}=\frac{3}{2} \mathrm{~V}_{0}$
$\therefore \mathrm{R}_{1}=0$
for $\mathrm{V}=\frac{5}{4} \mathrm{~V}_{0} \quad \frac{\mathrm{kQ}}{2 \mathrm{R}}=\left(3-\frac{\mathrm{r}^{2}}{\mathrm{R}^{2}}\right)=\frac{5}{4} \cdot \frac{\mathrm{kQ}}{\mathrm{R}}$

$$
\mathrm{R}_{2}=\frac{\mathrm{R}}{\sqrt{2}}
$$

for $\mathrm{V}=\frac{3}{4} \mathrm{~V}_{0}$

$$
\frac{\mathrm{kQ}}{\mathrm{R}_{3}}=\frac{3}{4} \frac{\mathrm{kQ}}{\mathrm{R}}
$$

$$
\mathrm{R}_{3}=\frac{4 \mathrm{R}}{3}
$$

for $V=\frac{V_{0}}{4}$

$$
\frac{\mathrm{kQ}}{\mathrm{R}_{4}}=\frac{\mathrm{kQ}}{4 \mathrm{R}_{0}}
$$

$$
\mathrm{R}_{4}=4 \mathrm{R}_{0} .
$$

21. Monochromatic light is incident on a glass prism of angle A. If the refractive index of the material of the prism is μ, a ray, incident at an angle θ, on the face $A B$ would get transmitted through the face AC of the prism provided :

(1) $\theta>\cos ^{-1}\left[\mu \sin \left(\mathrm{~A}+\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right]$
(2) $\theta<\cos ^{-1}\left[\mu \sin \left(\mathrm{~A}+\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right]$
(3) $\theta>\sin ^{-1}\left[\mu \sin \left(\mathrm{~A}-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right]$
(4) $\theta<\sin ^{-1}\left[\mu \sin \left(\mathrm{~A}-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right]$

Ans. (3)
Sol.
(Prism)

For all light to come out from face AC angle
of emergence $e=90$
Apply Snell's Law at face AC
$\mu \sin r_{2}=1 \sin \mathrm{e}$
$r_{2}=\sin ^{-1}\left(\frac{1}{\mu}\right)$
(if $\mathrm{e}=90$)
$r_{1}=A-\sin ^{-1}\left(\frac{1}{\mu}\right) \quad\left(\therefore r_{1}+r_{2}=A\right)$
Apply Snell's law at face AB
$1 \sin \theta=\mu \sin \left(r_{1}\right)$
$\theta=\sin ^{-1}\left(\mu \sin \left(\mathrm{~A}-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right.$
for all light transmitted through AC, e $<90^{\circ}$
$\Rightarrow \quad \theta>\sin ^{-1}\left(\mu \sin \left(A-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right.$
22. A rectangular loop of sides 10 cm and 5 cm carrying a current I of 12 A is place in different orientations as shown in the figures below :
(a)

(b)

(c)

(d)

If there is a uniform magnetic field of 0.3 T in the positive z direction, in which orientations the loop would be in (i) stable equilibrium and (ii) unstable equilibrium ?
(1) (b) and (d), respectively
(2) (b) and (c), respectively
(3) (a) and (b), respectively
(4) (a) and (c), respectively

Ans. (1)
Sol. For stable equilibrium $\vec{B} \| \vec{M}$
For unstable equilibrium $\vec{B} \downharpoonleft \stackrel{\rightharpoonup}{M}$
$\mathrm{B}=$ magnetic field
$\mathrm{M}=$ magnetic moment
23. Two coaxial solenoids of different radii carry current I in the same direction. Let \vec{F}_{1} be the magnetic force on the inner solenoid due to the outer one and $\overrightarrow{\mathrm{F}_{2}}$ be the magnetic force on the outer solenoid due to the inner one. Then :
(1)
\vec{F}_{1} is radially inwards and $\vec{F}_{2}=0$
(2) \vec{F}_{1} is radially outwards and $\vec{F}_{2}=0$
(3) $\overrightarrow{\mathrm{F}}_{1}=\overrightarrow{\mathrm{F}}_{2}=0$
(4) \vec{F}_{1} is radially inwards and \vec{F}_{2} is radially outwards.
Ans. (3)

Sol.

JEE (Main + Advanced) Leader Course (Target-2016) for XII Passed / Appeared students Start on 15th April 2015 (English / Hindi Medium) and JEE (Main) Leader Course (Target-2016) for XII Passed / Appeared students Start on 15th April 2015 (English / Hindi Medium) at Kota Centre only.

Field due to solenoid 2 outside the solenoid is zero
$\therefore \quad \overrightarrow{\mathrm{f}}_{1}=0$
Due to action reaction $\overrightarrow{\mathrm{f}}_{2}=0$
or solenoid 2 behave as magnetic dipole

$$
\overrightarrow{\mathrm{f}}_{2}=\frac{\mathrm{MdB}}{\mathrm{dx}}
$$

field of 1 is uniform

$$
\therefore \frac{\mathrm{dB}}{\mathrm{dx}}=0
$$

$$
\mathrm{f}_{2}=0
$$

24. A particle of mass m moving in the x direction with speed $2 v$ is hit by another particle of mass 2 m moving in the y direction with speed v . If the collisions perfectly inelastic, the percentage loss in the energy during the collision is close to :
(1) 56%
(2) 62%
(3) 44%
(4) 50%

Ans. (1)

Sol. Before collison

Kinetic energy $=\frac{1}{2} m(2 v)^{2} \times \frac{1}{2} 2 m(v)^{2}$

$$
=3 \mathrm{mv}^{2}
$$

After collison

Applying momentum conservation for inelastic collision
$2 m v \hat{j}+m 2 v \hat{i}=3 m \vec{v}_{f}$
$\left|\overrightarrow{\mathrm{v}}_{\mathrm{f}}\right|=\sqrt{\frac{8}{9}} \mathrm{v}$
$\mathrm{K}_{\mathrm{f}}=\frac{1}{2} \times 3 \mathrm{~m} \times\left(\mathrm{v}_{\mathrm{f}}^{2}\right)=\frac{4 \mathrm{mv}^{2}}{3}$
$\% \Delta \mathrm{~K}=\frac{\mathrm{K}_{\mathrm{i}}-\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{i}}}=\frac{5 \mathrm{mv}^{2} / 3}{3 \mathrm{mv}^{2}}=\frac{5}{9}=56 \%$
25. Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increases as Vq , where V is the volume of the gas. The value of q is :-
$\left(\gamma=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}\right)$
(1) $\frac{\gamma+1}{2}$
(2) $\frac{\gamma-1}{2}$
(3) $\frac{3 \gamma+5}{6}$
(4) $\frac{3 \gamma-5}{6}$

Ans. (1)
Sol. $\quad \tau \propto \frac{\text { Volume }}{\mathrm{V}_{\text {avg }}}$

$$
\tau \propto V^{1} T^{-1 / 2}
$$

For adiabatic process

$$
\mathrm{T} \propto \mathrm{~V}^{1-\gamma}
$$

$$
\tau \propto \mathrm{V}^{1} \mathrm{~T}^{-1 / 2} \propto \mathrm{~V}^{\frac{\gamma+1}{2}}
$$

comparing

$$
\mathrm{q}=\frac{\gamma+1}{2}
$$

26. From a solid sphere of mass M and radius R, a spherical portion of radius $\frac{R}{2}$ is removed, as shown in the figure. Taking gravitational potential $\mathrm{V}=0$ at $\mathrm{r}=\infty$, the potential at the centre of the cavity thus formed is :
($\mathrm{G}=$ gravitational constant $)$

(1) $\frac{-2 G M}{3 R}$
(2) $\frac{-2 G M}{R}$
(3) $\frac{-\mathrm{GM}}{2 \mathrm{R}}$
(4) $\frac{-\mathrm{GM}}{\mathrm{R}}$

Ans. (4)

Sol. By principle of superosition

$$
\begin{aligned}
V & =-\frac{G M}{2 R^{3}}\left[3 R^{2}-\frac{R^{2}}{4}\right]+\frac{3 G}{2} \frac{M}{8 \frac{R}{2}} \\
& =\frac{-11 G M}{8 R}+\frac{3 G M}{8 R}=-\frac{G M}{R}
\end{aligned}
$$

27.

Given in the figure are two blocks A and B of weight 20 N and 100 N , respectively. These are being pressed against a wall by a force F as shown. If the coefficient of friction between the blocks is 0.1 and between block B and the wall is 0.15 , the frictional force applied by the wall on block B is :-
(1) 120 N
(2) 150 N
(3) 100 N
(4) 80 N

Ans. (1)
Sol.

for equllibrrium of A
$\mathrm{f}_{1}=20$
for equllibrrium of B

$$
\begin{aligned}
& \mathrm{f}_{2}=\mathrm{f}_{1}+100 \\
& \mathrm{f}_{2}=120 \mathrm{~N}
\end{aligned}
$$

28. A long cylindrical shell carries positive surface charge σ in the upper half and negative surface charge $-\sigma$ in the lower half. The electric field lines around the cylinder will look like figure given in : (figures are schematic and not drawn to scale)
(1)

(2)

(3)

(4)

Ans. (3)
It behaves as a dipole.

29. As an electron makes a transition from an excited state to the ground state of a hydrogen - like atom/ion :
(1) kinetic energy decreases, potential energy increases but total energy remains same
(2) kinetic energy and total energy decrease but potential energy increases
(3) its kinetic energy increases but potential energy and total energy decreases
(4) kinetic energy, potential energy and total energy decrease
Ans. (3)
Sol. $\quad K=+13.6 \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}$ as n decreases k increases

$$
\left.\begin{array}{l}
\mathrm{U}=-27.2 \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}} \\
\mathrm{~T}=-13.6 \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}
\end{array}\right\} \begin{aligned}
& \text { as } \mathrm{n} \text { decrease } \\
& \mathrm{U} \& \mathrm{~T} \text { decrease }
\end{aligned}
$$

30. Match List-I (Fundament Experiment) with List-II (its conclusion) and select the correct option from the choices given below the list :

	List-I		List-II
(A)	Franck-Hertz Experiment.	(i)	Particle nature of light
(B)	Photo-electric experiment	(iii)	Discrete energy levels of atom
(C)	Davison-Germer Experiment	(iiii)	Wave nature of electroc
		(iv)	Structure of atom

(1) A-ii, B-i, C-iii
(2) A-iv, B-iii, C-ii
(3) A-i, B-iv, C-iii
(4) A-ii, B-iv, C-iii

Ans. (1)
Sol. Self Explanatory/Theory
(A)Franck-Hertz experiment explains disrete energy levels of atom
(B) Photo-electric experiment explain particle nature of light
(C) Davison Germer experiment explain wave nature of electron.

[^1]
[^0]: JEE (Main + Advanced) Leader Course (Target-2016) for XII Passed / Appeared students Start on 15th April 2015 (English / Hindi Medium) and JEE (Main) Leader Course (Target-2016) for XII Passed / Appeared students Start on 15th April 2015 (English / Hindi Medium) at Kota Centre only.

[^1]: JEE (Main + Advanced) Leader Course (Target-2016) for XII Passed / Appeared students Start on 15th April 2015 (English / Hindi Medium) and JEE (Main) Leader Course (Target-2016) for XII Passed / Appeared students Start on 15th April 2015 (English / Hindi Medium) at Kota Centre only.

