Jenkins2.0
Pipeline-as-code

Virtual Conference - May, 2016

Jenkins 2.0 - https://jenkins.io/2.0/

Jenkins | Downloads -

Jenkins 2.0 Overview

o Jenkins 2.0 is currently in beta . We encourage you lo download it, try it out, and give us your feedback but for production systems please continue to use the current
LTS release.

Jenkins is an open source automation server with an unparalieled plugin ecosystem to support practically every tool as part of your delivery pipelines. Whether your goal is continuous
integration, continuous delivery or something else entirely, Jenkins can help automate it.

Jenkins 2.0 brings Pipeline as code, a new setup experience and other Ul improvements all while maintaining total backwards compatibility with existing Jenkins installations.

Highlights of 2.0: Bata Downloads
« Built-in support for delivery pipelines.

+ Improved usability. Download the .war
« Fully backwards compatible. jenkins.war

Download native packages

Windows

@f Ubuntu/Debian

Pipelines

g Red Hat/Fedora
Problem
.) : o) |z Mac OS X

As organizations of all types seek to deliver high quality software faster, their use of Jenkins is extending beyond just continuous

integration (Cl) to continuous delivery (CD). In order to implement continuous delivery, leams need a flexible way to model, @ openSUSE

orchestrate and visualize their entire delivery pipeline.
Docker

Solution docker pull jenkinsci/jenkins:Z.0-
beta-1

Jenkins 2.0 supports delivery pipelines as a first-class entity. The Pipeline plugin introduces a domain-specific language (DSL)
that helps Jenkins users to model their software delivery pipelines as code, which can be checked in and version-controlled aleng
with the rest of their project's source code.

~ node| {
stage 'Build’
sh './gradlew assemble’

stage 'Test’

1
2
3
4
5
6 sh . /gradlew check'
7

Pipeline Automates & Scales with Steps and
Tools

» Parallelism

* Branching
° Looping m—'n
* Restarts

» Checkpoints

* Manual Input
B

Build Pipelines before

* Many atomic jobs

 Hard to share variables/state

between jobs

* Limited logic

* Mix build triggers, parameterized

build ...

* Job chaining
&

Build Triggers

@ Build a oT is built

11 Trigger builds remotely (e g, from scripts)
Build after other projects are built
Projects to watch e |

1-petc
@ Trigger only if build is st
@ Trigger even if the build

. - even if the build
, Upstream Projects

@ traditional » 1-petclinic +=

@

Post-build Actions

Build other projects

parallel (

// job 1, 2 and 3 will be scheduled in parallel.

{ build("jobl"™)
{ build("job2")

{ build("job3"™) ¥}

Build Pipeline: My pipeline

Y.
Y.

// job4 will be triggered after jobs 1,
bui

£

Z =9

. >

B
Pipeine version Test
8 L4
Mo parameters

Relcase I

Depioy to Test
5 Jun 36, 2012 5:31:46 M
G 5

_— @

-

2 and 3 complete

B seareh @ marcinp | log out

Geploy to Pre-Prod Geopioy 1o Prod
- -

Component

Aggregated view

ipeiine version Test Freane
- L4

- e

| Deploy to Test I
_

Goploy 1o Pre-prod Geploy 1o Prod
- -

-

Build - 1.0.0.6

CI - 1.0.0.6

(QA- 1.0.0.5

[Production - 1.0.0.5 |

Projects to build ‘ E———

@ Trigger only if build is stable

© Trigger even if the build is unstable 1

Downstream Projects

@ traditional » 2-pefclinic-sonar =

build fails.

Builg
2 minutes 590 S sec
Unittest
2 minutes sgo O sec
Package

2 minutes 290 O sec
Code analyze
2 minutes ag0 O sec

Deploy

2 minutes sgo

0 sec

Deploy

41 minutes ag0 0 sec
Function Test

41 minutes a0 0 sec

Deploy

40 minutes sg0 4 se<
Smake Test

40 minutes ago 10 sec

2 minutes ago O sec
Code analyze

2 minutes 390 @ sec

.0.0.6 by anonymous, started 2 minutes ago

Build [+ 4 QA Production
Build Deploy Deploy Deploy
2 minutes age S sec 2 minutes 390 0 sec Function Test Smoke Test
Unittest I Test
2 minutes 530 O sec 2 minutes 390 @ sec
Package

Pipeline Today...

Is defined in ONE concise script

Is Resilient - survives Master restarts
Uses Stages to add control and context

Is Visualized — StageView provides status at a glance
dashboard and trending

Supports slave elasticity

« As many as you want, when you want

Is Pausable - Supports live interaction

« pause and wait for human input/approval
Is Efficient- Restartable from checkpoints
Extensibility — the Jenkins way

« SCM, artifacts, plugins

Delivers on “process as code”

stage 'DEV'
node(' Linux') {
// COMPILE AND JUNIT
git url: ‘https://githul b om/cyrille-leclerc/spring-petclinic.git
sh 'mvn -o clean packa g
archive 'targe UD tclinic.war, src, pom.xml’'

step $class: ‘hudson.ta k s.junit.JUnitResultArchiver’, testResults: 'target/surefire-reports/* xml’

}

parallel(qualityAnalysis: {
// RUN SONAR ANALYSIS
node(*linux') {
stage name: 'QUALITY_ANALYSIS', concurrency: 1

unarchive mapping: ['srcl': .ty tpomaml': '.']
sh 'mvn -0 Y
}
}, performanceTest: {
// DEPLOY ON PERFS AND RUN JMETER STRESS TEST
*linux’
'.', 'target/petclinic.war': 'petclinic.war']
aBase, perfsHttpPort
s Jm
shutdownApp(perfsCatalinaBase)
}
n
che kp int 'ENTER QA'
message: "Deploy to QA?", ok: “DEPLOY TO QAl"
// DEPLO!‘ ON THE QA SERVER

Pipeline DSL

node('docker") {
checkout scm

/* Grab the abbreviated SHA1l of our pipeline’s commit.*/
sh 'git rev-parse HEAD > GIT_COMMIT'
def shortCommit = readFile('GIT COMMIT').take(6)

stage 'Build’
def image = docker.build("jenkinsciinfra/bind:build-${shortCommit}")

stage 'Deploy’
image.push()

Pipeline DSL Reference

Jenkins ENABLE AUTO REFRESH

New ltem

& Fecie DSL Reference

Click to download Intelli] GDSL

2 Build History
Steps
P Manage Jenkins

% archive: Archive artifacts
#A. Credentials

+ bat: Windows Batch Script

Build Queue =
No builds in the queue. # build: Build ajob
Build Execuior Status = = checkout: General SCM
1 ldie This is a special step that allows to run checkouts using any configuration options offered by any Pipeline-compatible SCM plugin. To use a
2 ldle

concrete SCM implementations, just install the corresponding plugin and check if it is shown in the list below. Then select the SCM to use
from the dropdown list and configure it as needed.

Any other specific step to run checkouts (like svn or git) are simplistic options of this step.
scm

$class: 'GitSCM'
userRemoteConfigs

Specify the repository to track. This can be a URL or a local file path. Mote that for super-projects (repositories with submodules),
only a local file path or a complete URL is valid. The following are examples of valid git URLs.

sshifgit@github.com/github/git.git

git@github.com:github/git git (short notation for ssh protocol)

sshi/fuser@other host.com/~/repos/R git (to access the repos/R git repository in the user's home directory)

https://github _com/github/git git

git#fgithub.com/github/git.git

DR

If the repository is a super-project, the location from which to clone submodules is dependent on whether the repository is bare or
non-bare (i.e. has a working directory)

= [f the super-project is bare, the location of the submodules will be taken from gitmodules

+ [|f the super-project is not bare, it is assumed that the repository has each of its subhmodules cloned and checked out

Pipeline Stage View

Stage View
Build Deploy Test Promote
2s 17s 5s 4s

- —_— —_— —_—
Merf03 m 2s 17s 5s 3s
16:11

[master | | mastor | [master | | mastor |
LS m 2s 16s 5s Bs
13:11

= [mastor | = [mastor |
Mar 03 m s 65 a5 35
10:12

=3 | mastor | =3 =3
Macos m 2s 16s 55 55
07:11

| master | =3 | master | =3
L m 2s 18s 5s 4s
04:11

[master | | mastor | = =3
LLETE) m 2s 17s 5s 4s
01:11

CD Pipeline-as-code?

Overall job definition is a script
- calls your build tools and scripts for details

Script can be versioned alongside project

sources
- experimental branches

- code review!

Keep less configuration in $JENKINS_HOME

Pipeline Global libs (DRY)

2
3

stage 'DEV'
node(' linux') {
// COMPILE AND JUNIT
git url: ‘https://github.com/cyrille-leclerc/spring-petclinic.git
sh 'mvn -o clean package'
archive 'target/petclinic.war, src, pom.xml'
step $class: 'hudson.tasks.junit.JUnitResultArchiver’, testResults:

}

parallel(qualityAnalysis: {
// RUN SONAR ANALYSIS
node(*1inux') {

"target/surefire-reports/* xml’

stage name: 'QUALITY_ANALYSIS', concurrency: 1
unarchive mapping: ['src/’: '.*, ‘pom.xml': '.']
sh 'mvn -0 sonar:sonar’
}
}, performanceTest: {
// DEPLOY ON PERFS AND RUN JMETER STRESS TEST
node(‘1inux ') {
stage name: 'PERFS’, concurrency: 1
unarchive mapping: ['src/': '.', 'pom.xml': '.', 'target/petclinic.war': 'petclinic.war’]

deployApp ‘petclinic.war’, perfsCatalinaBase, perfsHttpPort
sh 'mvn -o jmeter:jmeter’
shutdownapp(perfsCatalinaBase)

h

checkpoint 'ENTER QA'

input message: “Deploy to QA?", ok: “DEPLOY TO QAl"

// DEPLOY ON THE QA SERVER

node(' linux') {
stage name: 'QA', concurrency: 1
unarchive mapping: ['target/petclinic.war': ‘petclinic.war']
deployApp 'petclinic.war’, qaCatalinaBase, gaHttpPort

Pipeline-as-code — MultiBranch Pipeline

Branch with a Jenkinsfile — one per subproject Master
« thatis your Pipeline script
» just checkout scm to get full source tree

Can edit Jenkinsfile (Pipeline) in your branch
* revision matches sources

Git, SVN, Mercurial

Dedicated GitHub support s I |

. GitHub AP
« Webhooks -
. PullRequest %

Feature Branch 2

» Before: custom scripting just to add all
100 repos

* New folder type: “organization”
each item is a multibranch Pipeline project

adds/removes projects automatically

* Only configuration is org name +

credentials
one step closer to “code as config”

11

Pipeline-as-code: Demo

12

Resources

Jenkins Pipeline reference
— https://jenkins.io/doc/pipeline/

» Official Docker image

— $ docker pull jenkinsci/pipeline-as-code-
github-demo

— https://hub.docker.com/r/jenkinsci/pipeline-as-code-github-
demo

https://jenkins.io/doc/pipeline/
https://jenkins.io/doc/pipeline/
https://jenkins.io/doc/pipeline/
https://hub.docker.com/r/jenkinsci/pipeline-as-code-github-demo/
https://hub.docker.com/r/jenkinsci/pipeline-as-code-github-demo/
https://hub.docker.com/r/jenkinsci/pipeline-as-code-github-demo/

