Job-Order Costing

Chapter 3

PowerPoint Authors:
Susan Coomer Galbreath, Ph.D., CPA
Charles W. Caldwell, D.B.A., CMA Jon A. Booker, Ph.D., CPA, CIA
Cynthia J. Rooney, Ph.D., CPA

Job-Order Costing: An Overview

Job-order costing systems are used when:

1.Many different products are produced each period.
p. Products are manufactured to order.
B. The unique nature of each order requires tracing or allocating costs to each job, and maintaining cost records for each job.

Job-Order Costing: An Overview

Examples of companies that would use job-order costing include:

1.Boeing (aircraft manufacturing)
2.Bechtel International (large scale construction)
3.Walt Disney Studios (movie production)

Job-Order Costing - An Example

Charge
direct
material and
direct labor
costs to
each job as
work is
performed.

Job-Order Costing - An Example

Direct Materials

The Job Cost Sheet

Job Number A-143 $\begin{aligned} & \text { PearCo Job } \\ & \text { Sheet }\end{aligned}$				Date Initiated 3-4-11					
				Date Completed					
Department B3				Units Completed					
Item Wooden cargo crate									
Direct Materials		Direct Labor			Manufacturing Overhead				
Req. No.	Amount	Ticket	Hours			Amount	Hours	Rate	Amount

Cost Summary		Units Shipped		
Direct Materials	Date	Number	Balance	
Direct Labor				
Manufacturing Overhead				
Total Cost				
Unit Product Cost				

Measuring Direct Materials Cost

PearCo Materials Requisition Form

Requisition No. X7-6890 Date 3-4-11
Job No. A - 143
Department B3

Description	Quantity	Unit Cost		Total Cost	
$2 \times 4,12$ feet	12	$\$$	3.00	$\$$	

Authorized
Signature
Will E. Delite

Measuring Direct Materials Cost

Measuring Direct Labor Costs

PearCo Employee Time Ticket

Time Ticket No. 36	Date $\frac{3-5-11}{}$Employee \quad l. M. Skilled
Station 42	

Starting Time	Ending Time	Hours Completed	Hourly Rate	Amount	Job No.
0800	1600	8.00	$\$$	11.00	$\$$

Supervisor C. M. Workman

Job-Order Cost Accounting

PearCo Job Cost Sheet							
Job Number A - 143				Date Initiated 3-4-11			
				Date Comp	pleted		
Department B3				Units Completed			
Item Wooden cargo crate							
Direct Materials		Direct Labor			Manufacturing Overhead		
Req. No.	Amount	Ticket	Hours	Amount	Hours	Rate	Amount
X7-6890	\$ 116	36	8	\$ 88			
Cost Summary					Units Shipped		
Direct Materials				\$ 116	Date	Number	Balance
Direct Labor				\$ 88			
Manufacturing Overhead							
Total Cost							
Unit Product Cost							

Learning Objective 1

Compute a

 predetermined overhead rate.
Why Use an Allocation Base?

An allocation base, such as direct labor hours, direct labor dollars, or machine hours, is used to assign manufacturing overhead to individual jobs.

We use an allocation base because:
a. It is impossible or difficult to trace overhead costs to particular jobs.
b. Manufacturing overhead consists of many different items ranging from the grease used in machines to the production manager's salary.
c. Many types of manufacturing overhead costs are fixed even though output fluctuates during the period.

Manufacturing Overhead Application

 The predetermined overhead rate (POHR) used to apply overhead to jobs is determined before the period begins.
Estimated total manufacturing overhead cost for the coming period
 Estimated total units in the allocation base for the coming period

Ideally, the allocation base is a cost driver that causes overhead.

The Need for a POHR

Using a predetermined rate makes it possible to estimate total job costs sooner.

Actual overhead for the period is not known until the end of the period.

Computing Predetermined Overhead Rates

The predetermined overhead rate is computed before the period begins using a four-step process.
1.Estimate the total amount of the allocation base (the denominator) that will be required for next period's estimated level of production.
2. Estimate the total fixed manufacturing overhead cost for the coming period and the variable manufacturing overhead cost per unit of the allocation base.
3. Use the following equation to estimate the total amount of manufacturing overhead:

$$
Y=a+b X
$$

Where,
$Y=$ The estimated total manufacturing overhead cost
$a=$ The estimated total fixed manufacturing overhead cost
$b=$ The estimated variable manufacturing overhead cost per unit of the allocation base
$X=$ The estimated total amount of the allocation base.
4.Compute the predetermined overhead rate.

Learning Objective 2

Apply overhead cost to jobs using a predetermined overhead rate.

Overhead Application Rate

PearCo estimates that it will require 160,000 direct labor-hours to meet the coming period's estimated production level. In addition, the company estimates total fixed manufacturing overhead at $\$ 200,000$, and variable manufacturing overhead costs of $\$ 2.75$ per direct labor hour.

$$
\begin{aligned}
& Y=a+b X \\
& Y=\$ 200,000+(\$ 2.75 \text { per direct labor-hour } \times 160,000 \text { direct labor-hours) } \\
& Y=\$ 200,000+\$ 440,000 \\
& Y=\$ 640,000 \\
& \text { POHR }=\underbrace{\$ 640,000 \text { estimated total manufacturing overhead }} \\
& 160,000 \text { estimated direct labor hours (DLH) }
\end{aligned}
$$

POHR = \$4.00 per direct labor-hour

Job-Order Cost Accounting

PearCo Job Cost Sheet

Job Number A - 143

Department B3 Item Wooden cargo crate

Date Initiated 3-4-11
Date Completed 3-5-11
Units Completed $\quad 2$2

Direct Materials		Direct _abor			Manyfacturing Overhead				
Req. No.	Amount	Ticket	Hours	Amount	Hours				ount
X7-6890	\$ 116	36		\$ 88	8	\$	4	\$	32

Cost Summary		Units Shipped			
Direct Materials	$\$$	$\mathbf{1 1 6}$	Date	Number	Balance
Direct Labor	$\$$	$\mathbf{8 8}$			
Manufacturing Overhead	$\$$	32			
Total Cost					
Unit Product Cost					

Learning Objective 3

Compute the total cost and average cost per unit of a job.

Job-Order Cost Accounting

PearCo Job Cost Sheet							
Job Number A - 143				Date Initiated 3-4-11 Date Completed 3-5-11			
Department _B3				Units Completed 2			
Item Wooden cargo crate							
Direct Materials		Direct Labor			Manufacturing Overhead		
Req. No.	Amount	Ticket	Hours	Amount	Hours	Rate	Amount
X7-6890	\$ 116	36	8	\$ 88	8	\$ 4	\$ 32
Cost Summary					Units Shipped		
Direct Materials				\$ 116	Date	Number	Balance
Direct Labor				\$ 88			
Manufacturing Overhead				\$ 32			
Total Cost				\$ 236			
Unit Product Cost							

Job-Order Cost Accounting

PearCo Job Cost Sheet

Job Number A-143

Department B3
Item Wooden cargo crate

Date Initiated 3-4-11
Date Completed 3-5-11
Units Completed 2

Direct Materials		Direct Labor			Manufacturing Overhead		
Req. No.	Amount	Ticket	Hours	Amount	Hours	Rate	Amount
X7-6890	\$ 116	36	8	\$ 88	8	\$ 4	\$ 32

Cost Summary		Units Shipped			
Direct Materials	$\$$	116	Date	Number	Balance
Direct Labor	$\$$	$\mathbf{8 8}$			
Manufacturing Overhead	$\$$	$\mathbf{3 2}$			
Total Cost	$\$$	236			
Unit Product Cost	$\$$	118			

Quick Check \checkmark

Job WR53 at NW Fab, Inc. required \$200 of direct materials and 10 direct labor hours at $\$ 15$ per hour. Estimated total overhead for the year was \$760,000 and estimated direct labor hours were 20,000. What would be recorded as the cost of job WR53?
a. \$200.
b. $\$ 350$.
c. $\$ 380$.
d. $\$ 730$.

Quick Check $\sqrt{ }$

Job WR53 at NW Fab, Inc. required $\$ 200$ of direct materials and 10 direct labor hours at $\$ 15$ per hour. Estimated total overhead for the year was \$760,000 and estimated direct labor hours were 20,000. What would be recorded as the cost of job WR53?

POHR $=\$ 760,000 / 20,000$ hours	$\$ 38$
Direct materials	$\$ 200$
Direct labor	$\$ 15 \times 10$ hours
Manufacturing overhead	$\$ 38 \times 10$ hours
Total cost	$\underline{\$ 380}$

Learning Objectives 4 and 5

Learning Objective 4 is to

 understand the flow of costs in the job-order costing system and prepare appropriate journal entries to record costs.Learning Objective 5 is to use T-accounts to show the flow of
costs in a job-order costing system.

Key Definitions

1. Raw materials include any materials that go into the final product.
2. Work in process consists of units of production that are only partially complete and will require further work before they are ready for sale to customers.
3. Finished goods consist of completed units of product that have not been sold to customers.
4. Cost of goods manufactured include the manufacturing costs associated with the goods that were finished during the period,

Flow of Costs: A Conceptual Overview

Job-Order Costing: The Flow of Costs

The Purchase and Issue of Raw Materials: T-Account Form

Cost Flows - Material Purchases

On October 1, Smith Corporation had \$5,000 in raw materials on hand. During the month, the company purchased $\$ 45,000$ in raw materials.
(1)

Raw Materials
Accounts Payable
45,000
45,000

Issue of Direct and Indirect Materials

On October 3, Smith had \$43,000 in raw materials requisitioned from the storeroom for use in production. These raw materials included \$40,000 of direct and $\$ 3,000$ of indirect materials.
(2)

Work in Process
Manufacturing Overhead Raw Materials

$$
\left.\begin{array}{r|r|}
40,000 \\
3,000
\end{array} \quad \right\rvert\, \begin{array}{r|r|}
\\
& 43,000
\end{array}
$$

Labor Costs

Work in Process
(Job Cost Sheet)
.Direct
Materials
.Direct
Labor

Labor Costs

During the month the employee time tickets included \$35,000 of direct labor and \$12,000 for indirect labor.
(3)

Work in Process
Manufacturing Overhead Raw Materials

35,000 12,000
47,000

Recording Actual Manufacturing Overhead

Salaries and
Wages Payable .Direct
Labor
.Indirect
Labor

Work in Process
(Job Cost Sheet)
.Direct
Materials
.Direct
Labor

Mfg. Overhead
Actual Applied .Indirect
Materials
.Indirect
Labor
.Other
Overhead

Recording Actual Manufacturing Overhead

During the month the company incurred the following actual overhead costs:

1. Utilities (heat, water, and power) $\$ 1,700$
2. Depreciation of factory equipment $\$ 2,900$
3. Property taxes payable on factory $\$ 1,000$
(4)

Manufacturing Overhead
Utilities Payable
Accumulated Depreciation
Property Taxes Payable

1,700
2,900
1,000

Applying Manufacturing Overhead

Salaries and Wages Payable .Direct
Labor
.Indirect
Labor
Mfg. Overhead
Actual Applied .Indirect
Materials .Overhead .Indirect Applied to
Labor
.Other
Overhead

Work in Process (Job Cost Sheet)
.Direct
Materials
.Direct
Labor
.Overhead
Applied
If actual and applied manufacturing overhead are not equal, a year-end adjustment is required.

Applying Manufacturing Overhead

Smith uses a predetermined overhead rate of $\$ 3.50$ per machine-hour. During the month, 5,000 machine-hours were worked on jobs.
(5)

Work in Process
Manufacturing Overhead
$(5,000$ machine hours $\times \$ 3.50=\$ 17,500)$
| 17,500|

17,500

Accounting for Nonmanufacturing Cost

Nonmanufacturing costs are not assigned to individual jobs, rather they are expensed in the period incurred.

Examples:

1. Salary expense of employees who work in a marketing, selling, or administrative capacity.
2. Advertising expenses are expensed in the period incurred.

Accounting for Nonmanufacturing Cost

 During the month, Smith incurred but has not paid sales salaries of $\$ 2,000$, and advertising expense of $\$ 750$.(6)

Salaries Expense
Advertising Expense
Salaries Payable
Accounts Payable

Transferring Completed Units

Work in Process
(Job Cost Sheet)
.Direct
Materials
-Direct
Labor
.Overhead
Applied

Finished Goods
.Cost of
Goods Mfd.

Transferring Completed Units

During the period, Smith completed jobs with a total cost of \$27,000.
(9)

Finished Goods
Work in Process
27,000
27,000

Transferring Units Sold

Work in Process
(Job Cost Sheet)
.Direct
Materials
.Direct
Labor
.Overhead
Applied
-Cost of
Goods
Mfd.

Finished Goods

.Cost of .Cost of Goods Mfd. Sold

Transferring Units Sold

Smith sold the $\$ 27,000$ in Finished Goods Inventory to customers for \$43,500 on account.

Accounts Receivable Sales

Cost of Goods Sold
Finished Goods
(10)

Learning Objective 6

Prepare schedules of cost of goods manufactured and cost of goods sold and an income statement.

Schedule of Cost of Goods Manufactured: Key Concepts

This schedule contains three types of costs, namely direct materials, direct labor, and manufacturing overhead.

It calculates the cost of raw material and direct labor used in production and the amount of manufacturing overhead applied to production.

Product Cost Flows

Manufacturing

Raw Materials
Beginning raw materials inventory

+ Raw materials purchased
= Raw materials available for use in production
- Ending raw materials inventory
= Raw materials used
in production
Direct materials

Work

In Process

As items are removed from raw materials inventory and placed into the production process, they are called direct materials.

Product Cost Flows

Manufacturing

Raw Materials
Beginning raw
materials inventory

+ Raw materials
purchased
= Raw materials
available for use
in production
- Ending raw materials
inventory
= Raw materials used
in production
Direct materials
+ Direct labor
+ Mfg. overhead applied
= Total manufacturing costs

Work

In Process

Conversion

 costs are costs incurred to convert the direct material into a finished product.
Product Cost Flows

Manufacturing

Raw Materials
Beginning raw materials inventory

+ Raw materials purchased
= Raw materials
available for use
in production
- Ending raw materials inventory
= Raw materials used
in production

Work

In Process

Beginning work in process inventory

+ Total manufacturing costs
= Total work in
process for the period

All manufacturing costs added to production during the period are added to the beginning balance of work in process.

Product Cost Flows

Manufacturing

Raw Materials
Beginning raw
materials inventory

+ Raw materials
purchased
= Raw materials
available for use
in production
- Ending raw materials
inventory
= Raw materials used
Costs associated with the goods that are completed during the period are
transferred to finished goods inventory.

Work

In Process
Beginning work in process inventory

+ Total manufacturing costs
$=$ Total work in process for the period
- Ending work in process inventory
= Cost of goods manufactured

Product Cost Flows

Work
 In Process

Finished Goods

Beginning work in process inventory

+ Manufacturing costs for the period
$=$ Total work in process for the period
- Ending work in process inventory
$=$ Cost of goods manufactured

Beginning finished goods inventory

+ Cost of goods manufactured
$=$ Cost of goods available for sale
- Ending finished goods inventory
Cost of goods
sold

Quick Check

Beginning raw materials inventory was $\$ 32,000$. During the month, $\$ 276,000$ of raw material was purchased. A count at the end of the month revealed that $\$ 28,000$ of raw material was still present. What is the cost of direct material used?
a. $\$ 276,000$
b. $\$ 272,000$
c. $\$ 280,000$
d. \$ 2,000

Quick Check

Beginning raw materials inventory was \$32,000. During the month, $\$ 276,000$ of raw material was purchased. A count at the end of the month revealed that \$28,000 of raw material was still present. What is the cost of direct material
used?

a.	$\$ 276,000$
b.	$\$ 272,000$
c.	$\$ 280,000$
d.	$\$ 2,000$

Beg. raw materials \$ 32,000

+ Raw materials
purchased 276,000
= Raw materials available
for use in production $\$ \mathbf{3 0 8}, 000$
- Ending raw materials
inventory 28,000
= Raw materials used
in production
\$ 280,000

Quick Check

Direct materials used in production totaled $\$ 280,000$. Direct labor was $\$ 375,000$, and $\$ 180,000$ of manufacturing overhead was added to production for the month. What were total manufacturing costs incurred for the month?
a. $\$ 555,000$
b. $\$ 835,000$
c. $\$ 655,000$
d. Cannot be determined.

Quick Check

Direct materials used in production totaled $\$ 280,000$. Direct labor was $\$ 375,000$, and \$180,000 of manufacturing overhead was added to production for the month. What were total manufacturing costs incurred for the month?

$\$ 835,000$

\quad Direct Materials	$\$ 280,000$
+	375,000
+	Direct Labor
$=$	Mfg. Overhead Applied
Costs Incurred	180,000

Quick Check

Beginning work in process was $\$ 125,000$. Manufacturing costs added to production for the month were $\$ 835,000$. There were $\$ 200,000$ of partially finished goods remaining in work in process inventory at the end of the month. What was the cost of goods manufactured during the month?
a. \$1,160,000
b.
\$ 910,000
\$ 760,000
d.

Cannot be determined.

Quick Check

Beginning work in process was $\$ 125,000$. Manufacturing costs added to production for the month were $\$ 835,000$. There were $\$ 200,000$ of partially finished goods remaining in work in process inventory at the end of the month. What was the cost of goods manufactured during the month?

c.
 \$ 760,000

	Beginning work in process inventory +
Mfg. costs incurred for the period	$\$ 125,000$
$=$Total work in process during the period	$\$ 960,000$
-Ending work in process inventory	200,000
Cost of goods manufactured	$\$ 760,000$

Quick Check

Beginning finished goods inventory was $\$ 130,000$. The cost of goods manufactured for the month was $\$ 760,000$. And the ending finished goods inventory was $\$ 150,000$. What was the cost of goods sold for the month?
a. \$ 20,000
b. $\$ 740,000$
c. $\$ 780,000$
d. $\$ 760,000$

Quick Check

Beginning finished goods inventory was $\$ 130,000$. The cost of goods manufactured for the month was $\$ 760,000$. And the ending finished goods inventory was $\$ 150,000$. What was the cost of goods sold for the most $30,000+\$ 760,000=$ \$890,000
$\$ 890,000$ / $\$ 150,000=$

Learning Objective 7

Compute underapplied or overapplied overhead cost and prepare the journal entry to close the balance in Manufacturing Overhead to the appropriate accounts.

Underapplied and Overapplied Overhead-A Closer Look

The difference between the overhead cost applied to Work in Process and the actual overhead costs of a period is referred to as either underapplied or overapplied overhead.

Underapplied overhead exists when the amount of overhead applied to jobs during the period using the predetermined overhead rate is less than the total amount of overhead actually incurred during the period.

Overapplied overhead exists when the amount of overhead applied to jobs during the period using the predetermined overhead rate is greater than the total amount of overhead actually incurred during the period.

Overhead Application Example

PearCo's actual overhead for the year was $\$ 650,000$ with a total of 170,000 direct labor hours worked on jobs.
How much total overhead was applied to PearCo's jobs during the year? Use PearCo's predetermined overhead rate of $\$ 4.00$ per direct labor hour.

Overhead Applied During the Period

Applied Overhead $=$ POHR \times Actual Direct Labor Hours Applied Overhead $=\$ 4.00$ per DLH $\times 170,000$ DLH $=\$ 680,000$

Overhead Application Example

PearCo's actual overhead for the year was $\$ 650,000$ with a total of 170,000 direct labor hours

PearCo has overapplied overhead for the year rCo's by $\$ 30,000$. What will

0 per direct

Overhead Applied During the Period

Applied Overhead $=$ POHR \times Actual Direct Labor Hours
Applied Overhead $=\$ 4.00$ per DLH $\times 170,000$ DLH $=\$ 680,000$

Quick Check \checkmark

Tiger, Inc. had actual manufacturing overhead costs of \$1,210,000 and a predetermined overhead rate of $\$ 4.00$ per machine hour. Tiger, Inc. worked 290,000 machine hours during the period. Tiger's manufacturing overhead is:
a. $\$ 50,000$ overapplied.
b. $\$ 50,000$ underapplied.
c. $\$ 60,000$ overapplied.
d. \$60,000 underapplied.

Quick Check $\sqrt{ }$

Tiger, Inc. had actual manufacturing overhead costs of \$1,210,000 and a predetermined overhead rate of $\$ 4.00$ per machine hour. Tiger, Inc. worked 290,000 machine hours during the period. Tiger's manufacturing overhead is:
a. $\$ 50,000$ overapplied.
b. $\$ 50,000$ underapplie -1

Overhead Applied
$\$ 4.00$ per hour $\times 290,000$ hours
= \$1,160,000
Underapplied Overhead

$$
\begin{aligned}
& \$ 1,210,000-\$ 1,160,000 \\
& =\$ 50,000
\end{aligned}
$$

Disposition of Under- or Overapplied Overhead
 PearCo's Method

Disposition of Under- or Overapplied Overhead

PearCo's Cost of Goods Sold

PearCo's
Mfg. Overhead

Actual overhead costs	Overhead applied to jobs
$\$ 650,000$	$\$ 680,000$
$\$ 30,000$	$\$ 30,000$

overapplied

Allocating Under- or Overapplied Overhead Between Accounts

Assume the overhead applied in ending Work in Process Inventory, ending Finished Goods Inventory, and Cost of Goods Sold is shown below:

Allocating Under- or Overapplied Overhead Between Accounts

We would complete the following allocation of \$30,000 overapplied overhead:

Allocating Under- or Overapplied Overhead Between Accounts

	Amount		Percent of Total	Allocation of \$30,000	
Work in process	\$	68,000	10\%	\$	3,000
Finished Goods		204,000	30\%		9,000
Cost of Goods Sold		408,000	60\%		18,000
Total	\$	680,000	100\%	\$	30,000

Manufacturing Overhead Work in Process Invenory Finished Goods Inventory
Cost of Goods Sold

30,000	
	3,000
	9,000
	18,000

Overapplied and Underapplied Manufacturing Overhead - Summary

	PearCo's Method	
If Manufacturing Overhead is . .	Alternative 1 Close to Cost of Goods Sold	Alternative 2
UNDERAPPLIED	INCREASE Cost of Goods Sold	Allocation INCREASE Work in Process Finished Goods Cost of Goods Sold
(Applied OH is less than actual OH)	DECREASE Work in Process Finished Goods Cost of Goods Sold	
OVERAPPLIED (Applied OH is greater than actual OH)	Dost of Goods Sold	

More accurate but more complex to compute.

Quick Check $\sqrt{ }$

What effect will the overapplied overhead have on PearCo's net operating income? a. Net operating income will increase.
b. Net operating income will be unaffected.
c. Net operating income will decrease.

Quick Check $\sqrt{ }$

What effect will the overapplied overhead have on PearCo's net operating income? a. Net operating income will increase.

Multiple Predetermined Overhead Rates

To this point, we have assumed that there is a single predetermined overhead rate called a plantwide overhead rate.

Large companies often use multiple predetermined overhead rates.

May be more complex but. . .

May be more accurate because it reflects differences across departments.

Job-Order Costing in Service Companies

Job-order costing is used in many different types of service companies.

The Predetermined Overhead Rate and Capacity

Appendix 3A

PowerPoint Authors:
Susan Coomer Galbreath, Ph.D., CPA
Charles W. Caldwell, D.B.A., CMA Jon A. Booker, Ph.D., CPA, CIA
Cynthia J. Rooney, Ph.D., CPA

Learning Objective 8

Understand the implications of basing the predetermined overhead rate on activity at capacity rather than on estimated activity for the period.

Predetermined Overhead Rate and Capacity

Calculating predetermined overhead rates using an estimated, or budgeted amount of the allocation base has been criticized because:
1.Basing the predetermined overhead rate upon budgeted activity results in product costs that fluctuate depending upon the activity levels.
2. Calculating predetermined rates based upon budgeted activity charges products for costs that they do not use.

Capacity-Based Overhead Rates

Criticisms can be overcome by using estimated total units in the allocation base at capacity in the denominator of the predetermined overhead rate calculation.

Let's look at the difference!

Capacity-Based Overhead Rates:

An Example

Equipment is leased for \$100,000 per year. Running at full capacity, 50,000 units may be produced. The company estimates that 40,000 units will be produced and sold next year. What is the predetermined overhead rate?

An Example

Equipment is leased for $\$ 100,000$ per year.
Running at full capacity, 50,000 units may be produced. The company estimates that 40,000 units will be produced and sold next year.

$$
\begin{gathered}
\text { Traditional } \\
\text { Method }
\end{gathered}=\frac{\$ 100,000}{40,000}=\$ 2.50 \text { per unit }
$$

$\begin{aligned} & \text { Capacity } \\ & \text { Method }\end{aligned}=\frac{\$ 100,000}{50,000}=\$ 2.00$ per unit

Quick Check \checkmark

Crest Winery in Woodinville leases an automatic corking machine for $\$ 100,000$ per year. At full capacity, it can cork 50,000 cases of wine per year. The company estimates 40,000 cases of wine will be produced and sold next year. What is the predetermined overhead rate based on the estimated number of cases of wine?
a. $\$ 2.00$ per case.
b. $\$ 2.50$ per case.
c. $\$ 4.00$ per case.

Quick Check \checkmark

Crest Winery in Woodinville leases an automatic corking machine for $\$ 100,000$ per year. At full capacity, it can cork 50,000 cases of wine per year. The company estimates 40,000 cases of wine will be produced and sold next year. What is the predetermined overhead rate based on the estimated number of cases of wine?
a. $\$ 2.00$ per case.
b. $\$ 2.50$ per case.
c. $\$ 4.00$ per case.

Quick Check $\sqrt{ }$

Crest Winery in Woodinville leases an automatic corking machine for $\$ 100,000$ per year. At full capacity, it can cork 50,000 cases of wine per year. The company estimates 40,000 cases of wine will be produced and sold next year. What is the predetermined overhead rate based on the number of cases of wine at capacity?
a. $\$ 2.00$ per case.
b. $\$ 2.50$ per case.
c. $\$ 4.00$ per case.

Quick Check \checkmark

Crest Winery in Woodinville leases an automatic corking machine for \$100,000 per year. At full capacity, it can cork 50,000 cases of wine per year. The company estimates 40,000 cases of wine will be produced and sold next year. What is the predetermined overhead rate based on the number of cases of wine at sapacity?
a. $\$ 2.00$ per case.
b. $\$ 2.50$ per case.
c. $\$ 4.00$ per case.

Quick Check \checkmark

When capacity is used in the denominator of the predetermined rate, what happens to the predetermined overhead rate as estimated activity decreases?
a. The predetermined overhead rate goes up when activity goes down.
b. The predetermined overhead rate stays the same because it is not affected by changes in activity.
c. The predetermined overhead rate goes down when activity goes down.

Quick Check \checkmark

When capacity is used in the denominator of the predetermined rate, what happens to the predetermined overhead rate as estimated activity decreases?
a. The predetermined overhead rate goes up when activity goes down.
b. The predetermined overhead rate stays the same because it is not affected by changes in activity.
c. The predetermined overhead rate goes down when activity goes down.

Quick Check $\sqrt{ }$

When estimated activity is used in the denominator of the predetermined rate, what happens to the predetermined overhead rate as estimated activity decreases?
a. The predetermined overhead rate goes up when activity goes down.
b. The predetermined overhead rate stays the same because it is not affected by changes in activity.
c. The predetermined overhead rate goes down when activity goes down.

Quick Check \checkmark

When estimated activity is used in the denominator of the predetermined rate, what happens to the predetermined overhead rate as estimated activity decreases?
a. The predetermined overhead rate goes up when activity goes down.
b. The predetermined overhead rate stays the same because it is not affected by changes in activity.
c. The predetermined overhead rate goes down when activity goes down.

Income Statement Preparation - Capacity

Actual volume	40,000 cases
Selling price	$\$ 40.00$ per case
Variable production cost	$\$ 24.00$ per case
Fixed manufacturing overhead	$\$ 100,000$ per year
Capacity	50,000 cases
Predetermined overhead rate	$\$ 2.00$ per case
Fixed selling and admin. expense	$\$ 500,000$ per year
Revenue	$\$ 1,600,000$
Cost of goods sold	$1,040,000$
Gross margin	560,000
Cost of idle capacity	20,000
Selling and admin. expense	500,000
Net operating income	$\$ 40,000$

Income Statement Preparation - Traditional

Actual volume	40,000 cases
Selling price	$\$ 40.00$ per case
Variable production cost	$\$ 24.00$ per case
Fixed manufacturing overhead	$\$ 100,000$ per year
Capacity	40,000 cases
Predetermined overhead rate	$\$ 2.50$ per case
Fixed selling and admin. expense	$\$ 500,000$ per year
Revenue	$\$ 1,600,000$
Cost of goods sold	$1,060,000$
Gross margin	540,000
Cost of idle capacity	-
Selling and admin. expense	500,000
Net operating income	$\$ 40,000$

Further Classification of Labor Costs

Appendix 3B

PowerPoint Authors:
Susan Coomer Galbreath, Ph.D., CPA
Charles W. Caldwell, D.B.A., CMA Jon A. Booker, Ph.D., CPA, CIA
Cynthia J. Rooney, Ph.D., CPA

Learning Objective 9

Properly account for labor costs associated with idle time, overtime, and fringe benefits.

Idle Time

Machine
Breakdowns

Material

 Shortages
Power
 Failures

The labor costs incurred during idle time are ordinarily treated as manufacturing overhead.

Overtime

The overtime premiums for all factory workers are usually considered to be part of manufacturing overhead.

Labor Fringe Benefits

Fringe benefits include employer paid costs for insurance programs, retirement plans, supplemental unemployment programs, Social Security, Medicare, workers' compensation, and unemployment taxes.

Some companies include all of these costs in manufacturing overhead.

Other companies treat fringe benefit expenses of direct laborers as additional direct labor costs.

End of Chapter 3B

