Lecture 2.04: Multiple Mendelian Traits

John D. Nagy

Scottsdale Community College

BIO 181, General Biology for Majors

John Nagy Lec 2.04: Multiple Traits

Outline

1 Introduction: the question

Properties of probability
Multiplication rule
Addition rule

A more complex problem

Problem

What are the expected phenotypes and phenotypic ratios from a cross between spherical-, yellow-seeded, tall, purple-flowered F_1 (heterozygous) pea plants?

 $AaBbCcDd \times AaBbCcDd$

- How big would the Punnett square have to be?
- ۲
- ۲

A more complex problem

Problem

What are the expected phenotypes and phenotypic ratios from a cross between spherical-, yellow-seeded, tall, purple-flowered F_1 (heterozygous) pea plants?

$AaBbCcDd \times AaBbCcDd$

- How big would the Punnett square have to be?
- $16 \times 16 = 256$ cells. (Yuck!)
- Luckily, there is a way to calculate the probabilities directly.

We need a little probability theory.

Properties of probability 1: Independent events

Concept: Random event

A **random event** is any event for which the result cannot be predicted with certainty.

"Multiplication Rule" (I.e., definition of independent events)

Suppose A and B are 2 independent random events; that is, the outcome of A has no effect on the outcome of B. Then the probability of both A and B is equal to the product of the probability of A and the probability of B. That is,

 $\Pr(A \text{ and } B) = \Pr(A) \times \Pr(B).$

Example 1

What is the probability that two consecutive coin flips yields heads both times?

Example 1

What is the probability that two consecutive coin flips yields heads both times?

Solution:

 $Pr(2 \text{ heads}) = Pr(1 \text{st toss heads}) \times Pr(2 \text{ nd toss heads})$

$$= \frac{1}{2} \times \frac{1}{2}$$
$$= \frac{1}{4}.$$

《曰》 《聞》 《臣》 《臣》

Example 2

Joe and Amy plan to have two children. What is the probability that the first is a boy and the second is a girl?

《曰》 《聞》 《臣》 《臣》

Example 2

Joe and Amy plan to have two children. What is the probability that the first is a boy and the second is a girl?

Solution:

 $Pr(Boy then Girl) = Pr(1st kid boy) \times Pr(2nd kid girl)$

 $= 0.51 \times 0.49$

= 0.2499.

・ロッ ・雪 ・ ・ ヨ ・

Example 3

What is the probability that, in a family with 5 children, all the kids are girls?

Example 4

What is the probability that a family of 5 children has at least 1 boy child?

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example 3

What is the probability that, in a family with 5 children, all the kids are girls?

Solution:

$$0.49^5 = 0.02825.$$

Example 4

What is the probability that a family of 5 children has at least 1 boy child?

《曰》 《聞》 《臣》 《臣

Example 3

What is the probability that, in a family with 5 children, all the kids are girls?

Solution:

 $0.49^5 = 0.02825.$

Example 4

What is the probability that a family of 5 children has at least 1 boy child?

Solution:

$$1 - 0.49^5 = 1 - 0.02825 = 0.97175.$$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Properties of probability 2: Disjoint events

"Addition rule"

Suppose that an outcome of a random event can occur in two distinctly different ways, A_1 or A_2 . Then the probability of event A is the sum of the probabilities of A_1 and A_2 . That is,

 $\Pr(A) = \Pr(A_1) + \Pr(A_2).$

Note:

"And" =
$$\times$$
;
"Or" = +.

Examples of the addition rule

Example 1: Joe and Amy again

Joe and Amy plan to have two children. What is the probability that they **have one girl and one boy**?

What is the probability of each of these **events**?

HINT: They are not equally probable.

We have to consider the *identities* of the babies.

Examples of the addition rule

Example 1: Joe and Amy again

Joe and Amy plan to have two children. What is the probability that they **have one girl and one boy**?

Solution:

- $Pr(girl and girl) = 0.49^2 = 0.2401;$
- $Pr(girl and boy) = 0.49 \times 0.51 = 0.2499;$
- $Pr(boy and girl) = 0.51 \times 0.49 = 0.2499;$
- $Pr(boy and boy) = 0.51^2 = 0.2601;$

Therefore, Pr((girl and boy) or (boy and girl)

 $= \Pr(\text{girl and boy}) + \Pr(\text{boy and girl})$

= 0.2499 + 0.2499

= 0.4998.

Genetic examples

Example from Mendel's study

Mendel crossed two spherical-, yellow-seeded F_1 plants. What is the probability that the offspring is spherical-, green-seeded?

Questions that need to be answered:

- Are the traits independent? (Can we use the multiplication rule?)
- What are the genotypes of the parents?
- What is the probability the offspring is spherical?
- What is the probability the offspring is green?

Simple genetic example

Example from Mendel's study

Mendel crossed two spherical-, yellow-seeded F_1 plants. What is the probability that the offspring is spherical-, green-seeded?

Questions that need to be answered:

- Mendel already showed the traits were independent.
- $AaBb \times AaBb$.
- Probability the offspring is spherical = 3/4.
- Probability the offspring is green = 1/4.

Therefore,

$$\Pr(\text{spherical and green}) = \frac{3}{4} \times \frac{1}{4} = \frac{3}{16}.$$

Back to the original problem

Problem

What are the expected phenotypes and phenotypic ratios from a cross between spherical-, yellow-seeded, tall, purple-flowered F_1 (heterozygous) pea plants?

$AaBbCcDd \times AaBbCcDd$

- What is the probability it's wrinkled?
- What is the probability it's green?
- What is the probability it's tall?
- What is the probability it's purple?

Back to the original problem

Problem 1

What are the expected phenotypes and phenotypic ratios from a cross between spherical-, yellow-seeded, tall, purple-flowered F_1 (heterozygous) pea plants?

 $AaBbCcDd \times AaBbCcDd$

- Probability it's wrinkled = 1/4.
- Probability it's green = 1/4.
- Probability it's tall = 3/4.
- Probability it's purple = 3/4.

Therefore, Pr(wrinkled and green and tall and purple)

$$= \frac{1}{4} \times \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4} = \frac{9}{256}.$$

Intro Probability Application to Genetics

A more challenging problem

Problem 2

Consider the same cross as before, namely:

 $AaBbCcDd \times AaBbCcDd.$

What is the probability that the offspring is heterozygous for at least 3 of the 4 traits?

How many ways can this criterion (heterozygous for at least 3 of 4 traits) be met?

A more challenging problem

Problem 2

Consider the same cross as before, namely:

$AaBbCcDd \times AaBbCcDd.$

What is the probability that the offspring is heterozygous for at least 3 of the 4 traits?

Solution: Here are all the possibilities.

AaBbCcDD		AaBbCcdd
AaBbCCDd		AaBbccDd
AaBBCcDd		AabbCcDd
AABbCcDd		aaBbCcDd
	AaBbCcDd	

A more challenging problem

Solution (cont.): Here are their probabilities.

 $AaBbCcDD = (1/2)^3 \times 1/4$ $AaBbCCDd = (1/2)^3 \times 1/4$ $AaBBCcDd = (1/2)^3 \times 1/4$ $AABbCcDd = (1/2)^3 \times 1/4$

AaBbCcdd = $(1/2)^3 \times 1/4$ AaBbccDd = $(1/2)^3 \times 1/4$ AabbCcDd = $(1/2)^3 \times 1/4$ aaBbCcDd = $(1/2)^3 \times 1/4$

 $AaBbCcDd = (1/2)^4$

Now, combine them.

A more challenging problem

Solution (cont.): Here are their probabilities.

$$\begin{array}{ll} \text{AaBbCcDD} = (1/2)^3 \times 1/4 & \text{AaBbCcdd} = (1/2)^3 \times 1/4 \\ \text{AaBbCCDd} = (1/2)^3 \times 1/4 & \text{AaBbccDd} = (1/2)^3 \times 1/4 \\ \text{AaBbCcDd} = (1/2)^3 \times 1/4 & \text{AabbCcDd} = (1/2)^3 \times 1/4 \\ \text{AABbCcDd} = (1/2)^3 \times 1/4 & \text{aaBbCcDd} = (1/2)^3 \times 1/4 \\ \end{array}$$

$$AaBbCcDd = (1/2)^4$$

Here's how they combine:

$$8\left(\frac{1}{2}\right)^3\frac{1}{4} + \left(\frac{1}{2}\right)^4 = \frac{1}{4} + \frac{1}{16} = \frac{5}{16}$$

-< 문 → -< 문