Lecture 2.04: Multiple Mendelian Traits

John D. Nagy

Scottsdale Community College

BIO 181, General Biology for Majors

Outline

(1) Introduction: the question
(2) Properties of probability

- Multiplication rule
- Addition rule
(3) Application to Genetics

A more complex problem

Problem

What are the expected phenotypes and phenotypic ratios from a cross between spherical-, yellow-seeded, tall, purple-flowered F_{1} (heterozygous) pea plants?

$$
A a B b C c D d \times A a B b C c D d
$$

- How big would the Punnett square have to be?
-
-

A more complex problem

Problem

What are the expected phenotypes and phenotypic ratios from a cross between spherical-, yellow-seeded, tall, purple-flowered F_{1} (heterozygous) pea plants?

$A a B b C c D d \times A a B b C c D d$

- How big would the Punnett square have to be?
- $16 \times 16=256$ cells. (Yuck!)
- Luckily, there is a way to calculate the probabilities directly.

We need a little probability theory.

Properties of probability 1: Independent events

Concept: Random event

A random event is any event for which the result cannot be predicted with certainty.

"Multiplication Rule" (I.e., definition of independent events)

Suppose A and B are 2 independent random events; that is, the outcome of A has no effect on the outcome of B. Then the probability of both A and B is equal to the product of the probability of A and the probability of B. That is,

$$
\operatorname{Pr}(A \text { and } B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B)
$$

Example 1

What is the probability that two consecutive coin flips yields heads both times?

Examples of the multiplication rule

Example 1

What is the probability that two consecutive coin flips yields heads both times?

Solution:

$$
\begin{aligned}
\operatorname{Pr}(2 \text { heads }) & =\operatorname{Pr}(1 \text { st toss heads }) \times \operatorname{Pr}(2 \text { nd toss heads }) \\
& =\frac{1}{2} \times \frac{1}{2} \\
& =\frac{1}{4} .
\end{aligned}
$$

Example 2

Joe and Amy plan to have two children. What is the probability that the first is a boy and the second is a girl?

Example 2

Joe and Amy plan to have two children. What is the probability that the first is a boy and the second is a girl?

Solution:

$$
\begin{aligned}
\operatorname{Pr}(\text { Boy then Girl }) & =\operatorname{Pr}(1 \text { st kid boy }) \times \operatorname{Pr}(2 \text { nd kid girl }) \\
& =0.51 \times 0.49 \\
& =0.2499
\end{aligned}
$$

Examples of the multiplication rule

Example 3

What is the probability that, in a family with 5 children, all the kids are girls?

Example 4

What is the probability that a family of 5 children has at least 1 boy child?

Examples of the multiplication rule

Example 3

What is the probability that, in a family with 5 children, all the kids are girls?

Solution:

$$
0.49^{5}=0.02825
$$

Example 4

What is the probability that a family of 5 children has at least 1 boy child?

Examples of the multiplication rule

Example 3

What is the probability that, in a family with 5 children, all the kids are girls?

Solution:

$$
0.49^{5}=0.02825
$$

Example 4

What is the probability that a family of 5 children has at least 1 boy child?

Solution:

$$
1-0.49^{5}=1-0.02825=0.97175
$$

Properties of probability 2: Disjoint events

"Addition rule"

Suppose that an outcome of a random event can occur in two distinctly different ways, A_{1} or A_{2}. Then the probability of event A is the sum of the probabilities of A_{1} and A_{2}. That is,

$$
\operatorname{Pr}(A)=\operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right) .
$$

Note:

$$
\begin{aligned}
" A n d " & =\times ; \\
" O r " & =+.
\end{aligned}
$$

Examples of the addition rule

Example 1: Joe and Amy again

Joe and Amy plan to have two children. What is the probability that they have one girl and one boy?

What is the probability of each of these events?

or

HINT: They are not equally probable.
We have to consider the identities of the babies.

Examples of the addition rule

Example 1: Joe and Amy again

Joe and Amy plan to have two children. What is the probability that they have one girl and one boy?

Solution:

- $\operatorname{Pr}($ girl and girl $)=0.49^{2}=0.2401 ;$
- $\operatorname{Pr}($ girl and boy $)=0.49 \times 0.51=0.2499$;
- $\operatorname{Pr}($ boy and girl $)=0.51 \times 0.49=0.2499$;
- $\operatorname{Pr}($ boy and boy $)=0.51^{2}=0.2601$;

Therefore, $\operatorname{Pr}(($ girl and boy) or (boy and girl)

$$
\begin{aligned}
& =\operatorname{Pr}(\text { girl and boy })+\operatorname{Pr}(\text { boy and girl }) \\
& =0.2499+0.2499 \\
& =0.4998
\end{aligned}
$$

Genetic examples

Example from Mendel's study

Mendel crossed two spherical-, yellow-seeded F_{1} plants. What is the probability that the offspring is spherical-, green-seeded?

Questions that need to be answered:

- Are the traits independent? (Can we use the multiplication rule?)
- What are the genotypes of the parents?
- What is the probability the offspring is spherical?
- What is the probability the offspring is green?

Simple genetic example

Example from Mendel's study

Mendel crossed two spherical-, yellow-seeded F_{1} plants. What is the probability that the offspring is spherical-, green-seeded?

Questions that need to be answered:

- Mendel already showed the traits were independent.
- $A a B b \times A a B b$.
- Probability the offspring is spherical $=3 / 4$.
- Probability the offspring is green $=1 / 4$.

Therefore,

$$
\operatorname{Pr}(\text { spherical and green })=\frac{3}{4} \times \frac{1}{4}=\frac{3}{16} .
$$

Back to the original problem

Problem

What are the expected phenotypes and phenotypic ratios from a cross between spherical-, yellow-seeded, tall, purple-flowered F_{1} (heterozygous) pea plants?

$$
A a B b C c D d \times A a B b C c D d
$$

- What is the probability it's wrinkled?
- What is the probability it's green?
- What is the probability it's tall?
- What is the probability it's purple?

Back to the original problem

Problem 1

What are the expected phenotypes and phenotypic ratios from a cross between spherical-, yellow-seeded, tall, purple-flowered F_{1} (heterozygous) pea plants?

$A a B b C c D d \times A a B b C c D d$

- Probability it's wrinkled $=1 / 4$.
- Probability it's green $=1 / 4$.
- Probability it's tall $=3 / 4$.
- Probability it's purple $=3 / 4$.

Therefore, Pr (wrinkled and green and tall and purple)

$$
=\frac{1}{4} \times \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{9}{256} .
$$

A more challenging problem

Problem 2

Consider the same cross as before, namely:

$$
A a B b C c D d \times A a B b C c D d
$$

What is the probability that the offspring is heterozygous for at least 3 of the 4 traits?

How many ways can this criterion (heterozygous for at least 3 of 4 traits) be met?

A more challenging problem

Problem 2

Consider the same cross as before, namely:

$$
A a B b C c D d \times A a B b C c D d
$$

What is the probability that the offspring is heterozygous for at least 3 of the 4 traits?

Solution: Here are all the possibilities.

AaBbCcDD
 AaBbCCDd
 AaBBCcDd
 AABbCcDd

AaBbCcdd
AaBbccDd
AabbCcDd
aaBbCcDd

AaBbCcDd

A more challenging problem

Solution (cont.): Here are their probabilities.

$$
\begin{array}{ll}
\mathrm{AaBbCcDD}=(1 / 2)^{3} \times 1 / 4 & \text { AaBbCcdd }=(1 / 2)^{3} \times 1 / 4 \\
\mathrm{AaBbCCDd}=(1 / 2)^{3} \times 1 / 4 & \mathrm{AaBbccDd}=(1 / 2)^{3} \times 1 / 4 \\
\mathrm{AaBBCcDd}=(1 / 2)^{3} \times 1 / 4 & \text { AabbCcDd }=(1 / 2)^{3} \times 1 / 4 \\
\mathrm{AABbCcDd}=(1 / 2)^{3} \times 1 / 4 & \text { aaBbCcDd }=(1 / 2)^{3} \times 1 / 4 \\
& \\
\mathrm{AaBbCcDd} & =(1 / 2)^{4}
\end{array}
$$

Now, combine them.

A more challenging problem

Solution (cont.): Here are their probabilities.

$$
\begin{array}{ll}
\mathrm{AaBbCcDD}=(1 / 2)^{3} \times 1 / 4 & \text { AaBbCcdd }=(1 / 2)^{3} \times 1 / 4 \\
\mathrm{AaBbCCDd}=(1 / 2)^{3} \times 1 / 4 & \mathrm{AaBbccDd}=(1 / 2)^{3} \times 1 / 4 \\
\mathrm{AaBBCcDd}=(1 / 2)^{3} \times 1 / 4 & \mathrm{AabbCcDd}=(1 / 2)^{3} \times 1 / 4 \\
\mathrm{AABbCcDd}=(1 / 2)^{3} \times 1 / 4 & \text { aaBbCcDd }=(1 / 2)^{3} \times 1 / 4 \\
& \\
\mathrm{AaBbCcDd} & =(1 / 2)^{4}
\end{array}
$$

Here's how they combine:

$$
8\left(\frac{1}{2}\right)^{3} \frac{1}{4}+\left(\frac{1}{2}\right)^{4}=\frac{1}{4}+\frac{1}{16}=\frac{5}{16} .
$$

