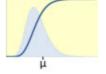


Joint Cost Schedule Risk and Uncertainty Handbook

28 August 2013


Naval Center for Cost Analysis

GUIDING, STRENGTHENING, AND DIRECTING COST ANALYSIS IN THE DEPARTMENT OF THE NAVY

Home Organization About Us Services

References Sitemap Contact Us Tools

https://www.ncca.navy.mil/tools/tools.cfm

Intent is to make CSRUH and associated support files available from this web site

S-Curve Tool for Risk and Uncertainty Analysis

Collaborative Cost Research Library System

The Naval Center for Cost Analysis maintains a Collaborative Cost Research Library containing a host of cost analysis related publications

NCCA Inflation Indices

The Naval Center for Cost Analysis generates inflation rates and indices for the Navy and Marine Corps appropriations and cost elements.

Operating and Support Cost Analysis Model

System Dynamics simulation tool provides rapid cost estimation and analysis of high cost capital assets and their subsystems.

NCCA Discount Rate Calculator - 2013

The NCCA 2013 Discount Calculator is a new Excel-based tool for use by analysts to help facilitate the use of discount factors published by the Office of Management and Budget (OMB) that are required for use in Department of the Navy economic analyses.

https://www.ncca.navy.mil/tools/csruh/index.cfm

JCARD

Joint Cost Analysis Research & Database Working Group

Web information system that aids in improving efficiency, credibility and capability of cost analysis within the DoD community through the use of shared resources, data, knowledge and expertise.

Manpower Cost Estimating Tool for Enhanced Online Reporting

Approved for Public Release

Background and Purpose

Background

- AFCAA Cost Risk and Uncertainty Handbook released in 2007. Chapter 14 of the GAO Cost Estimating and Assessment Guide, released in 2009, is consistent with the AFCAA CRUH.
- NCCA initiated a task Sep 2012 to update the AFCAA CRUH to capture the latest concepts and to place more emphasis on capturing schedule uncertainty and the risk register in cost risk assessments

• Purpose:

- The Cost Schedule Risk and Uncertainty Handbook (CSRUH) is to describe acceptable analytical techniques to model uncertainty in a cost estimate in order to calculate and report the cost risk.
- Define and present simple, well-defined cost risk and uncertainty processes that are repeatable, defendable and easily understood.
- Facilitate inter and intra-service buy-in

Government Led Effort

- The task leads were Duncan Thomas, Technical Director NCCA and John Fitch, NCCA.
- Significant contributions were made by: Steve VanDrew NAVAIR, Mike Koscielski SPAWAR, Dane Cooper NAVSEA, Kyle Ratliff MARCORSYSCOM, Janet Vacca-LeBoeuf NELO, Ranae Woods AFCAA, Dave Henningsen ODASA-CE, Trevor Vanatta Army TACOM, and Charles Hunt NASA.
- Numerous other Government employees and support contractors also participated in detailed reviews of handbook drafts and/or participated in the Peer Reviews. All provided valuable comments and guidance.
- Alfred Smith and Jeff McDowell were the principle authors with Dr Shu-Ping Hu as the principle author of Appendix A.

Introducing CISM and FICSM

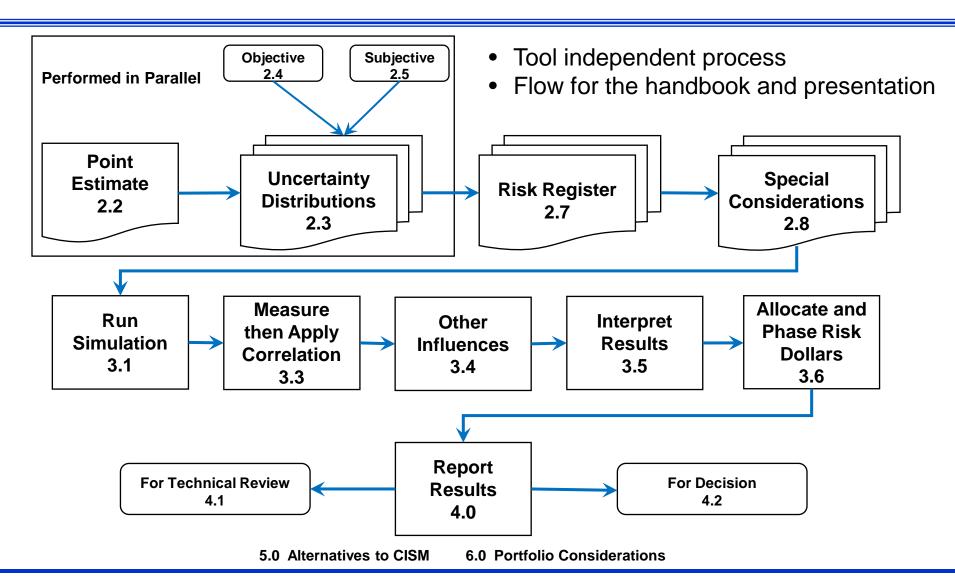
- **CISM**: Cost Informed by Schedule Method
 - Spreadsheet based cost uncertainty model that has some level of duration uncertainty built into it
 - CISM model is the focus of the handbook
- FICSM: Fully Integrated Cost Schedule Method
 - Typically a cost loaded schedule model with cost and schedule risk and uncertainty addressed
 - FICSM is gaining popularity. It is introduced in this handbook as a concept for future consideration and study.

- Compare Joint CSRUH to the AFCAA CRUH
- Applying the Cost Informed by Schedule Method (CISM)
- Finish and Evaluate the CISM Model
- Correlation, convergence, interpreting results
- Allocating and Phasing Risk Dollars
- Reports: For Technical Review, For Decision Makers
- Alternate Methods: eSBM, Method of Moments, Outputs based
- Fully Integrated Cost and Schedule Method (FISCM) Introduction
- Future Work

Comparing Joint CSRUH to AFCAA CRUH (1 of 3)

AFCAA CRUH (2007)	Joint CSRUH (2013)					
Cost Risk and Un	certainty Methods					
Inputs stressed throughout	CISM (Inputs: emphasis on duration uncertainty)					
Outputs, FRISK, SBM	FICSM, eSBM, Method of Moments, Outputs					
Sources of	Uncertainty					
	More emphasis on schedule and risk register					
	Added: sources of risk					
Point Estimate						
Based on CARD	Based on realistic, documented program definition					
Finish PE First	Perform PE and Uncertainty in Parallel					
	Introduce schedule driven methods					
	PEs = Point Estimate for the schedule					
Uncertainty	Distributions					
	Guidance on histograms, bin count					
Lognormal, Normal, Triangular, Beta, Uniform	Added Log-t, Student-t, and BetaPERT					
	Descriptive Statistics, more definitions					
Weibull mentioned in a table	Poisson, Weibull, Exponential (Introduced for O&S)					

Comparing Joint CSRUH to AFCAA CRUH (2 of 3)


AFCAA CRUH (2007)	Joint CSRUH (2013)					
Objective	Uncertainty					
Statistical Analysis, Regression	Statistical Analysis, Regression					
	Distribution Fitting					
	Significant update to Appendix A mathematics					
Subjective	Uncertainty					
Expert Opinion treated as 15/85	Expert Opinion treated as 15/85					
	Expanded Elicitation Guidance					
Adjust for Skew (Triangular only)	Adjust for Skew (Triangular, Uniform, BetaPERT)					
Default Table	Table of Last Resort (same as AFCAA CRUH)					
New or Significant	tly Revised Material					
	NCCA SAR Growth Study, AFCAA CRUAMM					
	Best Practices including spreadsheet layout					
Truncate at zero	Truncate at zero reinforced					
	Capturing the Risk Register, Sunk costs, Inflation					
Technical/Schedule Adjustment (removed)	CER Adjustment factors					
	Calibrated CERs, Significant re-write of CIC guidance					
	Detailed example to measure correlation					
	Tool independent utilities included:					
	- adjust for skew, correlation, s-curve, convergence					
	CRUAMM: Cost Risk Uncertainty and Analysis Metrics Manual					

Comparing Joint CSRUH to AFCAA CRUH (3 of 3)

AFCAA CRUH (2007)	Joint CSRUH (2013)
Cor	relation
Measure first	Emphasized measure first (including examples)
	Stress application where needed only
Implicit and Explicit	Functional and Applied
Default based on number of elements	Default 0.3 (based on 2012 MDA Cost Handbook)
Alle	ocation
Based on Standard Deviation - Fully Defined	Several methods fully defined, worked examples:
Needs - Introduced	- Std Dev, Std Dev adj for corr, Needs
	More detail on phased allocation
Re	porting
	Charts for technical review
	- distinction between cost contributor and driver
	- cost and uncertainty driver chart guidance
Charts for Decision Makers	Charts for decision makers
Appendix A - Te	rminology and Detail
	Completely re-organized
Definitions	More definitions, including Nunn-McCurdy Breach
	Descriptive statistics and distribution math
	Goodness-of-fit statistics
	Three allocation methods compared
Appendix B - Fully Integrat	ed Cost and Schedule Method
	All new material.

BUILDING THE CISM MODEL

CISM Model Development Flow

The Point Estimate

- The point estimate (PE) can be based on:
 - Program of Record: requirement documents
 - Technical Baseline: technical assessment
 - What-If Case: specific case study
- Cost & schedule WBS should be same, but:
 - Cost Point Estimate (PE) will be derived from an approved WBS structure (MIL-STD-881C)
 - Schedule Point Estimate (PE_s) is an integrated, network of activities to support the events, accomplishments, and criteria of the project plan

Example Model WBS

Built in Crystal Ball, @Risk and ACE

Estimate WBS	EMD Variables	Production Variables	
 ∑ Missile System ∑ Engineering and Manufacturing Development ∑ Air Vehicle Prototypes Software System Engineering Program Management System Test and Evaluation Training Data Peculiar Support Equipment ∑ Air Vehicle Air Vehicle Air Vehicle Air Vehicle Air Vehicle IAT&C System Engineering Program Management System Engineering Data Propulsion Guidance Payload Air Vehicle IAT&C System Test and Evaluation Training Program Manageme Risk Register 1 Impact System Engineering Program Manageme Nation Program Manageme Program Manag	EMD Date and Duration EMD Date and Duration EMD Planned Start Date EMD Start Delay (Months ← Drives EMD Scheel EMD Modeled Start Date EMD Duration (Months) ← Drives EMD Scheel EMD Duration (Months) EMD RR Dur Incr Due to SW (Months) EMD End Date EMD Qty and Variables EMD Qty and Variables EMD Design & Dev Cost Per Month EMD Protoype Quantity EMD Protoype Quantity EMD Prototype Learning Slope EMD Step Increase over Production Cost EMD SW Effort (Mths) EMD SW Effort (Mths)	- + Production Duration (Months)	

Example Model Introduces Duration Into a Typical Cost Model

WBS Description			Duration Sensitive				
Missile System							
Engineering and Manufacturi	ng Developmer	nt					
Air Vehicle	r Vehicle						
Design & Development		[C	DurationBased] EMD_DesignDevPerMth*EMD_Duration	Direct			
Prototypes		[Factor	for T1] EMD_Prod * ProdToEMDStepUpFact * Learning	Time Independent			
Software		[AI	nalogy] ThirdPartyToolSWManMonths * SWLaborRate\$	Time Independent			
System Engineering		– [B	Build-up] EMD_SEFTE * EMD_SELabRate\$ * EMD_Duration	Direct			
Program Management			<pre>Build-up] EMD_PMFTE * EMD_PMLabRate\$ * EMD_Duration</pre>	Direct			
System Test and Evaluati	on		[Factor] EMD_Trng_Fac * EMD_Proto\$	Time Independent			
Training	Durotio	n Consitivo	Indirect				
Data		on Sensitive	Indirect				
Peculiar Support Equipme	Peculiar Support Equipment [Factor] EMD_SptEquip_Fac * EMD_Proto\$						
Production & Deployment							
Air Vehicle							
Airframe*		Parame	etric CER: TRIAD] 25.62 + 2.101 * AirFrameWt ^ 0.5541	Learning Rate			
Propulsion*		[Para]	cetric CER: OLS Loglinear] 1.618 * MotorWt ^ 0.6848	Learning Rate			
Guidance*			[Throughput] 100	Learning Rate			
Payload*		[Parametric CER: OL	LS Linear] (30.15 + 1.049 * WarheadWt) * AdjustFactor	Learning Rate			
Air Vehicle IAT&C*			[Third Party Tool] IACO_HsPerUnit * MfgLaborRate\$	Learning Rate			
System Engineering			Build-up] Prod_SETE * Prod_SELabRate\$ * Prod_Duration	Direct			
Program Management		[Β	Direct				
System Test and Evaluati	on		Throughput] \$1,250 per year Direct				
Training			Indirect				
Data			Indirect				
Peculiar Support Equipme	ent		[Throughput] \$7,634.27	Time Independent			
Initial Spares and Repair	Parts		[Factor] InitSpares_Fac * AV_Prod\$	Indirect			

* = CER to estimate the first unit cost for a rate affected unit learning curve

Basic Distribution Shapes

DISTRIBUTION	TYPICAL APPLICATION	YPICAL APPLICATION KNOWLEDGE OF PARAMETE MODE REQUIRE		RECOMMENDED PARAMETERS
Lognormal	Default when no better info. Probability skewed right.		2	Median, high
	Replicate another model result. Power OLS CER uncertainty.	Mean or median known better than the mode		(some tools have a 3 rd parameter : "Location". By default, it is zero. Used to "slide" the lognormal left or right (even into negative region)
Log-t	Log-t when < 30 data points		3	Add Degrees of Freedom
Triangular	Expert opinion. Finite min/max. Probability reduces towards endpoints. Skew possible. Labor rates, labor rate adjustments, factor methods	Good idea	3	Low, mode, and high
BetaPert	Like triangular, but mode is 4 times more important than min or max.	Very good idea	3	Low, mode, and high
Beta	Like triangular, but min/max region known better than mode.	Not sure	4	Min, low, high, and max
Normal	Equal chance low/high. Unbounded in either direction Linear OLS CER uncertainty.	Good idea, but unbounded in either direction	2	Mean/Median/Mode and high value
Student's-t	t when < 30 data points		3	Add Degrees of Freedom
Uniform	Equal chance over uncertainty range. Finite min/max.	No idea	2	Low and High (some tools require min and max)
	<i>high</i> are defined with an associ <i>Max</i> are the absolute lower/up		/n as the 0/100)	

Example Model Makes Use of All Recommended Distributions

- Recommend uncertainties organized on a single sheet
- Recommended format facilitates validation

			Dis	tribution	Paramet	ers				
* INPUT VARIABLES	Forecast	Distribution Form	Point Estimate is:	Uncert ainty	Min	Low	High	Max	Percent ile	Percent ile
* EMD Qty and Variables										
EMD Design & Dev Cost Per Mont	n 200.0000	Lognormal	Median	1.3378	1.189					
EMD Protoype Quantity EMD Prototype T1	\$678.47	Prototy	l De uncertai	nty Inhei	rited fro	om Pro	ductior	n		
EMD Step Increase over Productio		Triangular	Mode	1.8		1.5	2.5		9	79
EMD Prototype Learning Slope										
EMD SW Effort (Mths)	2,100.00									
EMD SW Effort	2,100.00	LogNormal	Median	1.00			1.50			80
RR #1 Add to SW Person Mont	ו									
EMD SW Labor Rate (\$/month)	15.0000	Uniform	Undefined	1.00	0.95			1.3		100
EMD Sys Eng Annual Cost	3.500.00	Triangular	Mode	1.00		0.90	1.50		5	75
EMD PM Annual Cost		Triangular	Mode	1.00		0.90	1.30		8	78
EMD Sys Test Eval Factor	0.6000	Triangular	Mode	1.00		0.90	1.70		4	74
EMD Training Factor		Triangular	Mode	1.00		0.90	1.30		4	74
EMD Data Factor		Triangular	Mode	1.00		0.95	1.30		4	74
EMD Support Equipment Factor		Triangular	Mode	1.00		0.90	1.70		4	74

Operating and Support Probability Distributions

Poisson distribution

- Discrete distribution that requires only the mean of the distribution
- Used to define the number of failures in a specified time when the average number of failures is small
- Also used to estimate testing, inventory levels, and computing reliability
- Commonly used to simulate the number of failures per year by specifying with the inverse of the mean time between failure

• Exponential distribution

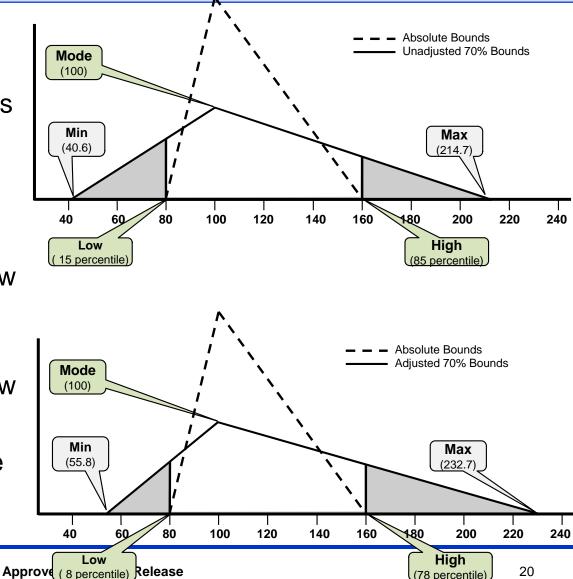
- a continuous distribution that can be used to estimate the time between failures.
- Specified using the mean time between failures

Weibull distribution

- A continuous distribution defined by location, scale and shape parameters
- Identical to Exponential when shape = 1; identical to Rayleigh when shape = 2
- Used to estimate the time between failures when failure rate is decreasing (beginning of service) and when failure rate is increasing (end of service)

Objective and Subjective Uncertainty

- Use **objective**, data-driven uncertainty, such as:
 - Parametric equations through regression analysis
 - Fit distributions to historical data or CER residuals
 - NCCA SAR Growth Study or AFCAA CRUAMM
- Subjective uncertainty if necessary.
 In absence of compelling evidence to do otherwise:
 - Use lognormal distribution as the default (data driven)
 - CRUAMM found 60% of measured uncertainty distribution were lognormal
 - Treat expert opinion as the 70 percent interval (15/85)
 - Adjust the 15/85 interpretation to maintain expert's skew when using triangular, uniform or betaPERT distributions
- CSRUH also provides a Table of Last Resort


NCCA SAR Growth Study AFCAA CRUAMM

NCCA SAR Growth Study

- CSRUH contains two tables: mean cost growth factor (CGF), and the CVs that go with them
- Stratified by commodity, phase, service, and milestone
- Available from the NCCA Tools website
- AFCAA CRUAMM (Cost Risk and Uncertainty Metrics Manual)
 - Thousands of fitted distributions to cost, cost drivers, factors and CER residuals
 - Stratified by commodity, phase and WBS element
 - Public domain volume available from AFCAA

Interpreting the Expert's Opinion

- Dotted line represents the triangular distribution if the expert bounds are treated as absolute
- Top image illustrates what the distribution would look like before adjusting for skew
- Bottom image shows the distribution adjusted for skew
- Similar effects if you choose betaPERT or uniform distributions

28 August 2013

Delivered Utility Used to Calculate Example Model Adjustments for Skew

- Recommend uncertainties organized on a single sheet
- Recommended format facilitates validation

					Distribution Parameters					
* INPUT VARIABLES	Forecast	Distribution Form	Point Estimate is:	Uncert ainty	Min	Low	High	Max	Percent ile	Percent ile
* EMD Qty and Variables										
EMD Design & Dev Cost Per Mont	n 200.0000	Lognormal	Median	1.3378	1.189					
EMD Protoype Quantity										
EMD Prototype T1	\$678.47									
EMD Step Increase over Productio	า 1.800	Triangular	Mode	1.8		1.5	2.5		9	79
EMD Prototype Learning Slope		Subie	tive Bou	unds A	diuste	ed for	Skev	v <	<u> </u>	
EMD SW Effort (Mths)	2,100.00							-	h	
EMD SW Effort	2,100.00	LogNormal	Median	1.00			1.50			80
RR #1 Add to SW Person Mont	ו									
EMD SW Labor Rate (\$/month)	15.0000	Uniform	Undefined	1.00	0.95			1.3		100
EMD Sys Eng Annual Cost	3,500.00	Triangular	Mode	1.00		0.90	1.50		5	75
EMD PM Annual Cost		Triangular	Mode	1.00		0.90	1.30		8	78
EMD Sys Test Eval Factor	0.6000	Triangular	Mode	1.00		0.90	1.70		4	74
EMD Training Factor		Triangular	Mode	1.00		0.95	1.30		4	74
EMD Data Factor	0.0800	Triangular	Mode	1.00		0.95	1.30		4	74
EMD Support Equipment Factor	0.2500	Triangular	Mode	1.00		0.90	1.70		4	74

Table of Last Resort

- Table is from AFCAA CRUH
- Based on panel of industry experts observing that CV of 0.15, 0.25, 0.35 could be used to define low, med, high (0.45 for Space) uncertainty when nothing else is available

- Historical data, SAR Growth Study, Trian CRUAMM, expert opinion are all better choices
- 15/85 bounds in this table **DO NOT** need to be adjusted Trian for skew

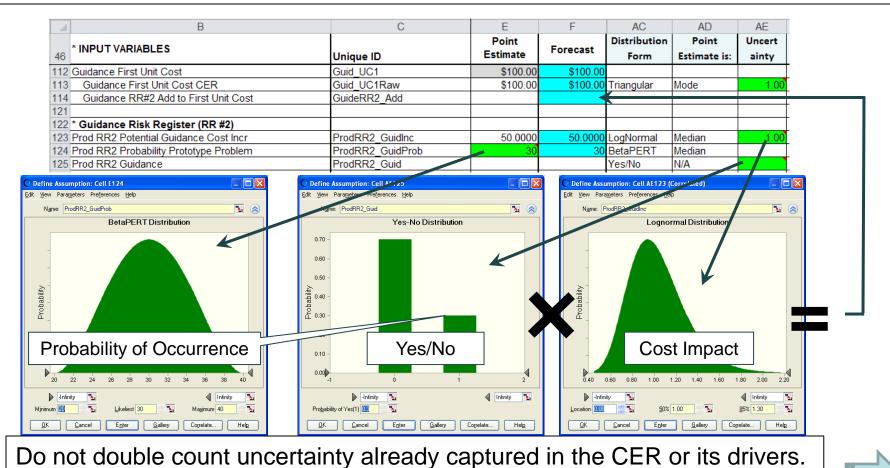
Distribution	Point Estimate Position	Point Estimate and Probability	Mean*	CV*	15%	85%	Distribution	Point Estimate Position	Point Estimate and Probability	Mean*	CV*	15%	85%
Lognormal Low	Median	1.0 (50%)	1.0113	0.1509	0.8560	1.1682	Uniform Low Left	Mode	1.0 (75%)	0.8701	0.1724	0.6882	1.0520
Lognormal Med	Median	1.0 (50%)	1.0318	0.2541	0.7718	1.2958	Uniform Low	Mode	1.0 (50%)	1.0000	0.1500	0.8181	1.1819
Lognormal High	Median	1.0 (50%)	1.0632	0.3613	0.6957	1.4373	Uniform Low Right	Mode	1.0 (25%)	1.1299	0.1328	0.9480	1.3118
Lognormal Ehigh**	Median	1.0 (50%)	1.1067	0.4743	0.6273	1.5943							
Normal Low	Mean	1.0 (50%)	1.0000	0.1501	0.8445	1.1555	Uniform Med Left	Mode	1.0 (75%)	0.7835	0.3191	0.4804	1.0866
Normal Med	Mean	1.0 (50%)	1.0000	0.2501	0.7409	1.2591	Uniform Med	Mode	1.0 (50%)	1.0000	0.2500	0.6969	1.3031
Normal High	Mean	1.0 (50%)	1.0024	0.3458	0.6400	1.3632	Uniform Med Right	Mode	1.0 (25%)	1.2165	0.2055	0.9134	1.5196
Normal EHigh	Mean	1.0 (50%)	1.0154	0.4258	0.5547	1.4703							
Weibull Low	Mode	1.0 (25%)	1.1581	0.1794	0.9564	1.3695	Uniform High Left	Mode	1.0 (75%)	0.6969	0.5023	0.2726	1.1213
Weibull Med	Mode	1.0 (20%)	1.3932	0.3324	0.9563	1.8547	Uniform High	Mode	1.0 (50%)	1.0000	0.3500	0.5757	1.4243
Weibull High	Mode	1.0 (15%)	2.1037	0.5723	1.0000	3.2766	Uniform High Right	Mode	1.0 (25%)	1.3031	0.2686	0.8788	1.7275
Triangle Low Left	Mode	1.0 (75%)	0.8775	0.1779	0.6953	1.0414	Uniform EHigh Left	Mode	1.0 (75%)	0.6949	0.5774	0.2085	1.1813
Triangle Low	Mode	1.0 (50%)	1.0000	0.1500	0.8338	1.1662	Uniform EHigh	Mode	1.0 (50%)	1.0000	0.4500	0.4544	1.5456
Triangle Low Right	Mode	1.0 (25%)	1.1225	0.1391	0.9586	1.3046	Uniform EHigh Righ	Mode	1.0 (25%)	1.3897	0.3238	0.8441	1.9353
Triangle Med Left	Mode	1.0 (75%)	0.7959	0.3270	0.4923	1.0690	Beta Low Left	Mode	1.0 (61%)	0.9393	0.1600	0.7750	1.0986
Triangle Med	Mode	1.0 (50%)	1.0000	0.2500	0.7230	1.2769	Beta Low	Mode	1.0 (50%)	1.0000	0.1502	0.8375	1.1625
Triangle Med Right	Mode	1.0 (25%)	1.2041	0.2161	0.9310	1.5078	Beta Low Right	Mode	1.0 (39%)	1.0607	0.1417	0.9014	1.2249
Triangle High Left*	Mode	1.0 (75%)	0.7454	0.4479	0.3467	1.1028	Beta Med Left	Mode	1.0 (63%)	0.8833	0.2827	0.6046	1.1517
Triangle High	Mode	1.0 (50%)	1.0000	0.3501	0.6122	1.3878	Beta Med	Mode	1.0 (50%)	1.0000	0.2502	0.7255	1.2745
Triangle High Right	Mode	1.0 (25%)	1.2858	0.2834	0.9034	1.7109	Beta Med Right	Mode	1.0 (37%)	1.1170	0.2240	0.8483	1.3957
Triangle EHigh Left*	Mode	1.0 (75%)	0.7454	0.4960	0.3004	1.1501	Beta High Left	Mode	1.0 (66%)	0.8085	0.4191	0.4117	1.1862
Triangle EHigh	Mode	1.0 (50%)	1.0045	0.4439	0.5088	1.4998	Beta High	Mode	1.0 (50%)	1.0000	0.3501	0.6046	1.3955
Triangle EHigh Right	Mode	1.0 (25%)	1.3674	0.3426	0.8758	1.9140	Beta High Right	Mode	1.0 (33%)	1.2021	0.2912	0.8157	1.6061

** EHigh = Extreme High

* To match these parameters, tools must be set to truncate the distribution at zero.

Approved for Public Release

Create a Spreadsheet Layout That Simplifies Review


- Document the distribution shape and position of the point estimate in the distribution
- Define distribution parameters as a percent of the point estimate when uncertainty should scale with what-if cases
- Define distribution parameters **as values** when the uncertainty range should not change with what-if cases
- Show the low/high values with their percentiles (high/low interpretation)
- Identify the source of each uncertainty

WBS Elements	Point Estimate	Cost Estimating Relationship	Form	PE Position	Std Dev	Low	Low Intrp	HIGN	High Intrp	Comment
Airframe T1	\$77.85	25.62 + 2.101 * AirFrameWt ^ 0.5541	Triangular	Mode = PE*85%		47.6%	0	167.7%	100	Fit Residual data
Propulsion T1	\$78.56	1.618 * MotorWt ^ 0.6848	Log-t	Median				20.7%	90	Regression Result
Guidance and Control T1	\$100.00	100	Triangular	Mode		85.0%	8	140.0%	78	Expert Opinion
Payload T1	\$62.01	30.15 + 1.049 * WarheadWt * PayloadAdjustment	Student's-t	Mean				113.8%	90	Regression Result
Airframe Weight (lbs)	330.0	330	Uniform	Undefined		182.11	0	855.89	100	Fit to Data

Airframe Weight (lbs)	330.0	330 Unifo	form l	Jndefined	182.11	0	855.89	100	Fit to Data	
Motor Weight (lbs)	290.0	290 Trian	ingular M	Vode	280.00	4	350.00	74	Expert Opinion	
Warhead Weight (lbs)	25.0	25 Trian	ingular N	Vode	20.00	10	35.00	80	Expert Opinion	

Build the Risk Register Into the Cost Uncertainty Model

Modeled as discrete events with uncertain probability of occurrence and consequence. Capture both risks (add cost) and opportunities (reduce cost). **Embed in estimate**.

28 August 2013

Special Considerations

- **Truncate** distributions at zero unless there is compelling evidence to do otherwise
- Ensure sunk costs are in correct units. Have a separate estimate for the cost to go and scale the uncertainty from the original estimate
- Apply uncertainty to cost improvement curve methods on the total. If uncertainty must be applied to T1 and Slope separate, consider applying high negative correlation
- Adjustment Factors may be necessary if your program is significantly different from the CER source data
- Calibrating a CER to go through an analogy may impact uncertainty assessment
- Inflation: no clear, widely accepted approach.....yet

FINISH AND EVALUATE CISM SIMULATION RESULTS

Correlation and Finishing the Model

- Functional vs. applied correlation
- Run the simulation before applying correlation
- Measure functional correlation already present
- Apply additional correlation as required

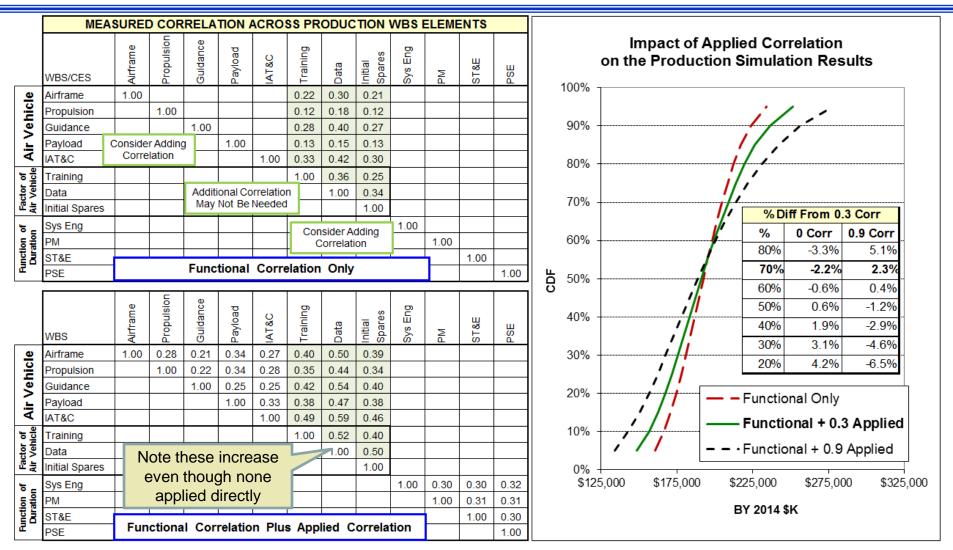
- Determine trials required (convergence)
- Review and interpret simulation results
- Allocate risk dollars in total and by year

Correlation

- Correlation is a measure of the **linear relationship** between random variables. Correlation does not prove a cause and effect relationship.
- Uncertain elements are **functionally correlated** if they are related through the model algebra.
- Applying correlation to child WBS elements **impacts the parent spread**.
- Correlation applied **on top of functionally** related uncertain WBS elements will **impact the parent mean and spread**.
- Build a few large correlation matrices rather than several small ones
 - Makes it easier to see where correlation should be applied
- Indiscriminately applying correlation can cause an inconsistent matrix.
 While tools will offer to "fix" the matrix, recommend you fix it yourself.
- **Do not leave matrix cells blank** (if you do, the tool may choose for you)
- Measure correlation across the WBS first (utility provided) and then apply as necessary

Measuring Functional Correlation in the WBS of the Example Model

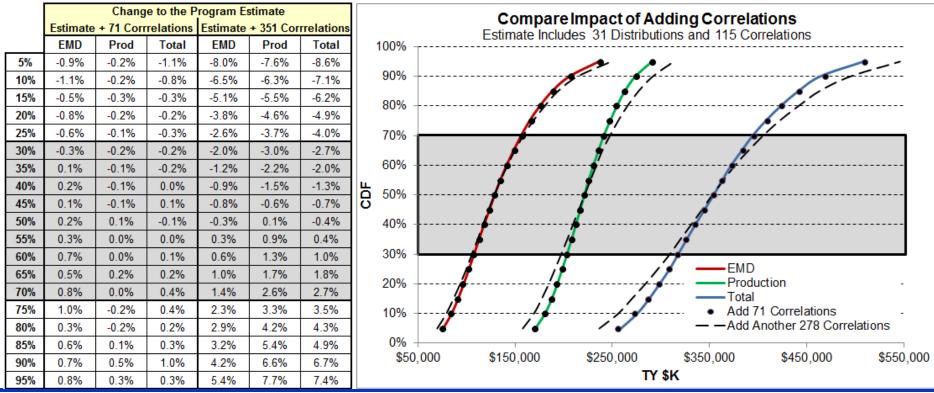
- Training, Data and Initial Spares are estimated as a factor of Air Vehicle
 - No need to add additional correlation across Training, Data and Initial Spares
- Need to address correlation across Air Vehicle elements and those elements that are a function of duration
- **Default to apply is 0.3**, however table to left offers other alternatives


Strength	Positive	Negative
None	0.0	0.0
Weak	0.3	-0.3
Medium	0.5	-0.5
Strong	0.9	-0.9
Perfect	1.0	-1.0

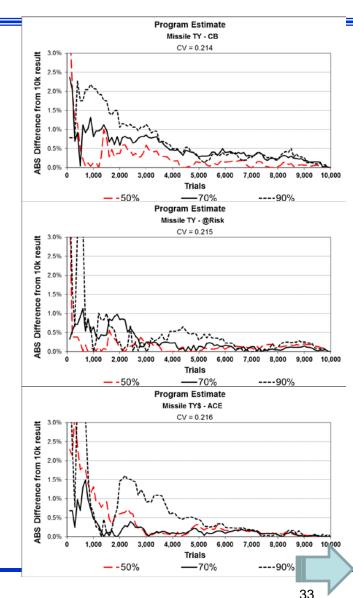
	MEASURED CORRELATION ACROSS PRODUCTION WBS								WBSE	ELEMENTS			
	WBS/CES	Airframe	Propulsion	Guidance	Payload	IAT&C	Training	Data	Initial Spares	Sys Eng	ΡM	ST&E	PSE
Air Vehicle	Airframe	1.00					0.22	0.30	0.21				
	Propulsion		1.00				0.12	0.18	0.12				
	Guidance		A . I . I'	4 00			0.28	0.40	0.27				
	Payload	onside		ng	1.00		0.13	0.15	0.13				
	IAT&C	Correlation				1.00	0.33	0.42	0.30				
Factor of Air Vehicle	Training						1 00	0.36	0.25				
	Data			Additional C				1.00	0.34				
Air	Initial Spares			мау	Not Be Needeo		ed		1.00				
Function of Duration	Sys Eng						Cor	nsider /	Addina	1.00			
	PM							Correla			1.00		
	ST&E								1	1.00			
5_	PSE	Functional Correlation Only											1.00

Applying Correlation to the Inputs of the Example Model

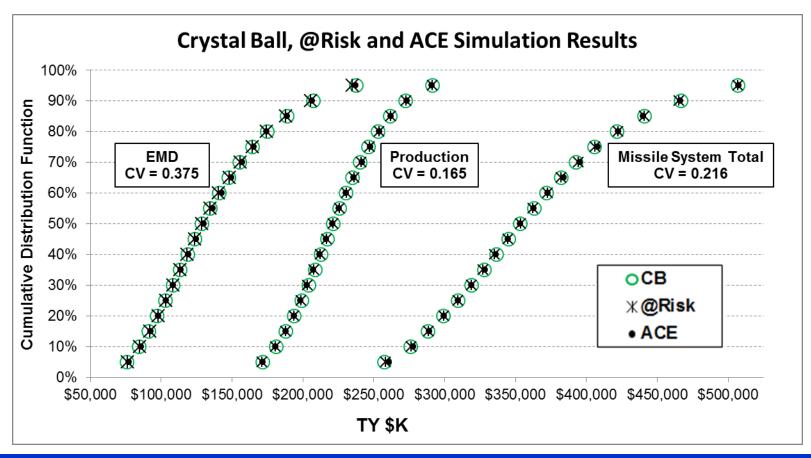
		WarheadWt MotorWt AirFrameWt ProdInitSpares_Fac ProdData_Fac ProdPSE_TICost ProdAnnuaISTE ProdAnnuaISE ProdAnnuaISE
EMD_MthsRaw 1 EMD RR1 SWIncDur	1.0 0.3 <td></td>	
EMD RR1 SWIncMM	1.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	
EMD SWLaborRate	1.0 0.3 <td></td>	
EMD_SWMonthsRaw	1.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	
DesignDevPerMonth ProdToEMD Step	1.0 0.3 <td>What is the impact of</td>	What is the impact of
Airframe UC1		filling these 351 cells?
Prop UC1		
Guid_UC1Raw	A men en ell un centeire 1.0 0.3 0.3 0.3 0.3 0.3	
Payload_UC1	Arrange all uncertain	
PenaltyPayload	elements into	
IATC_Hrs3rdPartyTool	meaningful Groups	
MfgLaborRate ProdRR2 GuidInc		
EMD AnnualSE		
EMD AnnualPM		W/bat is the impact of
EMD_STE_Fac	1.0	- What is the impact of
EMD_Trng_Fac	1.0	filling these 71 cells?
EMD_Data_Fac	1.0	
EMD_SptEquip_Fac	1	
ProdAnnualSE ProdAnnualPM		1.0 0.3 0.3 1.0 0.3 0.3
ProdAnnualSTE	Completion should be expliced where it realized	
ProdPSE TICost	Correlation should be applied where it makes	1.0
ProdTrng_Fac	anno, not just indicariminately avery where	1.0
ProdData_Fac	sense, not just indiscriminately everywhere.	1.0
ProdInitSpares_Fac		1.0
AirFrameWt		1.0 0.3 0.3
MotorWt WarheadWt		1.0 0.3
vvaliteauvvt		1.0


Impact to the WBS Correlation After Applying Inputs Correlation

Approved for Public Release


Impact of Adding Additional Correlation

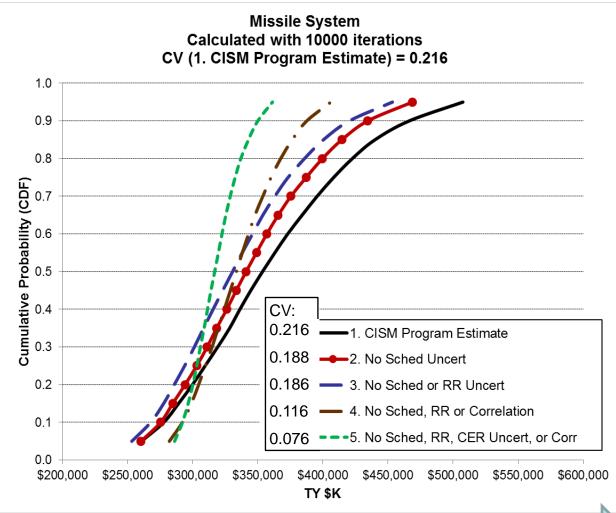
- Impact shown on EMD, Production and the Missile total
- No discernible impact when adding 71 more correlations, minimal impact between 30 and 70 percent when adding another 351 correlations
- Results specific to this model. Take care to investigate impact on yours!


Trials Required For Stable Results

- Tool independent method to measure convergence (trials required for stable results)
- Images illustrate all tools show similar behavior
- When trials produce a result within 0.5% of the 10k trial result the model has converged
 - Changing random see will change results this much
- If lines never fall below 0.5%, it means 10k results are not enough
- Even if it takes no time to run 10k trials, perform this test to ensure model has converged
- Excel utility provided

CISM Process is Tool Independent

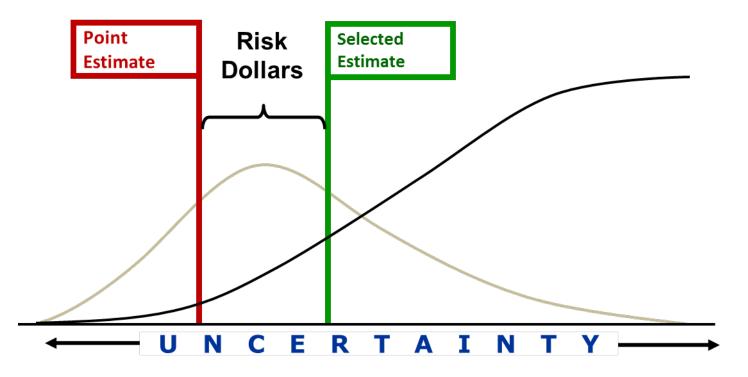
- Same model created in three different tools deliver the same results
- EMD includes duration uncertainty, Production does not



Interpreting Results

- CV (standard deviation/mean) is provided by all tools
- The higher the CV, the wider the dispersion and the flatter the s-curve
- NCCA SAR Cost Growth Study and AFCAA CRUAMM
 provide benchmark CVs
- Extremely large CVs may be an indication of unusually broad distributions or too much correlation.
- Often an extremely low CV is an indication of very optimistic uncertainty ranges, lack of functional relationships and/or a lack of correlation.
- The NCCA S-Curve Tool is available to compare your S-Curve to historical CVs

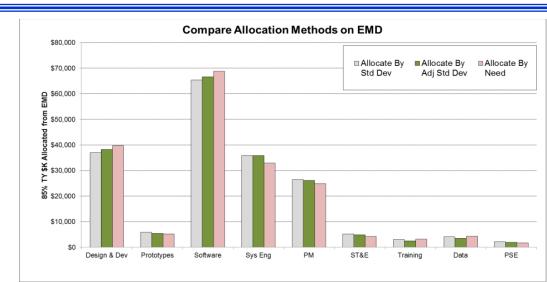
Interpreting Results

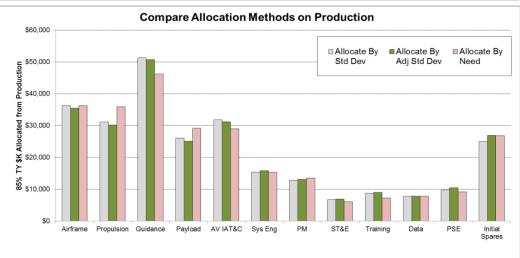

- Systematic application of uncertainty and correlation yields expected impact on the total S-Curve
- Impact of Risk Register (RR) is included in the illustration
- Note that the addition of schedule uncertainty to EMD (CISM approach) has significant impact on the total uncertainty

ALLOCATING RISK DOLLARS

Defining Risk Dollars

• **Risk dollars**: the difference between the point estimate and a selected estimate (e.g., budget)


When is Allocation Required?

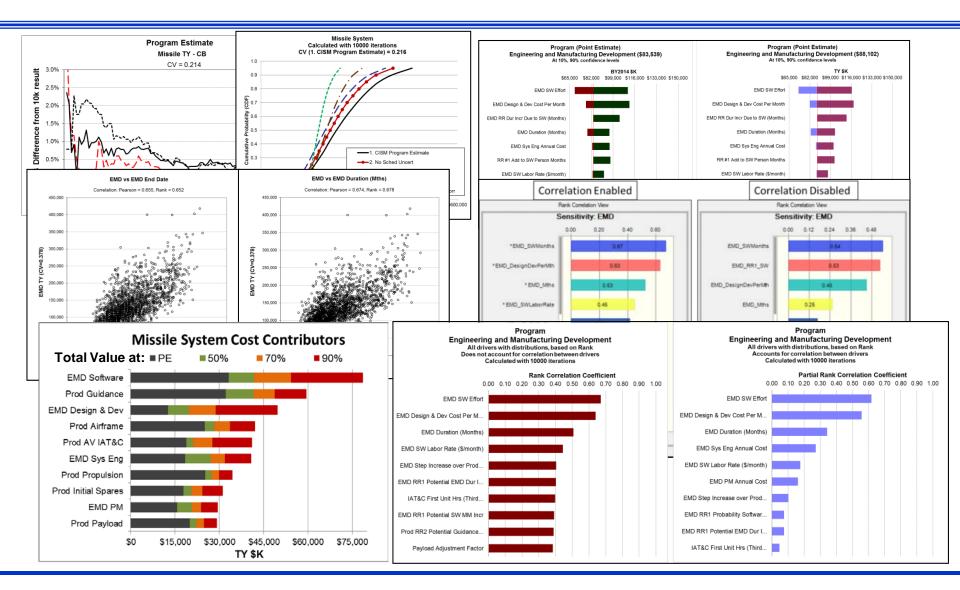

- The point estimate and the mean sum, however each element will be at a different probability
- Child elements at the same probability do not sum to the parent
- We are looking for a way to adjust child elements such that they do sum but remain close to the desired probability (see column 3)

			Elements Do Not Sum						
Column	1	2 3		4	5	6	7	8	9
BY \$2014	Point Estimate	Mean	Allocated 58% From Level 2	All at 30%	Sum of Children	All at 60%	Sum of Children	All at 80%	Sum of Children
Missile System	\$246,836 (10%)	\$325,183 (56%)	\$328,430 (~58%)	\$283,940	\$254,462	\$332,166	\$331,032	\$376,245	\$407,615
Engineering and Manufacturing De	e \$83,539 (12%)	\$130,683 (58%)	\$130,903 (58%)	\$101,840	\$92,091	\$132,976	\$130,521	\$162,083	\$172,077
Air Vehicle	\$14,944 (24%)	\$28,615 (64%)	\$27,172 (60%)	\$16,668		\$27,005		\$39,533	
Design & Development	\$12,000 (26%)	\$24,380 (64%)	\$22,814 (61%)	\$12,990		\$22,517		\$34,725	
Prototypes	\$2,944 (20%)	\$4,235 (57%)	\$4,357 (60%)	\$3,284		\$4,352		\$5,412	
Software	\$31,500 (33%)	\$44,497 (59%)	\$45,130 (60%)	\$30,275		\$45,072		\$60,344	
System Engineering	\$17,500 (9%)	\$27,113 (56%)	\$27,908 (60%)	\$21,911		\$27,907		\$33,350	
Program Management	\$15,000 (14%)	\$20,528 (57%)	\$20,963 (60%)	\$17,201		\$20,978		\$24,762	
System Test and Evaluation	\$1,766 (8%)	\$3,654 (59%)	\$3,699 (60%)	\$2,612		\$3,704		\$4,866	
Training	\$897 (16%)	\$2,038 (64%)	\$1,917 (61%)	\$1,168		\$1,900		\$2,822	
Data	\$1,196 (17%)	\$2,714 (64%)	\$2,565 (60%)	\$1,559		\$2,545		\$3,775	
Peculiar Support Equipment	\$736 (8%)	\$1,524 (59%)	\$1,550 (60%)	\$1,091		\$1,546		\$2,021	

Compare Three Allocation Methods

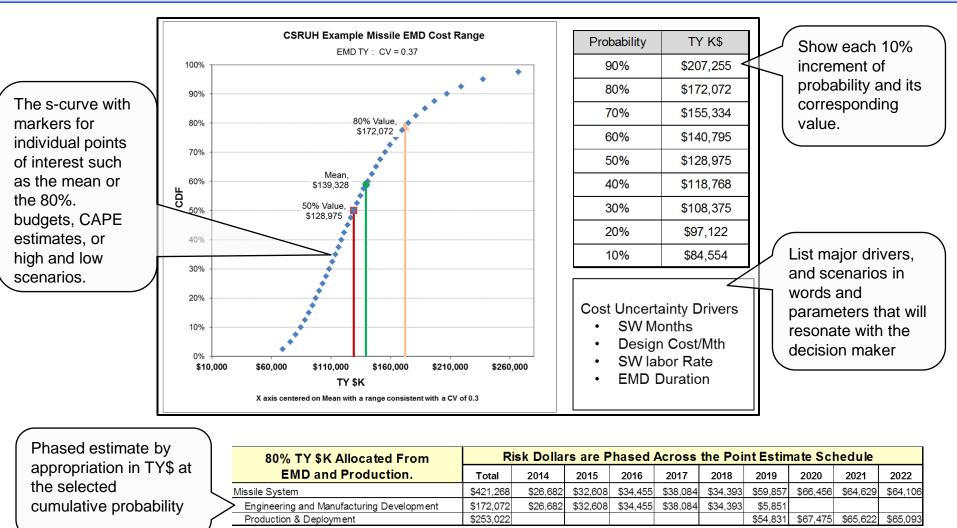
- 3 methods defined in CSRUH
 - Adjust percentile based on standard deviation (simplest)
 - Adjust percentile based on standard deviation adjusted for correlation
 - Adjust point estimate based on "Need"
- Chart illustrates the difference between them for this model is very small
- Recommend simplest
- Different business rules can be injected (i.e., allocated result should not be less than PE)

Phasing Allocated Risk Dollars


- **Backload**: Use when near-term budget is set or there is little chance of consuming risk dollars early in the project
- **Frontload**: When greatest uncertainty is early in the project
- **Specific time**: time-phasing the risk dollars after a specific "risky" event, even to years beyond the current time-phased point estimate
- Algorithm at Lowest Levels: developing phasing methods that are influenced by the probability level requested
- **Prorate**: The analyst needs to make an effort to identify when the uncertainty will occur and choose one of the previous methods. When there is no evidence to do otherwise, prorating risk dollars across the point estimate phased result is recommended. **Prorate is a common approach for the Production estimate**.

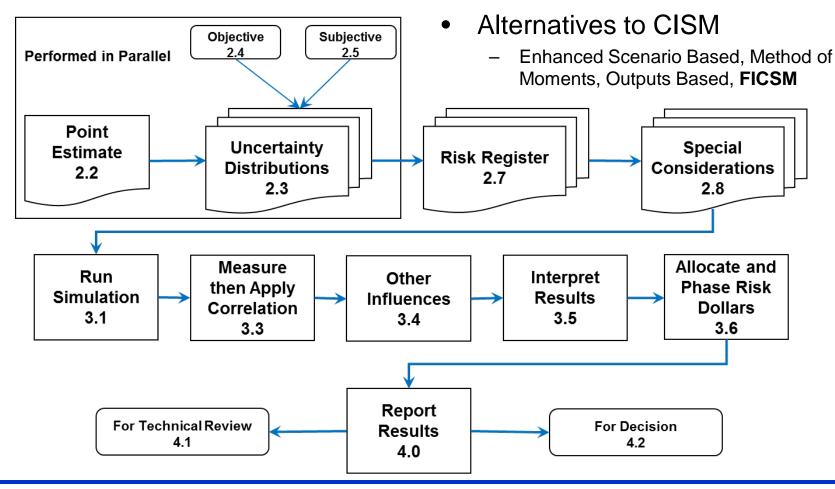
REPORTS

Typical Charts for Technical Review

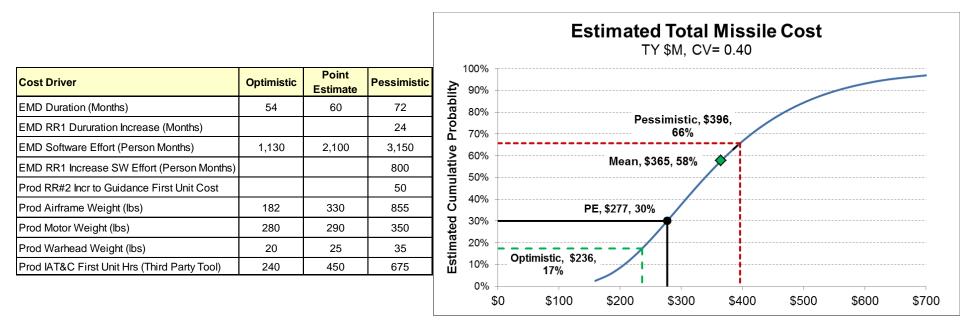

- Distributions used in the estimate and their parameters
- S-curve showing multiple curves
- Scatter plot of cost vs. schedule (joint probability)
- Pareto chart to identify cost contributors
- Tornado and sensitivity charts to identify cost uncertainty contributors and drivers
- Charts intended for the subsequent decision maker review(s)

Sample Technical Review Charts

Approved for Public Release


Charts for Decision Maker

Approved for Public Release


Recap

• Cost Informed by Schedule Method is a cost uncertainty model that has some level of duration uncertainty to influence cost simulation results.

Alternatives to CISM: Enhanced Scenario Based Method

- eSBM puts attention on the identification and quantification of what can go right and what can go wrong
- Using historical data for CV and expert opinion for the probability of the point estimate, a lognormal s-curve can be constructed

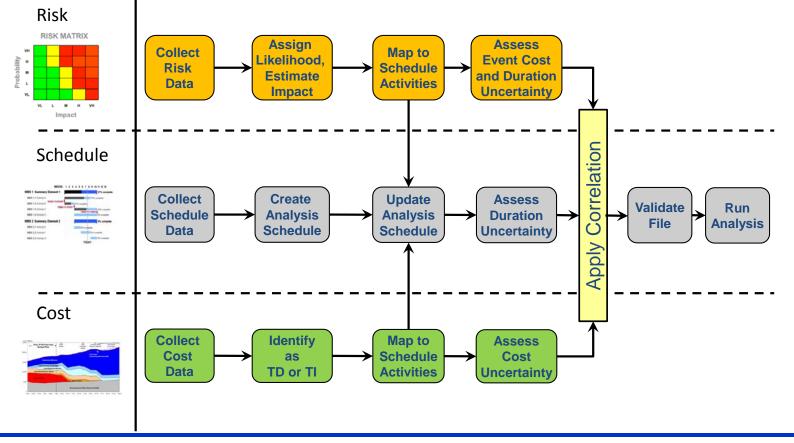
Alternatives to CISM: Method of Moments

- An analytical method to estimate uncertainty
- Mean will sum and standard deviation can be calculated using the following formula (accounts for correlation)

$$TotalVariance = \sum_{k=1}^{n} \sigma_{k}^{2} + 2\sum_{k=2}^{n} \sum_{j=1}^{k-1} \rho_{jk} \sigma_{j} \sigma_{k}$$

• The example below illustrates how well the simulation and method of moments (analytical) compare

	Parameters			Simul	ation	Analytical		
Total is the sum		Std De v	Min	Max	Mean	Std De v	Mean	Std Dev Adj For Corr
Total	500				575.0	107.0	575.0	106.7
Lognormal	100	40			100.0	40.0	100.0	55.1
Triangular	100		75	200	125.0	27.0	125.0	42.5
BetaPert	100		75	200	112.5	21.7	112.5	37.0
Normal	100	35			100.0	35.0	100.0	50.3
Uniform	100		75	200	137.5	36.1	137.5	51.4


Alternatives to CISM: Outputs Based Simulation Method

- The outputs-based method applies uncertainty directly to the results (cost model outputs) rather than to the model's inputs.
- The analyst selects uncertainty distributions on the WBS outputs to address the combined uncertainty of the cost method and the cost method inputs.

					P	Distribution Parameters						
DETAIL ESTIMATE based on PEs	Point Estimate	Forecast BY 2014	Distribution Form	Point Estimate is:	Uncert ainty	Min or 15%	Most Likely	Mean	Max or 85%	Std Dev	Source	
Missile System			<u> </u>									
Engineering and Manufacturing De	\$83,539	\$83,539	/'						'			
Air Vehicle	\$14,944	\$14,944	<u> </u>						'			
Design & Development	\$12,000	\$12,000	Lognormal	Median	1		·'	1.338	'	1.189	CRUAMM	
Prototypes	\$2,944	\$2,944	Lognormal	Median	1			1.315		1.123	CRUAMM	
Software	\$31,500	\$31,500	Lognormal	Median	1	0.696		1.063	1.437		Last Resort Table	
System Engineering	\$17,500	\$17,500	Triangular	Mode	1	0.119	1.000	Í'	2.074		CRUAMM	
Program Management	\$15,000	\$15,000	Triangular	Mode	1	0.876	1.000		1.914		Last Resort Table	
System Test and Evaluation	\$1,767	\$1,767	Lognormal	Median	1			1.366		1.271	CRUAMM	
Training	\$897	\$897	Lognormal	Median	1	0.627		1.107	1.594		Last Resort Table	
Data	\$1,196	\$1,196	Lognormal	Median	1			1.904		3.086	CRUAMM	
Peculiar Support Equipment	\$736	\$736	Triangular	Mode	1	0.876	1.000	'	1.914		Last Resort Table	

Alternatives to CISM: The Fully Integrated Cost/Schedule Method

• A fully integrated cost and schedule (FICSM) model is a disciplined, systematic and repeatable process to integrate three critical pieces of information: cost uncertainty, schedule uncertainty, and the risk register.

Typical FICSM Reports

Approved for Public Release

Obtaining the Joint CSRUH

NCCA Website

https://www.ncca.navy.mil/tools/tools.cfm

Contact

Duncan Thomas SL, Technical Director Naval Center for Cost Analysis 1000 Navy Pentagon 4C449, OASN (FM&C), NCCA Washington, DC 20350-1000 703-604-3493

Joint Cost Schedule Risk and Uncertainty Handbook

This Handbook defines processes and procedures for performing cost and schedule risk and uncertainty analysis in support of life cycle cost estimates for major acquisition programs.

24 April 2013

Utilities and Files

- The following tool independent, Excel based utilities and files are delivered with CSRUH
- Files
 - CB, @Risk and ACE model
 - Excel file with handbook tables, charts and graphics
 - Excel file with example CER regression and curve fit results

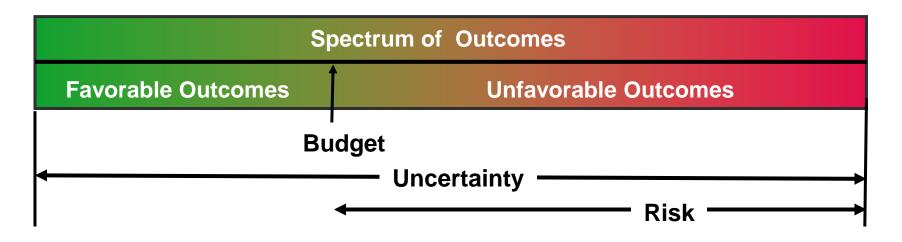
Utilities

- Adjust for skew and table of last resort
- Measure correlation
- Measure convergence to determine number of trials required
- Automate building an s-curve
- Scatter plot to develop joint probability
- Crystal Ball best fit utility to automate and report fits to data

Path Forward

- Many suggestions from the field for further research and guidance, worked examples on topics like:
 - Introducing duration and risk register into spreadsheet models
 - Defining, documenting and implementing a Risk Register
 - Distribution fitting, particularly goodness-of-fit and fitting small samples
 - Defining and accounting for sunk costs
 - Measure and apply correlation,
 - Pooled regression learning curve
 - Application of uncertainty to cost benefit analysis and "should cost"
 - More reports and utilities
 - Building the analysis schedule as a basis for CISM and FICSM models
 - Exploring FICSM modeling more thoroughly

BACKUP

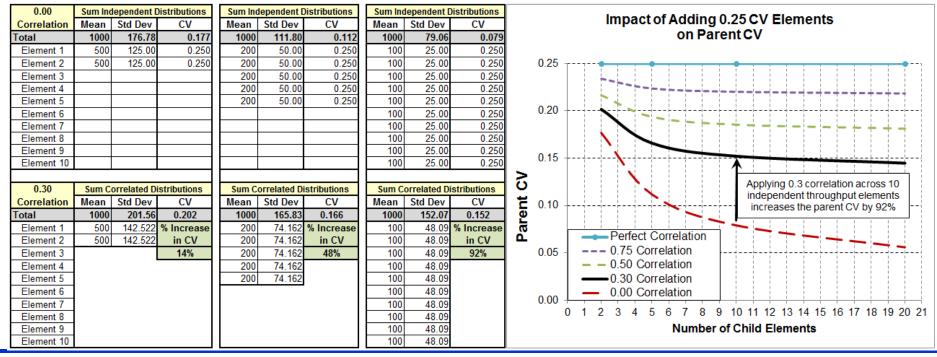

CSRUH Table Of Contents

1.0	Introduction	1
1.1	Purpose	1
1.2	Risk And Uncertainty	2
1.3	Sources Of Uncertainty	3
1.4	Overview Of Cost Risk And Uncertainty Methods	5
2.0	Cost Informed by Schedule Method	6
2.1	Strategic Approach	6
2.2	The Point Estimate	7
2.3	Uncertainty Distributions	11
2.4	Objective Uncertainty	16
2.5	Subjective Uncertainty	27
2.6	Document Cost Method And Driver Uncertainty	32
2.7	Capturing The Risk Register In The Cost Model	32
2.8	Special Uncertainty Considerations	36
3.0	Finish And Assess The CISM Model	44
3.1	The Simulation Combines Uncertainties	44
3.2	Functional Versus Applied Correlation	44
3.3	Measure Then Apply Correlation	45
3.4	Other Influences On Simulation Results	52
3.5	Review And Interpret Results With Correlation Applied	54
3.6	Allocate And Time Phase Risk Dollars	59
4.0	Present CISM Risk & Uncertainty Story	64
4.1	Reporting To Technical Review	64
4.2	Reporting To Decision Makers	70

5.0	Alternatives To The CISM Approach	73
5.1	Overview	73
5.2	Enhanced Scenario-based Method	73
5.3	Method Of Moments	77
5.4	Outputs-based Simulation Method	77
6.0	Portfolio Level Considerations	78
7.0	References	80
Α	TERMINOLOGY AND DETAIL	85
A.1	Definitions	85
A.2	Point Estimate	89
A.3	Uncertainty	90
A.4	Descriptive Statistics	93
A.5	Probability	96
A.6	Probability Distributions	98
A.7	Regression Methods	107
A.8	Estimating Regression Method Accuracy	111
A.9	Goodness Of Fit Statistics	124
A.10	Risk Simulation Sampling Methods	129
A.11	Correlation	130
A.12	Alternative Allocation Methods	134
A.13	Obligations Vs. Expenditures	138
A.14	Cism Best Practice Checklist	139
A.15	Glossary	142
В	FICSM	144

Key Definitions

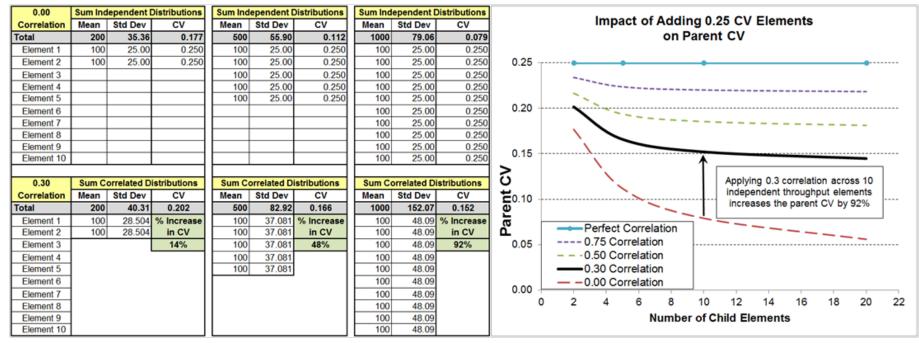
- **Risk** is the probability of a loss or injury.
- **Uncertainty** is the indefiniteness about the outcome of a situation


 Risk Register lists those events that may or may not happen, but if they do happen they will have a *negative or positive* impact on the cost or schedule or both

Excel Utility to Adjust for Skew

Enter title, low,	Т	emplate	to Adjus	t Low ar	nd High F	Percentile for Skew			
mode, high and	Enter Case Title	Fig 2-17	EMD PM\$	Motor Wgt	Warhead Wgt	Comment or Formula			
uncertainty	LOW	80	90	280	20	Input expert's low bound			
captured	Mode	100	100	290	25	Input expert's mode (most likely)			
	High	160	130	350	35	Input expert's high bound			
Estimated	uncertainty captured by expert	70%	70%	70%	70%	Default is 70%			
		Results	for Tria	ngular	or Unifo	rm Distributions			
Utility calculates the	mulative Probability Low	8%	8%	4%	10%	Round(Skew * (1 - UncertIncl),2)			
low/high probability	nulative Probability High	78%	78%	74%	80%	UncertIncl + Adjusted Low Bound Interpretation			
and min/max to	Min	55.8	77.9	267.9	13.9	(Mode-Skew * Max)/(1 - Skew)			
preserve skew	Max	232.7	166.3	422.7	47.1	High+(High-Mode)*SQRT(UncertNotIncI)/(1-SQRT(UncertNotIncI))			
Total unce	tainty NOT captured by expert	0.30	0.30	0.30	0.30	1 - Uncertincl			
Utility calculates the	Skew based upon inputs	0.25	0.25	0.14	0.33	(Mode-LowInp)/(HighInp-LowInp)			
parameters for	Revised Skew	0.25	0.25	0.14	0.33	(Mode-Min)/(Max-Min) i.e., CDF of Mode			
betaPERT if		Results for BetaPert							
symmetrical,	bability Low	17%	17%	16%	16%	BETADIST(LowInp, Alpha, Beta, Beta_Min, Beta_Max)			
otherwise use solve	nulative Probability High	87%	87%	86%	86%	BETADIST(HighInp, Alpha, Beta, Beta_Min, Beta_Max)			
	Min	49.6	74.8	262.2	12.8	Mode-1/((1-2*BETAINV(UncertNotIncl/2,Alpha,Beta)))*(Mode-LowInp)			
	Max Total uncertainty NOT captured by expert		175.6	456.8	49.3	Beta_Min + Lambda * (Mode - Beta_Min) / (Alpha - 1)			
Total unce			0.30	0.30	0.30	1-(HighPercentBeta-LowPercentBeta) Red cell indicates solver required			
	Beta skew based upon inputs			0.28	0.42	BETADIST(Mode, Alpha, Beta, LowInp, HighInp)			
	Beta skew after adjustment	0.37	0.37	0.28	0.42	BETADIST(Mode, Alpha, Beta, Beta_Min, Beta_Max)			

Impact of Adding Additional Uncertain Elements


- Top table shows the parent CV decreasing as independent uncertain elements are broken into smaller elements with the same CV
- Bottom table shows impact of applying 0.3 correlation on parent CV
- Chart illustrates impact of various correlations. The more elements, the greater the impact of correlation on the parent.

Approved for Public Release

Impact of Adding Additional Uncertain Elements

- Top table shows the parent CV decreasing as additional independent uncertain elements are added
- Bottom table shows impact of applying 0.3 correlation on parent CV
- Chart illustrates impact of various correlations. The more elements, the greater the impact of correlation.

A Simple Allocation Process

(Not required if Mean is Selected)

- Select the level in the WBS from which risk dollars will be allocated (EMD and Production)
- Generate the simulation results in BY dollars for all levels in the WBS
- Sum the immediate subordinate probability results (2)
- Compute the difference between the sum of the children and the parent value (3)
- Using the standard deviation (4), prorate (6) the amount to allocate (3)
- Apply the adjustment (6) to the element percentile result (1) to develop the allocated result (7)

This process adjusts the perceptile results directly not the PEL

• Sum to parent levels

This process adjusts the percentile results directly, not the PE!										
	Column	1	2	3	4	5	6	7	8	9
80% Allocated from EMD and Production BY 2014 \$K		Percentile Results	Sum of Child Percentiles	Amount To Allocate (1 - 2)	Std Dev	Stdev/ Sum(Stdev)	Child Adjustment (3 * 5)	Allocated Result (1 + 6)	Point Estimate	Risk Dollars (1-8)
Missile System	MissileSys							\$381,908	\$246,836	\$135,071
Engineering and Manufacturi	ing DevEMD	\$163,168	\$170,462	-\$7,294				\$163,168	\$83,539	\$79,629
Air Vehicle	AV_EMD	\$39,012	\$39,507	-\$2,831	20,400	0.3202	-\$2,335.94	\$36,676	\$14,944	\$21,732
Design & Development	DesignDev_EMD	\$34,083			19,708	0.9288	-\$2,629.13	\$31,454	\$12,000	\$19,454
Prototypes	Proto_EMD	\$5,424			1,510	0.0712	-\$201.43	\$5,222	\$2,944	\$2,278
Software	SW_EMD	\$60,064			23,706	0.3721	-\$2,714.49	\$57,349	\$31,500	\$25,849
System Engineering	SysEng_EMD	\$33,317			8,332	0.1308	-\$954.08	\$32,363	\$17,500	\$14,863
Program Management	PM_EMD	\$24,677			5,433	0.0853	-\$622.16	\$24,055	\$15,000	\$9,055
System Test and Evaluation	STE_EMD	\$4,852			1,686	0.0265	-\$193.03	\$4,659	\$1,767	\$2,892
Training	Trg_EMD	\$2,794			1,472	0.0231	-\$168.57	\$2,626	\$897	\$1,729
Data	Data_EMD	\$3,723			1,978	0.0310	-\$226.46	\$3,496	\$1,196	\$2,301
Peculiar Support Equipment	PSE_EMD	\$2,023			695	0.0109	-\$79.62	\$1,944	\$736	\$1,207
		\$	\$	\$				\$	\$	\$

28 August 2013

Approved for Public Release