
Joint Entity and Event Extraction with
Generative Adversarial Imitation Learning

Tongtao Zhang†, Heng Ji† and Avirup Sil∗
†Computer Science Department, Rensselaer Polytechnic Institute

∗IBM Research AI
{zhangt13, jih}@rpi.edu and {avi@us.ibm.com}

Abstract

We propose a new framework for entity and
event extraction based on generative adversar-
ial imitation learning – an inverse reinforce-
ment learning method using generative adver-
sarial network (GAN). We assume that in-
stances and labels yield to various extents of
difficulty and the gains and penalties (rewards)
are expected to be diverse. We utilize discrim-
inators to estimate proper rewards according
to the difference between the labels committed
by the ground-truth (expert) and the extractor
(agent). Our experiments demonstrate that the
proposed framework outperforms state-of-the-
art methods.

1 Introduction

Event extraction (EE) is a crucial information ex-
traction (IE) task that focuses on extracting struc-
tured information (i.e., a structure of event trigger
and arguments, “what is happening”, and “who or
what is involved”) from unstructured texts. For
example, in the sentence “Masih’s alleged com-
ments of blasphemy are punishable by death un-
der Pakistan Penal Code” shown in Figure 1,
there is a Sentence event (“punishable”) and
Execute event (“death”) involving the person
entity “Masih”. Most event extraction research
has been in the context of the 2005 NIST Au-
tomatic Content Extraction (ACE) sentence-level
event mention task (Walker et al., 2006), which
also provides the standard corpus. The annotation
guideline of the ACE program defines an event as
a specific occurrence of something that happens
involving participants, often described as a change
of state. More recently, the TAC KBP community
has introduced document-level event argument ex-
traction shared tasks for 2014 and 2015 (KBP EA).

In the last five years, many event extraction
approaches have brought forth encouraging re-
sults by retrieving additional related text docu-

ments (Song et al., 2015), introducing rich fea-
tures of multiple categories (Li et al., 2013; Zhang
et al., 2017b), incorporating relevant information
within or beyond context (Yang and Mitchell,
2016; Judea and Strube, 2016; Yang and Mitchell,
2017; Duan et al., 2017) and adopting neural net-
work frameworks (Chen et al., 2015; Nguyen and
Grishman, 2015; Feng et al., 2016; Nguyen et al.,
2016; Huang et al., 2016; Nguyen and Grish-
man, 2018; Sha et al., 2018; Huang et al., 2018;
Hong et al., 2018; Zhao et al., 2018; Nguyen and
Nguyen, 2018).

However, there are still challenging cases: for
example, in the following sentences: “Masih’s al-
leged comments of blasphemy are punishable by
death under Pakistan Penal Code” and “Scott is
charged with first-degree homicide for the death
of an infant.”, the word death can trigger an
Execute event in the former sentence and a Die
event in the latter one. With similar local infor-
mation (word embeddings) or contextual features
(both sentences include legal events), supervised
models pursue the probability distribution which
resembles that in the training set (e.g., we have
overwhelmingly more Die annotation on death
than Execute), and will label both as a Die
event, causing error in the former instance.

Such mistake is due to the lack of a mecha-
nism that explicitly deals with wrong and confus-
ing labels. Many multi-classification approaches
utilize cross-entropy loss, which aims at boost-
ing the probability of the correct labels and usu-
ally treat wrong labels equally and merely inhibits
them indirectly. Models are trained to capture fea-
tures and weights to pursue correct labels, but will
become vulnerable and unable to avoid mistakes
when facing ambiguous instances, where the prob-
abilities of the confusing and wrong labels are not
sufficiently “suppressed”. Therefore, exploring in-
formation from wrong labels is a key to make the

Masih's alleged comments of blasphemy are punishable by death under ...

Epoch 1 Epoch 10 Epoch 20
Epoch 30

 Epoch 40

Reward
Estimator

Model

Sentence ExecutePER

Person

-0.9

Ex
ec
ut
e

O
Di
e

PE
R

Ex
ec
ut
eO

Di
e

PE
R

Defendant

Reward
Estimator

Model

Ex
ec
ut
e

O
Di
e

PE
R

Ex
ec
ut
eO

Di
e

PE
R

-2.3 Reward
Estimator

Model

Masih's

... death ...

-5.7Reward
Estimator

Model

Ex
ec
ut
e

O
Di
e

PE
R

Ex
ec
ut
e

O

Di
e

PE
R

6.4Reward
Estimator

Model

... are

punishable by

...

Ex
ec
ut
eO

Se
nt
en
ce

Ex
ec
ut
e

O
Se
nt
en
ce

1.7Reward
Estimator

Model

Ex
ec
ut
eO

Di
e

PE
R

Ex
ec
ut
eO

Di
e

PE
R

-5.5

... by death

under ...

... by death

under ...

... by death

under ...

... by death

under ...

Pl
ac
e

N/
A

Pe
rs
on

Ag
en
t

Pl
ac
e

N/
A

Pe
rs
on

Ag
en
t

Figure 1: Our framework includes a reward estimator based on GAN to issue dynamic rewards with regard to the
labels (actions) committed by event extractor (agent). The reward estimator is trained upon the difference between
the labels from ground truth (expert) and extractor (agent). If the extractor repeatedly misses Execute label
for “death”, the penalty (negative reward values) is strengthened; if the extractor make surprising mistakes: label
“death” as Person or label Person “Masih” as Place role in Sentence event, the penalty is also strong.
For cases where extractor is correct, simpler cases such as Sentence on “death” will take a smaller gain while
difficult cases Execute on “death” will be awarded with larger reward values.

models robust.

In this paper, to combat the problems of previ-
ous approaches towards this task, we propose a dy-
namic mechanism – inverse reinforcement learn-
ing – to directly assess correct and wrong labels
on instances in entity and event extraction. We as-
sign explicit scores on cases – or rewards in terms
of Reinforcement Learning (RL). We adopt dis-
criminators from generative adversarial networks
(GAN) to estimate the reward values. Discrimi-
nators ensures the highest reward for ground-truth
(expert) and the extractor attempts to imitate the
expert by pursuing highest rewards. For chal-
lenging cases, if the extractor continues selecting
wrong labels, the GAN keeps expanding the mar-
gins between rewards for ground-truth labels and
(wrong) extractor labels and eventually deviates
the extractor from wrong labels.

The main contributions of this paper can be
summarized as follows:

• We apply reinforcement learning framework to
event extraction tasks, and the proposed frame-
work is an end-to-end and pipelined approach
that extracts entities and event triggers and de-
termines the argument roles for detected enti-
ties.
• With inverse reinforcement learning propelled

by GAN, we demonstrate that a dynamic reward

function ensures more optimal performance in a
complicated RL task.

2 Task and Term Preliminaries

In this paper we follow the schema of Automatic
Content Extraction (ACE) (Walker et al., 2006) to
detect the following elements from unstructured
natural language data:
• Entity: word or phrase that describes a real

world object such as a person (“Masih” as PER
in Figure 1). ACE schema defines 7 types of
entities.
• Event Trigger: the word that most clearly ex-

presses an event (interaction or change of sta-
tus). ACE schema defines 33 types of events
such as Sentence (“punishable” in Figure 1)
and Execute (“death”).
• Event argument: an entity that serves as a par-

ticipant or attribute with a specific role in an
event mention, in Figure 1 e.g., a PER “Masih”
serves as a Defendant in a Sentence event
triggered by “punishable”.
The ACE schema also comes with a data set –

ACE20051 – which has been used as a benchmark
for information extraction frameworks and we will
introduce this data set in Section 6.

1https://catalog.ldc.upenn.edu/
LDC2006T06

https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06

For broader readers who might not be familiar
with reinforcement learning, we briefly introduce
by their counterparts or equivalent concepts in su-
pervised models with the RL terms in the paren-
theses: our goal is to train an extractor (agent A)
to label entities, event triggers and argument roles
(actions a) in text (environment e); to commit cor-
rect labels, the extractor consumes features (state
s) and follow the ground truth (expert E); a re-
ward R will be issued to the extractor according
to whether it is different from the ground truth and
how serious the difference is – as shown in Fig-
ure 1, a repeated mistake is definitely more serious
– and the extractor improves the extraction model
(policy π) by pursuing maximized rewards.

Our framework can be briefly described as fol-
lows: given a sentence, our extractor scans the
sentence and determines the boundaries and types
of entities and event triggers using Q-Learning
(Section 3.1); meanwhile, the extractor determines
the relations between triggers and entities – argu-
ment roles with policy gradient (Section 3.2). Dur-
ing the training epochs, GANs estimate rewards
which stimulate the extractor to pursue the most
optimal joint model (Section 4).

3 Framework and Approach

3.1 Q-Learning for Entities and Triggers

The entity and trigger detection is often mod-
eled as a sequence labeling problem, where long-
term dependency is a core nature; and reinforce-
ment learning is a well-suited method (Maes et al.,
2007).

From RL perspective, our extractor (agent A)
is exploring the environment, or unstructured nat-
ural language sentences when going through the
sequences and committing labels (actions a) for
the tokens. When the extractor arrives at tth to-
ken in the sentence, it observes information from
the environment and its previous action at−1 as its
current state st; the extractor commits a current
action at and moves to the next token, it has a new
state st+1. The information from the environment
is token’s context embedding vt, which is usually
acquired from Bi-LSTM (Hochreiter and Schmid-
huber, 1997) outputs; previous action at−1 may
impose some constraint for current action at, e.g.,
I-ORG does not follow B-PER2. With the afore-

2In this work, we use BIO, e.g., “B-Meet” indicates the
token is beginning of Meet trigger, “I-ORG” means that the
token is inside an organization phrase, and “O” denotes null.

mentioned notations, we have

st =< vt, at−1 > . (1)

To determine the current action at, we generate
a series of Q-tables with

Qsl(st, at) = fsl(st|st−1, st−2, . . . , at−1, at−2, . . .),
(2)

where fsl(·) denotes a function that determine the
Q-values using the current state as well as previ-
ous states and actions. Then we achieve

ât = argmax
at

Qsl(st, at). (3)

Equation 2 and 3 suggest that an RNN-based
framework which consumes current input and pre-
vious inputs and outputs can be adopted, and we
use a unidirectional LSTM as (Bakker, 2002). We
have a full pipeline as illustrated in Figure 2.

For each label (action at) with regard to st, a
reward rt = r(st, at) is assigned to the extractor
(agent). We use Q-learning to pursue the most op-
timal sequence labeling model (policy π) by max-
imizing the expected value of the sum of future re-
wards E(Rt), where Rt represents the sum of dis-
counted future rewards rt + γrt+1 + γ2rt+2 + . . .
with a discount factor γ, which determines the in-
fluence between current and next states.

We utilize Bellman Equation to update the Q-
value with regard to the current assigned label to
approximate an optimal model (policy π∗).

Qπ
∗
sl (st, at) = rt + γmax

at+1

Qsl(st+1, at+1). (4)

As illustrated in Figure 3, when the extractor
assigns a wrong label on the “death” token be-
cause the Q-value of Die ranks first, Equation 4
will penalize the Q-value with regard to the wrong
label; while in later epochs, if the extractor com-
mits a correct label of Execute, the Q-value will
be boosted and make the decision reinforced.

We minimize the loss in terms of mean squared
error between the original and updated Q-values
notated as Q′sl(st, at):

Lsl =
1

n

n∑
t

∑
a

(Q′sl(st, at)−Qsl(st, at))2 (5)

and apply back propagation to optimize the param-
eters in the neural network.

Masih's comments are punishable by

Unidirectional LSTM

BPER
IPER
BGPE
...

O

BSent
BExec

BPER
IPER
BGPE
...

O

BSent
BExec

BPER
IPER
BGPE
...

O

BSent
BExec

BPER
IPER
BGPE
...

O

BSent
BExec

QTables
& Values

BiLSTM

death under

BPER
IPER
BGPE
...

O

BSent
BExec

Pakistan Code

BPER
IPER
BGPE
...

O

BSent
BExec

BPER
IPER
BGPE
...

O

BSent
BExec

BPER
IPER
BGPE
...

O

BSent
BExec

BPER
IPER
BGPE
...

O

BSent
BExec

Tokens'
Context

Embeddings

Figure 2: A pipeline from input sentence to sequence labels mentioned in Section 3.1. Q-table and values for each
current step is calculated using the unidirectional LSTM based on context embeddings of current and previous
tokens as well as Q-tables and values from previous steps. Context embeddings are calculated using Bi-LSTM
from local token embeddings. Pre-trained embeddings based on Bi-LSTM such as ELMo (Peters et al., 2018) are
also good candidates for context embeddings.

death under
O

BPER
IPER
BDie
BExec.
...

0.2
0.3
0.1
2.1
0.4
...

1.4
0.7
0.9
0.3
0.2
...

death under
O

BPER
IPER
BDie
BExec.
...

0.2
0.3
0.1

4.986
0.4
...

1.4
0.7
0.9
0.3
0.2
...

death under
O

BPER
IPER
BDie
BExec.

0.1
0.1
0.3
0.4
1.0

2.5
0.9
0.8
0.1
0.2

death under
O

BPER
IPER
BDie
BExec.

0.1
0.1
0.3
0.4
5.025

2.5
0.9
0.8
0.1
0.2

Back propagation and weight update

Q-Table at mth Epoch with a wrong label

Q-Table at nth Epoch with a correct label

...

Figure 3: An illustrative example of updating the Q-
values with Equation 4, with fixed rewards r = ±5
for correct/wrong labels and discount factor λ = 0.01.
Score for wrong label is penalized while correct one is
reinforced.

3.2 Policy Gradient for Argument Roles

After the extractor determines the entities and trig-
gers, it takes pairs of one trigger and one entity (ar-
gument candidate) to determine whether the latter
serves a role in the event triggered by the former.

In this task, for each pair of trigger and argu-
ment candidate, our extractor observes the con-
text embeddings of trigger and argument candi-
date – vttr and vtar respectively, as well as the
output of another Bi-LSTM consuming the se-
quence of context embeddings between trigger
and argument candidates in the state; the state
also includes a representation (one-hot vector) of
the entity type of the argument candidate atar ,
and the event type of the trigger atar also deter-
mine the available argument role labels, e.g., an

under Pakistandeath... ...

Concatenate and Fully-Connected

GPE

Agent

Place

...

N/A 0.1

0.4

0.35

...

1 Decrease

1

...

1 Increase

Decrease

...

Label P(a|s) r Trend

Available Argument
Roles for Execute

Subsentence BiLSTM

To
ke

n L
ab

el
Context

Embeddings

Figure 4: The extractor combines context embeddings
of the trigger and entity, as well as a one-hot vector
that represents entity type and Bi-LSTM output of sub-
sentence between the trigger and argument. The col-
umn “trend” denotes the changes of P (atr,ar|str,ar)
after policy gradient optimization in Equation 10.

Attack event never has Adjudicator argu-
ments as Sentence events. With these notations
we have:

str,ar =< vttr ,vtar , attr , atar ,fss >, (6)

where the footnote tr denotes the trigger, ar de-
notes argument candidate, and fss denotes the
sub-sentence Bi-LSTM for the context embed-
dings between trigger and argument.

We have another ranking table for argument
roles:

Qtr,ar(str,ar, atr,ar) = ftr,ar(str,ar), (7)

where ftr,ar represents a mapping function whose
output sizes is determined by the trigger event
type attr . e.g., Attack event has 5 –
Attacker, Target, Instrument, Place
and Not-a-role labels and the mapping func-
tion for Attack event contains a fully-connected
layer with output size of 5.

And we determine the role with

âtr,ar = argmax
atr,ar

Qtr,ar(str,ar, atr,ar). (8)

We assign a reward r(str,ar, atr,ar) to the ex-
tractor, and since there is one step in determining
the argument role label, the expected values of R
= r(str,ar, atr,ar).

We utilize another RL algorithm – Policy Gradi-
ent (Sutton et al., 2000) to pursue the most optimal
argument role labeling performance.

We have probability distribution of argument
role labels that are from the softmax output of Q-
values:

P (atr,ar|str,ar) = softmax(Qtr,ar(str,ar, atr,ar)).
(9)

To update the parameters, we minimize loss
function

Lpg = −R logP (atr,ar|str,ar). (10)

From Equation 10 and Figure 4 we acknowl-
edge that, when the extractor commits a correct la-
bel (Agent for the GPE entity “Pakistan”), the re-
ward encourages P (atr,ar|str,ar) to increase; and
when the extractor is wrong (e.g., Place for
“Pakistan”), the reward will be negative, leading
to a decreased P (atr,ar|str,ar).

3.3 Choice of Algorithms
Here we have a brief clarification on different
choices of RL algorithms in the two tasks.

In the sequence labeling task, we do not take
policy gradient approach due to high variance of
E(Rt), i.e., the sum of future rewardsRt should be
negative when the extractor chooses a wrong label,
but an ill-set reward and discount factor γ assign-
ment or estimation may give a positive Rt (often
with a small value) and still push up the proba-
bility of the wrong action, which is not desired.
There are some variance reduction approaches to
constrain the Rt but they still need additional esti-
mation and bad estimation will introduce new risk.
Q-learning only requires rewards on current ac-
tions rt, which are relatively easy to constrain.

In the argument role labeling task, determina-
tion on each trigger-entity pair consists of only
one single step and Rt is exactly the current re-
ward r, then policy gradient approach performs
correctly if we ensure negative rewards for wrong
actions and positive for correct ones. However,
this one-step property impacts the Q-learning ap-
proach: without new positive values from further
steps, a small positive reward on current correct
label may make the updated Q-value smaller than
those wrong ones.

4 Generative Adversarial Imitation
Learning

So far in our paper, the reward values demon-
strated in the examples are fixed, we have

r =

{
c1 when a is correct,
c2 otherwise,

(11)

and typically we have c1 > c2.
This strategy makes RL-based approach no dif-

ference from classification approaches with cross-
entropy in terms of “treating wrong labels equally”
as discussed in introductory section. Moreover, re-
cent RL approaches on relation extraction (Zhang
et al., 2017a; Feng et al., 2017) adopt a fixed
setting of reward values with regard to different
phases of entity and relation detection based on
empirical tuning, which requires additional tun-
ing work when switching to another data set or
schema.

In event extraction task, entity, event and ar-
gument role labels yield to a complex structure
with variant difficulties. Errors should be evalu-
ated case by case, and from epoch to epoch. In
the earlier epochs, when parameters in the neural
networks are slightly optimized, all errors are tol-
erable, e.g., in sequence labeling, extractor within
the first 2 or 3 iterations usually labels most tokens
with O labels. As the epoch number increases, the
extractor is expected to output more correct labels,
however, if the extractor makes repeated mistakes
– e.g., the extractor persistently labels“death” as
O in the example sentence “... are punishable by
death ...” during multiple epochs – or is stuck
in difficult cases – e.g., whether FAC (facility) to-
ken “bridges” serves as a Place or Target role
in an Attack event triggered by “bombed” in
sentence “U.S. aircraft bombed Iraqi tanks hold-
ing bridges...”– a mechanism is required to assess

these challenges and to correct them with salient
and dynamic rewards.

We describe the training approach as a process
of extractor (agent A) imitating the ground-truth
(expert E), and during the process, a mechanism
ensures that the highest reward values are issued to
correct labels (actions a), including the ones from
both expert E and a.

EπE [R(s, a)] ≥ EπA [R(s, a)] (12)

This mechanism is Inverse Reinforcement Learn-
ing (Abbeel and Ng, 2004), which estimates the
reward first in an RL framework.

Equation 12 reveals a scenario of adversary be-
tween ground truth and extractor and Generative
Adversarial Imitation Learning (GAIL) (Ho and
Ermon, 2016), which is based on GAN (Goodfel-
low et al., 2014), fits such adversarial nature.

In the original GAN, a generator generates
(fake) data and attempts to confuse a discrimi-
nator D which is trained to distinguish fake data
from real data. In our proposed GAIL framework,
the extractor (agent A) substitutes the generator
and commits labels to the discriminator D; the
discriminator D, now serves as reward estimator,
aims to issue largest rewards to labels (actions)
from the ground-truth (expert E) or identical ones
from the extractor but provide lower rewards for
other/wrong labels.

Rewards R(s, a) and the output of D are now
equivalent and we ensure:

EπE [D(s, aE)] ≥ EπA [D(s, aA)]. (13)

where s, aE and aA are input of the discrimina-
tor. In the sequence labeling task, s consists of the
context embedding of current token vt and a one-
hot vector that represents the previous action at−1
according to Equation 1, in the argument role la-
beling task, s comes from the representations of all
elements mentioned in Equation 6; aE is a one-hot
vector of ground-truth label (expert, or “real data”)
while aA denotes the counterpart from the extrac-
tor (agent, or “generator”). The concatenated s
and aE is the input for “real data” channel while s
and aA build the input for “generator” channel of
the discriminator.

In our framework, due to the different dimen-
sions in the two tasks and event types, we have
34 discriminators (1 for sequence labeling, 33 for
event argument role labeling with regard to 33
event types). Every discriminator consists of 2

fully-connected layers with a sigmoid output. The
original output ofD denotes a probability which is
bounded in [0, 1], and we use linear transformation
to shift and expand it:

R(s, a) = α ∗ (D(s, a)− β), (14)

e.g., in our experiments, we set α = 20 and β =
0.5 and make R(s, a) ∈ [−10, 10].

To pursue Equation 13, we minimize the loss
function and optimize the parameters in the neural
network:

LD = −(E[logD(s, aE)]+E[log(1−D(s, aA))]).
(15)

During the training process, after we feed the
neural network mentioned in Section 3.1 and 3.2
with a mini-batch of the data, we collect the fea-
tures (or states s), corresponding extractor labels
(agent actions aA) and ground-truth (expert ac-
tions aE) to update the discriminators according
to Equation 15; then we feed features and extrac-
tor labels into the discriminators to acquire reward
values and train the extractor – or the generator
from GAN’s perspective.

Since the discriminators are continuously opti-
mized, if the extractor (generator) makes repeated
mistakes or makes surprising ones (e.g., consider-
ing a PER as a Place), the margin of rewards be-
tween correct and wrong labels expands and out-
puts reward with larger absolute values. Hence,
in sequence labeling task, the updated Q-values
are updated with a more discriminative difference,
and, similarly, in argument role labeling task, the
P (a|s) also increases or decreases more signifi-
cantly with a larger absolute reward values.

Figure 5 illustrates how we utilize GAN for re-
ward estimation.

In case where discriminators are not sufficiently
optimized (e.g., in early epochs) and may output
undesired values – e.g., negative for correct ac-
tions, we impose a hard margin

R̃(s, a) =

{
max(0.1, R(s, a)) when a is correct,
min(−0.1, R(s, a)) otherwise

(16)
to ensure that correct actions will always take pos-
itive reward values and wrong ones take negative.

5 Exploration

In training phase, the extractor selects labels ac-
cording to the rankings of Q-values in Equa-

death
State/Feature
Representation

GroundTruth
Label Execute

Extractor
Label Die

under by

Real Data

Generator
Data

D
iscrim

inator

Label Reward
Execute 0.75

Die -0.28
... ...

Label Reward
Execute 1.33

Die -1.07
... ...

Label Reward
Execute 3.74

Die -2.5
... ...

Epoch 5 Epoch 10 Epoch 20

Figure 5: An illustrative example of the GAN structure in sequence labeling scenario (argument role labeling sce-
nario has the identical frameworks except vector dimensions).As introduced in Section 4, the “real data” in the
original GAN is replaced by feature/state representation (Equation 1, or Equation 6 for argument role labeling
scenario) and ground-truth labels (expert actions) in our framework, while the “generator data” consists of fea-
tures and extractor’s attempt labels (agent actions). The discriminator serves as the reward estimator and a linear
transform is utilized to extend the D’s original output of probability range [0, 1].

tion 3 and 8 and GANs will issue rewards to up-
date the Q-tables and policy probabilities; and we
also adopt ε-greedy strategy: we set a probability
threshold ε ∈ [0, 1) and uniformly sample a num-
ber ρ ∈ [0, 1] before the extractor commits a label
for an instance:

â =

{
argmaxaQ(s, a), if ρ ≥ ε
Randomly pick up an action, if others

With this strategy, the extractor is able to explore
all possible labels (including correct and wrong
ones), and acquires rewards with regard to all la-
bels to update the neural networks with richer in-
formation.

Moreover, after one step of ε-greedy explo-
ration, we also force the extractor to commit
ground-truth labels and issue it with expert (high-
est) rewards, and update the parameters accord-
ingly. This additional step is inspired by (Pasunuru
and Bansal, 2017, 2018), which combines cross-
entropy loss from supervised models with RL loss
functions3. Such combination can simultaneously
and explicitly encourage correct labels and pe-
nalize wrong labels and greatly improve the effi-
ciency of pursuing optimal models.

6 Experiments

6.1 Experiment Setup

To evaluate the performance with our proposed ap-
proach, we utilize ACE2005 documents. To align
with state-of-the-art frameworks such as (Nguyen

3We do not directly adopt this because we treat cross-
entropy loss as fixed rewards with r = 1 for correct label and
r = 0 for wrong label but we prioritize the dynamic rewards.

et al., 2016; Sha et al., 2018), we exclude infor-
mal documents from cts (Conversational Tele-
phone Speech) and un (UseNet), and the rest of
the documents include newswire (nw), weblogs
(wl), broadcast news (bn) and broadcast conver-
sations (bc) crawled between 2003 and 2005 and
fully annonotated with 5, 272 triggers and 9, 612
arguments. To ensure fair comparison with SOTA
methods, we follow the splits of training (529
documents with 14, 180 sentences), validation (30
documents with 863 sentences) and test (40 docu-
ments with 672 sentences) data and adopt the same
criteria of the evaluation:
• An entity (named entities and nominals) is cor-

rect if its entity type and offsets find a match in
the ground truth.
• A trigger is correct if its event type and offsets

find a match in the ground truth.
• An argument is correctly labeled if its event

type, offsets and role find a match in the ground
truth.
• All the aforementioned elements are evaluated

using precision (denoted as P in the tables, the
ratio of correct instances in the system result),
recall (denoted as R in the tables, the ratio of
correct system results in the ground-truth anno-
tation) and F1 scores (denoted as F1, harmonic
average of the precision and recall).
We use ELMo embeddings4 (Peters et al.,

2018). Because ELMo is delivered with built-in
Bi-LSTMs, we treat ELMo embedding as context
embeddings in Figure 2 and 4. We use GAIL-
ELMo in the tables to denote the setting.

Moreover, in order to disentangle the contribu-

4We use pretrained version at https://www.
tensorflow.org/hub/modules/google/elmo/2

https://www.tensorflow.org/hub/modules/google/elmo/2
https://www.tensorflow.org/hub/modules/google/elmo/2

tion from ELMo embeddings, we also present the
performance in a non-ELMo setting (denoted as
GAIL-W2V) which utilizes the following embed-
ding techniques to represent tokens in the input
sentence.

• Token surface embeddings: for each unique to-
ken in the training set, we have a look-up dictio-
nary for embeddings which is randomly initial-
ized and updated in the training phase.
• Character-based embeddings: each character

also has a randomly initialized embedding, and
will be fed into a token-level Bi-LSTM network,
the final output of this network will enrich the
information of token.
• POS embeddings: We apply Part-of-Speech

(POS) tagging on the sentences using Stanford
CoreNLP tool (Toutanova et al., 2003). The
POS tags of the tokens also have a trainable
look-up dictionary (embeddings).
• Pre-trained embeddings: We also acquire em-

beddings trained from a large and publicly avail-
able corpus. These embeddings preserve se-
mantic information of the tokens and they are
not updated in the training phase.

We concatenate these embeddings and feed them
into the Bi-LSTM networks as demonstrated in
Figure 2 and 4. To relieve over-fitting issues, we
utilize dropout strategy on the input data during
the training phase. We intentionally set “UNK”
(unknown) masks, which hold entries in the look-
up dictionaries of tokens, POS tags and characters.
We randomly mask known tokens, POS tags and
characters in the training sentences with “UNK”
mask. We also set an all-0 vector on Word2Vec
embeddings of randomly selected tokens.

We tune the parameters according to the F1
score of argument role labeling. For Q-learning,
we set a discount factor γ = 0.01. For all RL
tasks, we set exploration threshold ε = 0.1. We
set all hidden layer sizes (including the ones on
discriminators) and LSTM (for subsentence Bi-
LSTM) cell memory sizes as 128. The dropout
rate is 0.2. When optimizing the parameters in
the neural networks, we use SGD with Momentum
and the learning rates start from 0.02 (sequence la-
beling), 0.005 (argument labeling) and 0.001 (dis-
criminators), then the learning rate will decay ev-
ery 5 epochs with exponential of 0.9; all momen-
tum values are set as 0.9.

For the non-ELMo setting, we set 100 dimen-
sions for token embeddings, 20 for PoS embed-

dings, and 20 for character embeddings. For
pre-trained embeddings, we train a 100-dimension
Word2Vec (Mikolov et al., 2013) model from En-
glish Wikipedia articles (January 1st, 2017), with
all tokens preserved and a context window of 5
from both left and right.

We also implemented an RL framework with
fixed rewards of ±5 as baseline with identical pa-
rameters as above. For sequence labeling (entity
and event trigger detection task), we also set an
additional reward value of −50 for B-I errors,
namely an I- label does not follow B- label with
the same tag name (e.g., I-GPE follows B-PER).
We use RL-W2V and RL-ELMo to denote these
fixed-reward settings.

6.2 Results and Analysis

6.2.1 Entity Extraction Performance

We compare the performance of entity extrac-
tion (including named entities and nominal men-
tions) with the following state-of-the-art and high-
performing approaches:

• JointIE (Li et al., 2014): a joint approach that
extracts entities, relations, events and argument
roles using structured prediction with rich local
and global linguistic features.
• JointEntityEvent (Yang and Mitchell, 2016): an

approach that simultaneously extracts entities
and arguments with document context.
• Tree-LSTM (Miwa and Bansal, 2016): a Tree-

LSTM based approach that extracts entities and
relations.
• KBLSTM (Yang and Mitchell, 2017): an

LSTM-CRF hybrid model that applies knowl-
edge base information on sequence labeling.

From Table 1 we can conclude that our pro-
posed method outperforms the other approaches,
especially with an impressively high performance
of recall. CRF-based models are applied on se-
quence labeling tasks because CRF can consider
the label on previous token to avoid mistakes
such as appending an I-GPE to a B-PER, but
it neglects the information from the later tokens.
Our proposed approach avoids the aforementioned
mistakes by issuing strong penalties (negative re-
ward with large absolute value); and the Q-values
in our sequence labeling sub-framework also con-
siders rewards for the later tokens, which signifi-
cantly enhances our prediction performance.

P R F1

JointIE 85.2 76.9 80.8
JointEntityEvent 83.5 80.2 81.8
Tree-LSTM 82.9 83.9 83.4
KBLSTM 85.4 86.0 85.7

RL-W2V 82.0 86.1 84.0
RL-ELMo 83.1 87.0 85.0
GAIL-W2V 85.4 88.6 86.9∗

GAIL-ELMo 85.8 89.7 87.1∗

Table 1: Entity extraction performance. ∗: statistically
significant (p < 0.05 with Wilcoxon signed rank test)
against KBLSTM (Yang and Mitchell, 2017)

6.2.2 Event Extraction Performance

For event extraction performance with system-
predicted entities as argument candidates, besides
(Li et al., 2014) and (Yang and Mitchell, 2016) we
compare our performance with:
• dbRNN (Sha et al., 2018): an LSTM frame-

work incorporating the dependency graph
(dependency-bridge) information to detect
event triggers and argument roles.
Table 2 demonstrates that the performance of

our proposed framework is better than state-of-
the-art approaches except lower F1 score on ar-
gument identification against (Sha et al., 2018).
(Sha et al., 2018) utilizes Stanford CoreNLP to de-
tect the noun phrases and take the detected phrases
as argument candidates, while our argument can-
didates come from system predicted entities and
some entities may be missed. However, (Sha et al.,
2018)’s approach misses entity type information,
which cause many errors in argument role labeling
task, whereas our argument candidates hold entity
types, and our final role labeling performance is
better than (Sha et al., 2018).

Our framework is also flexible to consume
ground-truth (gold) annotation of entities as argu-
ment candidates. And we demonstrate the perfor-
mance comparison with the following state-of-the-
art approaches on the same setting besides (Sha
et al., 2018):
• JointIE-GT (Li et al., 2013): similar to (Li et al.,

2014), the only difference is that this approach
detects arguments based on ground-truth enti-
ties.
• JRNN (Nguyen et al., 2016), an RNN-based ap-

proach which integrates local lexical features.
For this setting, we keep the identical parame-

ters (including both trained and preset ones) and
network structures which we used to report our

5 10 15 20 25 30
of Epochs

−12

−8

−4

0

4

8

12

R
ew

ar
d

Execute

Die

Figure 6: Change of rewards w.r.t. event type labels on
the trigger “death” mentioned in Figure 1.

performance in Table 1 and 2, and we substi-
tute system-predicted entity types and offsets with
ground-truth counterparts. Table 3 demonstrates
that, without any further deliberate tuning, our
proposed approach can still provide better perfor-
mance.

6.2.3 Merit of dynamic rewards
The statistical results in Table 1, 2 and 3 demon-
strate that dynamic rewards outperforms the set-
tings with fixed rewards. As presented in Sec-
tion 4, fixed reward setting resembles classifica-
tion methods with cross-entropy loss, which treat
errors equally and do not incorporate much infor-
mation from errors, hence the performance is sim-
ilar to some earlier approaches but does not out-
perform state-of-the-art.

For the instances with ambiguity, our dynamic
reward function can provide more salient margins
between correct and wrong labels. With the iden-
tical parameter set as aforementioned, reward for
the wrong Die label is as lower as −8.27 while
correct Execute label gains as high as 9.35. Fig-
ure 6 illustrates the curves of rewards with regard
to epoch numbers. For simpler cases, e.g., “... sub-
mitted his resignation ...”, we have flatter rewards
as 2.74 for End-Position, −1.33 for None or
−1.67 for Meet, which are sufficient to commit
correct labels.

6.2.4 Impact from Pretrained Embeddings
Scores in Table 1, 2 and 3 prove that non-ELMo
settings already outperform state-of-the-art, which
confirms the advantage and contribution of our
GAIL framework. Moreover, in spite of insignif-
icant drop in fixed reward setting, we agree that
ELMo is a good replacement for a combination of
word, character and PoS embeddings. The only
shortcoming according to our empirical practice is
that ELMo takes huge amount of GPU memory

Tasks Trigger Identification Trigger Labeling Argument Identification Role Labeling

Metric P R F1 P R F1 P R F1 P R F1

JointIE - - - 65.6 61.0 63.2 - - - 60.5 39.6 47.9
JointEntityEvent 77.6 65.4 71.0 75.1 63.3 68.7 73.7 38.5 50.6 70.6 36.9 48.4
dbRNN - - - - - 69.6 - - 57.2 - - 50.1

RL-W2V 73.9 64.8 69.0 69.9 62.1 65.8 58.5 48.2 52.9 53.4 44.7 48.6
RL-ELMo 74.1 65.6 69.6 70.4 62.2 66.0 57.6 47.2 51.9 54.2 43.7 48.4
GAIL-W2V 76.5 70.9 73.2 74.4 69.3 71.8 62.3 48.2 54.3 61.7 44.8 51.9
GAIL-ELMo 76.8 71.2 73.9 74.8 69.4 72.0 63.3 48.7 55.1 61.6 45.7 52.4

Table 2: Performance comparison with state-of-the-art frameworks with system predicted entities.

Tasks TI TL AI RL

JointIE-GT 70.4 67.5 56.8 52.7
JRNN 71.9 69.3 62.8 55.4
dbRNN - 71.9 67.7 58.7

RL-W2V 71.2 69.7 58.9 54.8
RL-ELMo 71.1 69.5 58.7 54.6
GAIL-W2V 74.6 72.7 67.8 59.1
GAIL-ELMo 74.6 72.9 67.9 59.7

Table 3: Comparison (F1) with State-of-the-Art frame-
works on ground-truth (gold) entity as argument candi-
dates. TI=Trigger Identification, TL=Trigger Labeling,
AI=Argument Identification, RL=Role Labeling

and the training procedure is slow (even we do not
update the pre-trained parameters during our train-
ing phase).

6.3 Remaining Errors

Losses of scores are mainly missed trigger words
and arguments. For example, the Meet trigger
“pow-wow” is missed because it is rarely used to
describe a formal political meeting; and there is
no token with similar surface form – which can
be recovered using character embedding or char-
acter information in ELMo setting – in the train-
ing data. Another example of error is due to infor-
mal expression, e.g., “I miss him to death”, where
the “death” does not trigger any event, while our
system makes a mistake by detecting it as a Die
event. Since most training sentences are formal
writing, expression from oral speeches which are
usually informal may cause errors.

We observe some special erroneous cases due to
fully biased annotation. In the sentence “Bombers
have also hit targets ...”, the entity “bombers”
is mistakenly classified as the Attacker ar-
gument of the Attack event triggered by the
word “hit”. Here the “bombers” refers to air-
craft and is considered as a VEH (Vehicle) entity,
and should be an Instrument in the Attack

event, while “bombers” entities in the training data
are annotated as Person (who detonates bombs),
which are never Instrument. From the per-
spective of the reward estimator, the reward for
wrong Attacker is 3.89 while the correct la-
bel Instrument has −2.3 – which is totally re-
versed and unexpected. This illustrates how the
system fails on a fully biased annotation. This
is an ambiguous case, however, it does not com-
promise our claim on the merit of our proposed
framework against ambiguous errors, because our
proposed framework still requires a mixture of dif-
ferent labels to acknowledge ambiguity.

7 Related Work

One of the recent event extraction approaches
mentioned in the introductory section (Hong et al.,
2018) utilizes GAN in event extraction. The GAN
in the cited work outputs generated features to
regulate the event model from features leading
to errors, while our approach directly assess the
mistakes to explore levels of difficulty in labels.
Moreover, our approach also covers argument role
labeling, while the cited paper does not.

RL-based methods have been recently applied
to a few information extraction tasks such as rela-
tion extraction; and both relation frameworks from
(Feng et al., 2017; Zhang et al., 2017a) apply RL
on entity relation detection with a series of prede-
fined rewards.

We are aware that the term imitation learn-
ing is slightly different from inverse reinforce-
ment learning. Techniques of imitation learn-
ing(Daumé et al., 2009; Ross et al., 2011; Chang
et al., 2015) attempt to map the states to expert
actions by following demonstration, which resem-
bles supervised learning, while inverse reinforce-
ment learning (Abbeel and Ng, 2004; Syed et al.,
2008; Ziebart et al., 2008; Ho and Ermon, 2016;
Baram et al., 2017) estimates the rewards first and

apply the rewards to RL. (Vlachos and Craven,
2011) is an imitation learning application on bio-
medical event extraction, and there is no reward
estimator used. We humbly recognize our work as
inverse reinforcement learning approach although
“GAIL” is named after imitation learning.

8 Conclusions and Future Work

In this paper, we propose an end-to-end entity and
event extraction framework based on inverse re-
inforcement learning. Experiments have demon-
strated that the performance benefits from dy-
namic reward values estimated from discrimina-
tors in GAN, and we also demonstrate the perfor-
mance of recent embedding work in the experi-
ments. In the future, besides releasing the source
code, we also will attempt to interpret the dynamic
of these rewards with regard to the instances so
that researchers and event extraction system devel-
opers are able to better understand and explore the
algorithm and remaining challenges. Our future
work also includes using cutting edge approaches
such as BERT (Devlin et al., 2018), and explor-
ing joint model in order to alleviate impact from
upstream errors in current pipelined framework.

Acknowledgments

This work was supported by the U.S. Air Force
No. FA8650-17-C-7715, DARPA AIDA Program
No. FA8750-18-2-0014, and U.S. ARL NS-CTA
No. W911NF-09-2-0053. The views and con-
clusions contained in this document are those of
the authors and should not be interpreted as rep-
resenting the official policies, either expressed or
implied, of the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Government purposes notwithstanding
any copyright notation here on.

References
Pieter Abbeel and Andrew Y Ng. 2004. Appren-

ticeship learning via inverse reinforcement learning.
In Proceedings of International Conference on Ma-
chine Learning 2004.

Bram Bakker. 2002. Reinforcement learning with long
short-term memory. In Advances in neural informa-
tion processing systems, pages 1475–1482.

Nir Baram, Oron Anschel, Itai Caspi, and Shie Mannor.
2017. End-to-end differentiable adversarial imita-
tion learning. In Proceedings of International Con-
ference on Machine Learning 2017.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agar-
wal, Hal Daume III, and John Langford. 2015.
Learning to search better than your teacher.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, Jun
Zhao, et al. 2015. Event extraction via dynamic
multi-pooling convolutional neural networks. In
Proceedings of 2015 Annual Meeting of the Asso-
ciation for Computational Linguistics.

Hal Daumé, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine learn-
ing, 75(3):297–325.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Shaoyang Duan, Ruifang He, and Wenli Zhao. 2017.
Exploiting document level information to improve
event detection via recurrent neural networks. In
Proceedings of 2017 International Joint Conference
on Natural Language Processing.

Xiaocheng Feng, Lifu Huang, Duyu Tang, Bing
Qin, Heng Ji, and Ting Liu. 2016. A language-
independent neural network for event detection. In
Proceddings of 2016 Annual Meeting of the Associ-
ation for Computational Linguistics.

Yuntian Feng, Hongjun Zhang, Wenning Hao, and
Gang Chen. 2017. Joint extraction of entities and re-
lations using reinforcement learning and deep learn-
ing. Computational intelligence and neuroscience,
2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems.

Jonathan Ho and Stefano Ermon. 2016. Generative ad-
versarial imitation learning. In Advances in Neural
Information Processing Systems.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8).

Yu Hong, Wenxuan Zhou, jingli, Guodong Zhou, and
Qiaoming Zhu. 2018. Self-regulation: Employing
a generative adversarial network to improve event
detection. In Proceedings of 2018 Annual Meeting
of the Association for Computational Linguistics.

Lifu Huang, T Cassidy, X Feng, H Ji, CR Voss, J Han,
and A Sil. 2016. Liberal event extraction and event
schema induction. In Proceedings of 2016 Annual
Meeting of the Association for Computational Lin-
guistics.

Lifu Huang, Heng Ji, Kyunghyun Cho, Ido Dagan, Se-
bastian Riedel, and Clare Voss. 2018. Zero-shot
transfer learning for event extraction. In Proceed-
ings of 2018 Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Pa-
pers).

Alex Judea and Michael Strube. 2016. Incremental
global event extraction. In Proceedings of 2016 In-
ternational Conference on Computational Linguis-
tics.

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014. Con-
structing information networks using one single
model. In Proceedings of 2014 Conference on Em-
pirical Methods on Natural Language Processing.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of 2013 Annual Meeting of the
Association for Computational Linguistics.

Francis Maes, Ludovic Denoyer, and Patrick Gallinari.
2007. Sequence labeling with reinforcement learn-
ing and ranking algorithms. In Proceedings of 2007
European Conference on Machine Learning.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. In Proceedings of 2016 Annual Meeting
of the Association for Computational Linguistics.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent
neural networks. In Proceedings of 2016 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In Proceedings of 2015 Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing.

Thien Huu Nguyen and Ralph Grishman. 2018. Graph
convolutional networks with argument-aware pool-
ing for event detection. In AAAI 2018.

Trung Minh Nguyen and Thien Huu Nguyen. 2018.
One for all: Neural joint modeling of entities and
events. arXiv preprint arXiv:1812.00195.

Ramakanth Pasunuru and Mohit Bansal. 2017. Re-
inforced video captioning with entailment rewards.
arXiv preprint arXiv:1708.02300.

Ramakanth Pasunuru and Mohit Bansal. 2018. Multi-
reward reinforced summarization with saliency and
entailment. arXiv preprint arXiv:1804.06451.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of 2018 Annual Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Pro-
ceedings of 2011 international conference on artifi-
cial intelligence and statistics.

Lei Sha, Feng Qian, Sujian Li, Baobao Chang, and
Zhifang Sui. 2018. Jointly extracting event triggers
and arguments by ependency-bridge rnn and tensor-
based argument interaction. In AAAI 2018.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light to
rich ere: annotation of entities, relations, and events.
In Proceedings of Workshop on EVENTS: Definition,
Detection, Coreference, and Representation, work-
shop at the North American Chapter of the Associa-
tion for Computational Linguistics Conference.

Richard S Sutton, David A McAllester, Satinder P
Singh, and Yishay Mansour. 2000. Policy gradi-
ent methods for reinforcement learning with func-
tion approximation. In Advances in neural informa-
tion processing systems.

Umar Syed, Michael Bowling, and Robert E Schapire.
2008. Apprenticeship learning using linear pro-
gramming. In Proceedings of 2008 international
conference on Machine learning.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1. Association for Computational Linguis-
tics.

Andreas Vlachos and Mark Craven. 2011. Search-
based structured prediction applied to biomedical
event extraction. In Proceedings of 2011 Confer-
ence on Computational Natural Language Learning.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 57.

Bishan Yang and Tom Mitchell. 2016. Joint extrac-
tion of events and entities within a document con-
text. In Proceedings of 2016 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics.

Bishan Yang and Tom Mitchell. 2017. Leveraging
knowledge bases in lstms for improving machine
reading. In Proceedings of 2017 Annual Meeting of
the Association for Computational Linguistics.

Hongjun Zhang, Yuntian Feng, Wenning Hao, Gang
Chen, and Dawei Jin. 2017a. Relation extraction
with deep reinforcement learning. IEICE TRANS-
ACTIONS on Information and Systems, 100(8).

Tongtao Zhang, Spencer Whitehead, Hanwang Zhang,
Hongzhi Li, Joseph Ellis, Lifu Huang, Wei Liu,
Heng Ji, and Shih-Fu Chang. 2017b. Improving
event extraction via multimodal integration. In Pro-
ceedings of the 2017 ACM on Multimedia Confer-
ence. ACM.

Yue Zhao, Xiaolong Jin, Yuanzhuo Wang, and Xueqi
Cheng. 2018. Document embedding enhanced event
detection with hierarchical and supervised attention.
In Proceedings of 2018 Annual Meeting of the Asso-
ciation for Computational Linguistics.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
and Anind K Dey. 2008. Maximum entropy inverse
reinforcement learning. In AAAI 2008.

