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ABSTRACT. We investigate wildlife disease management,
in a bioeconomic framework, when the wildlife host is valu-
able and disease transmission is density-dependent. Disease
prevalence is reduced in density-dependent models whenever
the population is harvested below a host-density threshold a
threshold population density below which disease prevalence
declines and above which a disease becomes epidemic. In con-
ventional models, the threshold is an exogenous function of
disease parameters. We consider this case and find a steady
state with positive disease prevalence to be optimal. Next, we
consider a case in which disease dynamics are affected by both
population controls and changes in human-environmental in-
teractions. The host-density threshold is endogenous in this
case. That is, the manager does not simply manage the pop-
ulation relative to the threshold, but rather manages both
the population and the threshold. The optimal threshold de-
pends on the economic and ecological trade-offs arising from
the jointly-determined system. Accounting for this endogene-
ity can lead to reduced disease prevalence rates and higher
population levels. Additionally, we show that ecological pa-
rameters that may be unimportant in conventional models
that do not account for the endogeneity of the host-density
threshold are potentially important when host density thresh-
old is recognized as endogenous.

1. Introduction. A large number of human, livestock, and
companion animal diseases have their origins with wildlife (Cleaveland
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et al. [2001]). Many of these diseases have the potential to inflict
large damages on society, but management may be costly (Daszak et
al. [2000], Wobeser [2002] and Leighton [2002]). Wildlife managers
therefore are faced with making trade-offs when determining how many
resources to invest in disease management.

The solution to wildlife disease problems might be straightforward if
it were easy to distinguish between healthy and infected individuals, so
that infected animals could simply be culled (albeit at a cost). However,
healthy and infected animals are often indistinguishable prior to harvest
and postmortem testing is required, as the outward signs of an illness
often take a long period of time to manifest (Lanfranchi et al.). In other
words, harvests are necessarily nonselective with respect to disease
status. This feature, which is ubiquitous in ecological models of wildlife
disease, e.g., see Smith and Cheeseman [2002], does not necessarily
eliminate harvests as a valuable management tool, however. A disease
can be eradicated if the aggregate wildlife population is harvested
below a host-density threshold a threshold population density below
which disease prevalence declines and above which a disease becomes
epidemic provided a threshold exists, McCallum et al. [2001]. A host-
density threshold can only exist when disease transmission is density-
dependent, because reducing the population in such cases reduces
the number of infected contacts. When the population is below this
threshold, the number of infectious contacts is sufficiently reduced that
the disease dissipates naturally.1

The ecological literature on wildlife disease typically has not been
concerned with how humans affect infectious wildlife disease dynamics
apart from population control (Wobeser [2002]). Indeed, most studies
focus primarily on identifying the level of human initiated population
control to eradicate disease (Barlow [1991b], Barlow [1996], Wolfe et
al. [2004], Caley and Ramsey [2001], Smith and Cheeseman [2002]).
But human-environmental interactions apart from population control
may greatly affect the disease transmission process (Daszak et al. [2000]
and Wobeser [2002]). Human-environmental interactions can be large-
scale landscape changes such as deforestation, which may have large
impacts on wildlife disease emergence (Daszak et al. [2001]), or they can
be smaller scale human-environmental interactions that alter habitat
and wildlife behavior such as supplemental feeding programs. Feeding
wildlife has been implicated as a key factor in the outbreak of disease
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among garden birds (Hartup et al. [2000]) and wild deer (Schmitt et al.
[2002]). In particular, supplemental feeding of deer has been shown to
change deer behavior (Grenier et al. [1999]) and contact rates between
individuals (Garner [2001]).

The primary purpose of this paper is to investigate the disease man-
agement problem, in a bioeconomic framework, when the wildlife host
is of recreational value and the disease dynamics can be affected by
both population controls and changes in human-environmental inter-
actions (specifically, changes in supplemental feeding). The model is
applied to the case of bovine tuberculosis (bTB), Mycobacterium bovis,
in Michigan white-tailed deer, Odocoileus virginianus. We find that
human-environmental interactions make the host-density threshold en-
dogenous, whereas it is an exogenous function of disease parameters in
conventional models that do not account for these interactions (McCal-
lum et al. [2001]).

Ecologists and economists generally accept that economic and eco-
logical systems are jointly determined, that is, human choices affect
the state of ecological systems, and the state of ecological systems in
turn affect the incentives that humans face for exploiting or conserving
ecosystems (Tschirhart [2000], Shogren et al. [1999], and Sanchirico
and Wilen [2001a, b]). Recognizing these linkages and system feed-
backs is important for developing wildlife disease control strategies, yet
the theme of jointly determined ecological-economic systems is only be-
ginning to emerge in the wildlife disease literature, e.g., Bicknell et al.
[1999] and Horan and Wolf [2005], and furthermore there has been no
recognition that the host-density threshold might be endogenous.

For instance, Horan and Wolf [2005] explore the social planner’s prob-
lem for managing bTB in Michigan white-tailed deer, where the plan-
ner chooses the economically optimal level of deer harvests and sup-
plemental feeding. Supplemental feeding in their model, as in ours,
boosts deer productivity but also increases the rate of disease trans-
mission and reduces the rate of disease mortality. However, there is
no host-density threshold in their model because they do not model
density-dependent disease transmission. This means that population
controls do not affect disease prevalence in Horan and Wolf’s [2005]
model. Rather, in their model it is only possible to reduce disease
prevalence by keeping feeding at a low level for a sufficient period of
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time (or by eradicating the deer herd, which would eliminate the disease
and a valuable resource).

Horan and Wolf’s [2005] use of a nondensity-dependent disease trans-
mission function is consistent with some research on the Michigan bTB
problem (McCarthy and Miller [1998]), but others say that density-
dependent transmission is important based on theoretical considera-
tions (Hickling [2002]). Model selection based on data is problematic
because the data often do not exist for a range that enables robust
model selection (Roberts [1996]). Therefore, the selection of the form
of the transmission function needs to balance both empirical evidence
and theoretical principles (Begon et al. [2002], McCallum et al. [2001],
Roberts [1996]). In this paper we adopt a transmission function that
exhibits a degree of density-dependence and has been suggested as su-
perior to more extreme approaches (Roberts [1996]). This results in
significantly different management options than were available in the
Horan and Wolf model, as both population management and feeding
have an impact on disease levels in the present model. Moreover, the
level of feeding affects the host-density threshold and hence the de-
gree to which population controls must be used to manage the disease.
In other words, the endogeneity of the host-density threshold presents
managers with the problem of managing the threshold in addition to
the host population density.

The implications reach beyond wildlife disease problems, as ecologi-
cal thresholds are important in other settings such as the establishment
of invasive species (With [2004]) and hysteresis problems in ecological
processes such as nutrient dynamics in lakes (Mäler et al. [2003]). This
work also expands the growing bioeconomic literature on managing
ecologically interdependent species, e.g., Bulte and van Kooten [1999],
Brock and Xepapadeas [2002], Bulte and Damania [2003], Mesterton-
Gibbons [1987, 1996] and Finnoff and Tschirhart [2003], which primar-
ily focus on population management. In our model (with the inter-
dependent species being the wildlife host and the pathogen), we also
consider the role of human activities that influence species interactions.

A second contribution of the current paper is to show that ecological
parameters that may be unimportant in conventional models having
an exogenous host-density threshold are potentially important when
the threshold is endogenous. Specifically, we consider the role of the
pseudo-vertical transmission rate, i.e., transmission between mothers
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and offspring, which some have said is unimportant for the predictive
ability of disease models (Barlow [1993]). We verify that this parameter
is unimportant when feeding does not enter into the model, but we
illustrate its potential importance when feeding plays a role.

A third and final contribution is an analysis of a special case of the
model in which feeding does not play a role. Here we characterize the
economically optimal dynamics for a conventional model of wildlife dis-
ease, that is, one incorporating density-dependent transmission (unlike
Horan and Wolf’s [2005] model). In contrast to the ecological literature
that focuses mainly on disease eradication, e.g., Barlow [1991b, 1996],
Wolfe et al. [2004], Caley and Ramsey [2001], Ramsey et al. [2002],
Roberts [1996], Smith and Cheeseman [2002], and Smith et al. [2001],
we find that eradication may not be optimal. Rather, a unique steady
state having a positive disease prevalence rate might exist.

We begin this paper by revisiting disease ecology theory and incor-
porating the effects of supplemental feeding on host population and
disease dynamics. In Section 3 we discuss the endogeneity of the host-
density threshold. Then in Section 4 we develop a bioeconomic model
and describe the economic and ecological trade-offs that characterize an
economically optimal solution. This is followed by a numerical model
of bTB in Michigan white-tailed deer. Section 6 provides the results of
some sensitivity analysis. The final section concludes.

2. A model of wildlife disease with human-environmental
interactions.

2.1. Background on modeling approach and motivating example.
While the purpose of this paper is to illustrate the potential importance
of human-environmental interactions for wildlife disease management
problems, there is no general way in which such interactions affect dis-
ease dynamics because there are many different ways in which these
interactions can occur (as mentioned in the Introduction). We must
therefore focus on a particular type of problem. Accordingly, the an-
alytical and numerical models are developed to focus on the Michigan
white-tailed deer case, where supplemental feeding is considered an im-
portant contributing factor in disease transmission. This example is
not entirely case-specific, however, as supplemental feeding is an im-
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portant issue in many wildlife and disease settings, and the types of
impacts that supplemental feeding has on the host population and dis-
ease dynamics, i.e., increasing wildlife productivity, increasing disease
transmission and reducing disease mortality, would be indicative of a
broader class of problems involving human-environmental interactions.

Bovine TB among Michigan white-tailed deer is primarily concen-
trated in a four-county area in the northeastern part of the lower penin-
sula, formally designated as deer management unit (DMU) 452 (see
Hickling [2002], MDA [2002], Schmitt et al. [2002]). This is the only
known area in the United States where bTB has become established
in a wild deer population, and conventional wisdom held that the dis-
ease was not self-sustaining in wild deer populations (Hickling [2002]).
Indeed, while a few cases of infection have been found beyond this
area, the disease does not appear to be sustainable outside DMU 452.
This has led many to speculate that unique, area-specific features such
as human-environment interactions, particularly feeding programs that
encourage deer to congregate, have enabled the disease to become en-
demic (Hickling [2002]). These feeding programs have been sponsored
by several hunt clubs in DMU 452. The historic density of deer in the
area is estimated to have been seven to nine deer per square kilometer
(O’Brien et al. [2002]). The hunt clubs, desiring greater density, began
aggressive deer feeding programs to encourage herd growth resulting in
deer density increasing to an estimated 25 deer/km2 by the mid-1990s.

The disease has spread from the deer herd to local livestock, and
so Michigan agriculture is concerned about disease-related costs and
supports culling the deer population to eradicate the disease. However,
such extreme measures could be very costly, particularly since deer
hunting is arguably the highest-valued use of the land in the infected
region.

2.2. Mathematical details of the ecological model. Assume the aggre-
gate host population, N , is closed and exists on a fixed land area. This
is a reasonable assumption for the Michigan white-tailed deer case, as
the deer migrate very little (Garner [2001], Hickling [2002]) and the
region is bordered by major roadways to the south and west, and by
Lake Huron to the east and north. Indeed, the Michigan Department
of Natural Resources manages deer in the infected region as a unique
population, and it estimates little risk of spread (Hickling [2002]). The
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host population consists of susceptible (S) and infected (I) individuals,
i.e., N = S + I. There is no recovered population, as bTB and many
other wildlife diseases are chronic with no recovery (Barlow [1991b]).

Changes in S and I are written as

İ = G(I, N, f) + T (S, I, f) − A(I, f) − hI/N(1)

Ṡ = Z(S, I, N, f) − T (S, I, f) − hS/N(2)

where G and Z are density-dependent growth functions and G includes
pseudo-vertical transmission, i.e., mother-to-offspring transmission be-
fore or shortly after birth. T represents horizontal transmission (trans-
mission not passed from mother to off-spring), A represents disease-
induced mortality, h is aggregate harvest and f is supplemental feed-
ing. Equations (1) and (2) are standard (Smith and Cheeseman [2002]),
except for the role of f .

Define G to be a modified form of logistic growth: G = I(vb− δ)[1−
(N/k)(1 − τf)]. The first modification relative to standard logistic
growth involves pseudo-vertical transmission applied to offspring of
infected hosts (Barlow [1991a]). To model this, the intrinsic growth
rate, r, is first split into the per-capita birth rate, b, and per-capita
mortality rate, δ (as r = b−δ). Next, the birth rate is multiplied by the
rate of pseudo-vertical transmission, v. Pseudo-vertical transmission
is not modeled explicitly in many disease models, and Barlow [1993]
states that v has little affect on the predictive ability of disease models.
We model v to show that it can matter when supplemental feeding is
incorporated, making the host-density threshold endogenous.

The second modification to the growth function involves the effects
of feeding on the carrying capacity. Carrying capacity depends on
resource availability, where only the most limiting resource constrains
population growth. Specifically, the carrying capacity is defined as
min{k1, . . . , kn}, where ki represents the carrying capacity associated
with the ith resource, e.g., food, cover, water. These carrying capacities
can be increased by human investments that make the resources less
limiting. In the case of food availability, the carrying capacity is an
increasing function of supplemental feeding: ki = ki(f) with k′

i(f) > 0.
Assume food is the most limiting resource for f < fmax, and denote
the effective carrying capacity by k/(1 − τf), where k is the carrying
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capacity when f = 0 and t < 1/fmax is a parameter. Supplemental
feeding therefore increases the effective carrying capacity in a manner
consistent with Walters [2001]. As feeding is costly and only provides
productivity benefits for f < fmax, the upper bound on feeding will be
fmax. 2

Similarly, define Z to be the following modified logistic form: Z =
[rS+bI(1−v)][1−(N/k)(1−τf)]. Z differs from G only in the net birth
term, [rS + bI(1 − v)]. Specifically, rS accounts for the fact that all
births to susceptible animals are also susceptible, and the term bI(1−v)
represents the offspring of infected animals that escape pseudo-vertical
transmission.

Next consider the transmission function, T . Following conven-
tional models (Diekmann and Heesterbeek [2000] and Heesterbeek and
Roberts [1995]), transmission is defined as

(3) T (S, I) = C(N)βSI

where β represents the conditional probability of infection in a sus-
ceptible individual given contacts between infectious and susceptible
individuals, and C(N) represents these contacts (hence, βC(N) is the
probability that a susceptible individual becomes infected). C(N) and
β are generally modeled as deterministic. In particular, we define C to
be a modified form of the function proposed by Roberts [1996]

(4) C =
(1 − ε + εN)

N
.

Here ε ∈ [1, 0] is a parameter that indicates the degree of density
dependence in horizontal disease transmission. When ε = 1, then
C = 1 and T simplifies to the classic density-dependent model of
transmission (McCallum et al. [2001]). When ε = 0, then C =
1/N and T represents frequency-dependent (nondensity-dependent)
transmission. Reality probably lies somewhere in between these two
extremes (Schauber and Woolf [2003]), with ε ∈ (0, 1) so that there is
a degree of density-dependence in transmission.3

We include feeding in the contact function to account for Schmitt
et al.’s [2002] observation that feeding alters social interaction and
generally concentrates deer, also see Grenier et al. [1999]. Specifically,
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assume feeding enters C so that transmission becomes

(5) T (S, I, f) =
(1 − ε + εN)(1 + ωf)

N
βSI,

where ω is a parameter.

Now consider mortality due to the disease. We define A = α(1−χf)I,
where α is the disease-induced mortality rate and χ is a parameter.
Changes to the environment, such as feeding, may decrease the effective
mortality rate by lowering the energy requirements to find food (other
types of habitat change may have the reverse effect).

Finally, consider the harvest terms in equations (1) and (2). It is
often difficult or impossible to identify infected wildlife prior to harvest
(Lanfranchi et al. [2003]). Harvests are therefore nonselective with
respect to disease status, as is the case of bTB in Michigan (O’Brien
et al. [2002]) as well as other wildlife disease situations (Smith and
Cheeseman [2002]). Assuming the disease is uniformly distributed
among the population, this results in the number of deer harvested
in a particular health class being equal to the proportion of deer in
that health class multiplied by the total harvests, h. The assumption
of nonselective harvesting, modeled in this manner, is standard in
virtually all ecological models of wildlife disease, e.g., Smith and
Cheeseman [2002], Barlow [1991b].

Given the model specification, it is intuitively easier and mathe-
matically more convenient to work in (N, θ) space, where θ = I/N
is the disease prevalence rate. Noticing that and Ṅ = Ṡ + İ and
θ̇/θ = İ/I − Ṅ/N , the system of equations (1) and (2) can be written
as

Ṅ = rN

(
1 − N(1 − τf)

k

)
− α(1 − χf)θN − h(6)

θ̇ = b(1 − v)
(

N(1 − τf)
k

− 1
)

θ(7)

+ [β(1 + ωf)(1 − ε + εN) − α(1 − χf)](1 − θ)θ.

Equation (6) says that net changes in the aggregate population are due
to surplus growth, less disease-related mortality, less harvests. Equa-
tion (7) says that net changes in disease prevalence arise due to pseudo-
vertical transmission, plus the net difference between horizontal trans-
mission and disease-related mortality. Conventional wildlife disease
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models do not include the pseudo-vertical transmission term, e.g., Mc-
Callum et al. [2001], either because v has been set equal to unity (so
that the term vanishes) or else because pseudo-vertical transmission
is not explicitly considered (in which case v implicitly equals unity).
Finally, note that h does not affect θ̇ directly. However, h does affect
θ̇ indirectly through its affects on N , provided v = 1 and ε = 0 do not
both hold, in which case θ̇ = β(1 + ωf)(1 − θ)θ such that neither N
nor h influences θ̇.

3. Ecological thresholds. Assuming ε > 0, changes in disease
prevalence will depend on the host population level, and a host-density
threshold exists and may have important management implications.
To analyze this threshold, first consider the conventional case in which
v = 1 and f = 0 (as this is consistent with situations where the level
of feeding is not explicitly considered). The host-density threshold,
denoted N̂ , is then determined by solving the θ̇ = 0 isocline for N :
N̂ = k[α + β(ε − 1)]/βkε, which is independent of θ. In this restricted
case, the θ̇ = 0 isocline drawn in (N, θ) space is a vertical line at N̂ .
Disease prevalence is increasing (θ̇ > 0) for values of N > N̂ , and
prevalence is decreasing (θ̇ < 0) for values of N < N̂ . Hence, disease
prevalence will decline towards zero if the population is kept below the
threshold, N̂ . This has been the rationale for many culling or density
management programs.

Now consider the case where f > 0 but v = 1 still holds (the fo-
cus of our numerical example), so that the threshold becomes N̂(f) =
k[α(1 − χf) + β(ε − 1)(1 + ωf)]/[βkε(1 + ωf)]. Now N̂ is a function
of f , which is not necessarily fixed. For this simple case it is easily
verified that ∂N̂/∂f < 0: an increase in f reduces the host-density
threshold so that a smaller population is required for the disease to die
out. This results because feeding increases the rate of change in preva-
lence by increasing transmission while decreasing disease-related mor-
tality. Since supplemental feeding affects the host-density threshold,
the disease manager’s problem is not simply to manage the population
in relation to the threshold, but rather to manage the population and
the threshold simultaneously. Different strategies for doing this im-
ply different economic and ecological trade-offs, and a planning agency
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interested in managing the disease and hunting interests must assess
the trade-offs that emerge.

Before turning to a bioeconomic model to evaluate these trade-offs,
we consider one last specification: v < 1. In this case, the host-density
threshold is defined in its most general form as

(8) N̂(f, θ) =
(1 − v)kb + k[α(1 − χf) + β(ε − 1)(1 + ωf)](1 − θ)

(1 − v)(1 − τf)b + βkε(1 + ωf)(1 − θ)
,

which is now a function of both f and θ. The relationship between
f and N̂ is now analytically ambiguous due to a fertility effect that
at least partially counteracts the horizontal transmission and mortality
effects. The reason is that a lower v reduces vertical transmission so
that increased feeding increases the recruitment of healthy animals by
more than that of infected animals, resulting in a negative impact on
prevalence.

An example is illustrated in Figure 1. Using the parameter val-
ues from Table 1 and setting θ = 0.025, we find that the host-
density threshold is almost unique when f = 0, for any value of
v. That is, the value of v does not influence the threshold when
f = 0, supporting Barlow’s [1993] statement that v does not matter.
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TABLE 1. Parameter values and sources.a

Para- Description Value Source
meter

N0 initial population size 13,298 Hill [2002]

θ0 initial prevalence 0.023 O’Brien et al. [2002]

r intrinsic rate of growth 0.5702 Rondeau & Conrad
[2003]

δ per-capita mortality rate 0.3623 Sitar [1996]

k carrying capacity 14,049 Miller et al. [2003];
O’Brien et al. [2002]

τ coefficient for feeding 8.0×10−5 Miller et al. [2003]
effect on k

β transmission coefficient 3.39×10−5 Miller & Corso [1999];
McCarty & Miller
[1998]

ω coefficient for feeding 2.64×10−6 Miller et al. [2003]
effect on β

ε contact coefficient 0.75 assumption

v rate of pseudo-verti- 1 assumption
cal transmission

α disease induced 0.3556 Hill 2002;
mortality rate Miller et al. [2003]

χ coefficient for feeding 5.32×10−5 Hill 2002;
effect on α Miller et al. [2003]

p value of harvested 1270.80 Boyle et al. [1998];
healthy deer Frawley [1999];

U.S. DOI-FWS

y proportional reduction in 1 assumption
the value of infected deer
relative to healthy deer

c/q marginal harvesting cost/ 231,192 Rondeau & Conrad
catchablity coefficient [2003]

w unit cost of feeding 36.53 Miller et al. [2003]

D marginal damages to 5491 Wolf & Ferris [2000]
the livestock sector

ρ discount rate 0.05 assumption

a Some values are derived based on data presented in the original source.

See Horan and Wolf [2005] for details on many of the derivations.
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However, ∂N̂/∂f < 0 for all values of v, with the marginal effect of
changes in f on N̂ being much greater when v is larger, as might
be expected due to the counteracting fertility effect when v is small.4

Hence, v matters when f > 0, and it matters more the larger is f .
Although we concentrate on the case of v = 1 in the numerical example,
we explore the effect of changes in v in the sensitivity analysis section
of the paper.

4. A bioeconomic model.

4.1. Economic specification and optimality conditions. Suppose a
manager wants to control wildlife population levels and disease preva-
lence rates in a manner that maximizes the discounted net economic
benefits to society. These net benefits include net benefits to hunters
less the damage costs associated with infections to the livestock sector.
Hunters gain utility from the actual process of shooting deer and/or
consuming meat and other deer products. Given readily accessible
substitutes, i.e., healthy deer, in other nearby regions, the (constant)
marginal utility from harvesting healthy deer is denoted p, which is not
less than the (constant) marginal utility from harvesting infected deer,
pI , i.e., p ≥ pI . Although harvests are nonselective because infected an-
imals cannot be identified prior to the kill, economic values do depend
on health status because infected animals can be identified after the
kill, e.g., from lesions present inside the carcass or else from an exam-
ination of the tonsils, which has been required for all deer harvests in
the infected region in Michigan. For simplicity, let pI = (1−y)p, where
y is the proportional loss in value due to the disease. The benefits from
hunting are therefore phS/N + (1 − y)phI/N = p(1 − yθ)h.

Assume harvests occur according to the Schaefer harvest function
(although in general this specification is not required), and that the unit
cost of effort, c, is constant.5 Then total harvesting costs, restricted on
the in situ stocks, are (c/q)h/N , where q is the catchability coefficient.
The unit cost of food is w.

Finally, the costs of the disease, particularly to farmers and related
agribusinesses, must also be considered. Denote the variable economic
damages caused by infected deer by D(I). These variable damages
are due to infections in the cattle herd that result in lost stock,
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increased testing, and business interruption loss.6 We use a linear
damage function in the numerical example, D(I) = DI = DθN , where
D is a parameter representing marginal damages (although in general
this specification is not required).

Assuming a discount rate of ρ, the social planner’s problem is

(9)
max
h,f

∫ ∞

0

[
ph(1 − yθ) − ch

qN
− wf − DθN

]
e−ρt dt

subject to (7), (8); N(0) and θ(0) given.

Problem (9) is a linear control problem since the objective function and
constraints are all linear in the control variables, h and f .

To solve the planner’s problem, we first define the current value
Hamiltonian

(10) H = ph(1 − yθ) − ch

qN
− wf − DθN + λṄ + μθ̇

where λ and μ are the co-state variables associated with the host
population, N , and disease prevalence, θ, respectively. The marginal
impact of harvests on the Hamiltonian is given by

(11)
∂H

∂h
= p(1 − yθ) − c

qN
− λ.

The right-hand side (RHS) of expression (11) is the linear coefficient
of harvests in the Hamiltonian. If this expression is positive so that
marginal rents, p(1 − yθ) − c/(qN), exceed the marginal user cost, λ,
then larger harvests only increase the value of the Hamiltonian; hence,
harvests should be set at their maximum levels, hmax. If this expression
is negative, then harvests should not occur. The singular solution is
pursued when the expression vanishes.

Now consider the marginal impacts of feeding on the Hamiltonian

(12)
∂H

∂f
= −w +

{
λN

(
rNτ

k
+ αχθ

)
+ μ

−b(1 − v)θNτ

k

}
+ μ

(
(1 − ε + εN)βω + αχ

)
(1 − θ)θ.

The RHS of expression (12) is the linear coefficient of feeding in the
Hamiltonian. If this expression is positive, then feeding should be set
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at its maximum level, fmax. If the expression is negative, then f = 0 is
optimal. The singular solution for feeding should be followed whenever
the RHS of condition (12) vanishes. To understand when this occurs, it
is useful to think of feeding as an investment in both the productivity of
the resource and of the disease. The singular solution should be followed
whenever the unit cost of feeding equals the in situ net marginal value
of feeding on the two state variables. The in situ net marginal value is
the difference between the marginal benefits of feeding on the overall
stock (the second term within the curly brackets; specifically, increased
productivity, decreased mortality, and, when v < 1, a fertility-related
reduction in θ when f is increased at the margin) and the marginal costs
of feeding in terms of an increased proportion of infected animals (due
to increased transmission and decreased mortality among the infected
stock, the third term). Conventional models do not treat feeding as
a choice variable, in which case f would be treated as fixed without
consideration of the sign of condition (12). Such an outcome would
necessarily be inefficient. In the numerical example below, we analyze
a case in which f is fixed so as to better illustrate the implications of
choosing f optimally (relative to more conventional models where this
does not occur).

The overall solution to problem (9) will be a set of harvest and feeding
choices over time, which in turn results in an optimal path for the state
variables N and θ. Along the optimal path, three types of solutions
might arise at different points in time. The first type is known as a
double-singular solution, and it arises when conditions (11) and (12)
simultaneously vanish, so that singular solutions arise for both control
variables. The second type of solution is known as a partial-singular
solution, which arises when only one of the conditions (11) or (12)
vanishes, so that a singular solution only arises for a single variable.
Partial-singular solutions arise as part of a blocked interval, a period of
time during which one of the controls is “blocked” or constrained from
following the double-singular path (Arrow [1968] and Clark [1990]). A
potential third type of solution is a fully constrained solution when
neither condition (11) or (12) vanishes.

Regardless of the type of solution, e.g., doubly or partially singular,
an optimal solution also requires the following two adjoint equations to
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be satisfied:

λ̇ = ρλ − ∂H

∂N
(13)

μ̇ = ρμ − ∂H

∂θ
.(14)

These conditions prevent intertemporal arbitrage opportunities: if
they were not satisfied, then gains could be made from reallocating
harvests or feeding across time, in which case the solution would not
be intertemporally optimal. These equations may be manipulated into
two “golden rule” equations that must hold at each point in time:

(15) ρ =
{

r − 2rN(1 − τf)
k

− α(1 − χf)θ
}

+
λ̇

λ
+

ch

λqN2
− Dθ

λ

+
μ

λ

[
b(1 − v)

(1 − τf)θ
k

+ β(1 + ωf) ε(1 − θ)θ
]

(16) ρ =
{

b(1 − v)
(

N(1 − τf)
k

− 1
)

+ [β(1 + ωf)(1 − ε + εN) − α(1 − χf)](1 − 2θ)
}

+
μ̇

μ
− phy + DN + α(1 − χf)Nλ

μ
.

Consider condition (15). The left-hand side (LHS) is the discount rate,
which represents the rate of return elsewhere in the economy, or the
opportunity cost of leaving deer in situ. The first term on the RHS of
condition (15) (in {}) is ∂Ṅ/∂N , or the stock’s own marginal growth
as a result of it being a reproducible asset. The second RHS term of
conditions (15) represents the capital gains to holding the stock in situ,
i.e., the rate of growth in the marginal value of the stock. The third
RHS term is the marginal savings in harvesting costs from having more
deer at the margin (as deer are less costly to find when they are more
abundant). The fourth RHS term is the marginal damages associated
with a larger deer population (as the infected stock is expected to
increase along with the aggregate population). The final RHS term is
the (imputed) marginal costs of increased transmission (as more deer
leads to more infectious contacts). This term is zero in Horan and
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Wolf’s [2005] model with frequency-dependent transmission and v = 1.
Relative to that model, the effect of this term is to reduce the RHS of
(15) which, for a given discount rate, implies that N should be larger
in the present model, everything else being equal.

Condition (16) is also a “golden rule” expression, although it has a
slightly different interpretation. Here, the discount rate represents the
opportunity cost of pulling resources from elsewhere in the economy
and using them to manage the disease. The RHS represents the rate
of return to controlling the disease. We again compare the results with
Horan and Wolf’s [2005] model with frequency-dependent transmission,
i.e., ε = 0, and v = 1. As v is decreased, the RHS of (16) is
decreased: less pseudo-vertical transmission means there are fewer
gains to disease control investments. To maintain equality of (16) as v is
reduced, other RHS terms must therefore increase. Other things being
equal, we would expect an increase in θ when horizontal transmission
outweighs mortality and vice versa when mortality outweighs horizontal
transmission (to see this, totally differentiate (16) to obtain dθ/dv).
The opposite result occurs when ε is increased: increased density-
dependent transmission means population management has greater
impacts on disease control, thereby increasing the benefits of disease
control.

Conditions (15) and (16) are used to derive the feedback rules that
characterize the double-singular and partial-singular solutions. We
denote the feedback rules for the singular values of the controls by
h(N, θ) and f(N, θ), respectively, but note that the actual functions
will generally differ depending on whether we are discussing a double-
singular or partial-singular solution. The process for deriving these
feedback rules is outlined in the Appendix.

5. Numerical example. We now examine the optimal solution nu-
merically because the feedback rules and the differential equations that
define the solution are too complex to analyze analytically. Moreover,
the choice of whether to pursue a free interval solution or a blocked
interval solution is inherently numerical (Arrow [1968]). The software
package Mathematica 5.1 (Wolfram Research) was used to arrive at
the numerical solution, using the data in Table 1 to parameterize the
model. We have used the best available data for the Michigan bTB
case, however research on this system is still evolving from a fairly
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early stage and so knowledge of many parameters is somewhat limited.
The following analysis is therefore best viewed as a numerical example
rather than a prescription for optimal management of the Michigan
bTB situation. Nonetheless, the results shed light on the economics
of wildlife disease management in general and specifically on bTB in
Michigan deer.

5.1. Optimal management when supplemental feeding is fixed. We
begin with a special case in which f is held constant. This is interesting
in its own right, but also provides a baseline for comparison with the
case in which f is chosen optimally, so that we may highlight the role of
feeding. We fix f = fmax, as this represents a situation with substantial
supplemental feeding activities, much like the situation in Michigan
prior to the implementation of feeding controls. Also, the solution
to the f = fmax case is equivalent to the partial singular solution
arising when f = fmax in the more general model (in which f is chosen
optimally), and so the current discussion will inform the analysis of the
more general model.

Given the initial states of the world, N0 and θ0, the planner must
choose whether to set h = 0, h = h(N, θ) (the singular value of h),
or h = hmax. This problem is similar to the one posed by Mesterton-
Gibbons (MG) [1987], where nonselective harvest levels were chosen to
optimally manage two noninteracting populations. A general version
of this technique has been used to solve problems where species inter-
act through competitive and predator-prey relationships (Mesterton-
Gibbons [1996]). Our model involves two interacting populations,
which could be thought of as bacteria and deer interacting in a host-
parasite relationship.7 We follow the basic approach outlined by MG
and consider each solution type in turn. Trajectories for the different
solution types are presented in Figure 2 as dark curves with arrows.
Broken curves represent either isoclines or boundaries that pertain only
to the singular solution, and these are presented in each panel to intro-
duce a sense of scale relative to the singular solution.

The first possibility we consider is to set h = hmax until an equilibrium
is reached. The trajectories for this case, which are illustrated in
Figure 2a, all lead to extinction of the deer. Such a strategy would
be infinitely costly given our cost function, and would therefore be
dominated by any outcome in which welfare is finite.
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FIGURE 2. The trajectories given the application of different harvest rules
when f = fmax and is not managed.

The second possibility is to set h = 0. The trajectories for this case,
given different starting values, are illustrated in Figure 2b. With no
harvests, but with positive disease prevalence levels, discounted net
benefits will be negative along any of these trajectories. Moreover,
the ultimate outcome is the steady state point N = k/(1 − τf),
θ = 1, which does not satisfy the necessary conditions for optimality.
Evaluating equation (15) at this point and setting λ̇ = 0, we can
solve for λ = −D/[ρ − r + α(1 − χfmax)] < 0. Then imposing
∂H/∂h < 0 (which must hold along an optimal path when h = 0),
we find that the following condition must hold along an optimal path,
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D/[ρ−r+α(1−χfmax)] < c(1−τfmax)/k. This condition is not satisfied
numerically (for any reasonable parameter values), however, so it would
be inefficient to remain on an h = 0 trajectory into perpetuity. Indeed,
once θ = 1, it can be verified numerically that the associated singular
solution coincides with a steady state value of N that is less than the
carrying capacity value, and that a jump to this point from any other
value of N will be optimal.

Now consider the singular solution h = h(N, θ), trajectories which
are illustrated in Figure 2c. Two separatrices lead away from unstable
equilibria (one arising where θ = 1 and another where θ = 0) to an
interior, saddle point equilibrium of N = 6, 355, θ = 0.02, defined
by point b. Above this separatrix, trajectories lead past the μ = 0
boundary (so that greater disease prevalence counter-intuitively has
positive social value at the margin) and ultimately to the h = 0
boundary, beyond which h = 0 always holds. Our discussion above,
as well as our intuition that μ should be nonpositive, indicates that it
is not optimal to stay on such a trajectory. Similarly, it is not optimal
to follow trajectories that lie below the separatrices, as these all lead
to extinction.

An optimal plan is therefore similar to the one described by MG
(who provides a rigorous proof for a similar class of problems), and
illustrated in Figure 2d. For initial points above the separatrices, set
h = hmax until the separatrix is reached and then follow the separatrix
to the steady state. This is consistent with the strategy described above
when θ = 1. For initial points below the separatrices, set h = 0 until
the separatrix is reached and then follow the separatrix to the steady
state. Given our starting values N(0) = 13, 298 and θ(0) = 0.023, as
defined by point a, the optimal solution is to jump to point c and the
follow the separatrix to the steady state b.

The result that a positive level of disease prevalence is optimal runs
counter to the disease eradication focus of the ecological literature.
The economic intuition behind this result is that it is costly, in terms
of foregone deer productivity, to maintain the deer population below
the exogenously determined host-density threshold (the isocline) for a
sufficiently long time as to let disease prevalence fall to zero.

In contrast, disease eradication is optimal for the opposite case, when
f = 0. In this case, the host-density threshold shifts to the right, so
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that disease prevalence falls for a larger range of population levels. In
turn, the opportunity cost of waiting out the disease is reduced since
the disease can be eliminated at larger population levels. However, the
full opportunity cost of this strategy is not really being accounted for
since feeding is being held at a fixed level.

5.2. Optimal management when harvests and supplemental feeding
are chosen optimally. Now consider the optimal management strategy
when both harvests and feeding levels are choice variables. The phase
dynamics for the double-singular solution are illustrated in Figure 3 be-
tween the f = 0 and f = fmax boundaries, where these boundaries are
defined as the loci of points for which f(N, θ) = 0 and f(N, θ) = fmax.
These loci of points, plotted as dotted lines, determine boundaries that
divide the state space into three regions in which double and partial-
singular solutions will emerge: f = 0 partial-singular solutions arise to
the left of the f = 0 frontier; f = fmax partial-singular solutions arise
to the right of the f = fmax frontier; and double-singular solutions
arise in the interior region.

Next, we determine the Ṅ = 0 and θ̇ = 0 isoclines within each region.
The isoclines in the f = fmax region are the same as those presented in
Figure 2. These isoclines are shifted within the double-singular region
because feeding is adjusted in response to the current states of N and
θ. Note in particular the θ̇ = 0 isocline in the double-singular region.
This isocline, which represents the host-density threshold, is no longer
vertical. Rather, it is a curve that reflects endogenous economic and
ecological trade-offs. We expand on this in the following section.

The isoclines for the double-singular solution intersect in the interior
of the double-singular region. This intersection defines an interior
equilibrium at the point N = 7, 962 and θ = 0.0113. The eigenvalues of
the differential equation system, linearized at the equilibrium point, are
complex with positive real parts. This indicates that the equilibrium
is an unstable focus, see Conrad and Clark [1987]. This means that it
is only optimal to be at this point if the system starts at this point.
Otherwise, it is optimal to spiral away from this point. There are no
equilibria in any of the constrained regions.

We can now determine the optimal path given the starting values
N(0) = 13, 298 and θ(0) = 0.023. The feedback rule associated with a
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FIGURE 3. Phase-plane diagram illustrating the simulated dynamics and
optimal trajectory form starting point a.

double-singular solution at these starting values results in f > fmax.
The system therefore begins in a constrained region, and so the partial-
singular solution for f = fmax must be considered, as in Figure 2d.
The initial point lies above the separatrix associated with the partial-
singular solution for f = fmax, and so a westward jump to the
separatrix would be optimal if such a path led to the steady state
associated with this partial singular solution. But it does not, as the
separatrix disappears at the f = fmax boundary. Upon crossing the
boundary, feeding is no longer constrained and so a double-singular
solution becomes optimal. The optimal solution, therefore, is a “bang-
bang” control with respect to the harvest an instantaneous cull of the
deer population that allows us to jump to the double-singular path that
exists in the interior region.

The optimal trajectory in the interior region is governed by the local
dynamics, indicated by the phase arrows. Given that the θ̇ = 0
and Ṅ = 0 isoclines intersect to form an unstable focus, the optimal
trajectory must first move into the northeast quadrant of the interior
region and then rotate around the focus point to intersect either the
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f = 0 frontier, the N -axis, or the f = fmax frontier. If the optimal
path intersects the N -axis when N > 0, the disease is eradicated and a
healthy deer population remains. However, in the numerical example
this does not occur. Rather, the optimal path misses the N -axis and
swings back around to intersect the f = fmax frontier (at the point N =
9, 720, θ = 3.7 × 10−4), nearly but not fully eradicating disease. This
result is highly parameter-dependent. Eradication may arise for some
parameter combinations, while prevalence may remain significantly
larger than zero for other parameter combinations. Figure 4, derived
using a larger discount rate (so that less value is placed on future
damages relative to the near-term productivity benefits of feeding),
illustrates the latter case.

The optimal path travels along the fmax frontier by “chattering”
between the constrained and unconstrained regions.8 Chattering ceases
once the system crosses the Ṅ = 0 isocline (at the point N = 8, 827,
θ = 0.018), sending the system back into the interior and resulting in
a cyclical path, Figure 3.

The final part of the optimal path that must be determined is the
initial cull. The “premature switching principle” suggests that it is
optimal to cull directly to a point lying on the optimal cyclical path.
Given the initial value of θ = 0.023, this results in an initial cull of 5031
deer so that N = 8, 267 (just to the left of the f = fmax threshold).
It is interesting to note that a single cycle takes > 50 years in the
simulation, indicating that optimal disease management likely involves
a long-term commitment. This is not surprising given that it took 62
years to previously eliminate the disease in cattle herds under more
controlled conditions, Frye [1995].

5.3. Endogenous ecological and economic thresholds. Recall the
θ̇ = 0 isocline represents the optimal host-density threshold, the value
N = Ñ(θ) below which the disease dissipates, given values of θ. The
expression for Ñ(θ) will differ from the expression for N̂(θ, f), the
host-density threshold defined by equation (8) (although the values
of these two expressions will be equivalent if N̂ is evaluated at the
optimal value of f). The reason is that N̂(θ, f) is an ecologically
determined threshold, given values of θ and f . In contrast, Ñ(θ) reflects
both ecological and economic considerations, as it is endogenously
determined based on the optimal choice level of feeding, f(N, θ).
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FIGURE 4. The optimal interior cycle when the discount rate is increased to
15%, holding all other parameters constant.

Indeed, Ñ(θ) is determined by plugging f(N, θ) into the expression θ̇ =
0 and solving for N . Because the feedback rule f(N, θ) is derived based
on economic-ecological trade-offs, the optimal host-density threshold,
Ñ(θ), also reflects these trade-offs. Other choices of feeding would
produce different host-density thresholds, but these thresholds would
be suboptimal.

The endogeneity of the threshold can be seen by comparing the shapes
of the θ̇ = 0 isoclines in Figures 2 and 3. In contrast to the vertical
isocline in Figure 2, the θ̇ = 0 isocline is negatively sloped in Figure 3,
as the value of f differs at each point on this curve. Specifically, the
value of f on this curve is smaller for smaller values of θ and larger
values of N , reflecting the control the manager has over the threshold
as well as the trade-offs the manager makes between feeding and
population controls. At higher prevalence rates, the manager prefers to
reduce prevalence through population controls, as this has a secondary
effect of significantly reducing damages at the margin while at the
same time providing significant near-term harvesting benefits (which
are heightened due to substantial rates of supplemental feeding). At
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lower prevalence rates, population controls have little marginal impact
on reducing damages and so reducing feeding becomes the preferred
approach to further reducing prevalence.

Somewhat analogous to the endogenous host-density threshold is an
endogenous, economic-based prevalence threshold. Specifically, the
Ṅ = 0 isocline within the double-singular region defines an economic-
based prevalence threshold, θ = θ̂(N), below which it becomes optimal
to increase feeding (and above which feeding is optimally declining).

Together, these two thresholds govern the cyclical management of the
disease. Horan and Wolf [2005], in their model of frequency-dependent
disease transmission, also find that an optimal path involves cyclical
fluctuations in the deer population and disease levels. The intuition be-
hind these fluctuations is the same in both models. Specifically, initial
and intermittent future investments in deer productivity (via feeding)
create opportunities for near-term gains. However, the investments
also provide the unwanted side-effect of increased disease prevalence.
Eventually, the damages due to increased prevalence would swamp the
benefits from investment; therefore intermittent disinvestment of the
disease is warranted. Of course, this also carries a cost in terms of lost
productivity. So, after prevalence is reduced below the economic-based
prevalence threshold, the benefits from investing in deer productivity
again outweigh the costs of increased prevalence. Accordingly, feeding
increases along with the deer population, and eventually prevalence
follows so that the disease is not eradicated.

But while the intuition is the same in both models, the paths do
differ as a result of the different disease transmission functions and the
implications these have for management. In Horan and Wolf’s [2005]
model, feeding was eliminated along much of the optimal path because
reductions in feeding were the only way to reduce prevalence. In the
present model, a reduction in feeding also reduces prevalence but it has
an additional effect: it increases the host-density threshold so that fewer
population controls are needed to reduce prevalence. This additional
effect helps to lower disease management costs, so that we would expect
lower prevalence rates. Similarly, harvests create an additional benefit
in the present model relative to the frequency-dependent model: they
create future benefits in terms of disease reduction. These benefits
are also expected to lower disease control costs, as well as reduce the
pressure to limit feeding activities. The net result is that feeding and
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population levels are both larger while disease prevalence is smaller in
the present solution than in Horan and Wolf’s solution.

6. Sensitivity analysis. Sensitivity analyses are commonly used
to examine how changes in one or more parameters affect the solution.
There are many parameters in the present model, and a sensitivity anal-
ysis could be performed for each of them. However, a new phase plane
would have to be presented and examined for each new parameter sce-
nario, and there are many potential scenarios that could be considered.
Rather than working through changes for every parameter, we focus
on two parameters. The first is a biological parameter where empirical
and theoretical knowledge is significantly lacking: the rate of pseudo-
vertical transmission, v. The second is the economic parameter, y.9

Horan and Wolf [2005] explore changes in discount rates and economic
parameters, and differences between the results of their base model and
the alternative scenarios are qualitatively similar to the differences that
would arise for the present model.10

The importance of the vertical or pseudo-vertical transmission rate
has at times been downplayed. Barlow [1993] states that the pseudo-
vertical transmission parameter has little affect on the predictive ability
of a model of disease spread. This has led to a wide range of values
used for parameters in bTB and other disease models. Indeed, authors
have used rates spanning the unit interval, often due to a lack in data
(Barlow [1991a, 1993, 1996], Roberts [1996], Fulford et al. [2002], and
Smith and Cheeseman [2002]). One reason for including high rates of
pseudo-vertical transmission is that sets of related animals are more
likely to be infected than sets of unrelated animals, as is the case
for deer with bTB (Blanchong [2003]). But still the actual rate is
unknown. And while the choice of v may have only a small impact
on the predictive ability of the model when the host-density threshold
is exogenous, it is possible that the pseudo-vertical transmission rate
may have significant impacts on the optimal management strategy if
the endogeneity of the host-density threshold is recognized.

In order to gauge the potential impact of pseudo-vertical transmission
on the optimally determined host-density threshold, the parameter v
was reduced to v = 0.95. A decrease in v causes the optimal host-
density threshold (the θ̇ = 0 isocline) to shift to the right and to
rotate slightly, Figure 5, indicating that disease prevalence is optimally
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diminished at larger values of N . The reason is that a smaller v reduces
vertical and, hence, overall transmission. The ecological threshold,
N̂(θ, f), is therefore increased at each prevalence rate, for any value of
f . This increase is offset somewhat (but not entirely) by an increase in
supplemental feeding, f(N, θ), since the disease-related costs of feeding
(in terms of increasing population growth and hence the number of
infected offspring) are reduced along with vertical transmission. The
net effect is therefore an increase in the optimal host-density threshold.

The value of v also impacts the economic threshold that defines when
feeding should be increasing or decreasing, illustrated by the Ṅ = 0
isocline, Figure 5. A decrease in the value of v causes the isocline
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to rotate upwards. This indicates that, for lower values of v, feeding
should begin to increase at a higher level of prevalence for a given
population density (again, because disease-related costs of feeding, in
terms of increasing population growth and hence the number of infected
offspring, are reduced), and this effect is greater for larger values of N .
The effect is to increase investment in deer productivity over a larger
range of θ.

The net effect of a reduction in v is an increase in both the population
and prevalence of disease at the unstable equilibrium. In turn, this
should shift the equilibrium cycle upwards, reducing the likelihood that
eradication will be optimal (because the costs of managing the disease
have been reduced).

Now consider the implications of reducing y. So far, we have assumed
y = 1: that infected animals yield no benefits to hunters. This would
be reasonable if hunting was mainly for meat and if the disease made
the meat unsafe to handle or consume. However, in the case of bTB
in Michigan deer, hunters also gain utility from the recreational value
of hunting. Therefore, we conducted sensitivity on the parameter y by
first decreasing its value to 0.5 and then reducing it to 0.05, such that
infected deer retain more of their recreational hunting value. In the
interest of space we do not present the phase planes for these analyses.
Suffice to say, in each case the entire phase plane (and optimal path)
shifts slightly up and to the right, in accordance with the fact that
there are fewer damages to hunters in these scenarios and hence fewer
incentives for the planner to reduce disease prevalence. However, the
effect on the optimal path is small because the proportion of infected
deer is small relative to the total harvest in this region.

7. Discussion and conclusion. It may be expected that concern
over wildlife disease will continue to grow as human encroachment into
wild lands intensifies, stressing ecological systems and making them
more susceptible to both infection and the severe adverse consequences
of infection, i.e. extinction in the case of threatened or endangered
species, (Daszak et al. [2001]). Such changes may also lead to more
opportunities for close contact between wildlife and humans and do-
mesticated animals. Yet, there is surprisingly little research on the
management of wildlife diseases, particularly how changes to the envi-
ronment influence opportunities for disease management.
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The purpose of this paper is to show the need to move from a solely
ecological understanding of wildlife disease to an interdisciplinary un-
derstanding of wildlife disease management, one that incorporates hu-
man behavior. There are three main results that come from this work.
First, we showed that the ecological threshold for an optimally managed
disease system is endogenously determined when habitat management
is accounted for. In this model, the host-density threshold is a function
of prevalence and feeding, but feeding is optimally a function of the
current level of population and prevalence. A variety of suboptimal
choices for feeding exist, all of which lead to other thresholds, but such
thresholds would be suboptimal and waste resources that could be used
elsewhere more efficiently.

This leads to the second result: eradication may not be optimal.
Horan and Wolf [2005] have previously reported this result, but for the
case of frequency-dependent transmission in which there is no host-
density threshold. When this threshold does exist, then economic and
ecological trade-offs must be accounted for, and the active eradication of
disease carries with it the direct costs of management as well as foregone
opportunities, e.g., foregone hunting benefits when wildlife populations
are at low levels and growing slowly, that need to be accounted for
when planning a disease management program. A narrow focus on
eradication based solely on exogenous ecological thresholds will be
inefficient and possibly ineffective. When human-environmental actions
affect disease transmission and these are not accounted for, any target
host-density threshold is likely to be wrong and, moreover, endogenous
human responses may alter transmission dynamics and result in an
unanticipated change in the host-density threshold.

Finally, as in all modeling efforts, assumptions may mislead the man-
ager when the model is extended beyond its intended purpose. The sen-
sitivity analysis shows that assumptions about pseudo-vertical trans-
mission, v, can be important for management, especially when these
assumptions are made in an ad hoc fashion. Blanchong [2003] shows
that transmission does not happen solely due to random mixing, and
the relationship between individuals matters. Altering v may account
for this, but the value v takes may impact the model in a qualitative
way and alters the trade-offs that a planner faces, even though disease
prediction models may be less sensitive to assumptions about v. Lower
levels of pseudo-vertical make maintaining an endemic level of disease



540 E.P. FENICHEL AND R.D. HORAN

less costly, and this reduces the likelihood that eradication would be an
optimal solution. Furthermore, the specific role of inter-generational
transmission has been downplayed in the literature but is likely to be
important given length of time (and, hence, multiple wildlife genera-
tions) needed to manage wildlife diseases. In our numerical example
optimal management results in long cycles lasting > 50 years. Dis-
ease control programs that have been considered “successful” have also
required long-term commitments (Caley et al. [1999]).
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Appendix

8. Deriving feedback rules for the singular solutions.

8.1. The double-singular solution. A double-singular solution arises
when conditions (11) and (12) simultaneously vanish. These conditions
may therefore be used to solve for λ and μ and can then be substituted
into the “golden rule” conditions (15) and (16). Moreover, conditions
(11) and (12) may be differentiated with respect to time to solve for λ̇
and μ̇, which may also be substituted into the “golden rule” conditions.
After making these substitutions, the golden rule conditions depend
only on state and control variables. These conditions can be solved
simultaneously for the control variables as functions of the current
states, resulting in nonlinear feedback rules for the controls, h(N, θ)
and f(N, θ) (while explicit rules can be derived, they are too complex
to present here; see Bryson and Ho [1975] for more on nonlinear
feedback rules in the context of singular solutions). The feedback rules
h(N, θ) and f(N, θ) can be substituted into equations (7) and (8) to
(numerically) solve for the double-singular path, given the initial states,
N0 and θ0, and assuming that the feedback rules satisfy feasibility
conditions at these initial states.11
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8.2. Partial-singular solutions. It is possible that the double-singular
feedback rules will yield values of f > fmax, f < 0, h > hmax, or
h < 0 for some states of the world, as these bounds were not explicit
in the solution algorithm for the double-singular solution. When such
situations arise, the solution becomes blocked and it is necessary to
determine the partial-singular solution to the problem. In principle,
the solution can be blocked with respect to f or h, but in our numerical
example only f becomes blocked. Hence, we focus on this case.

When f is blocked, condition (12) will no longer vanish and so f must
be set to either its minimum or maximum value. Moreover, this means
that (12) cannot be used to solve for μ or μ̇. The solution procedure in
this case proceeds as follows. First, set f equal to its constrained value
(either 0 or fmax). Next, use condition (11) to solve for λ and λ̇ and
substitute these expressions into (15), as in the procedure used to find
the double-singular solution. The resulting golden rule can be written
in implicit form as ρ = Γ(N, θ, μ). Hence, we can solve for μ(N, θ).
Next, take the time derivative of μ(N, θ) and substitute μ(N, θ) and
μ̇(N, θ) into condition (16). The resulting “golden rule” can be written
in implicit form as ρ = λ(N, θ, h). This enables us to solve for h(N, θ),
which is the feedback rule for the partial-singular solution.

ENDNOTES

1. Other population and disease control methods, such as contraception and
vaccination, have also been investigated, but most studies favor harvests (Smith and
Cheeseman [2002]). In particular, vaccination is not even feasible for some diseases
like bovine tuberculosis (bTB), Mycobacterium bovis, the focus of this paper.
Moreover, treatment involves a strict and lengthy regimen of antibiotics something
that would be impossible to administer effectively in the wild.

2. This upper bound is made explicit in our simulation.

3. Density-dependent disease transmission is often applied in theoretical models,
but may not hold up when tested empirically (McCallum et al. [2001]). Frequency-
dependent models are often employed to model sexually transmitted diseases (Mc-
Callum et al. [2001]), and this form has also been shown to fit data better than
the density-dependent form in some other cases (McCallum et al. [2001], Begon et
al. [1998] and Begon et al. [1999]). Begon et al. [2002] demonstrate how frequency
and density dependent transmission are special cases of a more general transmis-
sion function. Unlike the density-dependent transmission function, the transmission
rate is independent of host density under frequency-dependent transmission. This
creates a theoretical problem for frequency-dependent transmission, namely that
transmission is positive even when density is zero (Roberts [1996]).
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4. From (8), the fertility effect is clearly larger when θ is larger, and ∂N̂/∂f > 0
will result as θ → 1. However, the value of θ at which the slope changes signs is

relatively large. So while, in principle, dN̂/df could take on any sign, our solution

will involve dN̂/df < 0 given the values of θ that arise along an optimal path in our
model.

5. The cost parameter c accounts for the opportunity cost of effort involved in
hunting, e.g., travel and search costs, hunting equipment, etc. It does not account for
permit fees (which we should point out are generally small relative to other variable
harvesting costs). Permits are generally charged by the Department of Natural
Resources on a per deer basis, but this is part of a regulatory framework that is
not being imposed in the planner’s problem. Indeed, the purpose of the planner’s
problem is to define the socially efficient management decisions independent of any
regulatory framework. Moreover, permit fees are simply a transfer payment from
the hunter to the government which would cancel out of any measure of social net
benefits. The only other fees that hunters might incur in this area of Michigan are
access fees to hunt on some private lands (as such fees are not charged for access to
public lands in the area). These are not generally charged on a per deer basis, and
so they would not affect marginal hunting incentives.

6. Several caveats must be made about the damage function. First, the livestock
sector response to changes in deer prevalence is taken as given. Wildlife and
agriculture in Michigan (and many other states) are managed by separate agencies.
So the planner in our model is the wildlife agency, e.g., the Department of Natural
Resources, and the solution can be thought of as being optimal conditional on
the livestock sector responses. Second, the imposition of trade restrictions and
federally-mandated testing requirements in response to the disease may also result in
a significant lump sum damage component. However, these lump sum costs are not
contingent on the elimination of the disease in the wildlife herd. Rather, the lump
sum costs are contingent on the elimination of the disease in the livestock herd (and
this took about 62 years the last time livestock were infected with bTB in Michigan).
So again these costs would not be directly relevant to the wildlife agency. Moreover,
such lump sum damages are primarily policy-induced and, if large enough, could
affect the optimal plan. We restrict our investigation to an optimal plan without
these lump sum costs, as the solution is efficient from Michigan’s point of view in
the absence of exogenous regulatory impositions. Horan and Wolf [2005] discuss
the variable and fixed components of the damage function, and they investigate the
lump sum cost issue for the case of frequency-dependent transmission. Third, deer
are also important causes of automobile accidents and damage to agricultural crops
(Rondeau [2001] and Rondeau and Conrad [2003]). We ignore these other damages
in order to focus on the impacts of disease, but we note that these other damages
may be important for optimally managing a herd.

7. Alternatively, prior to the transformation of variables, we had two popula-
tions of deer (infected and susceptible) that interact via disease transmission and
competition.

8. Chattering is rapid switching between two optimal control solutions or
isosectors. Clark [1990] first discussed chattering in the context of multi-cohort
fisheries management models where it was not possible to target individual cohorts.
Clark [1990] explains that chattering emerges because there is no optimal control
that leads to the optimal steady-state. In the model presented here an optimal
control exists and chattering emerges because the fmax constraint can be considered
“soft” and there are two optimal controls, one on either side of the fmax frontier.



WILDLIFE DISEASE MANAGEMENT 543

Zelikin and Borisov [1994] recommend referring to problems like Clark’s [1990] as
“sliding control” problems, and reserving chattering for problems like ours, where
a unique control does exist, but involves an infinite number of switches over a
finite time interval. Our solution is likely related to Swallow’s [1990] solution for
a problem dependent on the current state of two-state variables. This problem
also appears to have the potential for chattering for a subset of optimal paths (the
optimal path is determined by starting values in this model). However, the solution
to the model presented in this paper appears to be the first case of a chattering
control between a double and partial-singular solution, along a frontier defining a
blocked interval in the field of natural resource economics. It has been argued that
the Clark [1990] example emerges due to instantaneous adjustment that may be
infeasible and chattering may never be optimal for resource economics problems
(Liski et al. [2001]). Zelikin and Borisov [1994] argue that chattering is likely a
common occurrence for resource allocation problems. The existence of chattering
solutions to natural resource problems merits further investigation.

9. Another parameter of interest is ε, the shifting parameter that defines the
degree of density-frequency dependence. This parameter is often considered at the
extreme values of zero and one, but values within this interval are more likely to be
realistic and create additional management opportunities. Horan and Wolf [2005]
examine the case where ε = 0. In the case presented here, disease is maintained at
a lower level and the deer population is maintained at a higher level. Furthermore,
there is no need for a periodic cull after the initial reduction in population.

10. Horan and Wolf [2005] examine adding fixed costs that vanish if the disease
is eradicated. For the Michigan case they find that a $4 million lump cost would
cause the interior cycle they find to be suboptimal and eradication is the optimal
strategy. Given the lower costs of eradication in the model presented here, fixed
costs likely increase the optimality of eradication. Furthermore, Horan and Wolf
also investigate the effect of the discount rate. Since a small discount rate means
a more balanced weighting of near and far term benefits, feeding is decreased and
smaller population with a lower disease prevalence is maintained. Increased near-
term productivity is traded off to lower long-term damages. Horan and Wolf [2005]
find similar results for larger marginal damages, feeding costs, or disease induced
mortality rate.

11. That (11) and (12) both vanish when the feedback rules are followed, for any
state variable combination such that the nonnegativity constraints are satisfied,
is verified by setting equations (11) and (12) equal to zero and noticing that the
coefficient matrix for the vector [λμ] for this system is not singular; thus, a unique
value of both λ and μ satisfy the singular conditions for all relevant combinations
of N and θ.
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