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Preface

Bioinformatics sits at the intersection of four major scientific disciplines: biology, mathe-
matics, statistics, and computer science. That’s a very busy intersection, and many volumes
would be required to provide a comprehensive review of the state-of-the-art methodologies
used in bioinformatics today. That is not what this concise two-volume work of contributed
chapters attempts to do; rather, it provides a broad sampling of some of the most useful and
interesting current methods in this rapidly developing and expanding field.

As with other volumes in Methods in Molecular Biology, the focus is on providing
practical guidance for implementing methods, using the kinds of tricks and tips that are
rarely documented in textbooks or journal articles, but are nevertheless widely known and
used by practitioners, and important for getting the most out of a method. The sharing of
such expertise within the community of bioinformatics users and developers is an important
part of the growth and maturation of the subject. These volumes are therefore aimed
principally at graduate students, early career researchers, and others who are in the process
of integrating new bioinformatics methods into their research.

Much has happened in bioinformatics since the first edition of this work appeared in
2008, yet much of the methodology and practical advice contained in that edition remains
useful and current. This second edition therefore aims to complement, rather than super-
sede, the first. Some of the chapters are revised and expanded versions of chapters from the
first edition, but most are entirely new, and all are intended to focus on more recent
developments.

Volume 1 is comprised of three parts: Data and Databases; Sequence Analysis; and
Phylogenetics and Evolution. The first part looks at bioinformatics methodologies of crucial
importance in the generation of sequence and structural data, and its organization into
conceptual categories and databases to facilitate further analyses. The Sequence Analysis part
describes some of the fundamental methodologies for processing the sequences of biological
molecules: techniques that are used in almost every pipeline of bioinformatics analysis,
particularly in the preliminary stages of such pipelines. Phylogenetics and Evolution deals
with methodologies that compare biological sequences for the purpose of understanding
how they evolved. This is a fundamental and interesting endeavor in its own right but is also
a crucial step towards understanding the functions of biological molecules and the nature of
their interactions, since those functions and interactions are essentially products of their
history.

Volume 2 is also comprised of three parts: Structure, Function, Pathways and Networks;
Applications; and Computational Methods. The first of these parts looks at methodologies
for understanding biological molecules as systems of interacting elements. This is a core task
of bioinformatics and is the aspect of the field that attempts to bridge the vast gap between
genotype and phenotype. The Applications part can only hope to cover a small number
of the numerous applications of bioinformatics. It includes chapters on the analysis of
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genome-wide association data, computational diagnostics, and drug discovery. The final
part describes four broadly applicable computational methods, the scope of which far
exceeds that of bioinformatics, but which have nevertheless been crucial to this field.
These are modeling and inference, clustering, parameterized algorithmics, and visualization.

Melbourne, VIC, Australia Jonathan M. Keith
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Chapter 1

3D Computational Modeling of Proteins Using Sparse
Paramagnetic NMR Data

Kala Bharath Pilla, Gottfried Otting, and Thomas Huber

Abstract

Computational modeling of proteins using evolutionary or de novo approaches offers rapid structural
characterization, but often suffers from low success rates in generating high quality models comparable to
the accuracy of structures observed in X-ray crystallography or nuclear magnetic resonance (NMR)
spectroscopy. A computational/experimental hybrid approach incorporating sparse experimental restraints
in computational modeling algorithms drastically improves reliability and accuracy of 3D models. This
chapter discusses the use of structural information obtained from various paramagnetic NMR measure-
ments and demonstrates computational algorithms implementing pseudocontact shifts as restraints to
determine the structure of proteins at atomic resolution.

Key words Pseudocontact shifts, PCS, Paramagnetic NMR, Rosetta, GPS-Rosetta, Sparse restraints,
3D structure determination

1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy has for decades
facilitated structure determination in solution or solid-state. NMR
exploits the nuclear spin properties in strong constant magnetic
fields. The nuclear spins are manipulated by radiofrequency pulses
and their free induction decay is recorded. These are then Fourier
transformed to produce a frequency spectrum of the NMR experi-
ment. Two spins that are close in space have a direct magnetic
interaction between them, referred as dipole–dipole coupling.
When these two spins are aligned, the interaction energy becomes
minimal resulting in nuclear Overhauser effect (NOE). Intermo-
lecular and intramolecular NOEs are observed for spins that are
typically separated by 3–6 Å. By resolving a dense network of NOEs
[1], the 3D structures of proteins and nucleic acids can be deter-
mined. This conventional method is relied upon in structure deter-
mination of a large number of proteins; however, assigning spin
resonances of all spins in the system typically requires various 3D or

Jonathan M. Keith (ed.), Bioinformatics: Volume II: Structure, Function, and Applications, Methods in Molecular Biology,
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4D NMR experiments to be applied. In addition, with increasing
molecular weight of proteins, they tend to produce poor spectra
and determining 3D structures becomes increasingly difficult.

As an alternative to short range restraints using NOEs, para-
magnetic NMR generates versatile structural restraints. Proteins
carrying paramagnetic metal ions induce significant effects in
NMR experiments. These effects arise from the unpaired electrons
of the paramagnetic metals, as electrons have a magnetic moment
that is three orders of magnitude larger than that of a proton.
Metalloproteins, which make up to 25 % of proteins in any organ-
ism’s proteome [2], offer natural metal centers that potentially can
be directly exploited in paramagnetic NMR experiments. Further,
Mn2þ, Fe2þ, Cu2þ, and Co2þ are naturally paramagnetic and
found in native biological samples.

Lanthanide ions are highly useful for paramagnetic NMR
experiments, as their paramagnetism varies greatly while their phys-
icochemical properties are highly similar. This makes it possible for
different lanthanides to be used interchangeably in different NMR
experiments [3]. Proteins that lack a natural metal center can be
engineered to carry lanthanides. Figure 1 illustrates different ways
to introduce metal ions into proteins. Small peptides, containing
12–18 residues, are designed to bind lanthanide ion to their side
chain atoms and these peptides are attached to either a thiol-
reactive cysteine or at an N- or C-terminus of a protein [4]. The
most popular means of attaching lanthanide ions is through metal
chelating chemical tags. These chemical tags are site specifically
attached either through cysteine ligation or more recently using
unnatural amino acids which can be reacted via bio-orthogonal
click chemistry [5]. Several reviews [6–9] provide a comprehensive
overview of the chemistries to functionalise proteins with lantha-
nide tags.

Fig. 1 Illustration of various modes to introduce metal ions into proteins. (a) Replacing a native metal with
paramagnetic lanthanide ion in metalloproteins. (b) Lanthanide binding peptides attached at C-terminus of a
protein. (c) Lanthanide carrying chemical tag site specifically attached to a cysteine

4 Kala Bharath Pilla et al.



1.1 Paramagnetic

Effects in NMR

The unpaired electrons in a paramagnetic metal ion strongly inter-
act with nuclear spins and the NMR spectrum changes due to
induced paramagnetic effects. These paramagnetic effects are quan-
tified by comparing with a diamagnetic (reference) spectra and then
translated into structural restraints. The resulting structural
restraints can be either distance dependent or orientation depen-
dent or both. One can measure four distinct paramagnetic obser-
vables from NMR experiments, namely:

1.1.1 Pseudocontact

Shift (PCS)

PCS is a contribution to the chemical shift experienced by a spin
caused by the presence of centers of unpaired electrons. PCS of a
nucleus influenced by a paramagnetic center can be calculated from
a Δχ-tensor, shown in Fig. 2a, given by:

Fig. 2 The four distinct paramagnetic effects represented geometrically. (a) The pseudocontact shift (PCS)
between metal center (M) and amide hydrogen (H). (b) The residual dipolar coupling (RDC) between two spins
H and N. (c) The Paramagnetic relaxation enhancement (PRE) between m and H. (d) The cross correlation
between Curie spin and dipole–dipole relaxation (CCR) between m and H. (e) Measurement of the four different
paramagnetic effects, illustrated with two 1D undecoupled spectra, showing the diamagnetic and paramag-
netic antiphase doublets. PCS is measured as the change in chemical shift between paramagnetic and
diamagnetic states. RDC is measured as the difference in line splitting. PRE and CCR can be determined from
the differential line broadening. Adapted from Schmitz (2009) [49]

3D Structure Modelling Using Pseudocontact Shifts 5



PCScalc
i ¼ 1

12πr3MH

Δχax 3cos2θMH�1
� �þ3

2
Δχrh sin

2θMHcos2φMH

� �

ð1Þ
where, r, θ, φ define the polar coordinates of the nuclear spin with
respect to principal axis of theΔχ-tensor (centered on the paramag-
netic ion) and Δχax, Δχrh define the axial and rhombic component
of the magnetic susceptibility tensor χ andΔχ-tensor is defined as χ-
tensor minus its isotropic component [10]. PCS is measured as
change in the chemical shift of a spin’s paramagnetic and diamag-
netic states, illustrated in Fig. 2e.

1.1.2 Residual Dipolar

Coupling (RDC)

Presence of paramagnetic metal weakly aligns the protein to an
external magnetic field resulting in observable RDCs, which are
manifested as an increase or decrease in magnitude of multiplet of
splits that can be observed in undecoupled spectra, illustrated in
Fig. 2e. The RDC is given by Eq. (2) shown in Fig. 2b:

DNH¼� B2
0

15kT
� γHγNℏ
8π2r3NH

Δχaxð3cos2θNH�1Þþ3

2
;Δχrhsin

2θNH;cos2φNH

� � ð2Þ

where B0 is the magnetic field strength, γH and γN are the gyro-
magnetic ratios of the proton and nitrogen spin, ħ ¼ h/2π with
h being Planck’s constant, rNH is the distance between the nitrogen
and proton nuclei [11].

1.1.3 Paramagnetic

Relaxation Enhancement

(PRE)

PREs give distance restraints between the paramagnetic lanthanide
and spin of interest from peak intensity ratios between paramag-
netic and diamagnetic states (Fig. 2e). The PRE is given by Eq. (1)
shown in Fig. 2c.

λPRE ¼ K

r6
4τr þ 3τr

1þ ω2
Hτ

2
r

� �
ð3Þ

with,

K ¼ 1

5

μ0
4π

� 	2 B
2
0γ

2
H gjμB

� 	4
J 2 J þ 1ð Þ2

3kB Tð Þ2 ð4Þ

where τr is the rotational correlation time, ωH is the Larmor fre-
quency of the proton, μ0 is the vacuum permeability, gj the g-factor,
μB the Bohr magneton, and J the total spin moment [11].

1.1.4 Cross Correlated

Relaxation (CCR)

This effect is measured by comparing the line width between the
two components of the antiphase doublet (Fig. 2e) [11]. This effect
combines distance and angle dependence given by Eq. (3) shown in
Fig. 2d.

6 Kala Bharath Pilla et al.



ηCCR ¼ K
3 cos 2η� 1

r3
4τr þ 3τr

1þ ω2
Hτ

2
r

� �
ð5Þ

with,

K ¼ 1

30

μ0
4π

� 	2 B
2
0γ

2
H gjμB

� 	4
J 2 J þ 1ð Þ2

3kB Tð Þ2 ð6Þ

1.2 Structural

Information from

Paramagnetic Effects

RDCs, which are defined from the molecular alignment tensor
(Eq. 2, Fig. 2b), give the orientation of spin pairs relative to the
external magnetic field in a distance independent fashion. RDCs by
themselves can be directly used to determine the structure of small
proteins only when a large number of experimental RDCs are
available. Measurement of heteronuclear RDCs becomes difficult
for proteins that exhibit limited solubility or produce broad NMR
line widths due to tag mobility.

PREs on the other hand give distance information from the
paramagnetic center (Eq. 1, Fig. 2c). PREs induced by lanthanide
ions range up to 20 Å, but the effect is heavily influenced by the
motion of the metal carrying tag [12]. Direct usage of PREs in
structure determination is limited but chemically inert paramag-
netic probes when added as co-solvents can be quantitatively used
to characterize interfaces in protein–protein complexes.

1.2.1 Uniqueness of PCS In comparison to RDCs and PREs, PCSs are the most potent
structural restraints. A PCS defined by the Δχ-tensor is both orien-
tation and distance dependent (Eq. 1, Fig. 2a). The PCS effect has
the longest range among all the paramagnetic effects and extends
up to 80 Å (40 Å from the paramagnetic center) and can be
precisely measured even at low protein concentrations (<20 μM)
[13]. It can be easily seen from the Δχ-tensor defined in Eq. (1)
that PCS influenced by a spin is proportional to r�3 from the metal
center, which decays slower with distance than PRE with r�6

dependence (Eq. 1). RDCs, in stark contrast to PCSs and PREs,
are only orientation dependent (Eq. 2) brought about by the weak
alignment from the inserted paramagnetic metal [8].

Experimentally PCSs are easy to measure in proteins by taking
the difference in chemical shifts of a protein’s paramagnetic and
diamagnetic states from simple 2D NMR spectra (shown in
Fig. 3a). PCS can also be measured with higher accuracy and
sensitivity compared to other paramagnetic effects, such as measur-
ing coupling constants between nuclei for RDCs and measuring
peak intensities for PREs. The induced PCS described within the
Δχ-tensor can be visualized as isosurfaces of constant PCS (shown
in Fig. 3b). The Δχ-tensor is fully defined by eight parameters, the
origin of the tensor frame which coincides with the coordinates of

3D Structure Modelling Using Pseudocontact Shifts 7



the metal (x,y,z), orientation ofΔχ-tensor frame (three Euler angles
α, β, γ) with respect to the coordinate frame of the protein, and two
components of the Δχ-tensor, Δχax (axial) and Δχrh (rhombic). To
solve for the full mathematical description of a Δχ-tensor one needs
to measure a minimum of eight PCSs.

2 PCSs in Protein Structure Characterization

2.1 Paramagnetic

NMR Spectrum

Assignment

Accurate assignment of resonances in the NMR spectrum is the
essential first step in extracting restraints. Especially for large pro-
teins (>20 kDa), assignment of multidimensional NMR spectra
becomes increasingly difficult due to spectral overlap and increased
transverse relaxation of spins. If 3D atomic coordinates of nuclear
spins are known, the NMR resonance assignments of both para-
magnetic and diamagnetic spectra can be assigned with software
algorithms. Several software algorithms are available to assist with
NMR assignments, including Numbat [14], Possum [15], Echidna
[16], and PARAssign [17].

11
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y
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B

Fig. 3 Measurement of pseudocontact shift (PCSs) and display of PCS as isosurfaces. (a) An illustration of three
superimposed 15N-HSQC spectra, showing the chemical shift changes due to presence of paramagnetic metal
ions in the protein. Black resonances come from the diamagnetic reference (Y3þ) sample, while red (Dy3þ) and
magenta (Er3þ) resonances show chemical shift changes due to the paramagnetic lanthanide ions attached in
the sample. (b) Visualization of induced PCS as isosurfaces calculated from the Δχ-tensor
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2.2 Protein–Ligand

Interactions

PCSs can be measured not only on the protein’s nuclear spins but
also on the spins of the bound ligands. With the availability of a
diverse range of metal binding chemical tags, the orientation and
location of the ligand can be easily identified with the help of PCSs
[3, 9]. This ability has major implications for rational drug design.
John et al. [18] have demonstrated this concept using E. coli’s
ε186/θ (a natural lanthanide binding protein) in complex with
the ligand thymidine, where the ligand affinity and its binding
orientation was entirely determined using only PCSs. Saio et al.
[19] showed that a combination of PCSs and PREs generated from
two point anchored lanthanide binding peptide can be used to
screen for ligands for protein Grb2. Guan et al. [20] showed that
even in the absence of isotope labeled protein samples, the location
of the ligand bound to the protein can be determined in low
resolution with predicted Δχ-tensor parameters.

2.3 Protein–Protein

Complexes

Protein–protein complexes are fundamental to the function of
cellular signaling and function. If 3D structures of the interacting
protein partners are known, then the directionality and distance
dependence of the Δχ-tensor can be exploited in docking the
interacting partners in the right orientation. Pintacuda et al. [21]
reported the first demonstration of the use of PCSs to compute the
structure of a protein complex, using the interacting partners of E.
coliDNA polymerase complex’s N-terminal domain of the subunits
ε and θ. Recent studies involving a large PCS data set (446 PCSs)
have been used to characterize cytochrome P450cam in complex
with putidaredoxin using double cysteine anchored tag [22]. PCS
restraints are incorporated into protein–protein docking program
Haddock, where the orientation of interacting partners and Δχ-
tensors are simultaneously fitted for finding optimized interacting
surfaces [23].

2.4 Protein Structure

Refinement

If the coordinates of atoms in the protein are known, PCSs can be
effectively used to refine protein structures. Allegrozzi et al. [24]
showed that NOE derived structural models can be further refined
using PCSs that are measured using three different lanthanides
(Ce3þ, Yb3þ, and Dy3þ), which have different coverage range
over the protein. Supplementing PCS restraints on the protein
calbindin decreased the overall RMSD over NOE derived NMR
structures. Gaponenko et al. [25] showed that using PCS data
generated from three different lanthanide attachment sites
extended the refinement approach to proteins larger than 30 kDa.
PCS refined structures showed improvement over an Ångström
RMSD when compared to NOE only structures, and this improved
accuracy is also validated using RDCs. Other paramagnetic
restraints also have been used in a similar manner. Sparse datasets
of RDCs combined with sparse NOEs have been used to identify
the best models from a pool of structures generated using homol-
ogy modeling [26] and de novo methods [27].
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To directly use PCSs for structure calculation is challenging as
one needs to determine the eight parameters to describe the Δχ-
tensor, which are difficult to estimate as they depend on the chemi-
cal environment of the metal. Without the knowledge of 3D coor-
dinates of the protein it is not possible to fit the Δχ-tensor to
reproduce the experimentally observed PCSs. However, one can
use PCSs as restraints in de novo structure prediction methods such
as Rosetta [28]. Rosetta’s forcefield accurately describes the protein
state and the software algorithms are designed to robustly search
the conformational space accessible to the protein.

3 Protein Structure Determination Using PCS and Rosetta

Incomplete or sparse structural data generated from NMR experi-
ments can be used as structural restraints in Rosetta calculations to
facilitate structure determination. Unlike traditional methods
where structure calculation is mainly determined by the complete-
ness of experimental data which defines the position of atomic
coordinates in a protein structure, the sparse NMR data is used to
guide the conformational search which directs the sampling
towards the global minimum. Different types of NMR measure-
ments have been incorporated as additional scoring restraints in
Rosetta. Chemical shift measurements combined with predicted
backbone dihedrals and secondary structure elements can be used
in picking fragments that match the prediction, a procedure known
as CS-Rosetta [29, 30]. Backbone NOEs in combination with
RDCs have also been included in protein structure determination
[28] using an advanced genetic algorithm [31]. Incorporation of
sparse NMR data in structure calculations has been shown to
improve protein structure predictions.

3.1 Rosetta Structure

Calculation Algorithm

Based on folding studies of small proteins, Rosetta’s algorithms are
built on the assumption that the ensemble of local structures sam-
pled by a sequence fragment can be approximated by a small
number of local structures that a similar fragment adopts in
known protein structures [32]. For a given protein sequence
whose structure is to be determined, the sequence is decomposed
into overlapping windows of nine and three residues. The fragment
libraries are constructed for each of the nine and three residue
windows by searching through 3D structure databases for protein
fragments whose sequences or secondary structures have high sim-
ilarity to that of the query. The corresponding backbone dihedral
angles of the matched protein fragments are bundled up into
fragment libraries The search for the lowest energy structure is
carried out by assembling the fragments into protein-like structures
using Metropolis Monte-Carlo and simulated annealing algorithms
[33]. Starting from a linear polypeptide, the search is carried out in
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two distinct phases, a low resolution centroid mode and a high
resolution all-atom mode [34].

3.1.1 Centroid Mode In this mode, the conformational search is carried out in a low-
resolution phase, in which the amino acid residues are represented
in a stripped down version that lacks complete side chain detail. The
side chains are represented as spheres attached to the backbone (Cβ
and beyond) at their centroid point as shown in Fig. 4a. The
fragment assembly follows Monte-Carlo moves starting from an
arbitrary position from a random nine residue fragment window.
For every move, which replaces the coordinates of a protein seg-
ment from that of a fragment library, the energy of the resultant
protein decoy is evaluated. The scoring function in the centroid
phase is a coarse-grained description of probabilistic functions
which favors the formation of globular compact structures. This
scoring function explicitly scores for electrostatic and solvation
effects among residues which are based on the observed distribu-
tions in known proteins. Formation of secondary structural ele-
ments in the folding pathway is encouraged with distinct function
terms that favor helix–helix, helix–sheet, and sheet–sheet pairing.
This low resolution centroid mode generates protein like decoy
structures, in which the polar amino acids are exposed to the
solvent while burying the hydrophobic residues in the core of the
protein (shown in Fig. 4b). Multiple folding pathways are indepen-
dently sampled, generating tens to hundreds of thousands of pro-
tein decoy structures to sample the vast conformational space.

3.1.2 All-Atom Mode This mode generates complete and optimized placement of side-
chain coordinates (shown in Fig. 4c). Here side chains are modeled
by searching through discrete combinations of amino acid rotamers

Fig. 4 Illustration of Rosetta’s ab initio fragment assembly. (a) A protein decoy in an intermittent state during
fragment assembly. The backbone atoms are shown in a cartoon representation and the side chain atoms are
represented as spheres attached to Cβ atoms. The hydrophobic residues represented in grey and the solvent
accessible residues represented in green. (b) Final fold of the protein shown in (a) after the low resolution
fragment assembly. (c) All-atom representation of the final fold of the protein with complete side-chain atoms
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by simulated annealing. To further optimize the geometry, multistep
Monte Carlo minimisation is enforced on each decoy; steps include
torsion angle perturbations, one-at-a-time rotamer optimization and
continuous gradient based minimisation of backbone torsion angles
and side chain coordinates. The scoring function during this stage is
more detailed, physically realistic, accurate to the atomic level and
computationally expensive. Hydrogen bonding is explicitly included
in the analysis. Hydrogen bonding terms are knowledge-based terms
which are orientation and secondary structure dependent and were
derived from high resolution protein structures. Typically, multiple
independent trajectories are first clustered and atomic details are
generated on the desired cluster [33].

3.1.3 PCS Restraints in

Rosetta

In the centroid mode, at each instance of a fragment move, Δχ-
tensors are fitted to the assembled structure and PCSs are back-
calculated. The difference between the input and back-calculated
PCSs are then used as a quality score to guide assembly to the right
fold of the protein. It has been shown that using PCSs from a single
metal center, 3D protein structures up to 150 amino acid residues
can be determined at atomic resolution [35]. However, this
method is limited in its application for proteins larger than 150
amino acids.

The primary limitation associated with the PCSs measured
from a single metal center is the reduction in quality of PCS data.
Lanthanide tags attached to a single metal center often fail to
induce significantly large PCS for most of the spins in the protein.
This loss of data is pronounced in large molecular weight proteins.
Secondly, there is additional loss of data due to induced PRE effect
by the lanthanide ions, where NMR signals of the spins near the
vicinity of the lanthanides are broadened beyond detection.

3.2 Extending PCS

Scoring to Multiple

Metal Centers

To resolve the ambiguities associated with the PCS data generated
from a single metal center and to achieve complete coverage, the
approach has been extended from a single metal center to multiple
metal centers. A second PCS measured for the same nucleus from a
lanthanide attached at a different site restricts the spin to lie on
intersecting isosurfaces. A third PCS measured from a lanthanide
attached at a site different from the first two would further restrict
the location of the spin in space. This technique, which is analogous
to the method of finding a location on Earth from three or more
GPS satellites, is incorporated into the Rosetta framework and was
dubbed GPS-Rosetta [36].
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3.2.1 Scoring PCS Data

from Multiple Metal

Centers in Rosetta

The Δχ-tensor from Eq. (1) can be rewritten as

PCScalc
i ¼ 1

12πr5i
�Trace

3x2i � r2i 3xiyi 3xizi
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ð7Þ
where, ri is the distance between the spin i and the paramagnetic
center M; xi, yi, and zi are the Cartesian coordinates of the vector
between the metal ion and the spin i in an arbitrary frame f; and
Δχxx,Δχyy,Δχzz,Δχxy,Δχxz, andΔχyz are theΔχ-tensor components
in the frame f (as Δχzz ¼ � Δχxx � Δχyy, there are only five inde-
pendent parameters). The determination of PCSi

calc (Eq. 5) poses a
nonlinear least-square fit problem, which can be divided into its
linear and nonlinear parts. PCSi

calc is linear with respect to the five
Δχ-tensor components which can be optimized efficiently using
singular value decomposition. With the knowledge of the location
of the chemical tag used, search over the metal coordinates xM, yM,
and zM of the paramagnetic center can be carried out on a 3D grid.
The 3D grid is defined with parameters which include center of the
grid search (cg), step size between two nodes (sg), an outer cutoff
radius (co) which limits the search to a minimal distance from cg and
an inner cutoff radius (ci) to avoid a search too close to cg [35].

PCSs recorded from multiple lanthanide carrying chemical tags
are given as input into Rosetta by constructing multiple 3D grids
for individual tag site. For each PCS dataset per metal and chemical
tag, the Δχ-tensor components are fitted at each node of the 3D
grid and the PCSs are back-calculated. The grid node with the
lowest score obtained from Eq. (6) is then taken as the starting
point to further optimize the metal position and the five compo-
nents of the Δχ-tensor to reach the minimum cost for all the metal
centers.

sk ¼
Xm
q¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnpcs

p¼1

PCS
pq
calc � PCSpqexp

� 	2

vuut ð8Þ

wherem is the number of PCS data sets (one dataset per metal ion)
per binding site k and npcs is the number of PCSs in the dataset. A
total weighted sum of square deviations are used as PCS scoring
Stotal and added to the low-resolution energy function of Rosetta:

S total ¼
Xn
k¼1

sk:wk ð9Þ

where n is the total number of metal binding centers and w denotes
the weighting factor relative to the Rosetta ab initio scoring func-
tion. The weighting factor w for each of the n centers was calculated
independently by
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w ¼ ahigh � alow

chigh � clow

� �
=n ð10Þ

where ahigh and alow are the averages of the highest and lowest 10 %
of the values of the Rosetta ab initio score, and chigh and clow are the
averages of the highest and lowest 10 % of PCS score obtained by
rescoring 1000 decoys with unity weighting factor.

4 The GPS-Rosetta Algorithm

The algorithm incorporating PCS scoring from multiple metal
centers in Rosetta’s structure determination protocol is described
as a flow chart in Fig. 5. The Δχ-tensors for each dataset from
multiple sites are simultaneously optimized and the weighted PCS
scores for individual metal sites are added to the centroid scoring
function. Side chain atoms are then added to all the structural
decoys and scored using Rosetta’s all-atom scoring function. The
PCS scoring is not used in this mode, because only minor changes
in the backbone structure are generated. The side chain optimized
structural models are rescored with PCS data from multiple metal
centers with new weights generated using Eq. (8), except that they
are now weighted against Rosetta’s all-atom scoring function. The
top structures are selected based on lowest combined scores of
Rosetta’s all-atom score and weighted PCS score from all the tag
sites.

GPS-Rosetta protocol has been implemented in determining
3D structures from PCSs data generated from two different NMR
experiments, solution state NMR and magic angle spinning (MAS)
solid-state NMR experiments. C-terminal domain of endoplasmic
reticulum protein 29, ERp29-C (106 residues) from rat, is deter-
mined from the PCS data generated at 4 different metal centers in
solution state and Immunoglobulin Binding Domain of Protein G,
GB1 (56 residues) from Streptococcus spp, is determined from PCS
data generated at three different metal centers in microcrystalline
state.

4.1 Fold

Determination Using

PCSs from Solution

NMR Experiments

ERp29-C is a chaperone protein expressed in the endoplasmic
reticulum of a mammalian cell, where it facilitates the folding and
transport of other protein molecules. The 3D structure was first
determined by solution NMR using a conventional NOE approach,
and the result is referred to as the NOE structure [37]. However,
the crystal structure of human ERp29-C [38] shows a significantly
different fold with Cα root mean squared deviation (RMSD) of
4.5 Å when compared to the NOE structure. GPS-Rosetta protocol
was employed to reassess the structure in solution [36]. Four
different sites on the protein were chosen to bind two different
lanthanide tags. The cysteine ligated, C1 tag [39] was chosen to
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Fig. 5 Flowchart illustrating series of steps involved in running GPS-Rosetta protocol. (a) Short nine and three
residue fragments are generated based on target sequence and secondary structure prediction based on
backbone chemical shifts. (b) PCS weights are calculated using Eq. (8). (c) Centroid models are generated by
fragment assembly following Metropolis Monte-Carlo sampling algorithm. PCS scores for individual tag sites
are independently optimized and the PCS scores are added to Rosetta’s scoring function. (d) Side chain
generation and optimization to centroid models. (e) PCS score for individual tag sites are reweighted from all-
atom models. (f) Models are rescored with PCSs and Rosetta’s all-atom scoring function. (g) Final structure is
selected based on lowest combined score value
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bind at the native cysteine (C157) and IDA-SH tag [40] was
attached at double mutants S200C/K204D, A218C/A222D,
and Q241C/N245D. All the double mutations were on α-helices
and the aspartate residue at (i þ 4)th position forming a specific
lanthanide binding site. The side chain carboxyl-oxygen of the
aspartate served as an additional coordination site to immobilize
the lanthanide ion. The PCS dataset from eight paramagnetic
samples is composed of a total of 212 PCSs measured using lantha-
nides Tb3þ, Tm3þ, and Y3þ, where Y3þ served as diamagnetic
reference.

The unique coordination feature of IDA-SH enabled determi-
nation of the position of the metal ion at 5.9 Å from the Cα of
(i þ 4)th residue, lying on a vector that joins the backbone amide
nitrogen at (i þ 6) and Cα of (i þ 4)th aspartate. The lanthanide
position defined by C1 tag at C157 was dynamically optimized
during the folding simulation. More than 100,000 all-atommodels
were generated using GPS-Rosetta protocol and multiple struc-
tures satisfying combined Rosetta and PCS score and experimental
data were selected. The final structure was selected for the model
that has the lowest Rosetta’s all-atom and weighted PCS energy.
The final selected structure, which is represented by the red point in
Fig. 6a, has a backbone Cα RMSD of 2.4 Å to the crystal structure
(Fig. 6b) [PDBID: 2QC7;[38]], and is referred to as the GPS-
Rosetta model. The top five structures that are lowest in PCS
RMSD are shown in blue points and the top five models with an
arbitrary low combined score and low PCS RMSD are represented
as green points (Fig. 6a). The GPS-Rosetta structure was compared
against the crystal structure and top 10 selected structures. Super-
position structures with low PCS RMSD are represented in shades
of blue (Fig. 6b), and low scoring in PCS and Rosetta energy and
low PCS RMSD are represented in shades of green (Fig. 6c). The
Cα RMSD of all the selected structures lies in the range 2.0–2.9 Å
to the crystal structure with the exception of small variations in the
orientation of the C-terminal residues which were reported to be
disordered [37]. The GPS-Rosetta structure, in red, (PDBID:
2M66) clearly resembles the crystal structure more closely
(Fig. 6b, RMSD of 2.4 Å) than the NOE structure (Fig. 6d,
RMSD 6 Å), effectively overruling it.

4.2 High Resolution

Protein Structure

Determination Using

PCSs from MAS Solid-

State NMR

Experiments

MAS solid-state NMR spectroscopy has been routinely employed
to determine structure of membrane biomolecules and proteins
that are difficult to study by solution NMR or X-ray crystallography
[41]. 3D structures are determined by resolving large number of
dipolar couplings between 1H, 13C, and 15N nuclei [42, 43];
however, the spectrum resolves in densely packed cross-peaks
which are highly difficult to assign. Moreover, the peaks arising
from long range correlations in dipolar couplings produce low
signal-to-noise ratio and the time required to acquire a 2D spectra
is several days [44, 45].
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Here we demonstrate the implementation of PCSs recorded in
solid state for structure calculation. GB1 protein (56 amino acids)
served as a model system. GB1 was covalently ligated to 4-mercap-
tomethyl-dipicolinic acid (4MMDPA) tag [46] at three different
sites by generating three cysteine mutants at K28C, D40C, and
E42C. The tags were loaded with paramagnetic metal ions Co2þ,
Yb3þ, and Tm3þ, while Zn2þ and Lu3þ served as diamagnetic
references. A total of 244 PCSs were measured from five paramag-
netic datasets [47]. GB1 being a small protein, a stripped down
version of GPS-Rosetta protocol was employed. Three

Fig. 6 Structure determination using GPS-Rosetta protocol for ERp29-C. (a) Combined score of weighted PCS
and Rosetta energy is plotted against the PCS RMSD for each of the 100,000 generated structures. The final
selected structure is represented in red has the lowest combined score. Structures with lowest PCS RMSD are
represented in blue and the models with an arbitrary low combined score and low PCS RMSD are represented
in green. (b) Superimposed cartoon representations of top structures selected using the GPS-Rosetta protocol.
The crystal structure [PDBID: 2QC7] is shown in grey and the GPS-Rosetta structure is represented in red has
2.4 Å Cα RMSD to the crystal structure (residues 158–228 and 230–244). Top five models with low PCS RMSD
represented in shades of blue have a Cα RMSD range of 2.0–2.9 Å to the crystal structure (residues 158–228
and 230–244). (c) Top five models with low PCS and Rosetta energy and also low in PCS RMSD are
represented in shades of green have a Cα RMSD range of 2.2–2.6 Å to the crystal structure (residues
158–228 and 230–244). (d) The NOE structure [PDBID: 1G7D] represented in yellow has Cα RMSD of 6 Å to
the GPS-Rosetta structure (residues 158–244) represented in red
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independent Rosetta simulations were carried out for each mutant
with nonhomologous fragment libraries. Around 4500, 8400, and
10,000 all-atom models were generated for each of the three
mutants. To take advantage of all three datasets for GB1, Rosetta’s
all-atom structures for each of the mutants were rescored using the
GPS-Rosetta protocol and the final structures were selected based
on low Rosetta energy and combined low PCS score from all three
datasets (Fig. 7a). The lowest combined energy structure was found
to have RMSD of 0.7 Å when superimposed over the crystal
structure (Fig. 7b) [PDBID: 1PGA, [48]], at atomic resolution.

The GPS-Rosetta protocol along with demonstration tutorials
is available for download with the current Rosetta release.

5 Conclusion

Here GPS-Rosetta protocol’s success in determining 3D structures
using PCS data from multiple tags from both solution and solid-
state NMR experiments has been demonstrated. This method
offers great promise in resolving structures of large proteins. PCSs
are obtained from simple 15N-HSQC measurements which are
highly accurate and sensitive compared to traditional NOE mea-
surements and versatile PCS datasets can be generated by swapping
a diverse range of available paramagnetic metals, metal carrying
tags, and peptide sequences.

In computational modeling, incorporation of PCS data as
structural restraints has enabled the computationally intractable
conformational space to be explored in finite time. Inaccuracies in

Fig. 7 Structure determination using GPS-Rosetta protocol with MAS-NMR PCSs. (a) Combined score of PCS
energy from three tags and Rosetta energy versus the RMSD to the crystal structure of GB1 [PDBID:1PGA,
[48]]. Sampling from K28C is represented in red, D40C in green and E42C in blue. (b) 3D superpositions of
calculated models using GPS-Rosetta. The crystal structure of GB1 is represented in grey, mutant K28C in red,
D40C in green, and E42C in blue. The three lowest scored structures have an RMSD to the crystal structure of
0.9, 0.7, and 1.1 Å respectively
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molecular force fields always posed a challenge in identifying native
protein fold from well-formed structural decoys and PCSs being
long range in nature effectively discriminates the native from non-
native folds. PCSs can be also complemented with other sparse
restraints such as RDCs, PREs, and NOEs, enhancing the struc-
tural information which can be efficiently exploited in computa-
tional modeling. In conclusion, the hybrid approach of
incorporating experimental PCSs with structure determination
algorithms forms a more efficient alternative approach to solve
protein structures than traditional methods.
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dowski JR, Loquet A, Böckmann A, Griffin RG
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Chapter 2

Inferring Function from Homology

Tom C. Giles and Richard D. Emes

Abstract

Recent technological advances in sequencing and high-throughput DNA cloning have resulted in the
generation of vast quantities of biological sequence data. Ideally the functions of individual genes and
proteins predicted by these methods should be assessed experimentally within the context of a defined
hypothesis. However, if no hypothesis is known a priori, or the number of sequences to be assessed is large,
bioinformatics techniques may be useful in predicting function.
This chapter proposes a pipeline of freely available Web-based tools to analyze protein-coding DNA and

peptide sequences of unknown function. Accumulated information obtained during each step of the
pipeline is used to build a testable hypothesis of function.
The following methods are described in detail:

1. Annotation of gene function through Protein domain detection (SMART and Pfam).

2. Sequence similarity methods for homolog detection (BLAST and DELTA-BLAST).

3. Comparing sequences to whole genome data.

Key words Comparative genomics, Homology, Orthology, Paralogy, BLAST, Protein domain, Pfam,
SMART, Ensembl, UCSC genome browser

1 Introduction

This chapter describes an analysis pipeline comprised of freely
available bioinformatics sequence comparison tools that can be
used to infer potential function from protein-coding DNA and
peptide sequences (Fig. 1).

1.1 What Is

Homology?

In a biological context, homology is defined as the existence of
shared ancestry between a pair of structures in different species,
either by descent or recombination. The central thesis for inferring
related function from sequence data is that if two or more genes
have evolved slowly enough to allow detection of statistically sig-
nificant sequence similarity; common ancestry (homology)
between the genes can be inferred. This follows from the assump-
tion that the most parsimonious explanation of sequence similarity
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is derived from conserved ancestry rather than convergent evolu-
tion [1, 2].

While the possession of sequence similarity is indicative of
underlying structural similarity it may not always imply conserved

Fig. 1 Analysis pipeline for inference of function. Schematic representation of analysis procedure for inference
of function by similarity methods
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function [2]. Homologous genes that are related by a speciation
event are termed orthologs whereas those related by gene duplica-
tion events are termed paralogs (Fig. 2) [3–6]. The functions of
orthologous genes tend to be fairly conserved; therefore, high
sequence similarity between a gene of unknown function and a
detected ortholog will often indicate conserved function [7]. In
contrast, paralogous genes that have undergone a duplication event
may either retain different but related roles (subfunctionalization)
or rapidly diverge and undertake new roles (neofunctionalization)
[5, 8].

Because the identification of sequence similarity between two
or more paralogous genes may not be indicative of conserved
function, tools that compare sequences in this manner should be
used with caution (see Note 1). It is recommended that the results
generated by these tools should be augmented with additional
information when formulating hypotheses concerning function.
Many proteins contain functional units known as domains. In
comparative analysis, a domain constitutes a region of conserved

Fig. 2 Homology and paralogy. Dotted lines represent the relationship of species 1, species 2, and species 3,
separated by two speciation events. Genes are represented by filled circles. All genes represented are
homologous because they have descended from a single gene in the last common ancestor. Definition of
genes as orthologs or paralogs depends on their shared ancestry. If the genes in question are most recently
related by a gene duplication event they are termed paralogs, whereas if the genes are most recently related
by a speciation event, they are termed orthologs. If the gene duplication is an intra-genome event, occurring
following speciation, the genes are further defined as in-paralogs. If the duplication is prior to a speciation
event they are termed as out-paralogs [1, 5]. (a) The intra-genome duplication within species 2 has resulted in
a pair of in-paralogous sequences B1 and B2. Both B1 and B2 are orthologous to A1 and all genes are
orthologous to C1. (b) For a different set of genes, a gene duplication prior to the speciation of species 1 and
2 results in a single copy of each duplicated gene being retained in both species. As a result genes A3 and B4
are termed as out-paralogs, as are genes A4 and B3. Genes A3 and B3 share an orthologous relationship as do
A4 and B4
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sequence between different proteins. These may equate to func-
tional units of proteins, and often encompass a hydrophobic core
[9, 10]. Thus, domains can be thought of as the building blocks of
protein functionality, and hence the possession or indeed lack of a
protein domain, and the architecture of domains within a given
protein will aid in the assessment of homology predictions and
reduce the chances of incorrectly assigning function [11, 12].

2 Materials

Tools that are described in the analysis pipeline (see Subhead-
ing 3.2.5 for additional methods of interest) (Table 1).

Table 1
Pipeline tools

General

EBI Toolbox http://www.ebi.ac.uk/services Links to tools and analysis packages

ExPASy Server http://www.expasy.org/ Links to tools and analysis packages

COGs http://www.ncbi.nlm.nih.gov/COG/ Clusters of orthologous genes from
multiple archaeal, bacterial, and
eukaryotic genomes [7, 8]

Ensembl www.ensembl.org Whole genome annotation [13, 14]

UCSC Genome
Browser

genome.cse.ucsc.edu Whole genome annotation [15]

Domain Identification Tools

CDD http://www.ncbi.nlm.nih.gov/Structure/
cdd/cdd.shtml

Conserved domain database. Options
to search Pfam SMART and COG
databases [16, 17]

Interpro http://www.ebi.ac.uk/interpro/search/
sequence-search

Multiple databases of protein families
and domains [18, 19] (Includes
Pfam, SMART, PRINTS, Prosite,
etc.)

Pfam http://pfam.xfam.org/ Library of protein domain HMMs
[20, 21]

SMART http://smart.embl-heidelberg.de/ Library of protein domain HMMs
[22, 23]

Similarity tools

FASTA http://www.ebi.ac.uk/Tools/sss/fasta/ Local alignment search tool [24]

NCBI-BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi Local alignment search tool at the
NCBI [25, 26]
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3 Methods

In this chapter, we propose a pipeline that can be used to accurately
categorize the functions of biological sequences.

It is often assumed that the obligatory first step when investi-
gating an unknown sequence is to perform a BLAST or FASTA
search. If a single high significance hit to a closely related species is
detected (and the alignment extends to the full length of both
sequences) then it may be safe to assume that a true ortholog has
been detected. However, if a partial alignment is reported, or if the
results indicate similarity to more than one protein, the output may
be more difficult to interpret. We therefore recommended that
users conduct domain searches prior to sequence alignments.

3.1 Analysis Pipeline

Step 1: Domain

Identification

By definition, protein domains are conserved and although they can
appear within genes in different combinations, they are rarely frag-
mented [10]. Traditionally members of domain families are com-
pared using hidden Markov models (HMM) [27]. These HMMs
predict the probability that specific residues will occur at each
position within a domain based on the level of conservation across
the domain family. This method has been widely used in investiga-
tions into gene families and in the annotation of whole genomes
[28–31]. When developing hypotheses, a researcher should keep in
mind that the presence or absence of proteins domains only par-
tially defines protein function. Other biologically relevant caveats
such as the co-occurrence of domains, domain–protein interac-
tions, and protein localization (both cellular and subcellular)
should be considered when formulating hypotheses [10, 12, 32].

3.1.1 Tools for

Identifying Protein Domains

Two tools that are widely used to compare query sequences to
precomputed libraries of HMMs are Pfam [21, 33] and SMART
[22, 23].

Pfam (release 30.0) contains profile-HMMs of 16,306 protein
domains [21]. It links detected domains to a database describing
their taxonomic abundance, potential evolutionary origins, and
relationships (via Pfam clans) [34]. In contrast, the latest update
to version 7.0 of the SMART database contains fewer HMMs
(1,200 domains) but offers the option to include the Pfam HMM
library within a search [22]. Like Pfam, the SMART database gives
extensive details of function, evolution, and structure. It also pro-
vides links to relevant literature, information of proteins from 1133
completely sequenced genomes (choose “Use SMART in Genomic
mode” at the start page), and highlights inactive domains if key
functional residues differ between the query and target sequences.
Both Pfam and SMART databases can be searched independently
or via metasearch tools such as CDD [16, 17] or Interpro [18, 19].
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Queries of Pfam and SMART with an ADAM 2 precursor from
Cavia porcellus (swissprot accession Q60411) identify several
domains with significant E-value (see Subheading 3.2.1 for a
description of E-value statistics). Both tools indicate the positions
and architecture of domains present within the query sequence as
well as providing the user with information regarding domain
function, co-occurrence, evolution, and residue conservation
(Fig. 3). For example, SMART links the ACR (ADAM Cysteine-
Rich Domain) to an Interpro abstract that informs the user of the
function and domain architecture of ADAM proteins, while the
evolution section displays the abundance of the ACR domains
within the database (565 domains, 563 proteins, all metazoa).
Similarly, the Pfam annotation of the Reprolysin domain provides
information regarding domain function. Figure 3 highlights the

Fig. 3 Domain detection by Pfam and SMART. Graphical and textual representations of domains detected in an
ADAM 2 precursor from Cavia porcellus (swissprot accession Q60411). (a) Domains detected by SMART
version 7.0 with the additional parameters, Pfam domains, signal peptides, and internal repeats selected [22,
23]. (b) Domains detected by Pfam version 27.0 [21, 33]. A global and fragment search was conducted with
SEG low complexity filter on and an E-value cutoff ¼ 1.0. Significant Pfam-B domains are not shown
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overlap of both these methods. Slight discrepancies are evident.
These are reflective of the different length HMMs contained within
each of the databases. Users are therefore encouraged to use multi-
ple applications and consolidate results to achieve a consensus.
Armed with this information, users can begin to build a hypothesis
of sequence function (see Note 2).

3.2 Analysis Pipeline

Step 2: Detection of

Homologs

Sequence comparison tools aim to accurately infer homology from
truly related biological sequences. Nucleotide alignment algo-
rithms only look for direct similarities between sequences in base
space and do not account for factors such as the class of amino acid
or the relative abundance of amino acid types. Protein alignment
algorithms integrate these factors to improve the accuracy of align-
ments based on the likelihood of amino acid substitutions. For
example, a conservative substitution; such as an isoleucine for a
valine (both possess aliphatic R groups) would be more heavily
weighted than a substitution of rare amino acids such as tryptophan
or cysteine. A number of schemes have been developed to weight all
of the possible amino acid substitutions as matrices. The most
commonly used examples are PAM (percent accepted mutation)
[35] and BLOSUM (Blocks Substitution matrix) [36]. PAMmatri-
ces are based on an evolutionary model of point acceptable muta-
tions per million years whereas BLOSUM matrices are based on
empirical datasets of aligned sequences. The suffix of a BLOSUM
matrix denotes the maximum percentage similarity of the align-
ment. Thus, the scores in BLOSUM45 and BLOSUM80 are gen-
erated from sequences of >45 % and >80 % similarity, respectively
(see Note 3). Equipped with these substitution matrices, various
algorithms are available to align sequences in such a way so as to
maximize the overall alignment score. Algorithms that produce a
guaranteed optimal local alignment include the Smith–Waterman
algorithm [37]. Due to their computational requirements such
methods are often impractical for large datasets. To accelerate
identification of the most significant alignments, heuristic algo-
rithms such as BLAST [25, 38] and FASTA [24] have been
developed.

3.2.1 Detection of

Homologs by BLAST

The most widely used sequence comparison tool is BLAST [25, 38]
and the NCBI version of BLAST is probably the most commonly
used variation. It can be used online via the NCBI web interface
(blast.ncbi.nlm.gov/Blast.cgi) or downloaded and run locally as a
stand-alone tool (BLASTþ). This tutorial focuses on the NCBI web
interface for a more detailed description of BLASTþ see [39]. Many
of the nuances of BLAST and detailed descriptions of the statistics
will not be discussed here but are covered in detail elsewhere [25, 26,
40–44]. A particularly thorough explanation is given in [39]. Also
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refer to the BLAST Help pages (http://blast.ncbi.nlm.nih.gov/
Blast.cgi?CMD¼Web&PAGE_TYPE¼BlastDocs), tutorials (http:
//www.ncbi.nlm.nih.gov/books/NBK1734/), and see Note 4.

The basic options required for a BLAST search are a query
sequence, a database to search, the type of search, and the search
parameters. The query sequence can be entered either as plain text,
a valid NCBI sequence identifier, or as a fasta formatted sequence
file where the first line (containing identifier information) is
demarked by an initial greater than symbol (>) followed by the
sequence on subsequent lines. It is good practice to create fasta
formatted sequence files as the identifiers are reported in the
BLAST output, which helps when tracking multiple search results.
The database searched will relate to the hypothesis of the user’s
experiment and may have implications for the test statistics (see
Note 5). NCBI-blast has access to 7 protein and 16 nucleotide
databases. For an initial search when identifying potential homo-
logs it is best practice to search one of the nr databases. These
contain nonredundant (nonidentical) entries fromGen-Bank trans-
lations, RefSeq Proteins, PDB, SwissProt, PIR, and PRF databases.
If a species of interest is known, then the database can be filtered by
organism using a taxon id code (http://www.ncbi.nlm.nih.gov/
taxonomy/) or from predefined taxonomic groups, for example,
primate or eukaryote.

It is recommended that protein or translated nucleotide
sequences are used when conducting searches to infer function. If
a protein sequence is available it is best to search in protein space
using blastp. If a DNA sequence is available it is best to ignore
blastn (which searches in nucleotide space) and use either blastx or
tblastx. In the program selection section one can observe that
multiple BLAST algorithms are available, these are described in
Table 2. Additional search settings are shown in the “Algorithm
parameters” tab. Of specific note are the expect score (E-value) and
the low complexity filter. The E-value is the statistical significance
threshold for reporting matches against the database. The default
value is 10. This indicates that for each alignment ten similar
matches are expected to be found merely by chance. The lower
the E-value the more significant the alignment [25]. For example, a
E-value of 1 � 10�3 indicates that the likelihood of a match occur-
ring by chance is 1 in 1000 [45]. In the filters and masking section
there is a filter to exclude low complexity regions. As these are likely
to result in alignments of statistical but not biological significance,
unless the user is confident in their hypothesis, these should always
be turned on. The default filtering algorithms are SEG masking for
protein searches [46] and DUST (Tatusov and Lipman, unpub-
lished) for translated nucleotide searches. Other parameters that
can be modified in the Algorithm parameters section include the
word size (the number of matching residues required to seed an
alignment extension algorithm) and the scoring parameters (the
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reward and penalty for matches, mismatches, and gaps in the
alignment).

For our search we will keep these parameters at their default
settings. Clicking the “BLAST” button will submit your search. A
new status window will open that automatically updates until the
search is complete and the results page appears. The blast results
page consists of a header containing information of query and
database searched, a graphical representation of the alignments, a
summary of each significant hit, and a footer containing details of
the search statistics. The graphical summary displays the significant
hits (colored according to the degree of similarity) to the query
sequence (at the top of the graphic). This view gives the user ready
information regarding the region(s) of the query sequence that
produce significant hits. The one-line output summary ranks each
hit by E-value. Each hit is hyperlinked to a corresponding entrez
database entry containing links to associated genes, structures,
taxonomy, and publications. Scrolling down or clicking on an
individual score will show the alignments. Each aligned region
(known as a high scoring segment pair or hsp) has a header with
gene identifier and score summary. The bit score “Score ¼ x bits” is
determined from the raw scores of the alignment as defined in the
substitution matrix. From this the E-value “Expect ¼ x” is

Table 2
Search parameters and common uses of NCBI-BLAST variants

Program Query Database Search type Algorithms Common uses

blastn DNA DNA DNA-DNA Highly similar,
more
dissimilar,
somewhat
similar

Search for near identical DNA
sequences, confirmation of
DNA sequencing experiment.
Compare query to genomic
DNA to identify splicing
patterns

blastp Protein Protein Protein-Protein blastp,
PSI-BLAST,
PHI-BLAST,
DELTA-
BLAST

Search for homologous protein
sequences. Annotation of
genes of unknown function.
Searches can be direct
(blastp), use profile models
(PSI-BLAST, PHI-BLAST),
or database-assisted profile
models (DELTA-BLAST) to
improve sensitivity

blastx Protein DNA Translated
DNA-Protein

N/A Gene finding within DNA
sequences

tblastn DNA DNA Translated DNA–
Translated DNA

N/A Identify protein coding
structures in DNA sequences
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calculated. The alignment section also visualizes the hsp to show
the specific similarities and differences between the query and
subject sequences. Sandwiched between these sequences, identical
matches are highlighted by corresponding amino acids and con-
served matches by a plus sign. This section of the page also links to
additional resources including gene information, Map Viewer (for
genomic localization), and lists of known identical homologs.

3.2.2 Assessing the

Results of a BLAST Search

Confidence can be placed in an homology assignment if all relevant
domains are conserved, form the same architecture and key residues
known to be important for function are shared in the correct spatial
context. Thus, hsps should always be critically assessed using infor-
mation determined from domain searches. When viewing an align-
ment, users should pose the questions; “do the start and end
positions of the hsp correspond to a predicted domain?” If so,
“do aligned residues correspond to critical residues described in
the domain annotation?” If conserved functional residues are not
aligned then caution should be exercised in assigning function.
Alignments should also be checked for residue bias that has escaped
the low-complexity filters. Certain proteins, for example, myosins
(which are rich in lysine and glutamic acid) have inherent composi-
tional biases that can affect alignment scores. When investigating
such sequences users should assess corresponding residues to check
whether the significance of the alignment is due to both protein
types sharing a common bias rather than a common function.

3.2.3 Detection of More

Distant Homologs

The BLAST method identifies homologs by comparing sequences
directly. As a result it will undoubtedly miss align homologs with
more divergent ancestry where greater sequence change is
expected. In such cases, more powerful methods are required.
When viewing the output of alignment, it can be observed that
some regions are highly conserved whereas others accept greater
numbers of substitutions. This information can be translated into
profile-sequence models and used to guide alignments.

Profile-sequence models are weighted based upon the number
of expected matches and mismatches within a given region of
sequence. As a result mismatches in conserved areas are penalized
to a greater extent compared with mismatches in regions of high
variability. NCBI offers two profile-sequence model methods for
predicting more distant homologs, PSI-BLAST (position-specific
iterated BLAST) and DELTA-BLAST (Domain enhanced lookup
time accelerated BLAST). Both methods utilize position-specific
score matrix (PSSM) profile-sequence models [26, 40, 42]. A
PSSM is an L � 20 amino acid matrix of scores where L is the
length of the query sequence and 20 represents each possible amino
acid. Each position is subsequently weighted according to its con-
servation within the multiple alignment. Conserved positions are

32 Tom C. Giles and Richard D. Emes



assigned high scores whereas regions of high variability are assigned
scores close to zero [47, 48]. The basis of the PSSM approach is
outlined in more detail in Fig. 4.

PSI-BLAST first compares the query sequence to a defined
database using the standard gapped BLAST algorithm [26, 43].
From this initial search, significant matches (the NCBI default E-
value is 0.005) are selected and a multiple sequence alignment
generated (matches identical to the query sequence or >98 %
identical to another match are purged to avoid redundancy). A

Fig. 4 Detection of homologs by PSI-BLAST and DELTA-BLAST. (a) Hypothetical, sequences A–F are distantly
related homologs. Their unknown relationship and similarity are represented by distance on the stylized
phylogenetic tree. Initiating a standard gapped BLAST [25, 26] search with sequence of unknown function A
would result in identification of similar sequences B and C. If no other sequences were identified we have no
functional information with which to annotate sequence A. However, if a PSSM approach is used the additive
information of sequences A, B, and C will allow for the detection of sequence D and subsequently functionally
annotated sequences E and F in later iterations of the algorithm. The BLAST methodology means that if
sequences A and D are homologous as are sequences D and E, it follows that A and E must also be
homologous allowing annotation of the initial query sequence. (b) Schematic representation of an alignment of
sequences A–F. Aligned domains share a color, whereas unaligned regions are represented by open boxes. To
correctly annotate a gene with functional information, the alignments described must occur in the same region
of the alignment. Therefore, while sequences E and F are related by the presence of the solid black domain, its
function may not be reflected in sequences A–D as these sequences do not contain this domain
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PSSM is generated and used to seed a new alignment. Any signifi-
cant hits are added to the multiple sequence alignment and the
process is repeated in an iterative manner until convergence occurs
(no new sequences with significance below the E-value cutoff are
detected) (see Note 6). Using PSSM’s in this way results in a wider
search of the sequence space, improves sensitivity, and incorporates
more distant homologs. In contrast, DELTA-BLAST utilizes a
precomputed database, the NCBI Conserved Domain Database
(CDD), to guide the initial PSSM model [42]. This resource was
developed to identify conserved domains within protein sequences
and includes manually curated domain models (which have been
refined using protein 3D structures), as well as models constructed
from clusters of related sequences. After the initial alignment step
DELTA-BLAST proceeds using the same iterative PSSM model as
PSI-BLAST.

3.2.4 Assessing the

Results of PSI-BLAST and

DELTA-BLAST Searches

The user should be aware that the primary concern for false predic-
tion of homology by PSI-BLAST is inclusion of a nonhomologous
sequence into the PSSM, which can be particularly problematic if
the profile is compositionally biased. For example, if a profile model
includes a protein domain common to several of the target
sequences but not shared with the query then the model may be
incorrectly enriching for that domain. By seeding the PSSM model
with domains known to be related to the query sequence DELTA-
BLAST reduces the likelihood of these compound errors but
instead can be subject to database bias if the query sequence con-
tains predominantly uncommon domains. Therefore, as with stan-
dard BLAST searches, the user should exhibit caution when
interpreting the results [26, 41, 43, 44, 49]. In both cases, the
incorporation of a nonhomologous sequence can lead to the iden-
tification and subsequent profile inclusion of sequences with high
similarity to the erroneous sequence rather than to the query
sequence. As with any BLAST search the alignment should be
inspected carefully. Due to the iterative nature of these methods,
any sequences included when they should not be, usually leads to
an amplification of problems that may go unnoticed if the user is
not vigilant. The user should look for a similar conservation pattern
in each of the alignments. If a sequence seems to be included
erroneously, it can be excluded from the PSSM and subsequent
searches by unchecking the relevant radio button in the BLAST
output. If the sequence returns in later iterations seek corrobora-
tion of the finding by other means such as reciprocal searching
(see Note 7).

3.2.5 Additional Methods

of Homolog Detection

There are several other available methods that employ profile or
HMM sequence comparison or combine multiple methods to
infer function. Interested users should investigate these as they
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potentially offer greater sensitivity for detection of distant homo-
logs [2, 50].

CombFunc: (http://www.sbg.bio.ic.ac.uk/~mwass/com
bfunc/) [51]. The CombFunc webserver employs multiple
approaches to determine function including BLAST-based
sequence similarity, protein fold prediction, gene ontology, pro-
tein–protein interaction, and gene co-expression data. Support for
function is determined by combining these results using a support
vector machine learning approach.

FFPRED: (http://bioinf.cs.ucl.ac.uk/) [52]. The FFPRED
server is a powerful tool that aims to assign gene ontology [53]
biological process and molecular function terms to difficult to
annotate sequences based on the characteristics of the searched
amino acid sequence. The FFPRED server performed very well in
this task during the recent critical assessment of protein function
annotation (CAFA) experiment [52].

Blocks: (http://blocks.fhcrc.org/) [54, 55]. Blocks utilizes a
database of ungapped multiple alignments that correspond to the
highly conserved regions of proteins. Query sequences can be
compared to the Blocks database via the block searcher tool,
IMPALA (comparison of query to database of PSSMs) [56] and
LAMA (comparison of multiple alignment to Blocks using profile:
profile method) [57].

COMPASS: http://prodata.swmed.edu/compass/compass.
php [58–61]. COMPASS generates statistical comparisons of mul-
tiple protein alignments via profile generation.

HH-pred: (http://toolkit.tuebingen.mpg.de/hhpred) [62,
63]. HH-pred uses the HHsearch algorithm to search protein
and domain databases by pairwise alignment of profile-HMMs.
Alignment incorporates predicted structural information and can
generate an HMM from a single submitted query sequence by
automated PSI-BLAST search.

Hmmer: (http://hmmer.janelia.org/) [27, 64]. Hmmer uses a
Profile-HMM method of sequence comparison. Tools include:
hmmbuild (HMM construction based on a multiple sequence
alignment), hmmalign (align sequence(s) to an existing HMM),
and hmmsearch (search a database of sequences for a significant
match to an HMM).

3.3 Analysis Pipeline

Step 3: Genomic

Sequence Comparison

Recent advances in sequencing and genome annotation have led to
the generation of datasets that can provide users with vast amounts
of precomputed and cataloged information. Linking of a query
sequence to a gene in these databases allows rapid access to func-
tional annotation including predicted orthologs and paralogs, gene
structure, gene expression, splice variation, association with disease,
chromosomal location, and gene polymorphism data. Thus, infer-
ring homology (either using keyword or similarity searches as
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described previously) to a gene from a multigenome resource as
those described in this section should be a final step in the analysis
pipeline. The annotation of a gene in this way may corroborate
findings determined during previous steps and may offer additional
data to reinforce a working hypothesis. These databases also have an
advantage in that they are regularly updated with improved gene
predictions and annotations. The resource used will depend on the
organism from which the query sequence was obtained (see Note
7). Although some data overlap is inevitable, users are encouraged
to try each tool to survey the breadth of information available
(see Note 8).

For many eukaryotic organisms the UCSC genome browser
[15] and Ensembl genome server [13, 14] are ideal sources of
information. Both include a wealth of annotation data for the
genomes of multiple organisms, and direct links between the two
tools are provided. The contents of these databases are regularly
updated and reflect the current trend for whole-genome sequenc-
ing of biologically relevant model organisms and increasingly
organisms of interest for comparative evolutionary analysis [31].
Searching of these databases can be via a gene identifier or by a
similarity query (BLAST at Ensembl and BLAT at UCSC genome
browser) [65].

In addition, the COGs database housed at the NCBI contains
clusters of orthologous genes (COGs) that are typically associated
with a specific and defined function [7, 66]. Although primarily a
tool for comparison of prokaryotes and unicellular eukaryotes, the
COG database also includes many eukaryotic genomes [67]. Of
particular use is the interlinking of the COG database with the
other databases at the NCBI [38], allowing direct links from a
BLAST hit to a predicted COG via the Blast Link (BLink) tool.

3.4 Conclusion The prediction of function from sequence data alone is a complex
procedure. Appropriate prior information regarding data such as
the tissue or developmental stage from which sequences were col-
lected should be added to working hypotheses as analysis is con-
ducted. It should also be remembered that predictive tools,
although based on robust algorithms, can sometimes produce
inconsistent or incorrect results. Therefore, the experimenter
should look for the convergence between multiple methods to
improve confidence in prediction and seek experimental verification
where possible.

4 Notes

1. In describing any predicted relationship it must be remembered
that the terms similarity and homology are not interchangeable.
Often sequences are described as containing n percent similarity.
It is not, however, correct to use the term percent homologous;
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genes either are homologous (implying an ancestral relation-
ship) or they are not [3].

2. When conducting domain analysis, note the positions of
domains detected and conduct some background research of
the essential residues and predicted function of these domains.
Record the probability associated with any domain prediction
and the database version searched.

3. To specifically identify recent homologs or in-paralogs, search an
appropriate database with a shallow scoring matrix (BLO-
SUM80, PAM20) that will have a shorter look-back time, thus
biasing toward more recent homologs.

4. Only use PSI-BLAST or DELTA-BLAST if you are attempting
to identify distant homologs of unusual sequences. If an abun-
dant domain known to be present in many different protein
types (e.g., zf-C2H2 Zinc fingers, of which there are thousands
known within any given species), consider masking this region
before running a BLAST search to avoid detection of an excess
of hits that provide little additional predictive information. If a
representative structural sequence is available, comparison of a
query sequence to the protein data bank PDB (http://www.
rcsb.org/pdb/) can help in identifying structural and functional
conserved residues. Increasing the gap penalty may decrease the
significance of unrelated sequences, improving the signal-to-
noise ratio for a true hit but at a cost of missing true homologs.

5. E-value scores are correlated to database size. Therefore, choos-
ing which database to search will affect the significance or inter-
pretation of results obtained. For example, to identify an
ortholog in bacterial genomes, searching a database of only
bacterial sequences will reduce the search space and improve
the significance of an E-value for a given alignment. In relation
to search database size, searching the large numbers of near
identical sequences held in the nr database could potentially
result in missing a true homolog with threshold significance.
Alternatively, a significant hit close to the threshold when
searching a small database should be checked carefully and cor-
roborated by other methods to avoid false-positives.

6. The relevant E-value for a hit sequence is the value when it is first
identified, not at convergence or at completion of a set number
of iterations. This is because inclusion of a sequence refines the
PSSM for subsequent searches and will lead to greater signifi-
cance of that sequence in subsequent iterations.

7. If the organism from which the query sequence was obtained is
not currently available, compare to taxonomically related organ-
isms to build a working hypothesis of a similar function for the
query gene.
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8. Why is there no significant hit when I BLAST the genome of the
same or closely related organism? Many methods of whole
genome sequencing utilize a process of fragmentation, sequenc-
ing, and computational reassembly of genomic DNA (Whole
Genome Shotgun sequencing). Depending on the depth of
coverage and the heterozygosity of the genomic DNA, this
approach will result in varying degrees of incomplete noncon-
tiguous sequences. Genes apparently missing from the genome
may be located in these gaps or in repetitive hard-to-sequence
regions of the genome. An alternative possibility is that the gene
prediction tools used to annotate the genome and predict genes
may have not predicted the query gene correctly.
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Chapter 3

Inferring Functional Relationships from Conservation
of Gene Order

Gabriel Moreno-Hagelsieb

Abstract

Predicting functional associations using the Gene Neighbor Method depends on the simple idea that if
genes are conserved next to each other in evolutionarily distant prokaryotes they might belong to a
polycistronic transcription unit. The procedure presented in this chapter starts with the organization of
the genes within genomes into pairs of adjacent genes. Then, the pairs of adjacent genes in a genome of
interest are mapped to their corresponding orthologs in other, informative, genomes. The final step is to
verify if the mapped orthologs are also pairs of adjacent genes in the informative genomes.

Key words Conservation of gene order, Operon, Genomic context, Functional inference, Gene
neighbor method

1 Introduction

Two independent works first presented data supporting the idea
that genes conserved together in evolutionarily distant genomes
might have functional associations [1, 2]. However, the first thor-
oughly described method to infer functional relationships using
conservation of gene order might be the work published by Over-
beek et al. [3]. Nowadays, the method is part of the RAST/MG-
RAST system of functional annotations [4, 5]. The method finds
support in three main ideas (Fig. 1): (1) the knowledge that genes
in operons, stretches of adjacent genes in the same DNA strand
transcribed into a single mRNA [6, 7], are functionally related; (2)
by the expectation that operons should be conserved throughout
evolution; and (3) by the finding that gene order in general is not
conserved [8], and is lost much faster than protein sequence iden-
tity [9]. Thus, conservation of gene order at long evolutionary
distances might indicate a functional relationship. Some divergently
transcribed genes (Fig. 1) might also be functionally related (see, for
instance [10–12]). However, Overbeek et al. [3] found that the
conservation of divergently transcribed genes in evolutionarily
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distant genomes was minimal compared to the conservation of
genes in the same strand. Thus, they limited their analyses to the
detection of conservation of adjacency of genes in the same DNA
strand. Given that the significance of conservation of adjacency
increases with the phylogenetic distance of the genomes compared,
Overbeek et al. [3] directly used phylogenetic distances as a score.
However, selecting an appropriate threshold was a problem. Ermo-
laeva et al. [13] proposed the conservation of adjacency of genes in
opposite strands as a representative of background conservation
useful to calculate a confidence value for the conservation of adja-
cent genes in the same strand. An approach using a simplified
method similar to that presented by Ermolaeva et al. [13] was
used to show that conservation of adjacency of paralogous genes
is also useful for predicting operons and functional relationships of
gene products [14].

Another approach to conservation of gene order is to count the
number of genomes in which a given pair of genes are conserved
next to each other (see, for instance [15, 16]). The main problem of
such an approach is that conservation of adjacency in very closely
related genomes is not as informative as that among evolutionarily
distant genomes. A later approach uses phylogenetic relationships
to correct for this problem [17]. I present here the simplified
method that uses adjacent genes in opposite strands for calibration
mentioned earlier [14]. The confidence values obtained in this
method provide a direct measure of significance that is very easy
to understand. Moreover, there are no results yet showing that
accounting for the number of genomes in which the genes are
conserved produces any better results than conservation in evolu-
tionarily distant genomes.

Fig. 1 Pairs of genes used in the study of conservation of gene order. Genes are
represented by arrows indicating the direction of transcription. Same-strand
genes would be the ones that might be in operons, and thus functionally
related. Genes in opposite strands can be either divergently transcribed or
convergently transcribed. Comparing the conservation of gene order of genes
in the same strand against that of genes in opposite strands helps calculate a
confidence value for predictions of functional interactions
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2 Systems, Software, and Databases

2.1 A UNIX-Based

Operative System

I am assuming that the user is working with a UNIX-based
operating system. The prevalent UNIX-based systems today
include Mac OSX, and many other systems based on Linux, like
Ubuntu and Debian. Specialized computer system servers and
workstations tend to also run under a UNIX-based operative
system.

2.2 The RefSeq

Bacterial Genome

Database

The RefSeq database [18, 19] contains files with diverse informa-
tion about each genome. The database can be downloaded using
programs such as “wget” or “rsync” (see Note 1). For instance,
periodically running the command:

rsync -av rsync://rsync.ncbi.nlm.nih.gov/genomes/
refseq/Bacteria/ \

LOCAL_GENOMES --delete

would keep an updated directory “LOCAL_GENOMES” with all
the information in the directory “/genomes/refseq/Bacteria” of
the NCBI rsync server (see Note 2). Here I will be using three files
under each genome directory, those ending with “.gbk,” with “.ptt”
and with “.rnt” (from now on called GBK, PTT, and RNT files).
Though the GBK file generally contains all of the necessary infor-
mation, the PTT and RNT files are more programmer friendly.

2.3 NCBI’s BLASTþ To map the corresponding orthologous [homologous] genes it is
necessary to compare proteins encoded by the genes within all
genomes. Identifying orthologs is important for any genome con-
text method for inferring functional associations [9]. Appropriate
binaries of NCBI’s BLASTþ [20] program suite can be down-
loaded from NCBI’s servers using rsync at: rsync://rsync.ncbi.
nlm.nih.gov/blast/executables/LATEST/.

3 Methods

The method starts with the construction of files or databases of
gene neighbors. For each gene in a given pair of neighbors in the
genome of interest, the method verifies the existence of orthologs
in an informative genome. If the orthologs exist, their adjacency is
investigated. The following pseudocode summarizes this method:

GENE_NEIGHBOR_METHOD

1 for each informative_genome

2 count_conserved <- 0

3 conserved_list <- ""
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4 for each NEIGHBORS(a,b) in genome_of_interest

5 if (ORTH(a) AND ORTH(b)) in informative_genome

6 if (NEIGHBORS(ORTH(a),ORTH(b))) in
informative_genome

7 ADD(a,b) to conserved_list

8 count_conserved<-count_conserved þ 1

9 return (informative_genome, count_conserved,
conserved_list)

Notice that the results are returned for each informative
genome. This is important in order to calculate confidence scores.
Throughout the detailed method later, I will be using PERL code
to exemplify each step. The programs and example files can also be
downloaded from http://microbiome.wlu.ca/GeneNeighbor/.

3.1 Learn Orthologs Orthologs are defined as genes that diverge after a speciation event
[21]. Such genes can also be colloquially referred to as the “same
genes” in different species. Accordingly, orthologs are the appro-
priate genes to compare in the Gene Neighbor method. In com-
parative genomics, the most commonly used working definition of
orthology is reciprocal best hits [22–24]. Two genes in two differ-
ent genomes are reciprocal best hits if, when each is used as a query,
each finds the other as its top scoring hit (see Note 3).

The possibility of adjacently conserved paralogs, genes that
diverge after duplication events [21], was also discussed by Over-
beek et al. [3]. Moreover, other work has shown that operons have
a tendency toward producing paralog operons [14, 25], and that
strict detection of orthologs is not necessary for prediction of
functional association [14]. Thus, here I use conservation of unidi-
rectional best hits for predicting interactions by conservation of
gene order. In order to detect the top best hits for genes in a target
genome, the protein sequences encoded by the genes in the target
genome are compared against those encoded by the informative
genome using BLASTP (see Note 4):

blastp-querygenome_of_interest-dbinformative_genome
-evalue1e-4 \

-seg yes -soft_masking true -use_sw_tback -outfmt 6 -
out \

genome_of_interest.informative_genome.blastp

This will produce a table of BLAST hits between the genome of
interest and a given informative genome in the file “genome_of_in-
terest.informative_genome.blastp.” The ‘-outfmt 6’ option instructs
BLASTP to format the results into a simple, tab-separated, table.
The other options are ‘-evalue 1e-6,’ which sets the maximum
E-value to 1e-6; ‘-seg yes -soft_masking true,’ which sets filtering
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of low information sequences during the blast search, but not during
the alignment; ‘-use_sw_tback,’ which indicates a Smith–Waterman
alignment to calculate the scores [26] (see Note 5).

BLAST presents results sorted from best to worst match. Thus,
a subroutine in PERL that can get the best hits would look like this
(see Note 6):

sub get_best_hits {

my($genome_of_interest,$informative_genome) ¼ @_;

my %best_hits ¼ ();

my %E_value ¼ ();

my %bit_score ¼ ();

my $blast_file

¼ "BLAST_RUNS/$genome_of_interest.$informa-
tive_ genome.blastp";

open(BLTBL,$blast_file);

while(<BLTBL>) {

my ($query_id,$target_id,@stats) ¼ split;

# both the query and target have a complex name,

# we only need the gi number to match the neighbor

# table identifiers

my ($query) ¼ $query_id ¼ � /gi\|(\dþ)/;

my ($target) ¼ $target_id ¼ � /gi\|(\dþ)/;

# the penultimate value is the E value

my $E_value ¼ $stats[$#stats - 1];

# the last value is the bit score

my $bit_score ¼ $stats[$#stats];

# now we actually learn the best hits

if($bit_score{$query} > 0) {

if(

($E_value{$query} ¼¼ $E_value)

&& ($bit_score{$query} ¼¼ $bit_score)

) {

$best_hits{$query} . ¼ ",".$target;

}

}

else {

$E_value{$query} ¼ $E_value;
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Fig. 2 A few lines of the PTT table of the genome of Escherichia coli K12. The first column of the PTT (protein-
coding genes) and of the RNT (noncoding genes, those producing rRNAs and tRNAs) tables contains the gene
coordinates. The second column contains the strand where the gene is found, which is useful for organizing
the genes into stretches of adjacent genes in the same strand, called directons. The fourth column is the GI
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$bit_score{$query} ¼ $bit_score;

$best_hits{$query} ¼ $target;

}

}

close(BLTBL);

return(%best_hits);

}

3.2 Neighbors

Database

The natural next step is to build a database of gene neighbors. The
minimum information that this database should contain is a list of
adjacent gene pairs and information on the strand on which each
gene is found. To build this database, a convenient starting point is
the RefSeq genomes database, available from the NCBI ftp server.

Several Refseq files could be used to obtain coordinates for each
gene within the genome. Here I exemplify with the PTT (protein
table) and RNT (robonucleotide table) files. The PTT file contains a
table of protein-coding genes, while the RNT file contains a table of
rRNA and tRNA genes (see Note 4). The first column within these
tables consists of the gene coordinates. As an example I show a few
lines of the PTT file for the genome of Escherichia coli K12 [27],
accession “NC_000913,” version “NC_000913.2 GI:49175990”
(Fig. 2).

The first column in these tables corresponds to gene coordi-
nates. Thus, the problem of forming pairs of adjacent genes
becomes trivial. All that is needed is to sort the genes and associate
each of them with the next gene in the list, formatting them into a
table, or a database, of Gene Neighbors. The header of the resulting
table might look like this:

Gene_a Gene_b Strands

Genes in the same strand will have either “þþ” or “��” in the
“Strand” column, while genes in different strands will have either
“þ�” (convergently transcribed) or “�þ” (divergently transcribed)
in this field (see Note 7).

�

Fig. 2 (Continued) number (labeled here as a PID or protein identifier). This number is the best identifier for the
protein-coding genes in a genome because it is unique. However, in the RNT tables this column is not the best
identifier; the best identifiers seem to be the gene name (fifth column), and the synonym (sixth column). The
table in the figure is formatted for display purposes, but the original PTT and RNT tables contain tab-separated
plain text
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If the genome is circular a final pair should be formed with
the last and the first genes in the table. The first line in the GBK
file indicates whether the replicons are circular or linear (see
Note 8).

An example program in PERL that will output this table is:

1 #!/usr/bin/perl

2 $die_msg ¼ "\tI need a genome to work with\n\n";

3 $genome_of_interest ¼ $ARGV[0] or die $die_msg;

4 $die_msg ¼ "\tNo $genome_of_interest directory\n
\n";

5 $genome_dir ¼ "LOCAL_GENOMES/$genome_of_interest";

6 opendir(GNMDIR,"$genome_dir") or die $die_msg;

7 @ptt_files ¼ grep {/\.ptt/} readdir(GNMDIR);

8 $results_dir ¼ "NEIGHBORS";

9 mkdir($results_dir) unless (-d $results_dir);

10 open(NGHTBL," > $results_dir/$genome_of_interest.
nghtbl");

11 for my $ptt_file (@ptt_files) {

12 # get proper name of the RNT and GBK files

13 my $rnt_file ¼ $ptt_file;

14 my $gbk_file ¼ $ptt_file;

15 $rnt_file ¼ � s/\.ptt/\.rnt/;

16 $gbk_file ¼ � s/\.ptt/\.gbk/;

17 # Is the genome circular?

18 # The information is in the first line of the GBK

19 # file, which starts with the word "LOCUS"

20 my $circular ¼ "yes"; # make circular the default

21 open (GBK,"$genome_dir/$gbk_file");

22 while(<GBK>) {

23 if(/^LOCUS/) {

24 $circular ¼ "no" if(/linear/i);

25 last; # we do not need to read any further

26 }

27 }

28 # now we read the table of protein coding genes

29 # and their "leftmost" coordinate so we can

30 # order them and find the neighbors
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31 my %strand ¼ ();

32 my %coords ¼ ();

33 my @ids ¼ ();

34 open(PTT,"$genome_dir/$ptt_file");

35 while(<PTT>) {

36 my @data ¼ split;

37 next unless($data[1] ¼ � /^\ þ |\-$/);

38 $gi ¼ $data[3];

39 $strand{$gi} ¼ $data[1];

40 my ($coord) ¼ $data[0] ¼ � /^(\dþ)/;

41 $coord{$gi} ¼ $coord;

42 }

43 close(PTT);

44 # we verify that there is a table of rRNA and tRNA
genes

45 # if so, we get the genes

46 if(-f "$genome_dir/$rnt_file") {

47 open(RNT,"$genome_dir/$rnt_file");

48 while (<RNT>) {

49 my @data ¼ split;

50 next unless($data[1] ¼ � /^\ þ |\-$/);

51

52 # The identifier is not a GI

53 #butIratherkeepthevariablenamesconsistent

54 # the best identifier for an ’RNA’ gene is

55 # the gene name (5th column)

56 my $gi ¼ $data[4];

57 $strand{$gi} ¼ $data[1];

58 my ($coord) ¼ $data[0] ¼ � /^(\dþ)/;

59 $coord{$gi} ¼ $coord;

60 }

61 }

62 # now we build the table of direct neighbors

63 my @ids ¼ sort {$coord{$a} < ¼ > $coord{$b}} keys
%coord;

64 for my $i(0 .. $#ids) {

65 if (exists($strand{$ids[$i þ 1]})) {
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66 my $str ¼ $strand{$ids[$i]}.$strand{$ids
[$i þ 1]};

67 print NGHTBL $ids[$i],"\t",$ids[$i þ 1],"\t",
$str,"\n";

68 }

69 else {

70 if ($circular eq "yes") {

71 my$str ¼ $strand{$ids[$i]}.$strand{$ids[0]};

72 print NGHTBL $ids[$i],"\t",$ids[0],"\t",$str,
"\n";

73 }

74 }

75 }

76 }

77

78 close(NGHTBL);

and a subroutine that will read this table, learn the neighbors, and
classify them as same-strand and opposite-strand neighbors is:

sub get_strands_of_neighbors {

my $genome ¼ $_[0];

#wewilllearntheneighborsashasheswherethekeys

# are the neighbor pairs of genes and the values are

# the strand situations (same strand or opposite
strand

my %strands_of ¼ ();

open(NGH,"NEIGHBORS/$genome.nghtbl");

while(<NGH>) {

my($gi,$gj,$strand) ¼ split;

my $neighbors ¼ join(",",sort($gi,$gj));

if (($strand eq "--") || ($strand eq "þþ")) {

$strands_of{"$neighbors"} ¼ "same";

}

elsif (($strand eq "- þ ") || ($strand eq " þ -")) {

$strands_of{"$neighbors"} ¼ "opp";

}

}

return(%strands_of);

}
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3.3 Putting

Everything Together

As originally defined, the Gene Neighbor Method aims to find
genes with conserved adjacency in evolutionarily distant genomes.
However, Ermolaeva et al. [13] have obviated the need for a
phylogenetic distance by using the genomes themselves to deter-
mine the significance of the conservation in the form of a confi-
dence value. The idea behind the confidence value is that the
proportion of conserved adjacencies in opposite strands represents
conservation due to chance alone, or more properly, conservation
due to short evolutionary distance and chance rearrangement (see
Note 9). A simplified version of the confidence value calculated
under the same assumption is:

C ¼ 1� 0:5*
POpp

PSame

The confidence value (C) can be thought of as a positive predictive
value (true positives divided by the total number of predictions) for
two genes to be conserved due to a functional interaction (they
would be in the same operon) (see Note 10). The value 0.5 in this
expression is a prior probability for the genes to be in different
transcription units. POpp is the count of pairs of orthologs con-
served next to each other in opposite strands (“þ�” and “�þ” pairs
of neighbor genes) divided by the total number of neighbors in
opposite strands in the informative genome. PSame is the count of
orthologs conserved next to each other in the same strand (“þþ”
and “��”) divided by the total number of neighbors in the same
strand in the informative genome.

Now, with all the necessary data, neighbors, and best hits, and
with a way of calculating a confidence value, the previous pseudo-
code is modified as:

GENE_NEIGHBOR_METHOD

1 for each informative_genome

2 count_conserved < - 0

3 conserved_list < - ""

4 for each NEIGHBORS(a,b) in genome_of_interest

5 if (ORTH(a) AND ORTH(b)) in informative_genome

6 if(same-strand(ORTH(a),ORTH(b)))in informative_

genome

7 ADD(a,b) to conserved_same-strand

8 count_same < - count_same þ 1

9 else if (opposite-strand(ORTH(a),ORTH(b))

10 ADD(a,b) to conserved_opposite-strand

11 count_opposite < - count_opposite þ 1
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12 confidence < - 1�0.5*proportion(same)/propor-
tion(opposite)

13 return (informative_genome, confidence, conser-
ved_same-strand)

And a particular example program in PERL would be:

1 #!/usr/bin/perl

2 $genome_of_interest ¼ "Escherichia_coli_K12";

3 @genomes ¼ qw(

4 Salmonella_typhi_Ty2

5 Yersinia_pestis_KIM

6 Rhizobium_etli_CFN_42

7 Bacillus_subtilis

8 );

9 $results_dir ¼ "Confidence";

10 mkdir($results_dir) unless(-d $results_dir);

11 my %strands_of ¼ get_strands_of_neighbors
($genome_of_interest);

12 open(CONF," > $results_dir/$genome_of_
interest.confidence");

13 for my $informative_genome (@genomes) {

14 print $informative_genome,"\n";

15 my %best_hits

16 ¼ get_best_hits($genome_of_interest,$
informative_genome);

17 my %inf_strands_of

18 ¼ get_strands_of_neighbors($informative_
genome);

19 my $count_same ¼ 0;

20 my $count_opp ¼ 0;

21 my @predictions;

22 for my $neighbors (keys %strands_of) {

23 my ($gi,$gj) ¼ split(/,/,$neighbors);

24 # first see if there are any orthologs

25 if (exists($best_hits{$gi})

26 && exists($best_hits{$gj})) {

27 #sincetheremightbemorethanoneortho-
log, and

28 # there might be more than one conserved
pair,

29 #weusea"flag"(count_conserv ¼ "none")to
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30 # avoid "overcounting"

31 my $count_conserv ¼ "none";

32

33 # now the actual verification of conservation

34 for my $orth_i (split(/,/,$best_hits{$gi})) {

35 formy$orth_j(split(/,/,$best_hits{$gj})){

36 my $test_neigh ¼ join ",", sort($orth_i,
$orth_j);

37 if ($inf_strands_of{$test_neigh}

38 eq $strands_of{$neighbors}) {

39 $count_conserv ¼ $strands_of{$neigh
bors};

40 }

41 }

42 }

43

44 #nowweverifytheflagandcountanyconservation

45 if ($count_conserv eq "same") {

46 $count_sameþþ;

47 push(@predictions,$neighbors);

48 }

49 elsif ($count_conserv eq "opp") {

50 $count_oppþþ;

51 }

52 }

53 }

54 # now we also need to count the numberof genes in the
same

55 # strandand those in opposite strandsin the infor-
mative genome

56 my $total_same ¼ 0;

57 my $total_opp ¼ 0;

58 for my $inf_ngh (keys %inf_strands_of) {

59 if ($inf_strands_of{$inf_ngh} eq "same") {

60 $total_sameþþ;

61 }

62 elsif($inf_strands_of{$inf_ngh} eq "opp") {

63 $total_oppþþ;

64 }

65 }
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66

67 # now we can calculate the confidence value

68 my $P_same ¼ $count_same/$total_same;

69 my $P_opp ¼ $count_opp/$total_opp;

70 my $conf ¼ 1 - 0.5 * ($P_opp/$P_same);

71 $conf ¼ sprintf("%.2f",$conf);

72 print "CONFIDENCE ¼ ",$conf,"\n";

73 # now print predictions with their confidence
values

74 for my $prediction (@predictions) {

75 $prediction ¼ � s/,/\t/;

76 print CONF $prediction,"\t",$conf,"\t",$info
rmative_genome,"\n";

77 }

78 }

When run, this program creates a single file with conserved
neighbors, their confidence values, and the genome from which the
value was obtained. At the same time, the program prints the
following output to the display:

% ./neighbor-method.pl

Salmonella_typhi_Ty2

CONFIDENCE ¼ 0.55

Yersinia_pestis_KIM

CONFIDENCE ¼ 0.73

Rhizobium_etli_CFN_42

CONFIDENCE ¼ 0.99

Bacillus_subtilis

CONFIDENCE ¼ 1.00

The informative genomes are ordered evolutionarily from clos-
est to farthest. As expected, the evolutionarily closest organism to
E. coli K12 in this example, Salmonella typhi Ty2, gives the lowest
confidence value, while the farthest gives the maximum confidence
value. The threshold I use to accept predictions is a confidence
value � 0.95.

4 Notes

1. Traditionally, UNIX users might have used the ftp program to
transfer files. The newer programs, wget and rsync, offer
options that might help transferring more than one file with a
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single command. Many servers lack rsync capabilities, and then
wget can be used. It is still possible to use the ftp command for
this task. Conveniently, ftp sites can be displayed in a web
browser, the user can then find the files that might be of
interest, and then download them.

2. As of this writing, NCBI has reorganized its RefSeq Genome
data server. The Bacteria subdirectory has been deleted. The
new directory structure is very complicated, which makes me
think that people wanting to work with all the complete gen-
omes will have to access them using a program. Some of the
changes at NCBI’s server allow access to several assemblies for
each genome, thus complicating the automatic decision as to
which assembly to download. I can advise little more now than
consulting the assembly file in order to decide what to
download:

rsync -avzL \
rsync://rsync.ncbi.nlm.nih.gov/refseq/assem-
bly_summary_refseq.txt

3. For finding orthologous genes, what we compare is the proteins
encoded by the annotated genes in one genome, against the
proteins encoded by the annotated genes in the other. Genes
producing directly active RNA, such as tRNA and rRNA genes,
are mostly ignored in these kinds of analyses, perhaps because
they are fewer than the coding genes, and because comparing
DNA sequences and thus determining orthology, especially
among evolutionarily distant organisms, can be very difficult.

4. In order for BLASTP to run, the protein sequences found in
the files ending with “.faa” (FAA file) have to be formatted into
BLAST databases. I prefer to keep each genome separated so it is
simpler to update results when a new genome is published. The
main caveat to this approach is that some prokaryotic genomes
contain more than one replicon. This means that there will be
more than one FAA file for these genomes. It is better to have all
the protein sequences in a single file. Thus, I concatenate all the
FAA files within the directory of each genome into a single file. A
simple UNIX command that can do this job is:

cat genome_of_interest/*.faa > FAADB/genome_of_
interest.faa

A file compressed with gzip, like the one used under Note 5,
would be obtained as follows:

cat genome_of_interest/*.faa | gzip -9 > FAADB/
genome_of_interest.faa.gz

The “�9” gzip option calls for maximum compression. To
build BLAST databases the command is:
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makeblastdb -dbtype prot -in FAADB/genome_
of_interest.faa -parse_seqids \
-hash_index -out BLASTDB/genome_of_interest
�title ““genome_of_interest”

5. Given blast’s UNIX heritage, the command can be “piped.”
Because of this important feature, blast results can be com-
pressed as they are produced, if needed. This can be accom-
plished by taking advantage of blast’s default output being the
standard output (the screen), which can be piped into the gzip
command (or bzip2):

blastp -query genome_of_interest.faa -db informa-
tive_genome -evalue 1e-4 \
-seg yes -soft_masking true -use_sw_tback -outfmt
7 | gzip -9 > \
genome_of_interest.informative_genome.blastp.gz

Piping can also be advantageous to run blast when the query
fasta file is also compressed:

gzip �qdc genome_of_interest.faa.gz | blastp -
query - \
-db informative_genome -evalue 1e-4 \
-seg yes -soft_masking true -use_sw_tback -outfmt
7 | gzip -9 > \
genome_of_interest.informative_genome.blastp.gz

The “-query -” option is not really necessary (though I prefer
using explicit options, to easily understand what is going on
when checking commands later on), because the default query
is “-” (standard input):

gzip �qdc genome_of_interest.faa.gz | blastp \
-db informative_genome -evalue 1e-4 \
-seg yes -soft_masking true -use_sw_tback -outfmt
7 | gzip -9 > \
genome_of_interest.informative_genome.blastp.gz

6. Itmight be tempting touseblastp’s option for displayingonly one
matching sequence per query sequence (-max_target_seqs 1).
However, there can be more than just one best hit. Yet the option
would only display one. Cases wheremore than one best hit exists
arenot very frequent,but theyhappen. It is up to theuser todecide
whether to use this option and save downstream computation.

7. It is also possible to allow gaps (i.e., intervening genes)
between gene pairs. However, in my experience, allowing
gaps neither improves, nor worsens the results. This assessment
is based on knowledge of the operons in Escherichia coli K12.
However, allowing gaps might facilitate calculation of confi-
dence values in very small genomes, where the number of
same- and opposite-strand genes might be too small. If gaps
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are used, it is important that the pairs of genes are part of the
same stretch of genes in the same strand with no intervening
genes in the opposite strand (such stretches are called direc-
tons). For opposite-strand genes it will be enough to confirm
that they are in different strands. The extreme example is the
same-directon versus different-directon approach. The conser-
vation to be evaluated would be that of two genes in the same
directon, regardless of the number of genes in between. The
control, or negative set, would consist of genes in different, yet
adjacent, directons. This is very similar to a method that is now
used at The Institute for Genomics Research (Maria Ermo-
laeva, personal communication), which is a simplified version
of a method published by Ermolaeva et al. [13]. A program
that will output a database of genes in the same directon, and
genes in different directons, would be:

1 #!/usr/bin/perl

2 $genome_of_interest ¼ $ARGV[0] or die "I need a
genome to work with\n\n";

3 $genome_dir ¼ "LOCAL_GENOMES/
$genome_of_interest";

4 opendir(GNMDIR,"$genome_dir")ordie$die_msg;

5 @ptt_files ¼ grep {/\.ptt/} readdir(GNMDIR);

6 $results_dir ¼ "NEIGHBORS_DIRECTON";

7 mkdir($results_dir) unless (-d $results_dir);

8 open(NGHTBL," > $results_dir/$genome_of_interest.
nghtbl");

9 PTT:

10 for my $ptt_file (@ptt_files) {

11 # get proper name of the RNT and GBK files

12 my $rnt_file ¼ $ptt_file;

13 my $gbk_file ¼ $ptt_file;

14 $rnt_file ¼ � s/\.ptt/\.rnt/;

15 $gbk_file ¼ � s/\.ptt/\.gbk/;

16 # Is the genome circular?

17 # The information is in the first line of the
"gbk"

18 # file, which starts with the word "LOCUS"

19 my $circular ¼ "yes"; # make circular the
default

20 open (GBK,"$genome_dir/$gbk_file");

21 while(<GBK>) {
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22 if(/^LOCUS/) {

23 $circular ¼ "no" if(/linear/i);

24 last; # we do not need to read any further

25 }

26 }

27 # now we read the table os protein coding genes

28 # and their "leftmost" coordinate so we can

29 # order them and find the neighbors

30 my %strand ¼ ();

31 my %coord ¼ ();

32 open(PTT,"$genome_dir/$ptt_file");

33 while(<PTT>) {

34 my @data ¼ split;

35 next unless($data[1] ¼ � /^\ þ |\-$/);

36 my $gi ¼ $data[3];

37 $strand{$gi} ¼ $data[1];

38 my ($coord) ¼ $data[0] ¼ � /^(\dþ)/;

39 $coord{$gi} ¼ $coord;

40 }

41 close(PTT);

42 if(-f "$genome_dir/$rnt_file") {

43 open(RNT,"$genome_dir/$rnt_file");

44 while (<RNT>) {

45 my @data ¼ split;

46 next unless($data[1] ¼ � /^\ þ |\-$/);

47

48 # The identifier is not a GI

49 # but I rather keep the variable names
consistent

50 # the best identifier for an ’RNA’ gene is

51 # the gene name (5th column)

52 my $gi ¼ $data[4];

53 $strand{$gi} ¼ $data[1];

54 my ($coord) ¼ $data[0] ¼ � /^(\dþ)/;

55 $coord{$gi} ¼ $coord;

56 }

57 }
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58 # we build directons: stretches of genes in the
same

59 #strandwithnointerveninggeneintheopposite

60 # strand

61 my @ids ¼ sort {$coord{$a} < ¼ > $coord{$b}}
keys %coord;

62 my @directon ¼ ();

63 my $directon;

64 $prev_str ¼ "none";

65 for my $gi(@ids) {

66 if ($strand{$gi} eq $prev_str) {

67 $directon . ¼ ",".$gi;

68 $prev_str ¼ $strand{$gi};

69 }

70 else {

71 push(@directon,$directon) if (defined
$directon);

72 $directon ¼ $gi;

73 $prev_str ¼ $strand{$gi};

74 }

75 }

76

77 # with circular genomes we make sure that

78 # we close the circle, meaning if first and last

79 #directonareinthesamestrand,theyformasingle

80 # directon

81 if($strand{$ids[0]}eq$strand{$ids[$#ids]}){

82 if ($circular eq "yes") {

83 $directon[0] ¼ $directon.",".$directon[0];

84 }

85 else {

86 push(@directon,$directon);

87 }

88 }

89 else {

90 push(@directon,$directon);

91 }

92
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93 # now we do form pairs in same directon, and

94 # pairs in different directons

95 for my $i (0 .. $#directon) {

96 my @gi ¼ split(/,/,$directon[$i]);

97 # same directon

98 my @expendable ¼ @gi;

99 while (my $gi ¼ shift @expendable) {

100 for my $gj (@expendable) {

101 print NGHTBL $gi,"\t",$gj

102 ,"\t",$strand{$gi}.$strand{$gj},"\n";

103 }

104 }

105 ## different directon

106 ## assuming circular replicons

107 my $next_directon ¼ "none";

108 if ($i < $#directon) {

109 $next_directon ¼ $directon[$i þ 1];

110 }

111 else {

112 if ($circular eq "yes") {

113 $next_directon ¼ $directon[0];

114 }

115 else {

116 next PTT;

117 }

118 }

119 my @gj ¼ split(/,/,$next_directon);

120 for my $gi (@gi) {

121 for my $gj (@gj) {

122 print NGHTBL $gi,"\t",$gj

123 ,"\t",$strand{$gi}.$strand{$gj},"\n";

124 }

125 }

126 }

127 }

128 close(NGHTBL);
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8. It is important to know that some of the Prokaryotic genomes
reported so far have more than one replicon, meaning more
than one DNA molecule. Multireplicon genomes can contain
two or more chromosomes, mega-plasmids, and plasmids. I
consider all the published replicons part of the genome, and
thus the programs presented are designed to read all of the
replicons under a given genome directory.

9. As stated, Overbeek et al. [3] noted that some divergently
transcribed genes could be functionally related, but found
that the proportion of conserved, divergently transcribed
genes across evolutionarily distant species was very small. The
main effect of this possibility is that the confidence value would
be an underestimate. This is clear in the analyses presented by
Ermolaeva et al. [13], and in the particular examination of false
positives presented by Janga et al. [14], who found indepen-
dent evidence that almost all of their false positives had a
functional relationship (see also Note 6). In these analyses, the
confidence value of 0.95 seems to correspond to a positive
predictive value (true positives divided by the total number of
predictions) of 0.98.

10. The relationship between the positive predictive value and the
confidence value has been established [13, 14] using data on
experimentally determined operons of Escherichia coli K12
from RegulonDB [28]. Another useful statistic is coverage
(also called sensitivity: true positives divided by the total num-
ber of truly related pairs). For protein-coding genes, the cur-
rent estimate for most genomes is that 0.5 of all same-strand
direct neighbors might be in the same operon. In E. coli K12,
the total number of same-strand protein-coding genes is 2930.
Thus, the total number of functionally related neighbors is
approximately 2930/2 ¼ 1465. The maximum number of
predictions for E. coli K12 compared against all the genomes
in the current database is 640 at a confidence value � 0.95.
Thus, the estimated coverage is: 640 * 0.95 / 1465 ¼ 0.41.
This coverage might be thought low, but the predictions are of
excellent quality.
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Chapter 4

Structural and Functional Annotation of Long
Noncoding RNAs

Martin A. Smith and John S. Mattick

Abstract

Protein-coding RNAs represent only a small fraction of the transcriptional output in higher eukaryotes. The
remaining RNA species encompass a broad range of molecular functions and regulatory roles, a conse-
quence of the structural polyvalence of RNA polymers. Albeit several classes of small noncoding RNAs are
relatively well characterized, the accessibility of affordable high-throughput sequencing is generating a
wealth of novel, unannotated transcripts, especially long noncoding RNAs (lncRNAs) that are derived from
genomic regions that are antisense, intronic, intergenic, and overlapping protein-coding loci. Parsing and
characterizing the functions of noncoding RNAs—lncRNAs in particular—is one of the great challenges of
modern genome biology. Here we discuss concepts and computational methods for the identification of
structural domains in lncRNAs from genomic and transcriptomic data. In the first part, we briefly review
how to identify RNA structural motifs in individual lncRNAs. In the second part, we describe how to
leverage the evolutionary dynamics of structured RNAs in a computationally efficient screen to detect
putative functional lncRNA motifs using comparative genomics.

Key words lncRNA, Comparative genomics, RNA secondary structure, Homology search, Func-
tional genome annotation

1 Introduction

Functional genome annotation involves the identification of both
known and hypothetical genes in uncharacterized genomic DNA
sequence. This largely includes protein-coding genes and noncod-
ing RNAs, as well as other genomic features such as telomeric/
subtelomeric regions and centromeres. The identification of
protein-coding genes can unravel the molecular repertoire of the
majority of the genomes of microorganisms, especially prokaryotes,
whose genomes are largely composed of protein-coding sequences.
However, protein-coding sequences encompass only a small frac-
tion of the genome in higher eukaryotes, which decreases with
increasing developmental and cognitive complexity [1, 2] and
comprise less than 1.5 % of the human genome.
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Most of the human genome is dynamically transcribed into
RNA [3, 4], which implies that untranslated RNAs compose the
most abundant class of genomic output. In particular, noncoding
transcripts greater than 200 nt in length—long noncoding RNAs
(lncRNAs)—are emerging as master regulators of development and
differentiation in higher eukaryotes [5–10]. There are currently
15,767 lncRNA genes (excluding alternative isoforms and pseudo-
genes) listed in version 25 of the GENCODE human genome
annotation database, compared to 19,950 protein-coding genes.
Contrary to protein-coding genes, whose set is relatively well char-
acterized and has remained relatively stable in number and reper-
toire throughout metazoan evolution [1, 2, 11], although there are
novel genes mainly encoding small proteins being discovered [12],
the number of identified lncRNAs is steadily increasing as more and
more biological conditions are investigated with high-throughput
RNA sequencing technologies.

Many lncRNAs appear to regulate gene expression through
their association with epigenetic proteins, such as histone modifica-
tion enzymes and DNA methyltransferases, with which they syner-
gistically organize the nuclear environment [13–15]. Other
lncRNA functions include acting as molecular decoys and macro-
molecular scaffolds, as well as the regulation of splicing and trans-
lation, mRNA stability, and the formation of subcellular organelles
[5, 16]. A small but growing number of lncRNAs have been
functionally validated through knockout and ectopic expression
in vivo and in cell culture, and other biochemical studies [17–20],
but the precise molecular mechanisms and structures guiding their
function remain largely unresolved.

At present, lncRNAs are largely categorized by their position
relative to neighboring protein-coding genes, i.e., intergenic, anti-
sense, intronic, or bidirectional. However, the particular functions
of lncRNAs do not necessarily correlate with their genomic con-
text. For example, the lncRNA HOTAIR functions by recruiting a
chromatin modification complex (PRC2) to repress gene expres-
sion in trans [21], whereas the lncRNA HOTTIP recruits another
epigenetic complex (WDR5-MLL1) in cis to activate gene expres-
sion via chromosomal looping [22]. Both are situated in the inter-
genic regions surrounding HOX genes. The functional annotation
of lncRNAs at a genome- or transcriptome-wide scale therefore
requires the consideration of additional molecular features that
may be unique to each transcript.

A unifying feature of ncRNAs is their propensity to form dis-
crete secondary and tertiary structures through canonical and non-
canonical nucleotide base pairings that often dictate their function.
Many lncRNAs appear to be very plastic, evolve quickly, and/or
have arisen relatively recently in evolution, as evidenced by high
turnover rates and reduced primary sequence conservation [23,
24], although there are exceptions that have extraordinarily high
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levels of sequence conservation [25–27]. Their evolutionary
dynamics are different from protein-coding genes, displaying
relaxed structure-function constraints that are synonymous with
being under positive selection for adaptive radiation. They are in
general (although there are likely to be exceptions) unlikely to have
catalytic activities, such as ribosomal RNAs, yet may nonetheless
form evolutionarily stable, functional secondary and tertiary struc-
tures with different functions, as well as shorter primary sequences
that may interact with other RNAs and DNA. For instance, the
widespread presence of repetitive sequences derived from mobile
elements in the human genome is believed to contribute to modu-
lar lncRNA biogenesis by forming a reservoir of functional motifs—
or structured templates for RNA-binding proteins—that can be co-
opted into RNA regulatory networks via positive selection [28–30].

Computational identification of functional RNA structural
motifs encoded in genomic sequences is a challenging task, mainly
because almost any RNA sequence can form internal base pairs via
classical Watson–Crick, Hoogstein, or ribose 20OH hydrogen bond
formation, and fold into discrete structures [31, 32], but also
because RNA structures themselves are dynamic, flexible, and are
contingent on the cellular environment (i.e., temperature, ion con-
centrations, ligand binding, transcriptional kinetics). Functional
RNA structures can nonetheless be identified through comparative
genomics by observing nucleotide substitutions that are consistent
and compatible with a common structural topology. Indeed, a
much larger fraction of the human genome seems to function
through the formation of RNA structure motifs than through
sequence-constrained elements, as evidenced by considering nucle-
otide covariation events in evolutionary information [33].

In this chapter, we describe how to annotate ncRNAs in geno-
mic or transcriptomic data, where known or putative functions are
assigned to uncharacterized sequences to gain insight into their
biology. First, we summarize how to identify functional RNA ele-
ments in single sequences via homology search as well as prediction
of local structures in long transcripts. Finally, we describe how to
identify putative functional motifs in lncRNAs that are supported
by evolutionarily conserved RNA secondary structures. We provide
user friendly, step-by-step instructions on how to perform a multi-
ple genome-wide screen for functional RNA motifs similar to that
published in [33].

2 Materials

A UNIX-based computing environment should be employed for
most of the described methods, preferably with access to a high-
performance computing infrastructure. Alternatively, a computer
or server with multiple processors and over 4 GB of RAM may be
employed.
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2.1 Genomic Data Genomic or transcriptomic sequence data should be downloaded
and converted (if required) to fasta file format, unless it is already
available. Genomic data for reference organisms can be obtained
from the following sources:

1. UCSC genome browser—select the organism and the desired
genome version, then full data set, then the file with suffix “.fa.
gz” at http://hgdownload.cse.ucsc.edu/downloads.html.

2. NCBI—select the species of interest and then sequence data
can be downloaded for each chromosome individually at
(ftp://ftp.ncbi.nih.gov/genomes/). A FTP batch download
tool or interface should be considered to automate the process.

3. ENSEMBL genome browser—select the appropriate release
version, then ‘fasta’ at ftp://ftp.ensembl.org/pub/.

2.2 Transcriptomic

Data

LncRNAs are often spliced (including alternatively spliced), gener-
ating sequences and structures that would otherwise be missed
during computational screens of unprocessed genomic sequences.
Depending on the task at hand and the availability of suitable data,
the sequences corresponding to processed transcripts should also
be considered to improve the robustness of functional lncRNA
annotation. For RNA sequencing data, algorithms for de novo
assembly should be considered provided the depth of coverage is
sufficient. These programs usually produce output files containing
genomic coordinates in .bed (browser extendible data file, prefera-
bly in 12-field format with exon boundary information), .gtf (gene
transfer format), .gff (general feature format), or similar formats.
The popular Cufflinks program from the Tuxedo suite of RNAseq
tools [34] produces a .gtf file and includes the appropriate
software—a program called gffread located in the Cufflinks binary
folder—to extract and process sequence information from a refer-
ence genome into a .fasta file. Alternatively, the Trinity program for
de novo transcriptome assembly without aligning to a reference
genome [35] directly outputs a .fasta file of assembled transcripts
from the .fastq files containing deep sequencing data.

2.3 Multiple Genome

Alignments

Comparative genomics approaches for functional annotation of
noncoding RNAs require pairwise or multiple genome alignments
for the species of interest. Prealigned genomic sequence alignments
for most well-studied vertebrates can be downloaded in .maf (mul-
tiple alignment format) from the ENSEMBL comparative geno-
mics database [36] or from the UCSC genome browser [37]—
which also hosts alignments for nonvertebrate species—as follows:

1. ENSEMBL Compara—Information about downloading mul-
tiple genome alignments is available at http://ensembl.org/
info/data/ftp/index.html. Multiple alignments in .maf from
the latest release at the time this was written can be downloaded
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via FTP protocol at ftp://ftp.ensembl.org/pub/release-85/
maf/ensembl-compara/multiple_alignments/.

2. UCSC Genome Browser—Navigate to the table browser tab at
http://genome.ucsc.edu (select ‘tools,’ then ‘table browser’
from the drop-down menu bar on the top of the page). Select
the reference species of interest, then ‘Comparative Genomics’
from the group menu, ‘Conservation’ from the track menu,
and ‘Multiz Align,’ form the table menu. Optionally, regions
can be limited to an existing UCSC or custom track (which
needs to be uploaded independently prior to this step). This
can significantly reduce the size of the download when only
interested in a set of transcripts, for example. Next, ensure that
‘MAF—multiple alignment format’ appears in the output for-
mat menu, otherwise the appropriate track or table must be
selected. Finally, name the output file and get output (ideally,
compressed) or send the output to the Galaxy [38] platform for
post-processing (see later).

Multiple alignments form the UCSC Genome Browser employ
a different synteny and alignment algorithm than those from
ENSEMBL. The latter usually present contiguous alignments for
large syntenic blocks via the Enredo (or Mercator) and Pecan algo-
rithms [39, 40], whereas the former is optimized for total genomic
coverage and presents smaller, fragmented alignment blocks as pro-
ducedwith theTBA andMULTIZ algorithms [41]. Because of their
highly fragmented nature and variable presence of each species in
each block, TBA/MULTIZ alignments may require additional pro-
cessing, such as being ‘stitched’ together. A good summary of
approaches for processing .maf files is described by Blankenberg
et al. [42]. The ENSEMBL alignments require less processing, as
the syntenic blocks are much longer. These alignments can also
contain segmental duplications, which should be removed at the
user’s discretion (ensuring that the coordinates of the segmental
duplications for the reference species are saved for future reference).

3 Methods

The first step in any analysis of a putative noncoding RNA is to
estimate its protein-coding potential. This typically involves exclud-
ing known protein-coding genes from a reference genome annota-
tion, from mass spectrometry data (when available), as well as
computational estimation of coding potential via the analysis of
open reading frames and evolutionary information, such as synon-
ymous codon usage. The Pinstripe software suite is one example of
a recently developed bioinformatics resource that enables the dis-
crimination of coding versus noncoding transcripts, which is
accompanied by a well-described usage manual [12]. Such methods
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and additional considerations—i.e., bifunctional RNA transcripts
that are both mRNAs and ncRNAs—are reviewed in [43, 44].

There are two general approaches for the functional annotation
of noncoding RNAs: (1) homology search against known RNAs;
and (2) de novo identification of putative functional domains. The
former is more suitable for the annotation of small RNAs (e.g.,
tRNAs, snoRNAs, 5S rRNAs, snRNAs, miRNAs, etc.); however, an
increasing number of lncRNAs have been sufficiently characterized
and are amenable to this approach (see [45] and the most recent
release of RFAM). De novo computational annotation of noncod-
ing RNAs can be applied to both size categories of transcripts and
involves the elucidation of both sequence and structural character-
istics that are indicative of function. Comparison of sequence simi-
larity to orthologous genes, for instance, with BLAST [46], is a
commonly employed method for the identification of protein-
coding genes and ribosomal RNAs given their strong dependence
on sequence composition as well as crucial cellular functions. How-
ever, when comparing genes with similar functions across larger
evolutionary distances, sequence homology is outclassed by struc-
tural homology, where classical sequence alignment methods are
inefficient. Hidden Markov models [47, 48] and codon substitu-
tion matrices (e.g., PAM [49] or BLOSUM [50]) are employed to
overcome the sequence alignment barrier when faced with greater
sequence divergence than for protein-coding genes.

For noncoding RNAs, alternative computational strategies
must be employed to overcome the increased diversity of sequences
that are compatible with a given secondary or tertiary structure.
The evolutionary dynamics of noncoding RNAs are governed by
three factors: (1) They do not require the preservation of sequence
composition to convey a genetic code, i.e., codons, with the nota-
ble exception of the anticodon loop in tRNAs. (2) RNA structures
are more tolerant to nucleotide substitutions than proteins for
mutated codons. Indeed, 6 out of 16 possible canonical ribonucle-
otide combinations will form canonical base pairings, which include
Watson–Crick and G-U/U-G ‘wobble’ base pairs. Because RNA
structures can accommodate a higher frequency of base substitu-
tions than mRNAs—as long as they are consistent or compatible
with their paired nucleotide—bioinformatics tools investigating
noncoding RNAs must focus on secondary and tertiary structural
characteristics as well as primary sequence, where short patches of
high conservation may indicate important biochemical interac-
tions. (3) Since their biological function is often of regulatory
nature, they are more likely to be under positive selection for
adaptive radiation. This is most notable for lncRNAs.

3.1 Detecting

Homology to Known

Functional RNAs

The RFAM database encompasses several well-characterized non-
coding RNA families that are presented in multiple alignments
based on both their sequence and higher order structure topolo-
gies [51]. Until recently, the RFAM repository was mostly limited
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to entire RNA sequences, mainly small noncoding RNAs. Recent
updates to RFAM have expanded the repository to include some
lncRNAs as well as bona fide RNA structural motifs [52]. The
latter are defined as “a non-trivial, recurring RNA sequence
and/or secondary structure that can be predominantly described
by local sequence and secondary structure elements” and can be
part of a larger structure or noncoding RNA [53]. RFAM includes
Covariance Models (CMs) for each entry, or family, in the data-
base. CMs are a probabilistic representation of RNA structure
profiles that can be used to scan a genome (or transcriptome) for
sequences compatible with a given consensus structure. They can
be used by the Infernal program to scan large metazoan genomes
in minutes and report homologous hits with high accuracy [54].
The Infernal software package can also generate a CM from a
given multiple sequence and structure alignment and thus permits
using custom CMs to perform a search. Detailed instructions on
how to use Infernal can be found at http://infernal.janelia.org/
as well as in [55].

There are also alternative bioinformatics resources for RNA
structural homology search. The RNAmotif program enables
users to construct descriptors of a target RNA structure, then
scans a sequence database, and reports all compatible sequences
[56]. Although the software is somewhat out of date, RNAmotif’s
capacity to construct detailed and customized RNA structure
descriptors manually and with relative ease justify its pertinence. It
also enables the inclusion of tertiary structural elements such as
pseudoknots, triplexes, and quadruplexes. Unfortunately, it does
not consider thermodynamic stability or base-pairing probabilities
and, consequently, can produce a large amount of biologically
irrelevant hits unless the results are filtered appropriately (for a
practical example of how this may be performed, please refer to
the last paragraph of Subheading 3). Alternatively, the recently
developed LocaRNAscan algorithm [57] can consider the local
structural environment in the target sequence when performing a
scan using a base pair probability matrix (see later) as a query, which
can be generated from a single sequence or an alignment of several
sequences.

3.2 Predicting the

Structural Landscape

of Individual lncRNA

Sequences

The computational prediction of RNA secondary structures from
sequence alone was one of the first challenges in bioinformatics.
Consequently, modern software packages such as RNAfold [58],
UNAfold [59], and RNAstructure [60, 61] are quite efficient at
predicting the most thermodynamically stable RNA secondary
structure—Minimum Free Energy (MFE)—for a given input
sequence. Unfortunately, MFE structural predictions do not always
represent the biological reality and, on their own, are not usually
considered as a robust qualification of function. This is particularly
true for lncRNAs, which can be tens of thousands of nucleotides
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long. Locally stable RNA secondary structures, which might com-
pose functional units (or modules) of a lncRNA, can be overlooked
in favor of long-range base pairings that contribute more toward
lowering the overall free energy score. Furthermore, the dynamic
structural nature of RNA macromolecules also confounds RNA
structure prediction, as noncoding RNAs can form more than a
single functional structural topology (riboswitches are a good
example). It is therefore beneficial to consider an ensemble of
suboptimal structures when characterizing the function of noncod-
ing RNAs, as exemplified in Fig. 1.

A more biologically relevant alternative to the MFE structure is
the centroid, which consists of the structure with minimal distance
to all other structures in a set of suboptimal structures. The cen-
troid is usually generated through the partition function, which
estimates the statistical distribution of all possible RNA structures
within a given thermodynamic range (Boltzmann ensemble).
Although centroid estimators have been shown to outperform
MFE predictions on known RNA structures [62], they do not
necessarily inform about the stability or diversity of the structural
landscape for a given query sequence. The latter can be evaluated in
two ways: (1) through direct visual inspection of a base-pairing
probability matrix, such as that produced by the “RNAfold –p”
program in the Vienna RNA package (Fig. 1a)—a greater quantity
of smaller dots is indicative of a larger diversity of compatible base
pairings for a particular nucleotide, which is consistent with a
reduced likelihood of forming a stable structure; and (2) through
the command-line output of RNAfold, or the RNAfold webserver
[63], which produce a numerical estimate of the ensemble diversity,
as well as the frequency of the MFE within the ensemble (i.e., how
credible the MFE structure prediction is). A larger ensemble diver-
sity value suggests that the queried RNA sequence may form a
broader repertoire of structures or dynamically fluctuate between
intermediary structures.

As mentioned earlier, secondary structure prediction of indi-
vidual lncRNA sequences is not a trivial task. Fortunately, the
computational prediction of locally stable structural elements has
been shown to be more accurate than global RNA structural pre-
dictions for long RNA polymers [64]. This finding is consistent
with the general hypothesis that lncRNAs function via local struc-
tural (or unstructured) domains, such as protein-binding motifs or
RNA–DNA interactions (see Subheading 1). RNAplfold from the
Vienna RNA package [58] and its enhancement in LocalFold [64]
both offer a useful solution for the manual inspection of local
structural topologies in long noncoding RNAs. The tools produce
a base-pairing probability matrix that spans the entire RNA
sequence but limits the range of base-pairing interactions to a
user-definable threshold (Fig. 1d). This facilitates the identification
of locally stable (or unstable) structures, which can reveal putative
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Fig. 1 Representation of RNA secondary structure predictions for single sequences. (a) An RNA base-pairing
probability matrix representing both the minimum free energy structure prediction (below the diagonal) and
suboptimal base-pairing probabilities (above the diagonal) of a serine tRNA that forms five helices. The RNA
sequence of interest is displayed on the X and Y axes, where each dot represents possible base pairings
between bases (x,y). The size of the dots is indicative of the frequency (or probability) of the base pairings in a
Boltzmann ensemble of suboptimal structures, as calculated by McCaskill’s partition function algorithm in the
Vienna RNA package [58]. The base pairs forming the validated biological structure (b) are highlighted in blue
and numbered accordingly, whereas the unpaired bases forming the anticodon are highlighted in green. (c)
The MFE prediction forms a structure that is quite divergent to the actual tRNA, although the biological
structure is perceptible in the suboptimal base pairings. (d) A base-pairing probability matrix generated by the
RNAplfold algorithm on a ~400 nt section of the 30 end of the NEAT1 lncRNA. Locally stable base pairings are
displayed as described for (a), however the sequence is represented on the diagonal (i.e., the upper quadrant
of (b) is rotated 45�). In the lower left, the bases associated to the base pairs (dots) are highlighted in blue. In
the lower right, the tRNA-like structure at the 30 end of NEAT1 (as illustrated in Fig. 2c) is highlighted in red
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functional regions as well as guide the design of small interfering
RNAs for knockdown experiments. Alternatively, there are software
tools, such as Rnall [65], RNAsurface [66], RNAlfoldz (part of
the Vienna RNA package [58]), that can facilitate the identification
of RNA subsequences presenting strong local structural stability,
although a user-defined maximal base-pairing span is required.

3.3 Inferring

Function from an

Individual RNA

Sequence

If noncoding RNAs function through the formation of stable sec-
ondary structures, can structure predictions alone be used for de
novo functional annotation of ncRNAs? This question was first
examined over 30 years ago by comparing the RNA structure (or
‘folding’) score of a native RNA sequence to that of shuffled
sequences, under the premise that functional RNAs should form
more stable structures than random sequences [67–69]. This strat-
egy produced promising results, but it was consequently shown
that the relatively higher stability of native noncoding RNA
sequences reflected local biases in sequence composition rather
than structural features alone [70]. In particular, the energetic
contributions of base-stacking interactions were ignored (the
order of consecutively arranged base pairs can significantly alter
the free energy score). Some reports have since successfully applied
this approach to certain classes of noncoding RNAs by using ade-
quate background models that control for dinucleotide content
[71, 72]. Known and novel RNA elements have also been predicted
in the yeast genome using a similar strategy, several of which were
subsequently experimentally validated [73].

3.4 Detecting

Functional 2D Motifs

via Comparative

Genomics

The biological significance of lncRNAs has often been questioned
since they (generally) display lower conservation of primary
sequence than proteins in evolutionary comparisons [24, 74].
Conservation of RNA secondary or tertiary structure has rarely
been considered in such analyses, partially due to the more complex
bioinformatic analyses required to investigate such phenomena.
However, probing evolutionary data for evidence of RNA struc-
tural conservation is not substantially more difficult in practice than
evaluating primary sequence conservation. In this section, we
describe how to leverage the hallmark signature of RNA structural
conservation, i.e., base pair covariation, to identify putative func-
tional RNA motifs in multiple sequence alignments, using existing
software.

We recently showed that measuring RNA structure conserva-
tion from genomic sequence alignments of 32 mammals could
identify evidence of purifying selection on RNA structure motifs
that span over 13 % of the human genome, while presenting little
overlap with known sequence-constrained regions [33]. Evolution-
arily Conserved Structure (ECS) predictions with the human
genome as reference can be visualized in the UCSC genome
browser (Fig. 2) as follows:
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1. Browse to http://genome.ucsc.edu (or any UCSC Genome
Browser mirror), navigate to the ‘Genomes’ tab, then select
the hg19 human genome assembly.

2. Click on the ‘track hubs’ button, then select the ‘My hubs’ tab.

3. Paste in the URL for the ECS track hub (http://www.marti
nalexandersmith.com/hubs/ecs/hub.txt), then ‘Add Hub.’
The URL can also be obtained via the supplementary informa-
tion from [33].
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Fig. 2 Visualization of ECS predictions in the UCSC Genome Browser. (a) The NEAT1 lncRNA locus presenting
several ECS predictions from [33]. Six subtracks are displayed: SISSIz, SISSIz with RIBOSUM scoring, and
RNAz-derived results for all significant predictions and those with structure topologies and alignments
available to view on a web server (see Subheading 3). (b) Expanded, zoomed in view of the tracks with
structure representations. The RNA secondary structure consensus, flanked by the outermost base pair, is
represented by a thicker rectangle. The color of the bars corresponds to a relative measure of their scores
(darker ¼ stronger score). (c) Detailed illustration of a segment of the predicted structure and alignment
obtained by clicking on an ECS prediction from (b), which also provides general predictions statistics, a dot-
bracket representation of the consensus structure and the consensus sequence generated on the spot via the
Vienna RNA package [58]
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4. Browse to any region of interest, zooming out if the ECS track
hub titles appear and nothing is displayed under them in the
browser (usually,>1 KB of genomic span should be sufficient).
ECS predictions are split according to the algorithms that were
used to make the predictions (RNAz, SISSIz, and SISSIz þ
RIBOSUM). Although all the ECS predictions are statistically
significant (with a � 1 % false-positive rate), they are color
coded based on their relative scores (darker ¼ less likely to
arise by chance). After fully expanding the tracks, either by
clicking on the title of the track or in the individual track
configuration below the browser, the scores associated to the
predictions are displayed as the name of each ECS prediction.
SISSIz-derived predictions will display Z-scores, which repre-
sent the degree of observed structural conservation (in number
of standard deviations) from the mean of a background distri-
bution produced from SISSIz’s null model. There are two
subtracks for each employed algorithm: one supporting struc-
ture representations, one without. Those with structure repre-
sentation also have larger segments annotated within individual
ECSs; these correspond to the positions within the sampled
genomic alignments that contain the outermost base pairs
forming the conserved structure prediction (Fig. 1).

5. Expand the ECS track display settings to ‘pack’ or ‘full’ view by
clicking on the title bar or by selecting the appropriate view in
the drop-down menu below the browser interface window.

6. Directly click on a bar corresponding to an ECS prediction of
interest. Depending on the nature of the subtrack, this will
either: (1) link to a page with a rundown of the statistics for
the ECS of interest as well as a description of the methodology;
or (2) link to an external page with detailed statistics for the
selected ECS, a colored and annotated figure of the consensus
secondary structure corresponding, the multiple sequence
alignment (colored and annotated) that was used to make the
prediction, as well as the consensus structure and sequence in
dot-bracket format (Fig. 1c). The ECS tracks with structure
representations that link to an external page (as described
earlier) will display bars with thin and thick segments; the
thinner extremities correspond to regions in the sampled align-
ment that are not contained within the predicted secondary
structure, whereas the thicker internal portion of the bars
represents regions contained within the ECS prediction (see
Note 1).

7. Any combination of subtracks (i.e., all ECS predictions, pre-
dictions with structure representations, or the results for indi-
vidual algorithms) can be hidden (or redisplayed) by clicking
on the link in the title of the ECS predictions track, located in
the drop-down controls section of the UCSC browser below
the main window.
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There are several caveats pertaining to the data currently
contained within the ECS track hub for the UCSC browser.
These data are derived from genome-wide screens that are resource
intensive and, consequently, were applied to heuristic and not
necessarily accurate genome-scale multiple sequence alignments
(alignment errors can often be observed via close inspection of
alignments from step 6). The quality and amount of significant
ECS predictions will undoubtedly improve by realigning the que-
ried sequences with more robust algorithms, such asClustal Omega
[75],MAFFT [76] or, ideally, RNA structure alignment algorithms
(reviewed in [77]).

Another caveat is that the above-mentioned ECS predictions
are generated from sliding windows of �200 nucleotides (nt),
which includes multiple genome alignment columns that can pri-
marily be composed of indels. This means RNA base pairs that are
more than 200 nt apart are ignored. Furthermore, the sampled
alignment windows are offset by 100 nt, therefore conserved RNA
structures smaller than 200 nt may also be missed given an incom-
plete sampling of the structure’s boundaries.

An additional issue with the functional annotation of lncRNAs
is that many are spliced, often comprising relatively small exons.
Although the biological motives for lncRNA splicing remain enig-
matic, one possibility is that constitutively spliced exons are joined
to maintain the formation of higher order structures, whereas
alternatively spliced exons contain self-contained modular units.
Probing multiple alignments for evidence of RNA structural con-
servation in spliced transcripts would thus require pasting the
alignment blocks together first (reviewed in [42]), as well as addi-
tional considerations like splice site conservation and syntenic con-
tinuity in other species.

Performing a de novo scan for ECSs in multiple sequence
alignments, either from another reference species or from a set of
spliced alignments, can be quite computationally intensive. The
approach used for the genomic screen published in [33] can none-
theless be performed by anyone with basic command-line experi-
ence. For large alignments (whole genomes or chromosomes)

1. Download and install the following software packages (requires
compilation and linking the binaries to the environmental
$PATH variable):

(a) SISSIz 2.0 and RNAz 2.0 [78] available at http://marti
nalexandersmith.com/ecs or via links provided in their
original manuscripts (N.B. SISSIz 2.0 was released in
[33]).

(b) The Vienna RNA package at http://www.tbi.univie.ac.at/
RNA [58], preferably version 1.8.5 (newer versions may
not be compatible with the software in step 2).

Structural and Functional Annotation of Long Noncoding RNAs 77

http://martinalexandersmith.com/ecs
http://martinalexandersmith.com/ecs
http://www.tbi.univie.ac.at/RNA
http://www.tbi.univie.ac.at/RNA


2. Download the JAVA archive containing the binary code
required to scan .maf files from the following URL (in the
software section): http://martinalexandersmith.com/ecs.

3. Ensure that the multiple (genome) sequence alignments have
the reference species in the first row with genomic coordinates
in the appropriate field of the .maf file. This will be used to
output the genomic coordinates of the predictions during the
scan. Also, ensure that the alignments present sufficiently long
blocks (see Subheading 2 and Note 2).

4. Launching the following command (in the appropriate direc-
tory) from a UNIX terminal will provide more verbose infor-
mation on the basic usage and available parameters: ‘java –jar
MafScanCcr.jar.’ Some options include window size, step or
‘sliding’ distance, realignment of the input with the multiple
sequence alignment programMAFFT, number of processors to
use, etc.

5. Execute the program with the selected parameters. The pro-
gram will load one alignment block of the .maf input file at a
time, with an optional realignment step to increase accuracy at
the expense of computation time. Next, N windows are sam-
pled concurrently, where N is the number of specified proces-
sors (the alignments can also be run in parallel on a computer
cluster).

6. The program will save all sampled subalignments that score
above the respective thresholds for each employed algorithm.
Genomic coordinates associated to significant ECS predictions
for the alignment’s reference species are also emitted to the
standard output in browser extendable (.bed) format. Simply
redirect the standard output to a file, e.g., ‘> output.bed’ from
the UNIX terminal. Alternatively, genomic coordinates can be
recovered from the file names of the saved alignments, which
encode a 6-field underscore delimited bed-compatible entry.
Furthermore, the name field of the .bed entries also encodes
colon-delineated statistical information about the alignment
used to make the ECS prediction. This includes (in order):

(a) Number of retained sequences.

(b) Raw mean pairwise identity (including indels).

(c) Mean pairwise identity (normalized to the shortest gapless
sequence length).

(d) Relative gap (indel) content.

(e) Standard deviation of the (normalized) mean pairwise
identity.

(f) Normalized Shannon entropy.

(g) Relative GC content.
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(h) Scoring algorithm employed: s ¼ SISSIz 2.0; r ¼ SISSIz
2.0 with RIBOSUM scoring; z ¼ RNAz-2.0.

The fifth field of the .bed entries represents the score associated
with the predictions. The scores have been modified to accom-
modate representation in the UCSC genome browser, which
only supports integer values. Z-scores from SISSIz predictions
are multiplied by �100 (�2.54 ¼ 254), whereas RNAz-
derived scores are simply multiplied by 100 (0.85 ¼ 85).

7. The topology of a given ECS prediction can be visualized by
running the RNAalifold program from the Vienna RNA pack-
age on the multiple alignment associated to the predicted ECS.
The default RNAalifold options are suitable for ECS predic-
tions from SISSIz and RNAz, but the RIBOSUM scoring
option ‘-r’ should be used otherwise.

8. Because the ECS predictions are based on a consensus, it is
possible that the reference species forms a structure that is not
compatible with the consensus. To evaluate the likelihood of
this structural congruence, an auxiliary program is available to
process the alignments output from step 6 (see the supplemen-
tary information of [33]). The ParseAlifold.jar program per-
forms twomain tasks: (1) trimming the genomic coordinates of
the reference species to the outermost base pairs of the consen-
sus structure; (2) measuring the relative difference between the
native secondary structure for the sampled reference sequence
and that produced from constraining the structure to the con-
sensus, as produced from the ‘RNAfold –C ’ command from
the Vienna RNA package [58]. This is done for both the
minimum free energy and the base-pairing probabilities gener-
ated from the partition function implemented in RNAfold,
where the probabilities of base pairs from the consensus are
extracted from the base-pairing probability matrix. The .bed 6
plus formatted output prints to the terminal’s standard output
and contains the following additional fields:

(a) Average base-pairing probability of the minimum free
energy structure for the reference species. If the base is
unpaired, this value is calculated as 1—the sum of all
probabilities for the given base.

(b) Average base-pairing probability of consensus-
constrained reference structure.

(c) Base-pairing probability ratio (constrained/native).

(d) Free energy (kcal/mol) of the consensus-constrained ref-
erence sequence.
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(e) Minimum free energy (kcal/mol) of the native reference
sequence.

(f) Free energy ratio (constrained/native).

(g) Length of prediction (nt).

(h) Dot-bracket secondary structure mask of RNAalifold
consensus. Ex: (((((. . .))))).

3.5 The Next

Frontier: Functional

Parsing of lncRNAs

In higher eukaryotes, recurring RNA structural motifs that display
evidence of evolutionary conservation provide a tangible basis for
the functional annotation of noncoding sequences, as they may
indicate protein-interaction domains that potentially nucleate reg-
ulatory networks. For example, Parker et al. [79] performed a
similar analysis using evolutionarily conserved RNA secondary
structures predicted with EvoFold [80] to generate profile Stochas-
tic Context-Free Grammars (SCFGs), which were then used to scan
the human genome for paralogs to the RNA structural predictions.
The results were grouped into RNA families based on their struc-
tural similarities and revealed 220 families of RNA structures,
including 172 novel RNA structure families.

However, as effective as bioinformatic methods may be, they
seldom indicate what biological functions or processes are involved
(unless, of course, there is a high level of homology to well-
characterized RNAs). Assigning biological functions to novel RNA
structuralmotifs canbe achieved viamodern experimental techniques
predicated on high-throughput sequencing, such as RNA immuno-
precipitation (RIP-Seq), crosslinking immunoprecipitation (CLIP-
Seq), and chromatin isolation by RNA purification (ChiRP-Seq).
These methods can identify the RNAs interacting with specific pro-
teins, providing sets of RNA sequences that share the same protein-
binding characteristics. The increasing availability of next-generation
sequencing technologies will likely increase contributions to public
specialized databases such as starBase [81], which contains numerous
RNAseqdata sets relating toRNA–protein interactions.Mining these
data with advanced bioinformatics tools will bridge the gap between
functional annotation of lncRNAs and RNA structure prediction.

Computational identification of RNA structures common to a
set of sequences can currently be performed via clustering algo-
rithms based on pairwise comparison scores, obtained through
either RNA structure alignment algorithms (e.g., CARNA [82],
LocaRNA [83], FOLDALING [84, 85]) or other secondary struc-
ture comparison strategies (e.g., GraphClust [86], RNACluster
[87], and NoFold [88]). These approaches have been applied to
small RNA sequences and have successfully identified both known
and yet to be characterized noncoding RNA families based on their
shared secondary structures [79, 83, 85, 87, 88]. Unfortunately,
lncRNA sequences are not directly amenable to such structure-
motif enrichment approaches because they may harbor extraneous
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sequence elements, thus requiring additional processing such as the
extraction of subsequences presenting stable RNA structure
domains. Refining the aforementioned methods and applying
them to sequencing data that target RNA–protein interactions
will help identify new functional RNA structure motifs, which
can, in turn, serve to index genomic sequences. This strategy will
lay the foundations required to unravel the structure–function
relationships of lncRNAs, categorize their repertoires, and annotate
the expanses of noncoding sequences in vertebrate genomes.

4 Notes

1. Sense or antisense? Given the complementary nature of canoni-
cal RNA base pairs (G–C/C–G), it is not uncommon to find
that both strands of DNA produce high scoring, consensus
secondary structure predictions. When these bidirectional
structure predictions arise in regions with little or no associated
transcription, determining the most likely orientation of the
putative transcript can be quite difficult. Sequences with high
GC content are more susceptible to this phenomenon because
there are fewer G–U base pairs, which can effectively be used to
discriminate the host transcript’s orientation (the antisense
A–C base pair does not contribute to canonical Watson–Crick
base pairing). Occasionally, visual inspection of the alignments
and consensus RNA secondary structures can be sufficient to
identify the most likely orientation, i.e., the strand that pro-
duces more base pairs (G–U in particular). Otherwise, the most
likely orientation can sometimes be determined by using the
RNAstrand program [89], a machine learning algorithm
which was specifically developed for this purpose (not covered
here).RNAstrand generates a score which estimates the orien-
tation of a consensus RNA secondary structure from a given
multiple sequence alignment used as input.

2. Genomic alignments and block sizes. As a strict minimum, the
blocks should be at least the length of the window size for
sampling structure conservation (by default, 200 nt). The lon-
ger the blocks are, the more consecutive overlapping windows
will be sampled, which will provide greater genomic coverage
of the computational screen. Usually, alignments with more
species will present shorter blocks given the greater diversity of
synteny. In this case, ‘stitching’ the alignment blocks together
can also abrogate synteny in nonreference sequences (i.e., all
but the first row in the alignment), which may introduce
uncertainty in the consensus structure evaluation as noncon-
tiguous sequences are treated as contiguous. For example, a
500 nt segment from human chromosome 12 might align to a
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250 nt segment from mouse chromosome 3 and 250 nt from
mouse chromosome 6, therefore any windows sampled between
the segment joining both mouse chromosomes will not reflect
the biological reality (unless these regions are prone to fusion or
trans-splicing events, an unlikely predicament). From a practical
viewpoint, the multiple genome alignments produced by the
Enredo-Pecan-Ortheus pipeline [39, 90] (available via the
ENSEMBL comparative genomics portal: http://ensembl.
org/info/genome/compara/index.html) present much longer
syntenic blocks than those from TBA/Multiz [41] (accessible via
the UCSCGenome Browser comparative genomics tracks), thus
avoiding the need to ‘stitch’ several small alignments together.
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Chapter 5

Construction of Functional Gene Networks
Using Phylogenetic Profiles

Junha Shin and Insuk Lee

Abstract

Functional constraints between genes display similar patterns of gain or loss during speciation. Similar
phylogenetic profiles, therefore, can be an indication of a functional association between genes. The
phylogenetic profiling method has been applied successfully to the reconstruction of gene pathways and
the inference of unknown gene functions. This method requires only sequence data to generate phyloge-
netic profiles. This method therefore has the potential to take advantage of the recent explosion in available
sequence data to reveal a significant number of functional associations between genes. Since the initial
development of phylogenetic profiling, many modifications to improve this method have been proposed,
including improvements in the measurement of profile similarity and the selection of reference species.
Here, we describe the existing methods of phylogenetic profiling for the inference of functional associations
and discuss their technical limitations and caveats.

Key words Phylogenetic profiling, Functional association, Gene network

1 Introduction

The discovery of all the functional components of cells and the
elucidation of all their interactions are the grand challenges in
systems biology. Phylogenetic profiling [1–3] is a method in
which interactions between genes are inferred using their similarity
in inheritance across species. During speciation, genetic informa-
tion about functional components, such as proteins, is passed from
ancestral species to new species. Given that most, if not all, cellular
processes are operated by a set of genes, which are often repre-
sented as a complex or a pathway, the functional interdependence
among genes is often coinherited. Functional constraints during
speciation therefore would display a similar phylogenetic pattern
across species, which provides the opportunity to infer functional
association between genes.

Large-scale gene networks, which can be constructed from the
functional associations inferred from various types of biological
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data, including phylogenetic profiles, have proven useful to the
study of gene and pathway functions [3, 4]. The propagation of
function and phenotype information through the network facili-
tates the identification of novel gene functions and/or loss-of-
function phenotypes [5]. Given that phylogenetic profiling methods
require only sequence data, these methods are likely to benefit
significantly from the recent advances in genome sequencing tech-
nology such as next-generation sequencing. The rapid growth of
the number of genome-sequenced species potentiates the power of
phylogenetic profiling methods, because additional species can fill
the current gaps in knowledge about the evolutionary trajectories
of cellular functions. The expansion of genome projects therefore
can make a direct contribution to the understanding of gene and
pathway functions.

Since the initial development of phylogenetic profiling meth-
ods [2, 3], various approaches have been explored to improve the
performance of these methods. These approaches differ mainly
with respect to the measurement of profile similarity and the selec-
tion of reference species. In this chapter, we will describe concep-
tual and technical differences among these methods as well as their
strengths and weaknesses. In addition, we will discuss the limita-
tions and caveats in the construction of gene networks using phy-
logenetic profiling methods.

2 Materials

Proteins are the major biomolecule in cellular processes. Amino
acid sequences therefore may be more relevant to biological func-
tion than nucleic acid sequences. Hence, we generally use protein
sequences to profile functional conservation across species. To look
for protein conservation between species, we generally use the
standard sequence homology search software, BLAST (Basic
Local Alignment Search Tool).

2.1 Protein Sequence

Data

Protein sequence data for completely sequenced species are avail-
able from major archive databases such as the National Center for
Biotechnology Information (NCBI, ftp://ftp.ncbi.nlm.nih.gov/
genomes), the European Bioinformatics Institute—European
Nucleotide Archive (EBI-ENA, ftp://ftp.ebi.ac.uk/pub), and the
Ensembl Genome Browser (ftp://ftp.ensembl.org/pub).
Although protein sequence data are generally provided in FASTA
format (seeNote 1), the file extensions of FASTA protein sequence
files differ across data providers (e.g., .faa from NCBI and .pep.all.
fa from EBI). These sequence data originate from public data
repositories for genome projects that are maintained by either
genome sequencing centers or genome project consortiums
(Table 1). These repositories are replenishing sources for genome
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project data that recently have been completed. Note that when we
use sequence data obtained directly from the original repository, we
need to confirm the data publication policy. Some genomes that
recently have been sequenced may be under data usage restrictions.
These repositories also may contain data from incomplete genome
projects. In these cases, genome sequence data are presented as
contigs or scaffolds, which may not provide a comprehensive list of
proteins for a given species. An incomplete list of proteins may
generate inaccurate phylogenetic profiles, which in turn may affect
the quality of inferred functional links.

2.2 Homology Search

Software

Functional conservation between species can be represented by the
occurrence of homologous proteins. NCBI BLAST is the most
popular software by which to search for homologous proteins
across species. Installation files and source codes for the latest
version of BLAST are available from the ftp site (ftp://ftp.ncbi.
nlm.nih.gov/blast/executables/blast+/LATEST/).

Table 1
Public data repositories for genome sequences

Epository URL

Maintained by genome sequencing centers

The Broad Institute (BI) http://www.broadinstitute.org/scientific-
community/data

Department of Energy Joint Genome Institute
(DOE-JGI)

ftp://ftp.jgi-psf.org/pub/JGI_data

The J. Craig Venter Institute (JCVI) ftp://ftp.jcvi.org/pub/data

Génolevures http://www.genolevures.org/download.html

Genoscope http://www.genoscope.cns.fr/spip/Genoscope-s-
Resources.html

The Beijing Genomics Institute ftp://ftp.genomics.org.cn/pub

The Genome Database for Rosaceae (GDR) http://www.rosaceae.org/

VectorBase https://www.vectorbase.org/downloads

Maintained by project consortiums

Consensus CDS Project (CCDS) ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/

Saccharomyces Genome Database (SGD) http://www.yeastgenome.org/download-data

Wormbase ftp://ftp.wormbase.org/pub/wormbase/species/

FlyBase ftp://ftp.flybase.org/genomes/

The Arabidopsis Information Resource (TAIR) ftp://ftp.arabidopsis.org/home/tair/Sequences/
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3 Methods

3.1 Protein

Homology Search

Using the Stand-alone

BLAST Software

FASTA input files should be carefully prepared to run an efficient
homologous search in BLAST. Two input files are required to
execute the stand-alone BLAST program, a query-sequence file
and a reference-sequence file. The following steps should be taken
to run the homology search:

1. Create a query-sequence file that contains query protein
sequences, which are usually from a target species, for gene
network inference.

2. Create a reference-sequence file of concatenated protein
sequences from the genomes of reference species. No specific
order for concatenated protein sequences is required, but
unique identifiers for each protein sequence are warranted.
The assignment of a specific “genome sequence code (GC)” is
recommended by users as well as the homology search program.
For example, “GC120-077-SEQ0009” stands for “the 9th pro-
tein sequence encoded in the 77th reference species out of a
total of 120 reference species.” Once a GC is assigned to a
protein sequence in the reference-sequence file, the FASTA
metadata lines of the reference-sequence file need to be modified
by adding the GC after the “>” symbol, as shown as follows:

>gi|158249333|ref|YP_0015144.1| response regulator
>GC120-077-SEQ0009 gi|158249333|ref|YP_0015144.1|
response regulator

3. Install the stand-alone BLAST program. Installation methods
are well described on the BLAST help webpage (http://www.
ncbi.nlm.nih.gov/books/NBK52638/) for each operating
system.

4. Format both the query-sequence file and the reference-sequence
file using the BLAST “formatdb” program by typing the follow-
ing command line:

/[path to blast]/bin/formatdb �i [input FASTA file]
�p T �o F

Factors that can cause errors during the formatdb procedure are
described in Note 2.

5. Run “blastp,” a BLAST program for protein sequences. Com-
mands and switches for executing the stand-alone BLAST pro-
grams are well described on the BLAST manual webpage
(http://www.ncbi.nlm.nih.gov/books/NBK1763/). Here is
an example that uses the default settings:

/[path to blast]/bin/blastp �db [reference-
sequence file] �query [query-sequence file] �out
[output filename]
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The “blastp” program searches for sequence homology for only
one query sequence at a time against all the reference sequences. If
parallel searches for many query sequences are intended, then an
additional “loop” script for iterative executions is recommended.

6. Obtain the results of the “blastp” analysis, which includes the
sequence IDs, homology scores, lengths of the matches, and the
actual matched positions for both the query and matched refer-
ence sequences.

3.2 Construction of

the Phylogenetic

Profiles

A phylogenetic profile for a query protein is represented as a vector
of homology scores across reference species. Two alternative types
of homology scores may be used: binary scores for simple occur-
rences of homology or quantitative measures of homology between
a query protein and a protein of the reference species. If the binary
score is used, then all the scores of the profile vectors are repre-
sented as either a “1” or a “0,” which indicate the presence or
absence of a homologous protein in the reference species, respec-
tively. The assignment of binary scores based on the BLAST results
requires a threshold for the BLAST hit score (e.g., assign “1” if the
E-value < 1e�03). If the quantitative measure is used, then
BLAST hit scores are used as the profile score; this score is often
transformed for the purpose of mathematical procedures [6]. If
multiple homologous proteins exist in a reference species, only a
single BLAST hit score for the best homolog remains in the profile.
Both binary and quantitative score types have strengths and weak-
nesses (see Note 3).

A phylogenetic profile matrix is comprised of the profiles from
multiple query proteins (Fig. 1). Note that the order of the refer-
ence species (i.e., the order of the columns in the phylogenetic
profile matrix) does not affect the measurement of profile similarity,
because each reference species is assumed to be orthogonal. It has
been reported that the composition of reference species datasets
significantly impact the performance of phylogenetic profiling
methods in retrieving functional associations between genes
[7–10] (see Note 4).

3.3 Measuring the

Similarity Between

Phylogenetic Profiles

The identification of functional associations between query
protein-coding genes can be accomplished by measuring the simi-
larity between phylogenetic profiles. Various similarity measures,
such as the Hamming distance [11, 12], the Jaccard coefficient [13,
14], Pearson’s correlation coefficient [13], and Mutual Informa-
tion (MI) [6, 15, 16], have been used in phylogenetic profiling
analyses. Different measures focus on different aspect of the pro-
files. Consequently, similarity scores may differ significantly across
measures. Testing multiple measures and then choosing the mea-
sure with the best performance for the given profiles will yield the
optimal analysis.
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To illustrate how to measure profile similarity based on homol-
ogy scores in practice, we present a specific analysis that uses MI [6].
MI was developed originally for categorical values. The BLAST
scores of profiles, however, are continuous values. TheMI calculation
therefore requires discretization of the BLAST scores (see Note 5).
The MI can be calculated for the discretized BLAST scores using the
following procedures:

1. Calculate the “marginal entropy” and the “joint entropy.”

The marginal entropy of gene A, H(A), is calculated by

H Að Þ ¼ �
XN

i¼1

p Aið Þlnp Aið Þ;

where N is the number of the assigned bins and

p Aið Þ ¼ # of profile scores that belong to bin i f or protein A

total # of profile scores for protein A

The joint entropy between gene A and gene B, H(A,B), is
calculated by

H A;Bð Þ ¼ �
XN

i¼1

XN

j¼1

p Ai;Bj

� �
lnp Ai;Bj

� �
;

where

Fig. 1 A schematic summary of the phylogenetic profile matrix. The phylogenetic profile of a query protein (a
row) is a vector that consists of listed scores (gray-scaled rectangle), which indicate the occurrence of a
homolog within a reference species (columns). Two proteins with similar profiles (e.g., proteins A and B) are
expected to be functionally associated because of their coinheritance pattern
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p Ai;Bj

� � ¼ # of profile scores that belong to bin i f or protein A and bin j f or protein B for the same reference species

total # of profile scores for proteins A and B

2. Calculate the MI of genes A and B, which is calculated by

MI A;Bð Þ ¼ H Að Þ þH Bð Þ �H A;Bð Þ
3. A gene pair with a higher MI value is more likely to have a

functional association.

3.4 Benchmarking

Functional

Associations Inferred

by Phylogenetic Profile

Similarity

Functional gene networks are highly applicable to the study of
cellular systems (see Note 6). We can construct a network of func-
tional associations by phylogenetic profile similarity. An evaluation
of the inferred functional associations is critical to network con-
struction. To benchmark the inferred functional links, we use the
“gold standard” (GS) functional associations derived from func-
tional annotation databases, such as the Gene Ontology biological
process (GOBP) [17] and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [18], by pairing two genes that share any anno-
tation term. This process generates “GS positives.” We can also
generate “GS negatives” by pairing two genes that are annotated
but do not share any annotation terms.

One simple way to benchmark inferred links using the gold
standard set is by using the frequency of the gold standard link
among all the inferred links with functional annotations, which is
represented by the following equation:

Benchmark score ¼ # GS positives

#GS positivesð Þ þ # GS negativesð Þ

In practice, inferred gene pairs are ordered by decreasing similarity
scores. Benchmark scores then are calculated for each bin of 1000
gene pairs from the top scores.

Benchmarking is also useful for finding the optimal analysis
condition that achieves the maximal inference power. Many vari-
ables and parameters can be selected during the analysis process.
These variables include: (1) the composition of the reference spe-
cies dataset, (2) the types of profile scores (e.g., binary or quantita-
tive), (3) the similarity measures between phylogenetic profiles, and
(4) other free parameters. The optimal analysis parameters are those
in which the best performance is observed.

3.5 Caveats and

Limitations

Homologous proteins can be classified into two major classes:
orthologs and paralogs. Orthologs are homologous proteins passed
from ancestral species to their descendants; these proteins tend to
retain their function. In contrast, paralogs are homologous proteins
that have appeared as a consequence of gene duplications within a
species. A gene duplication event followed by a beneficial modifica-
tion is a major evolutionary mechanism that creates either a new
function (neofunctionalization) or diversifies an existing function
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(subfunctionalization). Paralogs therefore tend to have different
functions. These functionally divergent paralogs have the same
phylogenetic profiles, however, which results in a high similarity
score. Paralogous pairs therefore need to be excluded from inferred
functional associations. A simple way to detect paralogs is to “self-
BLAST” using two identical query sequence files. Alternatively,
predefined paralogous relationships can be obtained from databases
such as the KEGG Sequence Similarity DataBase (SSDB, http://
www.kegg.jp/kegg/ssdb/).

The phylogenetic profiling method relies on homology infor-
mation; therefore, this method may not be applicable for proteins
that lack homology across reference species. This limitation can be
overcome by adding more sequenced species to the phylogenetic
analysis. For example, the phylogenetic profiling method has not
been successful for human proteins. This lack of success may be due
to the fact that most of the reference species used in previous
analyses have been unicellular microbes. It is expected that recently
launched large-scale genome project consortiums such as the
‘Genome 10K Project’ (https://genome10k.soe.ucsc.edu/) [19],
which proposes to sequence 10,000 vertebrates, will improve the
application of the phylogenetic profiling method to human pro-
teins in the future.

3.6 Case Study:

Construction of a

Yeast Gene Network

Using Phylogenetic

Profiles

Here we present an example of a yeast (Saccharomyces cerevisiae)
gene network to illustrate how to construct a gene network using
the phylogenetic profiling method (Fig. 2).

1. Download the yeast protein sequences (i.e., query sequences)
from the Saccharomyces Genome Database repository (SGD)
[20] and download protein sequences for multiple reference
species from the major archive databases, such as NCBI, EBI,
and Ensembl. Add systematic genome codes (GC) to the FASTA
metadata lines and concatenate all protein sequences of the
reference species to create a single ‘reference-sequence’ file.

2. Format the input sequence files and execute the BLAST pro-
gram. Exclude insignificant hits (e.g., an E-value � 1) from the
BLAST results.

3. Construct a phylogenetic profile matrix of the BLAST E-values
(Fig. 2a). Include only the best hit score for each reference
species per query protein in the matrix. If there is no BLAST
hit of a query gene for a reference species, assign a score of “1”
for that reference species.

4. Calculate the MI scores between all the query protein pairs and
sort them in descending order (Fig. 2b).

5. Benchmark the inferred protein pairs with the gold standard
functional pairs. The optimal parameters (e.g., the number of
bins for the BLAST E-value discretization in the MI calculation)
can be determined from the best benchmark curve (Fig. 2c).
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6. Define a gene network by applying a threshold to the benchmark
score. The resulting network is analyzed by various network
algorithms and visualized in Cytoscape [21] (Fig. 2d).

Fig. 2 Construction of the yeast gene network using phylogenetic profiles. (a) A heat-map view of a
phylogenetic profile matrix of yeast proteins. The rows represent yeast proteins and the columns represent
reference species. The homology score is indicated by the grayscale such that a stronger protein homology
(i.e., a lower BLAST E-value) is represented as a darker color. (b) Yeast gene pairs are listed in descending
order of the Mutual Information (MI) scores. (c) Benchmark curves for the inferred functional associations
between yeast genes from the MI calculation are constructed using different numbers of bins for the score
discretization. The percentage of gene pairs that share functional annotations (GS positives) among all
annotated gene pairs by the Gene Ontology biological process terms (y-axis) is measured for different
coverage of all the yeast coding genes (x-axis). The best network was inferred using 10 score bins for the
MI calculation. (d) A part of the inferred gene network was visualized by the Cytoscape program
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4 Notes

1. The first line of the FASTA format file starts with a “>” symbol
followed by metadata, such as the name of the protein, the name
of the origin organism, and a short description of the molecule.
The sequence information, which is written in single letters,
starts from the next line. The sequences are provided either as
a single line for the whole sequence or as multiple text lines of
~60–80 letters. Both styles can be used for BLAST input files.

2. One factor that causes frequent errors during the BLAST “for-
matdb” process is the existence of the “*” symbol within or at
the end of a sequence. For some sequence data repositories, the
“*” is used either to mark an unidentified or suspicious amino
acid position or to designate the last position in the sequence.
The “formatdb” program cannot handle this symbol. If the
symbol is located at the last position of the sequence, then it
must be removed. If the symbol is located within a sequence,
then the entire sequence must be excluded from the analysis. In
addition, if the BLAST program runs in a UNIX-affiliated
operating system such as LINUX or MAC OS, then “^M”
(i.e., “control-M”), which is placed at the end of every text
line, also causes errors in the “formatdb” procedure. “^M”
represents a carriage return in the DOS system, and UNIX
systems do not recognize it. This conflict occurs when the
FASTA file is generated in a DOS system. Various ways exist to
remove the “^M” from the file, including the use of a shell
command “dos2unix.”

3. The simplicity of the binary score is advantageous for calculating
the profile similarity measure due to the low computational
burden. In contrast, quantitative scores provide high-resolution
information, which potentially leads to a more accurate measure
of similarity between profiles.

4. There exists controversy about the proper composition of refer-
ence species datasets. Several studies have reported that phylo-
genetic profiles consisting of only prokaryotic genomes perform
well, and that the addition of eukaryotic genomes reduces per-
formance [7, 9]. In contrast, another study has reported that
eukaryotic genomes are improving the performance of phyloge-
netic profiling methods as the number of completely sequenced
eukaryotic genomes grows [8]. Furthermore, the effect of an
increased number of reference species and the selection of rep-
resentative genomes from the reference species on the perfor-
mance of phylogenetic profiling methods have been investigated
thoroughly [10].

5. The BLAST E-value scores of the profiles range from “0” (i.e.,
perfect hit) to “1” (i.e., no valid hit). The discretization of
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continuous scores requires the assignment of score bins. The
number of bins can be settled arbitrarily. For example, we may
define score bins by dividing the entire score range into equal
intervals. The distribution of E-values, however, is skewed
toward 1. Equal intervals therefore will result in a heavily biased
binning of the scores. To resolve this problem, we fix a bin for all
scores of 1 and divide the remaining scores with an equal bin
distribution. For example, suppose that the profile matrix con-
sists of ten BLAST E-values: {x | BLAST E-values of the profile
matrix} ¼ {0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1}. If we create four
score bins (i.e., categories) for discretization, the score sets
would be {1, 1, 1, 1}, {0, 0}, {0.2, 0.4}, and {0.6, 0.8}.

6. Network approaches have proven useful for biological studies
[22]. For example, the novel functions of a gene can be inferred
from network neighbor genes that are functionally annotated
using the guilt-by-association principle [23]. A subnetwork
structure, which is often called a module, is another useful
network feature to investigate functional associations. If a
group of genes is highly interconnected, representing a pathway,
then this group of genes is likely to operate within the same
cellular process. Other genes that are connected to this group
may be new members of the cellular process.
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Chapter 6

Inferring Genome-Wide Interaction Networks

Gökmen Altay and Onur Mendi

Abstract

The inference of gene regulatory networks is an important process that contributes to a better
understanding of biological and biomedical problems. These networks aim to capture the causal molecular
interactions of biological processes and provide valuable information about normal cell physiology. In this
book chapter, we introduce GNI methods, namely C3NET, RN, ARACNE, CLR, and MRNET and
describe their components and working mechanisms. We present a comparison of the performance of
these algorithms using the results of our previously published studies. According to the study results, which
were obtained from simulated as well as expression data sets, the inference algorithm C3NET provides
consistently better results than the other widely used methods.

Key words Gene network inference, Gene network inference (GNI) algorithms, Bioinformatics

1 Introduction

The inference of gene regulatory networks (GRN), which can be
seen as a reverse engineering problem, is a process of estimating
direct physical associations among genes from gene expression data
[1]. This process can provide valuable information about normal
cell physiology, development, and pathogenesis and contribute to a
better understanding of biological and biomedical problems [2–4].
Gene network inference (GNI) algorithms are widely used in bio-
informatics to detect the activator genes of genetic diseases, to
determine the functions of the regulating and regulated genes,
and to obtain drug targets [5]. GRNs aim to capture the interac-
tions between molecular entities and are represented as graphs in
which nodes represent genes, proteins or metabolites and edges
represent molecular interactions [6]. In vivo or in vitro, molecular
interactions can be detected accurately by classical molecular biol-
ogy approaches. Unfortunately these methods are laborious and
the number of interactions that can be studied by these approaches
is limited [7]. Gene networks such as transcriptional regulatory
networks, protein networks, or metabolic networks represent
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blueprints of dynamical processes within cells. Different types of
gene networks have different effects on the dynamical processes of
cellular systems [8, 9]. Hence, gene network inference has been
identified as a focal point in systems biology. However, GNI is a
challenging problem because of the current very large-scale
biological datasets and the noise caused by experimental and
computational processes.

The steps of the gene network inference process are shown in
Fig. 1. The dataset obtained from microarray data analysis consists
of gene expression levels. Firstly, by using these preprocessed
expression values, a gene expression matrix is created. In this
matrix, each row corresponds to a gene whereas each column
corresponds to a sample. The second step is estimating interaction
scores of gene pairs. In this step, association score estimators such
as correlation-based, entropy-based and direct mutual information
(MI) estimators are used to obtain interaction scores. A dataset
discretization operation is required in order to use MI estimators.
At the end of the second step, a square gene association matrix is

Fig. 1 The work flow of gene network inference
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obtained. Finally, GNI algorithms are applied to this association
matrix and the inference of gene regulatory network process is
completed.

The most crucial process of GNI algorithms is to obtain the
interaction scores among cell molecules. The interaction scores
among gene pairs are determined from the gene expression datasets
by the association score estimators. However, there is no commonly
accepted estimator that is known to provide the best performance
for GNI methods. In the study [5], 27 different interaction esti-
mators were reviewed and 14 most promising estimators were
evaluated. According to the study results; BS with spline order
2 (BS2), BS with spline order 3 (BS3), Kernel Density Estimator
(KDE), Pearson-based Gaussian (PBG), and Spearman-based
Gaussian (SPG) were found to be the best association score esti-
mators regarding the performance and runtime (see Note 1).
Therefore, we preferred Pearson-based Gaussian estimator in our
study [5, 10].

Several popular techniques have been developed to infer GRNs
from microarray gene expression data. The best of these methods
are based on information theory [11, 12]. The main principle of
information-based methods is estimating mutual information (MI)
values among gene pairs [13, 14]. MI based methods are able to
detect linear and nonlinear effects among gene pairs [15, 16].
Furthermore, they enable us to work with large sample sizes such
as 25,000 genes [17].

One of the first algorithms introduced was RN (relevance
network) [18]. This algorithm computes all mutual information
values for all pairs of genes and eliminates the edges among genes
that have MI values that are not statistically significant. The second
well-known method is ARACNE [19]. ARACNE uses data proces-
sing inequality and, in addition to RN, ARACNE performs a sec-
ond step to eliminate the least significant edge of a triplet of genes.
This results in a more conservative estimation of the inferred
network.

CLR (Context Likelihood of Relatedness) [20] is another
method that employs a background sensitive estimator between
the gene pairs by converting MI estimates to values similar to z-
scores. In contrast to RN and ARACNE, CLR estimates individual
thresholds by considering an individual background for each pair
of genes. In addition to these methods, MRNET (maximum rele-
vance/minimum redundancy network) [21] infers a network using
the maximum relevance/minimum redundancy feature selection
method. Finally, C3NET (conservative causal core network infer-
ence) [22, 23] has been introduced. The basic idea of C3NET is
selecting the edge for each gene with maximum mutual informa-
tion (MI) value (see Notes 2 and 3).

The book chapter is organized as follows. In the next section
we introduce GNI methods by describing their components and

Inferring Genome-Wide Interaction Networks 101



working mechanisms. We start with a detailed review of C3NET
and then give brief descriptions of the other most widely known
inference algorithms, namely RN, ARACNE, CLR, and MRNET.
Then we present a comparison of the performance of inference
algorithms using the results of the study [22]. In the study, perfor-
mance was evaluated using simulated as well as expression data from
E. coli. Finally, we discuss the comparison results.

2 Methods

The inference of gene networks from high-throughput data is an
important and very complex process. Recent advances in biotech-
nology enable us to obtain large-scale expression data. The avail-
ability of this type of data ushered in the development of gene
inference methods [1, 22]. In this section, firstly we demonstrate
the inference algorithm C3NET by describing its components and
working mechanism. We describe the implementation of the algo-
rithm and usage of its R package. Then, we briefly introduce the
other most widely known inference algorithms, namely RN, ARA-
CNE, CLR, and MRNET.

2.1 C3NET

(Conservative Causal

Core Network

Inference)

The inference algorithm C3NET consists of two main steps. The
first step is the elimination of nonsignificant connections among
gene pairs, whereas the second step selects for each gene the edge
with maximum mutual information (MI) value [22]. The first step
is similar to previous methods, e.g., RN, ARACNE, or CLR. In this
step, C3NET tests the statistical significance of pairwise mutual
information values using resampling methods and eliminates non-
significant edges according to a chosen significance level α. Mathe-
matical formulation of the mutual information [24] of two random
variables X and Y is defined as

I X , Yð Þ ¼
X
x∈X

X
y∈Y

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ :

In order to calculate a statistical threshold, C3NETuses resampling
methods that estimate the distribution under the null hypothesis
corresponding to a vanishing mutual information. For this pur-
pose, it randomizes the expression data set by permuting the gene
expression measurements n times and recalculating the distribution
of the new pairwise mutual information for each permutation.
Then C3NET creates a vector combining these permuted mutual
information matrices and determines the threshold value according
to a chosen significance level α. Visualization of this vector is shown
in Fig. 2. The vertical (Y) axis represents the frequency of mutual
information values, whereas the horizontal (X) axis represents
mutual information values. The threshold, denoted by IC, is
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determined as the maximum mutual information value for the
significant region of the null distribution, as illustrated in Fig. 2
by the dashed line.

Figure 3 shows the principle steps of the C3NET algorithm.
Primarily, C3NET creates a mutual information matrix (MIM) by

Fig. 2 Determining MI threshold, IC

Fig. 3 The principal steps of C3NET. C3NET consists of two main steps. The first
step is for the elimination of nonsignificant connections among gene pairs,
whereas the second step selects for each gene the edge among the remaining
ones with maximum mutual information (MI) value [22]
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estimating the mutual information values from the data by using an
appropriate estimator allowing a close approximation of the theo-
retical value of the population. Starting from zero matrices C and B
(with Cij ¼ 0 and Bij ¼ 0 for all i, j ∈ V) C3NET thoroughly tests
all pairwise mutual information values Iij, i, j ∈ V, and sets Cij ¼
Cji ¼ 1 if the null hypothesis H0: Iij ¼ 0 can be rejected, for a
given significance level α [22].

In the second step, the most significant connection for each
gene is selected. The algorithm first determines the neighborhood
Ns for all genes i ∈ V. The neighborhood of gene i is defined by
Ns(i) ¼ {j: Cji ¼ 1 and j 6¼ i}. For this purpose, it uses the connec-
tivity matrix C. The link corresponding to the highest mutual
information value in the neighborhood for each gene is determined
by using Ns and I. This link is identified by

j c ið Þ ¼ argmax I ij
� �

:
j∈Ns ið Þ

It is possible that all mutual information values Iij for j ∈ V are
nonsignificant (Ns(i) 6¼ ;). In this case, no index is assigned to jc(i).
The algorithm constructs the adjacency matrix B of the estimated
undirected network by setting Bijc ið Þ ¼ Bjc ið Þi ¼ 1 if jc(i) has been
set to a valid index. The rest of the entries of B remain zero [22].

A visualization of the principal working mechanism of C3NET
is shown in Fig. 4. Suppose that we have the mutual information
values given by I. The mutual information values which are statisti-
cally significant appear as “1” entries, whereas the remaining ones
appear as “0” entries in the corresponding connectivity matrix C.

I ¼
1:0 0:9
0:9 1:0

0:7 0:1
0:8 0:7

0:7 0:8
0:1 0:7

1:0 0:4
0:4 1:0

0
B@

1
CA, C ¼

1 1
1 1

1 0
1 1

1 1
0 1

1 0
0 1

0
B@

1
CA:

Then the algorithm determines statistically significant connections
with neighboring genes with maximummutual information. This is
the critical step in C3NET, resulting in jc ¼ (1, 2, 2, 2). The next

Fig. 4 Visualization of the principal working mechanism of C3NET. The edges shown in solid and dashed lines
correspond to significant edges. In the third step, the edges in solid lines correspond to the edges with
maximum mutual information value
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step is determining auxiliary matrix Bj, directly from jc. Bj contains
exactly the edges added by each node. Due to its symmetry in its
arguments, MI does not provide directional information, so the
resulting adjacency matrix, B, is symmetric.

Bj ¼
0 1
1 0

0 0
0 0

0 1
0 1

0 0
0 0

0
B@

1
CA, B ¼

0 1
1 0

0 0
1 1

0 1
0 1

0 0
0 0

0
B@

1
CA:

The resulting network represented by adjacency matrix B is a star-
like network where gene 2 is connected to three other genes. It is
obtained from the conversion of the asymmetric matrix Bj to a
symmetric matrix B as shown in the example of Fig. 4. It is impor-
tant to realize that each gene can add at most one connection, but
different genes i can select the same gene jc(i). For this reason, the
final undirected network can consist of genes having more than one
connection to other genes (see Note 4).

2.1.1 Implementation of

C3NET: Usage of the R

package

An R package called c3net is available from the website https://r-
forge.rproject.org/ projects/c3net and also downloadable through
the CRAN package repository. To illustrate the principal working
mechanism of C3NET, an example data set is provided in the R
package. This package includes both experiment and true network
data which can be loaded in R by executing the data(expdata) and
data(trunet) commands of C3NET. There is a core function avail-
able in c3net package that takes the data set as input and outputs the
inferred network. This function hides individual steps of c3net and
provides an inferred network in an all-in-one single command. An
example usage of this function and its default parameters is as
follows [23]:

c3net(dataset, alpha ¼ 0.01, methodstep1 ¼ "MTC", MTCmethod
¼ "BH", itnum ¼ 5, network ¼ TRUE)

The first parameter dataset is the data set where rows are vari-
ables (e.g., genes) and columns are samples. The second parameter
alpha is a user defined statistical significance threshold. Themethod-
step1 parameter is set to define the procedure that will be used to
eliminate nonsignificant edges in Step 1 of C3NET. {“cutoff”,
“MTC”, and “justp”} are the options that can be used for the
parameter methodstep1. If cutoff and MTC options are selected,
then “cutoffMI” or “MTCmethod” additional parameters must be
set, respectively. If methodstep1 ¼ “cutoff”, then it is mandatory
cutoffMI needs to be set to a numerical value that is used as the
cutoff value to eliminate nonsignificant MI value of edges. The
cutoffMI value can be set to 0 to use default mean MI as cutoffMI.
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In case MTC option is used asmethodstep1, thenMTCmethod needs
to be set to employ the specific multiple testing correction method.
The six available MTC options are; (1) Benjamini and Hochberg
(“BH”), (2) Bonferroni (“bonferroni”), (3) Benjamini and Yekutieli
(“BY”), (4) Hochberg (“hochberg”), (5) Holm (“holm”), and (6)
Hommel (“hommel”). Additionally, itnum parameter needs to be
set to specify the number of iterations to obtain a null distribution
and alpha the statistical significance level. If methodstep1 ¼ “justp”,
then only alpha and itnum need to be set and the elimination step
of C3NET is done only with the p-values and the significance level
of α [23].

Besides providing the inference procedure of C3NET [22], the
c3net package can also visualize the inferred network by using the
igraph package [25]. The visualization can be enabled by setting
the parameter network to TRUE.

net ¼ c3net(expdata, network ¼ TRUE)

Further, c3net can validate the performance of the inference by
its checknet function. The checknet function outputs the following
six values: precision, F-score, recall, TP, FP, and FN. C3NET
package provides additional functions that allow individual steps
to be performed only instead of performing the whole inference
step. This flexibility allows users to combine internal functions of
c3net with components outside the package [23].

In order to demonstrate the checknet function, the example
command above was performed on the example data set located
in the software package. “BH” multiple testing correction method
was used for the elimination of nonsignificant edges. Statistical
significance threshold and the number of iteration parameters
were set to 0.01 and 5, respectively. Also, the network parameter
was enabled for the visualization of the inferred network. The
checknet results for the example data set are shown in Table 1.

Figure 5 is the topological representation of the inferred net-
work obtained by C3NET using the Fruchterman–Reingold algo-
rithm [26].

For ease of usage, c3net package provides a file with the name
EXAMPLE.TXT containing examples. One can easily learn the
functionality of c3net by executing the examples line-by-line. For

Table 1
Results of C3NET obtained by checknet function

Precision F-score Recall TP FP FN

0.68 0.42 0.30 263 123 601
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additional help, c3net also provides an internal help function for
each command which can be called by using the command line.
Further, there is a manual file accessible from inst/doc folder of
c3net which contains detailed explanations and examples of the
functions of c3net [23].

2.2 RN (Relevance

Networks)

The approach of relevance networks [13] consists in inferring a
genetic network by computing all mutual information values for all
pairs of genes, and linking a pair of genes (ij) by an edge if their
corresponding mutual information value Iij is larger than a given
threshold I0. In the resulting network, two genes connect to each
other only if Iij > I0, otherwise no edge is included between i and j.
The threshold value I0 was found by randomization of the gene
expression dataset.

The complexity of the algorithm is O(n2) since all pairwise
interactions are computed. Note that RN does not eliminate all
the indirect interactions between genes since it can set an edge
between two genes which do not interact directly, but both are
regulated by a third gene. For example, suppose that gene i and j
are regulated by gene k. This will result in high mutual information
between gene pairs (ij), (ik) and (jk). Therefore, the algorithm will
set an edge between i and j although these two genes interact only
through gene k [27].

2.3 ARACNE

(Algorithm for the

Reconstruction of

Accurate Cellular

Networks)

The algorithm for the reconstruction of accurate cellular networks
(ARACNE) [19] is an extension of the RN approach. The algo-
rithm starts with estimating the pairwise mutual information values
for all genes. Then it eliminates nonsignificant values according to
the obtained threshold I0. This step is basically equivalent to rele-
vance networks since it computes mutual information and declares
mutual information values significant if Iij > I0. If Iij is found to be
significant, then an edge is included in the corresponding adjacency

Fig. 5 Inferred network of example data set by C3NET. Fruchterman–Reingold
algorithm is used in the topological representation of the inferred network
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matrix between gene i and j, Aij ¼ Aji ¼ 1. In addition to the first
step, ARACNE performs a second step called data processing
inequality (DPI). The DPI is a relation between mutual informa-
tion values which means loosely that a post-processing of data
cannot increase its information content [24]. DPI serves as a filter-
ing step. DPI states that, if gene X interacts with gene Z through
gene Y (X ! Y ! Z ), then

I X ;Zð Þ � argmin I X , Yð Þ, I Y , Zð Þf g:
Here, the weakest edge of the gene triplet I(X, Z), corresponds to
the indirect interaction and hence is eliminated by the DPI
approach. The working mechanism of DPI is shown in Fig. 6.

In this step, ARACNE tests all gene-triplets (three genes with
mutual information values larger than I0) and then, for each (ijk), it
eliminates the edge corresponding to the lowest mutual informa-
tion value I1 ¼ Ii’j’, with (i’j’) ¼ argmin{Iij, Ijk, Iik} from the adja-
cency matrix, if it is smaller than the second smallest MI value I2
multiplied by a factor [19].

Ai0j 0 ¼ Aj 0i0 ¼ 0 I 1 � I 2 1 � Eð Þ
1 otherwise:

�

Here 0 � E � 1. E is the tolerance parameter. Simulation studies
that allow a comparison with the underlying true network are used
to obtain optimal values for E. For this reason, it can be said that I0
is found in an unsupervised and E in a supervised manner of
learning.

In ARACNE, each gene triplet is analyzed independently from
the other triplets. Hence, it is possible that an edge can be included
in the resulting network although it has been marked for removal
by prior DPI applications to different triplets. Consequently, the
order of examination of gene triplets does not affect the resulting
network. ARACNE has a complexity in O(n3) since the algorithm
considers all triplets of genes [19].

Fig. 6 Working mechanism of DPI. Although all six gene pairs have significant
mutual information values, the DPI will infer the most likely path of information
flow. For example, X ↔ Z will be eliminated because I(X,Y) > I(X,Z) and I(Y,
Z) > I(X,Z). Y ↔ T will be eliminated because I(Y,Z) > I(Y,T) and I(Z,T) > I(Y,T).
X ↔ T will be eliminated in two ways: (1) because I(X,Y) > I(X,T) and I(Y,T) > I
(X,T), and (2) because I(X,Z) > I(X,T) and I(Z,T) > I(X,T) [19]
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2.3.1 Implementation of

ARACNE: Usage of the R

Package

The ARACNE algorithm is implemented in an R/Bioconductor
package called minet. MINET (Mutual Information NETworks) is
an open-source Bioconductor package that includes network infer-
ence methods RELNET, ARACNE, CLR, MRNET, and
MRNETB. It can be downloaded from the CRAN package reposi-
tory at http://cran.r-porject.org as well as from the Bioconductor
website http://bioconductor.org [27].

Once the R platform is launched, minet package can be acti-
vated by using “library(minet)” command. The example usage of
ARACNE algorithm with the example data set in C3NET package
is as follows:

data(expdata)
mim < - build.mim(expdata,
estimator ¼ "pearson")
net < - aracne(mim)
netplot(net)

# Load data
# Build mutual information matrix
using pearson estimator
# Inferring network by using aracne
algorithm
# Visualize inferred network

The topological representation of the inferred network
obtained by ARACNE in using Fruchterman–Reingold algorithm
is shown in Fig. 7.

2.4 CLR (Context

Likelihood of

Relatedness)

The CLR algorithm is also an extension of the RN approach which
starts by computing the pairwise mutual information values for all
genes. Then it estimates the statistical likelihood of each mutual
information value Iij by comparing this MI value to a “back-
ground” distribution of the MI values. In particular, two z-scores
are obtained for each gene pair (ij) by comparing the MI value Iij
with gene specific distributions, pi and pj. Here, pi and pj distribu-
tions are equivalent to the distributions of MI values related to
genes i and j, respectively [20]. CLR takes into account the score

zij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2i þ z2j

q
by making a normality assumption about these distributions. Here,
zi and zj are the z-scores of Iij, whereas zij corresponds to the joint

Fig. 7 Inferred network of example data set by ARACNE. Fruchterman–Reingold
algorithm is used in the topological representation of the inferred network
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likelihood measure. In contrast to RN and ARACNE, which
employ a global threshold I0 for each MI value related to pair of
genes, CLR estimates individual thresholds by considering an
individual background for each pair of genes. The complexity of
CLR is O(n2) since mutual information matrix is computed once
for each gene pair [20].

2.5 MRNET

(Maximum Relevance,

Minimum

Redundancy)

MRNET is an iterative algorithm that infers a network using the
maximum relevance/minimum redundancy feature selection
method. The algorithm identifies potential interaction partners of
a target gene Y that maximize a scoring function. The algorithm
starts with ranking the set of input variables V according to a score
that is the difference between theMI with the output variableY and
the averageMI value with the previously ranked variables. The basic
idea is ranking the direct interactions higher than indirect interac-
tions [21]. The working mechanism is shown below.

X s
j ¼ argmax s j

� �
Xj EV \ S

s j ¼ I X j ;Y
� �� 1

Sj j
X
Xk∈S

I X j ;Xk

� �
:

Here, the score sj is the difference between the mutual information
of Xj with the target variable Y (relevance term) and the average
redundancy of Xj to each already selected variable Xk ∈ S (redun-
dancy term). A gene is added to the set S only if the sj is above the
threshold value, s0 and the score of geneXjmaximizes the valueXj

s.
The algorithm repeats the iteration procedure until no further gene
can be found that passes the threshold test. The MRNET approach
consists in finding interaction partners for Y that are of maximal
relevance for Y, but have a minimum redundancy for the already
found interaction partners in the set S. The algorithm starts with a
fully connected, undirected network among all genes and then it
eliminates the edges between Y and V \S, which have not max-
imized the value of Xj

s [21].
MRNET has a complexity in O(f � n2) since the feature selec-

tion step is repeated for each of the n genes. Therefore, it can be
said that the complexity of the algorithm ranges betweenO(n2) and
O(n3) according to the value of f [21].

3 Comparison of Inference Methods

The inference performance of the GNI methods may vary accord-
ing to the data sets used in the assessment. Usually, a synthetic or a
few real biological datasets are used in the analysis, but this may
result in variations in the performance of the methods over different
datasets. In order to assess the performance of a GNI algorithm on
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a de novo dataset, a framework called GANET has been developed.
GANET assesses the performance of GNI algorithms employing
the available literature of interaction databases. Any new real dataset
of any size can be assessed by using GANET [28].

In the study [22], the performance of C3NET is compared
with four of the most widely known inference algorithms, RN,
ARACNE, CLR, and MRNET. Simulated as well as expression
data from microarray experiments were used in the analysis. The
simulations were performed by considering the ensemble approach
mentioned in Refs. [29, 30].

The performance of inference algorithms is assessed by using
the error measure F-score. F-score is obtained by using the formula
F ¼ 2pr/(p + r) where p and r values correspond to the precision
and recall. Here precision, p ¼ TP/(TP + FP), and recall, r ¼ TP/
(TP + FN), is a function of the number of true positive (TP), false
positive (FP), and false negative (FN) edges in an inferred network.
In the simulation study, two biological networks were used which
represent sub-networks of the transcriptional regulatory network
(TRN) of E. coli [31, 32] and Yeast [33].

SynTReN was used to randomly sample sub-networks from
these TRNs. SynTReN is a network generator that produces syn-
thetic gene expression data for approximating the experimental
data [34]. Both networks consist of n ¼ 100 genes. Synthetic
expression data, which mimicks the mRNA concentration, was
generated by using the neighbor addition method of SynTReN. In
this process, nonlinear transfer functions based on Michaelis–Men-
ten and Hill enzyme kinetic equations were used [35–37].

In this section, we present the results obtained by using the
simulated ensemble data. Following that we give the results of
expression data from E. coli.

3.1 Simulated

(Synthetic) Data

The boxplots of the resulting F-scores for two different sample sizes
(p ¼ {50, 200}) are shown in Fig. 8. The results were obtained by
using a sub-network of Yeast GRN [33]. According to the results,
C3NET provides better results than all four other inference meth-
ods considering the median value of the F-score as well as the other
statistical measures, e.g., minimum, maximum, or mean F-scores.

Table 2 provides a summary of the results obtained for the sub-
networks of Yeast and E. coli. These numerical results reveal that
C3NET gives the best result in all cases except one: minimum
F-score value for Yeast50. For this case, the score of C3NET
(0.2844) is quite close to the score of the best performing algo-
rithm, MRNET (0.2879).

The analysis was repeated using a sub-network of E. coli [31,
32]. The ensemble size was 300, which results in 300 different data
sets, each consisting of 1000 samples. In data generation, the same
procedure was followed as for yeast. The boxplots of the resulting
F-scores for the three best performing algorithms C3NET,
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ARACNE, and MRNET are shown in Fig. 9. These results also
indicate that C3NET provides the best results [22].

Figure 10 shows the true sub-network of Yeast obtained by
using SynTReN. In the figure, gene names are shown on the labels

Fig. 8 Boxplots of F-scores for C3NET (C3N50, C3N200), ARACNE (AR50, AR200), MRNET (MR50, MR200), RN
(RN50, RN200), and CLR (CLR50, CLR200). Light gray color corresponds to sample size 50, whereas dark gray
color corresponds to sample size 200 for each method. A sub-network of Yeast GRN with ensemble size
N ¼ 300 is used for the simulations [22]

Table 2
Summary of F-scores (max, min, mean and median) for C3NET, ARACNE and MRNET obtained from
our simulations

Dataset Sample size Statistical measure C3NET ARACNE MRNET

Yeast 200 Max 0.5478 0.4919 0.4927

Min 0.336 0.2058 0.336

Median 0.4628 0.3836 0.4455

Mean 0.4628 0.3795 0.4410

Yeast 50 Max 0.4782 0.3983 0.4585

Min 0.2844 0.1854 0.2879

Median 0.3859 0.3166 0.3698

Mean 0.3848 0.3161 0.3683

E. coli 1000 Max 0.6046 0.4973 0.5608

Min 0.4131 0.1866 0.3512

Median 0.5308 0.3803 0.500

Mean 0.5269 0.3758 0.4948

The sample size for Yeast is 200 and 50, whereas the sample size of E. coli is 1000 [22]
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of the nodes. The type of each edge corresponds to the mean true
positive rate (TPR ). The edge types for true positive rates are as
follows: for solid line black edges, 1 � TPR > 0:75, for dashed
line black edges, 0:75 � TPR > 0:5, for solid line gray edges,

0:5 � TPR > 0:25, and for dashed line gray edges,

0:25 � TPR � 0:0. It is obvious that all leaf edges inferred by
C3NET are correct because the edges connecting to leaf nodes are
solid line black in both networks. Leaf node corresponds to a node
that has only one incoming edge and no outgoing edges. Here, the
incoming edge is called leaf edge. This observation indicates the
efficiency of C3NET in inferring leaf edges. Additionally, dashed
line gray edges help to observe that colliders cause difficulties for

Fig. 9 Boxplots of F-scores for C3NET (white), ARACNE (gray) and MRNET (dark
gray). A sub-network of E. coli TRN with is used for the simulations. Sample size
is 1000 and ensemble size is N ¼ 300 [22]

Fig. 10 Sub-network of yeast consisting of 100 genes, sample size is 200. Edge
colors are obtained from simulations of 300 data sets. The color of each edge
reflects its mean TPR. Specifically, for solid line black edges, 1

1 � TPR > 0:75, for dashed line black edges, 0:75 � TPR > 0:5, for
solid line gray edges, 0:5 � TPR > 0:25, and for dashed line gray edges,

0:25 � TPR � 0:0 [22]
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the respective edges. Here, collider means a node that has two
incoming edges [22].

The observations in the study [22] show that leaf nodes can be
inferred easily whereas the nodes which are not leaf nodes are more
difficult to infer. Hence, the detection of hubs is not easy. However,
due to the fact that they are connected to many other nodes, it is
possible that one or more of these nodes may be a leaf node.
Therefore, they are more likely to appear in the inferred network.

3.2 Expression Data

from E. coli

The expression data, which consists of 524 microarrays, was
obtained from Ref. [20]. For this data set, it has been shown that
the results of CLR obtained by a manually assembled reference
network, G2007

EC is better than ARACNE and RN. Hence, in this
section, the authors compared the inference algorithm C3NET
only with CLR. Table 3 provides a summary of the results obtained
for the comparison of C3NET and CLR [22].

The inferred network of E. coli is shown in the Fig. 11. In the
figure, edges with solid line correspond to TP edges whereas the
edges with dashed lines correspond to FP edges. The genes with
gray color correspond to regulated genes whereas the genes with
black color correspond to regulating (transcription factors) genes.

Table 3
Summary of results for C3NET and CLR obtained from our simulations

Algorithm Interactions TP FP FN Precision

C3NETa 99 74 25 3017 0.75

CLRb 274 169 105 2922 0.62

aA threshold value of 6.974 obtained for the z-scores used by CLR
bA threshold value of 0.414 obtained as a result of significance test of the MI values for C3NET [22]

Fig. 11 Inferred E. coli network by C3NET. Black genes correspond to transcription
factors and gray genes to regulated genes. Edgeswith solid line indicate true positive
results whereas edges with dashed lines correspond to false positives [22]
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3.3 Conclusions In this book chapter, we examine the five most widely known
network inference methods—C3NET, RN, ARACNE, CLR, and
MRNET—and discussed their performance in various biological
and synthetic datasets and simulation conditions. The performance
of GNI algorithms is assessed using a global performance metric.
We also provide the implementation and usage of R packages of the
algorithms C3NET and ARACNE.

Sample size is an important factor affecting the performance of
GNI algorithms. However, there is no commonly recommended
sample size that provides the best or optimal performance of the
GNI methods. The general opinion in this subject is that a larger
sample size results in better inference performance. According to
the study by Altay [38], the inference performance of the informa-
tion-theory-based GNI algorithms tends to converge after a partic-
ular sample size region around’ 64 (seeNote 5). The results of the
study show that increasing the sample size over this region does not
improve the performance substantially [38].

The study by Altay and Emmert-Streib [22] reveals that the
conservative approach of C3NET, which allows each gene to add at
most one edge to the inferred network, provides consistently better
results in comparison with the other methods widely used [18–21].
According to the study results, C3NET gives a precision of 0.81 for
the expression data from E. coli. This result is 31 % better than the
nearest precision obtained by CLR algorithm which performs bet-
ter than ARACNE and RN (see Note 6). This robust result indi-
cates that the performance of a well-structured algorithm can be
better than other methods that are more complex [22]. In another
study, it was found that the other inference algorithms show a more
sensitive behavior in dependence on the network type used [23].

4 Notes

1. Obtaining the interaction scores among cell molecules is the
main process in almost all GNI algorithms. A failure in this
step often leads to an erroneous result in the ultimate inference
process. According to the study results [5], BS2, BS3, KDE,
PBG, and SBG are observed as the best performing estimators.
However, the runtime of the KDE is large. Therefore, we advise
using BS, PBG, and SBG estimators for applications in which the
runtime is more important than the precision result.

2. The inference algorithms RN, ARACNE, CLR, and MRNET
are becoming more and more complex. This may cause serious
difficulties in obtaining a balanced statistical analysis [22].

3. All other methods than C3NET aim to infer the entire regu-
latory network for a given data set. However, achieving this goal
is not easy for a large sample size. Observational data may not be
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able to detect all dynamical interrelations that would allow a
reliable estimation. Hence, C3NET aims to infer only the stron-
gest interactions among covariates; this is called as conservative
causal core or C3 [22].

4. An important characteristic of C3NET that is different to all
previous methods is that it can infer at most as many edges as
genes. The reason for this is that the second step of C3NET
allows each gene to add at most one edge to another gene [22].

5. The sample size region of ’64 is sufficient to achieve good
inference precision even for very large networks. However, F-
score should be used to observe how close is the inferred net-
work to the whole of the true network [38].

6. The performance of the inference method depends crucially on
the characteristics of the data [22].
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Chapter 7

Integrating Heterogeneous Datasets for Cancer
Module Identification

A.K.M. Azad

Abstract

The availability of multiple heterogeneous high-throughput datasets provides an enabling resource for
cancer systems biology. Types of data include: Gene expression (GE), copy number aberration (CNA),
miRNA expression, methylation, and protein–protein Interactions (PPI). One important problem that can
potentially be solved using such data is to determine which of the possible pair-wise interactions among
genes contributes to a range of cancer-related events, from tumorigenesis to metastasis. It has been shown
by various studies that applying integrated knowledge from multi-omics datasets elucidates such complex
phenomena with higher statistical significance than using a single type of dataset individually. However,
computational methods for processing multiple data types simultaneously are needed. This chapter reviews
some of the computational methods that use integrated approaches to find cancer-related modules.

Key words Cancer modules, Cancer systems biology, Data integration, Gene-gene network, Multi-
omics dataset

1 Introduction

Cancer is a common genetic disease involving a range of factors.
Genomic, epigenomic, and differential gene expression aberrations
all play vital roles in a cancer’s initiation, development, and malig-
nance [1]. It has been reported by various studies that cancer-
related activities including cell proliferation, angiogenesis, and
metastasis are associated with abrupt changes in regulatory and
signaling pathways [2–6]. Mutations involving somatic and copy
number aberrations of some genes can either directly affect some
key pathways or have a cumulative effect when they occur across
network modules representing common functional activities in
cancer [7, 8]. Consequently, identifying cancer modules is of
primary importance to the effective diagnosis and treatment of
cancer patients.

One of the core steps of cancer module identification involves
modeling gene–gene relationships in a network. Many algorithms
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have been developed for this purpose, but most apply only to
homogeneous datasets, that is, data of only one type, usually GE
data or PPI information [9–15]. Most of the methods relying only
on GE data apply differential expression analysis but it is often hard
to determine whether such variations in expression are causative or
merely an effect of complex diseases [16]. Differential expression
analysis can produce false negatives and false positives: some impor-
tant genes in cancer-related pathways may not be identified as
differentially expressed, whereas some differentially expressed
genes may not be relevant to cancer [17]. Typically CNA regions
identified by some approaches [18–20] using only CNA datasets
are spatially extensive, which makes it difficult to identify a specific
gene causing genomic aberration [21]. PPI can provide important
information in characterizing topological properties of the network
involving cancer genes [7]. However, PPI information for multiple
cell types and developmental stages is still incomplete, which limits
its usefulness in developing methods for cancer module
identification.

Recent studies have demonstrated the “genomic footprint” of
driver mutations on gene expression [21–23]. This happens when
somatic mutations and copy number aberrations affect a gene’s
transcriptional changes directly or indirectly [24] and thus perturb
some core pathways relevant to cancer growth and malignance [1].
Research carried out for The Cancer Genome Atlas on both glio-
blastoma [25] and ovarian carcinoma [26] demonstrated the simul-
taneous occurrences of mutations, copy number aberrations, and
gene expression changes in a significant number of patients in the
core components of some key pathways (see Note 1). In this chap-
ter we discuss some methods that find cancer-related modules by
integrating multiple heterogeneous datasets.

This chapter is organized as follows. We first briefly introduce
some of the main sources of data that can be used and the required
preprocessing steps essential for subsequent integrated analysis.
Then, we describe methods that integrate information from het-
erogeneous data sources to find cancer-related modules/sub-
networks (see Note 1). Finally, we address some approaches for
validating identified modules.

2 Data Sources

Gene Expression data from cancer samples can be primarily found
in the database GEO (Gene Expression Omnibus) [27]. It is a
database of gene expression values measured using high-
throughput hybridization arrays (also known as chips or microar-
rays). Sample values are reposited both in raw and normalized
versions. Another comprehensive collection of gene expression
data from various cancer samples is The Cancer Genome Atlas
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(TCGA) [28]. There are three different levels of datasets available
in TCGA: Level 1 consists of low-level (not normalized) data for a
single sample probe, Level 2 consists of normalized single sample
probe data, and Level 3 consists of aggregated gene-level data
(grouped by mapped probes with gene symbols). Mutation,
Copy number aberration, DNA methylation, and miRNA
expression datasets can also be found in TCGA data portal.

Preprocessing is an important step in data integration,
especially when paired samples are used (seeNote 2). Preprocessing
of GE values includes scale transformation, imputing missing
values, handling redundancies, pattern standardization (i.e., nor-
malizing to a zero mean and unit standard deviation), and other
transformations [29]. Preprocessing of CNA data in microarray
chips is typically more complex than that of GE data, and can
include quantile normalization, imputing missing values, summar-
izing multiple probes at a single locus (with mean or median),
segmentation of genomic regions, and mapping segmented CNA
values in genomic regions into corresponding gene symbols
[17, 30]. Probe level methylation data from CpG sites can be
normalized between 0 and 1 by finding the following ratio [31]:

βi ¼
maxðMi, 0Þ

maxðMi, 0Þ þmaxðUi, 0Þ þ αð Þ ð1Þ

where βi is the Beta-value for an ith interrogated CpG site, and Mi

and Ui are the intensities measured by the ith methylated and
unmethylated probes. After background adjustment, intensities
(Mi and Ui) may become negative, but in the above definition
those negative values are reset to 0. Again, when both Mi and Ui

intensities are very low, a constant offset α (default value ¼ 100) is
added to the denominator to regularize Beta-value, as suggested by
Illumina [31].

3 Methods for Integrating Heterogeneous Datasets

Figure 1 generalizes a possible approach that integrates multiple
heterogenous datasets in order to find cancer-related modules in a
gene–gene network. The gene–gene network can be modeled
either by exploiting combined knowledge from multiple datasets
or by merging individual networks built upon corresponding data-
sets. In these networks, nodes represent genes and the edges can be
modeled as the relationships (i.e., directed and/or undirected)
among them. PPI information can be useful at various stages of
network modeling. After modeling the integrated network various
module detection techniques such as optimization models, hierar-
chical clustering, etc. can be applied to find cancer-related modules.
The following sections describe some of the methods that use
integrated approaches for cancer module identification.
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3.1 iMCMC A method known as iMCMC (identify Mutated Core Module in
Cancer) [32] was developed for the simultaneous analysis of three
heterogeneous datasets: Gene expression (GE), copy number Aber-
ration (CNA), and sequence mutations. These are combined to
infer a network in which core cancer modules are identified
(seeNote 3). The method involves an optimization model followed
by statistical significance tests. This method initially starts with
building two different networks, one generated from GE data and
the other by combining somatic mutations with CNAs over com-
mon samples. These two networks are then combined to construct
an integrated network.

First, a binary matrix A0 is constructed in which the columns
represent the paired samples containing somatic mutations and
CNAs, and the rows represent genes that the samples have in
common. Each entry in A0 is set to 1 if a mutation occurs in the
corresponding gene and sample, or if there is a statistically sig-
nificant copy number variation detected; otherwise the entry is set
to 0. Genes that are mutated in the same samples in A0 are com-
bined into larger metagenes, and thus a new matrix A called the
mutation matrix is obtained. Another data matrix, B is built from
the expression values. Its entries are real values representing the
relative expression of a given gene in a particular sample. The
following two paragraphs explain the methodologies for construct-
ing the Expression Network (EN) and Mutation Network (MN)
from the data matrices B and A, respectively.

Fig. 1 Schematic diagram of a possible integrated approach for cancer module identification. Each input
dataset contains both cancer and normal samples. In network modeling, genes are identified based on
differential information in the two-conditional studies (cancer vs normal), and edges can be defined according
to pair-wise correlation
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3.1.1 Constructing the

Expression Network

The Expression Network is based on the gene expression dataset. In
this network, both nodes and edges are weighted. Nodes represent
genes and their corresponding weights reflect the extent to which a
mutation in that gene affects the expression levels of other genes.
Each edge weight is defined as the absolute correlation between the
expression levels of the two corresponding genes.

The definition of nodes in the EN depends on both data
matrices A and B. New sets of genes and samples are defined as:
G

0 ¼ GA \ GB and S
0 ¼ SA \ SB, where GA, SAð Þ and GB, SBð Þ are

the sets of genes and samples in the two data matrices A and B,
respectively. For each gene gi ∈ G

0
, the corresponding samples in S

0

are classified into two groups, based on that gene’s mutation status
in A. The numbers of samples in each group are denoted n

1ð Þ
i and

n
2ð Þ
i . Then, for each gi, a mutation-correlated expression vector

ei ¼ e
1ð Þ
i , e

2ð Þ
i

� �
is constructed, where e

1ð Þ
i and e

2ð Þ
i are defined as

follows:

e
1ð Þ
i ¼ bki : aki ¼ 1, k ∈ S

0
n o

,

e
2ð Þ
i ¼ bki : aki ¼ 0, k ∈ S

0
n o

:
ð2Þ

Here aki and bki denote the entries for the i-th gene and k-th sample
in the data matrices A and B, respectively. To determine whether
there are significant differences between the expression levels in e

1ð Þ
i

and e
2ð Þ
i , p-values are calculated using mattest in MATLAB. A small

p-value indicates that mutations in the gene in question affect the
expression levels of other genes. Since there should be a minimum
of two samples in each group for conducting this test, the set of
nodes G in the EN is defined as follows:

G ¼ gi ∈ G
0
: n 1ð Þ

i � 2,n 2ð Þ
i � 2

n o
: ð3Þ

And the weight of each node in EN is defined as follows:

f i ¼ 1� 1

d

Xd
r¼1

pr , 8gi ∈ G ð4Þ

where d is the total number of genes in GB and pr is the p-value
calculated for gene gr as described above. The weight uij of any
edge in G is defined as the absolute Pearson correlation between
two mutation-correlated expression vectors ei and ej, among the
samples in S

0
. In the case of metagenes, node and edge weights are

defined as the averages of the corresponding values of their constit-
uent genes.
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3.1.2 Constructing the

Mutation Network

To build theMutation Network (MN ) from the mutationmatrix A,
the same gene set G is used as for the network EN. The weight of
any node (or gene), gi ∈ G is defined as follows:

hi ¼ mi

m
, ð5Þ

where m is the total number of samples in A and mi is the total
number of mutations occurring in the samples of A for a particular
gene gi. The weight vij of any edge between genes gi, gj

� �
inMN is

defined as the ratio of the number of samples in which exactly one of
the gene pairs is mutated to the number of samples in which at least
one of the gene pairs is mutated in A.

3.1.3 The Integrative

Network

An integrative network M is constructed by combining the
expression network EN with the mutation network MN. It is
necessary to first adjust the weights of nodes and edges in EN
and MN so that they become comparable. Two balancing terms,
ξ and η, are defined for the networks EN and MN, respectively, as
follows:

ξ ¼ u

f
, η ¼ v

h
, ð6Þ

where f ¼ max f i

� �
and u ¼ max uij

� �
in EN, and h ¼ max hið Þ and

v ¼ max vij
� �

in MN. Now, if F ¼ f i

� �
and U ¼ {uij}, then the

edge weights U and node weights ξF are said to have balanced
values in EN. Similarly, if H ¼ hif g and V ¼ { vij}, then the edge
weights V and node weights ηH have balanced values in MN.
A relative importance term can also be introduced to modify the
relative impact of the two networks EN and MN on the integrated
network. Let k denote the relative importance of MN relative to
EN and set δ � u

v

� � ¼ k, so δ ¼ k � vu. In the remainder of this
description, we set k ¼ 1. Thus, node weights ci and edge weights
wij can be defined as follows:

wij ¼ δ � uij þ vij ,
ci ¼ δξ � f i þ hi,

ð7Þ

where i, j ¼ 1, . . ., n. Here, n is the total number of genes in G.

3.1.4 An Optimization

Model for Identifying Core

Cancer Pathways

The final step of this approach is to identify some core modules in
the integrative networkM, where each such module contains genes
with both high node-weights and high edge-weights. For this
purpose, an optimization model (previously reported by Wang
et al. [33]) is employed. The optimization problem is stated as
follows:
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max
X
i

X
j

wij xixj þ λcixi,

s :t : xβ1 þ xβ2 þ � � � þ xβn ¼ 1,

xi � 0, i ¼ 1, . . . ,n,

ð8Þ

where the non-negative vector x ¼ x1, x2, . . . , xnð Þ contains the
degrees of each node in a particular module (sub-network). The
first term in the objective function states the inter-connectivity
within the module, whereas the second term specifies the degree
of association between the nodes and the module. The role of the
positive parameter λ here is to balance these two terms (seeNote 4).
In this model, the regularization constraint over the variable
x ¼ x1, x2, . . . , xnð Þ controls the number of nodes to be selected
in the module and the parameter β adjusts the strength of this
regularization. Here we set β¼1 to find small-sized core modules.

The following iterative algorithm [33] provides an easy solu-
tion of the above optimization model by finding a local maximum
in the vicinity of a predetermined initial approximate solution:

xtþ1
i ¼ xti

2 WXð Þi þ λci

2XTWX þ λ
X
i

cixti

0
BBB@

1
CCCA

1
β

, ð9Þ

where W ¼ {wij} is the n � n edge weight matrix, and

X ¼ xt1,x
t
2, . . . ,x

t
n

� �T
is the solution vector at the t-th iteration.

The non-zero entries in solution vector x define a particular mod-
ule (sub-network) where in practice the entries are defined as zero if
they are less than 0.1. Once a locally optimal solution is obtained,
corresponding nodes are removed from the network and the whole
process is repeated again to find additional modules.

3.2 Wen et al. The method of Wen et al. integrates DNA methylation, gene
expression, and protein–protein interaction datasets to identify
causal network modules in colorectal cancer [34]. The method
starts with collecting a set of candidate causal genes. This collection
is the union of a set of differentially methylated genes and a com-
mon subset of known cancer genes from DNA methylation chips,
the Cancer Gene Census (CGC) [35], and tumor associated genes
in the TAG database. Employing a minimum multi-set cover strat-
egy due to Kim et al. [36], a gene is determined to be differentially
methylated if its comparative β value (a measurement of DNA
methylation level) between tumor and paired non-tumor samples
is � 0.2 [37, 38].
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Next, a comprehensive protein–protein interaction (PPI)
network is developed integrating five curated human PPI databases:
HPRD [39], BioGrid [40], IntAct [41], MINT [42], and Reac-
tome [43]. Only those interactions that are found in at least three of
these databases are considered. The resulting network contained
7001 nodes and 19,188 edges, where each edge e is assigned a
weight calculated as follows:

w eð Þ ¼ 1� cor x, yð Þj j

¼ 1�

Xm
i¼1

xi � xð Þ yi � y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

xi � xð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

yi � y
� �2s

										

										
: ð10Þ

Here x ¼ x1, . . . , xmð Þ and y ¼ y1, . . . , ym
� �

are expression
profiles of the two nodes in an edge e, and x and y are mean values
of x and y, respectively. This PPI network is further decomposed
into network modules by applying the Markov Clustering algo-
rithm [44], but only those modules are selected which contain at
least one candidate causal gene. The activities of each network
module Mi in sample Sj are calculated as follows:

Mij ¼

X
gm ∈ CGC\Mif g

X
gm, gnð Þ ∈ E gmð Þ

gmjþgnk
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
gm ∈ CGC\Mif g

# E gm
� �� �s , ð11Þ

where E gm
� �

is the set of edges belonging to the candidate causal
gene gm in module Mi, # E gm

� �� �
represents the total number of

edges in E gm
� �

, and gmj is the normalized gene expression value of
the gene gm in sample Sj. Next, a classifier is built for selecting the
causal modules as follows:

S � S control



 

2
2
� S � S case



 

2
2
< 0, f or S ∈ Scontrol ,

S � S case



 

2
2
� S � S control



 

2
2
< 0, f or S ∈ Scase ,

ð12Þ
where S, Scontrol, Scase, S control , and S case are the sample, the set of
non-tumor samples, tumor samples, the center of non-tumor
samples, and the center of tumor samples set, respectively. These
classifier conditions can be further simplified as follows (for details,
see supplementary texts of original article):

C � x1,x2, . . . ,xkð ÞT � 0, ð13Þ

126 A.K.M. Azad



where xi is an indicator variable having value 1 if module Mi is
selected, and 0 otherwise; and C is a matrix that is defined as a
function of Mij as follows:

C :¼ M 1i �M 11 þ � � � þM 1n

n

� �2

, . . . , Mki �Mk1 þ � � � þMkn

n

� �2
* +

ð14Þ
Here, any element Cij of the above matrix C represents the

contribution of the module Mj to the ith sample condition. The
objectives of this classifier are twofold: (1) classifying tumor and
non-tumor samples, (2) identifying a small number of modules.
This module identification problem is modeled as a binary integer
linear programming problem as follows:

min
x1, x2, ..., xk

Xk
j¼1

xj þ λ
Xs

i¼1

Xk
j¼1

Cij � xj

s :t : C � x1,x2, . . . ,xkð ÞT � 0Xk
i¼1

xi � 1, xi ¼ 0, 1, i ∈ 1,2, . . . , kf g,

ð15Þ

where s is the number of samples. In this objective function, the first
term encourages a small number of modules to be found whereas
the second term implies the maximization of the classification
abilities of modules by minimizing C � x1,x2, . . . ,xkð ÞT . λ is the
controlling parameter which balances the trade-off between those
two terms. However, this binary integer linear programming model
for module identification is computationally extensive. Therefore,
this problem is further resolved by reformulating the model to a
simple linear programming model where the binary variables
xi ∈ 0,1f g are relaxed to a continuous variables xi ∈ 0,1½ �. For
further detail, see Note 5.

3.3 Cerami et al. The method of Cerami et al. [45] is an integrated approach for
identifying core pathways altered in glioblastoma. It combines
sequence mutation, copy number aberration (CNA), and protein–-
protein interaction (PPI) datasets. The first step of this method is to
construct a global Human Interaction Network (HIN) from litera-
ture curated data sources only. To cover more interaction informa-
tion, the HIN is constructed based on the union of (a) interactions
obtained from the HPRD website (http://www.hhprd.org/) and
(b) various signaling pathway databases, specifically Reactome,
NCI/Nature Pathway Interaction DB, and MSKCC Cancer Cell
Map from Pathway Common (http://www.pathwaycommons.
org). Information from the last of these pathway sources was in
BioPAX format, which is represented as subgraphs of biochemical
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networks. A set of rules was defined to map these subgraphs into
binary interaction data. After removing all redundancies and self-
directed interactions, the HIN contained 9264 genes and 68,111
interactions.

Sequence mutation and copy number datasets of Glioblastoma
Multiforme (GBM) for paired samples were collected from TCGA
data portal (https://tcga-data.nci.nih.gov/tcga/). Copy number
aberration data was analyzed using the RAE algorithm [19] which
discretizes all isoforms of autosomal genes into multiple putative
aberration states, and finds statistically aberrant regions with
q-values. Next, the statistical significance of each gene’s aberration
is defined as the minimum of the q-values of all the spanning
regions over the corresponding gene’s coding locus. A set of altered
genes is identified, where a gene is defined as altered if it has a
validated non-synonymous somatic nucleotide substitution, or a
homozygous deletion, or a multi-copy amplification only.

Next, a GBM-specific network was constructed in which the
node set is the union of the set of altered genes and a set of linker
genes. For each gene in the altered gene set, the corresponding
neighbor genes are identified in the HIN. Neighbor genes having
degree one are trivially ignored, as they are connected to exactly
one altered gene. The remaining neighbor genes with degree � 2
have the potential to connect two or more altered genes, and are
thus considered to be candidate linker genes. Only linker genes that
are found to be statistically significant by a hypergeometric test
among all other candidate linker genes are further assessed. The
null hypothesis is: the linker genes connect the observed number of
altered genes in HIN only by chance. p-values from the statistical
assessment of this hypothesis are further corrected using the Ben-
jamini–Hochberg procedure [46] giving corresponding q-values,
and the genes having q-values � 0.05 are selected as a final list of
linker genes. The final network contained six linker genes connect-
ing 66 GBM altered genes, and their corresponding PPI interac-
tions in the HIN.

To find network modules in the resulting GBM-specific
network, the edge-betweenness algorithm was applied. Originally
proposed by Girvan and Newman [47], this algorithm applies a
divisive approach where at each iteration an edge with the highest
edge-betweenness score among all other edges is identified and
removed from the network in order to reveal modular structure.
The edge-betweenness score of a particular edge is defined as the
number of shortest paths between pairs of nodes that traverse that
edge [47]. More specifically, the shortest paths between all pairs of
vertices are identified, and then for each edge the number of short-
est paths that include that edge is counted and considered as the
edge-betweenness score for that particular edge. After each edge
removal, the edge-betweenness scores of the edges of the updated
network are recalculated. (Only those edges which are affected by

128 A.K.M. Azad

https://tcga-data.nci.nih.gov/tcga/


the particular edge removal require recalculation of this score.) To
obtain a partition yielding the best modular structure, network
modularity [48] is also calculated after each edge removal. This
process continues until there are no remaining edges. The maxi-
mum network modularity score obtained during this process indi-
cates the optimal number of edges to be removed. The network
modularity score is defined as follows:

M ¼
XNM

s¼1

l s
L
� ds

2L

� �2
" #

, ð16Þ

where NM is the number of modules, ls is the number of edges
within module s, L is the total number of edges in the network, and
ds is the summation of the degrees of all the edges within module s.
Modularity quantifies the fraction of network edges connecting the
nodes within modules minus the expected number of network
edges obtained by forming random connections among the nodes
within the module, subject to the same modular divisions. A value
ofM close to 0 indicates that the number of within-module edges is
consistent with random formation, whereas a value close to 1
indicates stronger modular structure. This procedure results in a
set of modules extracted from the GBM-specific network.

3.4 VToD VToD [17] integrates gene expression (GE), copy number aberra-
tion (CNA), and PPI (protein–protein interaction) datasets in
order to find cancer-related modules in glioblastoma and ovarian
cancer patients. The GE and CNA data matrices are obtained from
TCGA data portal [28]; both are Level 3 datasets. The PPI dataset
is obtained from Cerami et al. [45]. This method provides an
integrated framework that infers pair-wise relationships between
genes based on both data-driven and topological properties (see
Note 3). A data-driven property of a pair of genes is a correlation
observed between the data obtained for those genes. These corre-
lations may be of three types: GE-GE, GE-CNA, or CNA-CNA
correlations. Data-driven properties also include the indirect rela-
tionships discussed below. Topological properties are connections
observed in PPI networks.

3.4.1 Constructing a

Gene–Gene Relationship

Network

The method starts with a set of seed genes S, thought to be related
to cancer progression and malignance. This set is a union of a set of
differentially expressed and a set of significantly altered genes.
Differential expression is identified using a two-tailed pooled
t-test, and the corresponding p-values are corrected using the Bon-
feronni correction. A set of significantly altered genes is found by
mapping gene symbols to the collected focal aberrant regions [25,
26] identified by GISTIC [18] and RAE [19] algorithms. Next, the
Gene–Gene Relationship Network (GGR), a weighted undirected
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network, is defined. Nodes of this network represent the seed genes
and edges represent direct or indirect pair-wise relationships among
genes. The absolute value of the Pearson correlational coefficient
(PCC) is used to identify pair-wise relationships between genes, and
as a weight on each edge.

For any gene-pair (genei,genej), all three types of absolute PCC
value (GE-GE, GE-CNA, and CNA-CNA) are calculated, depend-
ing on data availability. The maximum of these is defined as the
data-driven property of that particular gene-pair and termed its
r_value. For the gene-pairs (genei, genei) this r_value is considered
to be 0. If an r_value is greater than some threshold, then a direct
relationship is defined for that particular gene-pair. The gene-pairs
for which a direct relationship is not found may still be connected if
an indirect relationship is identified. An indirect relationship
between two particular genes is a statistically significant simple
path joining those two genes in the PPI network (see Note 6). To
identify such statistically significant paths, the observed paths
between particular gene-pairs are compared with the path in a
random PPI network, which is generated in such a way that gene
interactions are randomly assigned while the network topology and
gene expression values are the same as those in the observed PPI
network. In other words, the random PPI network has the same
number of interactions (edges) as the observed one, but the genes
(nodes) of the observed PPI network are shuffled in the random
PPI network. The null hypothesis for this statistical significance test
is: the geometric mean of r_values of the simple path found in random
PPI network is greater or equal to that of the observed path. In order
to reduce the time complexity, a heuristic search is applied only for
those gene-pairs for which there is a connection in the PPI network
(see Note 6). All the simple paths between two genes with a fixed
path length are identified using a breadth first search (BFS) algo-
rithm. Furthermore, only those simple paths are selected in which
all the constituent genes have either GE, or CNA, or both datasets
available. Since there can be multiple such paths found, a path P∗

with maximum average PPI connectivity is selected:

P∗ ¼ max
P

1

n

Xn
l¼1

norm_degðgeneiÞ
( )

ð17Þ

where norm_deg(genei) is the degree of connectivity for genei nor-
malised by the global maximum connectivity in the PPI network,
and n is the number of genes along the path. The statistical signifi-
cance of the path P∗ is measured as above, and is selected if its
corresponding p-value is below 0.05. For the gene-pairs for which a
statistically significant path is found, an edge is added to the GGR
network, where the edge weight is the average of all the pair-wise
r_values of gene-pairs along the path P∗.
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3.4.2 Module Detection Next, a Voting based module detection algorithm identifies over-
lapping modules in the GGR network by combining To pological
and Data-driven properties. The name of the method—VToD—is
an acronym for this procedure. First, a pairwise score (vote) is
calculated for every pair {g, m} ∈ S using the following equation:

voteðg ,mÞ ¼ norm_degðmÞ
SPLðg ,mÞ þ r_valueðg ,mÞ ð18Þ

where above norm_deg(m) is the degree of connectivity of m nor-
malized by the global maximum PPI connectivity, SPL(g, m) is the
shortest path length between the two genes in the PPI network,
and r_value(g, m) is the relationship value calculated for the con-
structed network GGR. This definition states how much vote-score
a gene m can get from another gene g, for any pair {g, m} ∈ S.
Note, the vote(g, m) score in the above equation is not a symmetri-
cal measure because of the definition of the topological property
(norm_deg(m) in above equation). A high score indicates either (1)
a gene-pair {g, m} has high data-driven relationship r_values or (2)
any gene g is interacting with a genemwith a high topological value
in the PPI network. Note, the shortest path length SPL is con-
strained by a user-defined threshold to control the compactness of
the module. If any of the shortest paths has length above that
threshold, that path is ignored.

Next, for any gene g ∈ S, corresponding vote-scores with all
the genesm ∈ S (including g) are stored in a table. Here, vote(g, g)
is defined with the norm_deg(g) only, since r_value(g, g) ¼ 0, and
SPL(g, g) is not defined for the PPI network as it doesn’t contain
any self-loop. Next, the table for the gene g containing vote-scores
of all the genes m ∈ S is sorted in descending order of vote-score.
In that sorted table, the ranking of each genem is defined as its local
rank. Then, in that sorted table, the cumulated vote-score from the
top-ranked vote-scores of the m (∈ S) genes is calculated. If the
cumulated vote-score of the top-ranked m gene(s) is(are) within
the top k% (a user-defined threshold) of total cumulative vote-score
in that particular table (for gene g), then that(those) top-ranked m
gene(s) are considered as candidate representative gene(s) of that
particular gene g. Next, if the vote (g, m) score(s) of this(these) top-
rankedm gene(s) are within top vote_th% (a user-defined threshold)
of the distribution of all pair-wise vote-scores (considered as the
global rank of the gene m), then this(these) m gene(s) are finally
selected as a representative gene(s) of the particular gene g. Thus,
this technique makes it possible to find overlapping modules in the
network by allowing multiple representativem genes to be selected
for a particular gene g. More importantly, this method can select a
gene m ∈ S (i.e. a hub-gene in PPI network) as a representative
gene for multiple g ∈ S genes, thus revealing a modular structure.
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Next, these modular structures, called “pre-modules,” are formed,
each with a representative gene m in the center and aggregating all
the genes g that chosem. A pre-module is defined as the initial state
of a module before merging it with other pre-modules to get the
final module. After removing redundancies and small pre-modules
(typically with � 3 genes), a module merging algorithm is con-
ducted. Two pre-modules merge if their pair-wise members are
closely connected in the PPI network (topological property) or
highly related in GGR (data-driven property). For this purpose, a
pair-wise merging value MV(Ci, Cj) between any two pre-modules
Ci and Cj is calculated as follows:

MV ðCi,Cj Þ ¼ ICðCi,Cj Þ
ni

þ 1

ni � nj

X
gk ∈ Ci

X
gl ∈ Cj

r_valueðgk, glÞ ð19Þ

where ni and nj are the sizes of two pre-modules Ci and Cj,
respectively, and ni � nj (Note, here it is assumed that Ci is bigger
than Cj). Inter-connectivity IC(Ci, Cj) is a kind of topological
property relating Ci to Cj: it is the proportion of genes in Ci having
at least one PPI partner in Cj. The second term in the above
equation denotes the data-driven property for the pair Ci and Cj:
it is the average of the gene–gene relationship values over all pairs of
a gene in Ci with a gene in Cj. At each iteration of the module
merging procedure, two pre-modules with the highest pair-wise
merging value (calculated using the above equation) are merged
together and replaced by the newly merged module. This merging
process continues until the highest pair-wise merging value at some
iteration becomes less than some threshold merging_th (for the
details of this threshold selection, see supplementary method of
original article).

4 Validating Cancer Sub-networks

There are several ways to validate cancer modules identified by the
above procedures. Most of them involve statistical hypothesis test-
ing and are specific to the methodology used to identify modules.
However, there are a few general techniques that can be used to
validate modules, as follows:

4.1 Topological

Validation

Ideally, a modular network is expected to have dense intra-module
connections but sparse inter-module connections. Therefore, pro-
posed networks can be assessed for both high density of connections
within modules and high separability of component modules.
Equation 16 states the modularity measurement [48] which
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compares the connection-density of a particular module with that of
a module formed by making random connections among its con-
stituent genes. Similarly, the following equation quantifies the sepa-
rability of modules [48].

seperationScore ¼
XNM

s¼1

1� 2l s
ds

� �2
" #

ð20Þ

where NM is the number of modules, ls is the number of edges
within module s, and ds is the summation of the degrees of all the
edges within module s. Both “Modularity” and “Separability”
scores can be calculated using above equations (Eqs. 16 and 20,
respectively) where higher “Modularity” value indicates stronger
modular structure, and higher “Separability” score indicates a par-
ticular module is more easily separable from the original network
topology by deleting some edges, respectively.

4.2 Enrichment

Analysis

f-MeasureModules can also be validated using a quantity known as
an f-measure [48]. This quantity evaluates the accuracy of identified
modules by comparing them with known reference modules such
as: GO functional categories, known biological pathways, and
others. f-measure can be calculated using the following equation:

f �measure ¼ 2� Precision �Recall

Precision þRecall
ð21Þ

where Precision ¼ M\F ij j
Mj j and Recall ¼ M\F ij j

F ij j are the true positive
rate and positive predictive value, respectively. Here, M is a particu-
lar module and Fi is a known functional module. For example, a
Module M (typically, a set of genes) is mapped to a known func-
tional category Fi: “Cell Cycle,” then the Precision and the Recall
are the fractions of genes common to both M and Fi to the size of
M, and to the size of Fi, respectively. Bigger modules will have
higher Recall values, whereas smaller modules will have higher
Precision values. Therefore, the accuracy of any identified module
M can be measured by calculating the harmonic mean of these two
values as f-measure.

Hypergeometric Analysis A hypergeometric test can also be used
to assess modules statistically [48]. P-values can be calculated using
the hypergeometric distribution to indicate the significance of cor-
respondence between a module and a known functional category.

p�value ¼ 1�
Xk�1

i¼0

Xj j
i

� �
Vj j � Xj j
n � i

� �� �
Vj j
n

� � ð22Þ
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where Vj j is the total number of genes (i.e., all the genes in human
genome), Xj j is the number of genes in a known functional category
(such as a GO term or known pathway), n is the number of genes in
an identified module, and k is the number of genes in the intersec-
tion of that particular module with the known functional category.
Here, a low p-value indicates that the identified module is signifi-
cantly enriched in known functions or pathways. For example, a
“dhyper” function in a built-in R-package called “stats” can be used
to calculate p-values of the hypergeometric test [49].

5 Notes

1. In general, most of the integrative approaches that aim to find
cancer-related modules are based on a common hypothesis:
tumors are characterized by aberrations in specific biological
modules that are critical in terms of cancer initiation and malig-
nance. There are two major steps in such methods, (1) building
the network model, and (2) identifying modules (sub-
networks). In defining gene dependencies in network models,
some methods rely on PPI information only [15, 45], some on
data-driven information only [32, 50–52], and some on both of
those properties [13, 17].

2. In any integrated approach, higher statistical significance is
achieved by using paired sample data rather than unpaired
data. Moreover, pair-wise relationships between genes obtained
by integrative approaches applied to unpaired sample data may
produce false positive results [24]. Here, paired data indicates
using various heterogeneous data types (e.g., GE, CNA, meth-
ylation, miRNA) measured on the same samples. However,
appropriate data normalization and standardization techniques
are crucial to obtain correct inferences using paired data.

3. Integrating as many heterogeneous datasets as possible can
improve characterizations of driver genes and cancer modules.
Zhang et al. found that the integration of three heterogeneous
datasets (GE + CNA + mutation) provides additional useful
information and can produce statistically significant core mod-
ules in both glioblastoma and ovarian cancer compared to the
integration of two heterogeneous datasets (GE + mutation, or
CNA + mutation) [32]. Similarly, Azad et al. showed that mod-
ules found by combining topological and data-driven properties
(PPI + GE + CNA) of gene-pairs result in better functional
enrichment than those found by using only topological (PPI),
or only data-driven (GE + CNA) properties [17]. Akavia et al.
reported that combining CNA and GE provides greater sensi-
tivity for identifying RAB27A as a novel driver gene in a
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melanoma dataset. They also showed that this gene would not
be selected based on CNA alone [21].

4. The parameters of the iMCMC method for integrating somatic
mutation, CNA, and GE datasets are set in such a way that the
method can balance the influence of different data sources on
the network, and on the vertex and edge weights [32].

5. The problem of module identification in Wen et al. is formulated
as a binary Integer Linear Programming (ILP) problem, which is
NP-hard. To resolve this issue, the binary variables xi ∈ 0,1f g
are relaxed to continuous variables xi ∈ 0,1½ �. The problem is
then solved using a simple linear programming algorithm. To
choose the penalty parameter λ, the classification ability of the
identified modules is defined as follows:

CP ¼ max C � x1,x2, . . . ,xkð ÞT
� �

ð23Þ

where the term on the right-hand side is the maximum element
of the vector. The ILP is then solved for each value of λ between
0 and 1, in increments of 0.01, and the value of λ that produces
the smallest value of CP is selected. The justification for this is
the observation that smaller values of the elements of

C � x1,x2, . . . ,xkð ÞT indicate a greater ability to distinguish
between cancer and normal samples.

6. VToD combines GE, CNA, and PPI information among gene
pairs to find cancer-related modules. In searching for indirect
relationships among gene-pairs, VToD considers the sub-
network (with the genes for which pair-wise direct relationships
are not defined) as fully connected. Therefore, to find a statisti-
cally significant indirect relationship considering a set of inter-
mediate genes is an NP-hard problem. This problem is solved
heuristically by restricting pair-wise adjacency among gene-pairs
employing PPI information only, and converting that problem
into finding a statistically significant simple path between gene-
pairs. However, a threshold for the length of a simple path is a
crucial parameter for handling time-complexity in this regard.

References

1. Zhang S, Liu CC, Li W, Shen H, Laird PW,
et al (2012) Discovery of multi-dimensional
modules by integrative analysis of cancer geno-
mic data. Nucleic Acids Res 40:9379–9391

2. Davies H, Bignell GR, Cox C, Stephens P,
Edkins S, et al (2002) Mutations of the BRAF
gene in human cancer. Nature 417:949–954

3. Wan PT, Garnett MJ, Roe SM, Lee S,
Niculescu-Duvaz D, et al (2004) Mechanism
of activation of the RAF-ERK signaling

pathway by oncogenic mutations of B-RAF.
Cell 116:855–867

4. Santarosa M, Ashworth A (2004) Haploinsuf-
ficiency for tumour suppressor genes: when
you don’t need to go all the way. Biochim
Biophys Acta 1654:105–122

5. Vogelstein B, Kinzler KW (2004) Cancer genes
and the pathways they control. Nat Med
10:789–799

Integrating Heterogeneous Datasets for Cancer Module Identification 135



6. Hanahan D, Weinberg R (2011) Hallmarks of
cancer: the next generation. Cell 144:646–674

7. Jonsson PF, Bates PA (2006) Global topologi-
cal features of cancer proteins in the human
interactome. Bioinformatics 22:2291–2297

8. Qiu YQ, Zhang S, Zhang XS, Chen L (2010)
Detecting disease associated modules and
prioritizing active genes based on high
throughput data. BMC Bioinf 11:26

9. de Lichtenberg U, Jensen LJ, Brunak S, Bork P
(2005) Dynamic complex formation during
the yeast cell cycle. Science 307:724–727

10. Segal E, Shapira M, Regev A, Pe’er D, Botstein
D, et al (2003) Module networks: identifying
regulatory modules and their condition-
specific regulators from gene expression data.
Nat Genet 34:166–176

11. Subramanian A, Tamayo P, Mootha VK, et al
(2005) Gene set enrichment analysis: a
knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl
Acad Sci USA 102:15545–15550

12. Liu X, Liu ZP, Zhao XM, Chen L (2012)
Identifying disease genes and module biomar-
kers by differential interactions. J Am Med
Inform Assoc 19:241–248

13. Wen Z, Liu ZP, Yan Y, Piao G, Liu Z, et al
(2012) Identifying responsive modules by
mathematical programming: an application to
budding yeast cell cycle. PLoS One 7:e41854

14. He D, Liu ZP, Honda M, Kaneko S, Chen L
(2012) Coexpression network analysis in
chronic hepatitis B and C hepatic lesions reveals
distinct patterns of disease progression to hepa-
tocellular carcinoma. J Mol Cell Biol
4:140–152

15. Nepusz T, Yu H, Paccanaro A (2012) Detect-
ing overlapping protein complexes in protein-
protein interaction networks. Nat Methods
9:471–472

16. Iorns E, Lord CJ, Turner N, Ashworth A
(2007) Utilizing RNA interference to enhance
cancer drug discovery. Nat Rev Drug Discov
6:556–568

17. Azad AKM, Lee H (2013) Voting-based cancer
module identification by combining topologi-
cal and data-driven properties. PLoS One 8:
e70498

18. Beroukhim R, Getz G, Nghiemphu L, Barre-
tina J, Hsueh T, et al (2007) Assessing the
significance of chromosomal aberrations in
cancer: methodology and application to gli-
oma. Proc Natl Acad Sci 104:20007–20012

19. Taylor BS, Barretina J, Socci ND, DeCarolis P,
Ladanyi M, et al (2008) Functional copy-
number alterations in cancer. PLoS One 3:
e3179

20. Hur Y, Lee H (2011) Wavelet-based identifica-
tion of DNA focal genomic aberrations from
single nucleotide polymorphism arrays. BMC
Bioinf 12:146

21. Akavia UD, Litvin O, Kim J, Sanchez-Garcia F,
Kotliar D, et al (2010) An integrated approach
to uncover drivers of cancer. Cell
143:1005–1017

22. Jornsten R, Abenius T, Kling T, Schmidt L,
Johansson E, et al (2011) Network modeling
of the transcriptional effects of copy number
aberrations in glioblastoma. Mol Syst Biol
7:486

23. Schadt EE, Lamb J, Yang X (2005) An integra-
tive genomics approach to infer causal associa-
tions between gene expression and disease. Nat
Genet 37:710–717

24. Lee H, Kong SW, Park PJ (2008) Integrative
analysis reveals the direct and indirect interac-
tions between DNA copy number aberrations
and gene expression changes. Bioinformatics
24:889–896

25. TCGA (2008) Comprehensive genomic char-
acterization defines human glioblastoma genes
and core pathways. Nature 455:1061–1068

26. TCGA (2011) Integrated genomic analyses of
ovarian carcinoma. Nature 474:609–615

27. Edgar R, Domrachev M, Lash AE (2002) Gene
expression omnibus: Ncbi gene expression and
hybridization array data repository. Nucleic
Acids Res 30:207–210

28. The cancer genome atlas - data portal (2005)
https://tcga-data.nci.nih.gov/tcga

29. Herrero J, Diaz-Uriarte R, Dopazo J (2003)
Gene expression data preprocessing. Bioinfor-
matics 19:655–656

30. van de Wiel MA, Picard F, van Wieringen WN,
Ylstra B (2011) Preprocessing and downstream
analysis of microarray DNA copy number pro-
files. Brief Bioinform 12:10–21

31. Du P, Zhang X, Huang CC, Jafari N, Kibbe
WA, et al (2010) Comparison of beta-value and
m-value methods for quantifying methylation
levels by microarray analysis. BMC Bioinf
11:1–9

32. Zhang J, Zhang S, Wang Y, Zhang XS (2013)
Identification of mutated core cancer modules
by integrating somatic mutation, copy number
variation, and gene expression data. BMC Syst
Biol 7:S4

33. Wang Y, Xia Y (2008) Condition specific sub-
network identification using an optimization
model. Proc Sec Int Symp Opt Syst Biol.
http://www.aporc.org/LNOR/9/
OSB2008F42.pdf

34. Wen Z, Liu ZP, Liu Z, Zhang Y, Chen L
(2013) An integrated approach to identify

136 A.K.M. Azad

https://tcga-data.nci.nih.gov/tcga
http://www.aporc.org/LNOR/9/OSB2008F42.pdf
http://www.aporc.org/LNOR/9/OSB2008F42.pdf


causal network modules of complex diseases
with application to colorectal cancer. J Am
Med Inform Assoc 20:659–667

35. Futreal PA, Coin L, Marshall M, Down T,
Hubbard T, et al (2004) A census of human
cancer genes. Nat Rev Cancer 4:177–183

36. Kim YA, Wuchty S, Przytycka TM (2011)
Identifying causal genes and dysregulated path-
ways in complex diseases. PLoS Comput Biol
7:e1001095

37. Hinoue T, Weisenberger DJ, Lange CP, Shen
H, Byun HM, et al (2012) Genome-scale anal-
ysis of aberrant DNA methylation in colorectal
cancer. Genome Res 22:271–282

38. Bibikova M, Le J, Barnes B, Saedinia-Melnyk S,
Zhou L, et al (2009) Genome-wide DNA
methylation profiling using Infinium assay.
Epigenomics 1:177–200

39. Peri S, Navarro JD, Kristiansen TZ, Amanchy
R, et al (2004) Human protein reference data-
base as a discovery resource for proteomics.
Nucleic Acids Res 32:497–501

40. Stark C, Breitkreutz BJ, Reguly T, Boucher L,
Breitkreutz A, et al (2006) BioGRID: a general
repository for interaction datasets. Nucleic
Acids Res 34:D535–D539

41. Hermjakob H, Montecchi-Palazzi L, Lewing-
ton C, Mudali S, Kerrien S, et al (2004) IntAct:
an open source molecular interaction database.
Nucleic Acids Res 32:D452–D455

42. Ceol A, Chatr Aryamontri A, Licata L, Peluso
D, Briganti L, et al (2010) MINT, the molecu-
lar interaction database: 2009 update. Nucleic
Acids Res 38:D532–D539

43. Matthews L, Gopinath G, Gillespie M, Caudy
M, Croft D, et al (2009) Reactome knowledge-
base of human biological pathways and pro-
cesses. Nucleic Acids Res 37:D619–D622

44. Enright AJ, Van Dongen S, Ouzounis CA
(2002) An efficient algorithm for large-scale
detection of protein families. Nucleic Acids
Res 30:1575–1584

45. Cerami E, Demir E, Schultz N, Taylor BS,
Sander C (2010) Automated network analysis
identifies core pathways in glioblastoma. PLoS
One 5:e8918

46. Benjamini Y, Hochberg Y (1995) Controlling
the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat Soc Ser B
Methodol 57:289–300

47. Newman MEJ, Girvan M (2004) Finding and
evaluating community structure in networks.
Phys Rev E 69:026113

48. Zhang A (2009) Modularity analysis of protein
interaction networks. In: Zhang A (ed) Protein
interaction networks: computational analysis,
1st edn. Cambridge University Press,
Cambridge

49. R Core Team (2015) R: a language and envi-
ronment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria.
http://www.R-project.org/. ISBN 3-900051-
07-0

50. Vandin F, Upfal E, Raphael BJ (2012) De novo
discovery of mutated driver pathways in cancer.
Genome Res 22:375–385

51. Zhao J, Zhang S, Wu LY, Zhang XS (2012)
Efficient methods for identifying mutated
driver pathways in cancer. Bioinformatics
28:2940–2947

52. Miller CA, Settle SH, Sulman EP, Aldape KD,
Milosavljevic A (2011) Discovering functional
modules by identifying recurrent and mutually
exclusive mutational patterns in tumors. BMC
Med Genomics 4:34

Integrating Heterogeneous Datasets for Cancer Module Identification 137

http://www.R-project.org/


Chapter 8

Metabolic Pathway Mining

Jan M. Czarnecki and Adrian J. Shepherd

Abstract

Understanding metabolic pathways is one of the most important fields in bioscience in the post-genomic
era, but curating metabolic pathways requires considerable man-power. As such there is a lack of reliable,
experimentally verified metabolic pathways in databases and databases are forced to predict all but the most
immediately useful pathways.

Text-mining has the potential to solve this problem, but while sophisticated text-mining methods have
been developed to assist the curation of many types of biomedical networks, such as protein–protein
interaction networks, the mining of metabolic pathways from the literature has been largely neglected by
the text-mining community. In this chapter we describe a pipeline for the extraction of metabolic pathways
built on freely available open-source components and a heuristic metabolic reaction extraction algorithm.

Key words Metabolic pathway, Metabolic interaction extraction, Text-mining, Natural language
processing, Named entity recognition, Information extraction

Abbreviations

NER Named entity recognition
NLP Natural language processing
PPI Protein–protein interaction

1 Introduction

PubMed currently (as at February 2016) contains over 25 million
article records, and this number is increasing at a faster rate than
ever [1]. In some fields, researchers are encouraged, or even
required, to submit results to databases in a standard format. For
instance, upon solving the structure for a protein, an X-ray crystal-
lographer will submit the structure to the Protein Databank (PDB)
as well as submitting the results in a paper for peer review [2]. This
allows anybody with an Internet connection to find curated
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structures of proteins of interest quickly and efficiently. The data,
being in a standard format, is also easily consumed by computer
programs allowing large scale studies involving many structures to
be carried out. For instance, the CATH project has developed a
semi-automated system for classifying protein domain structures
through the comparison of structures in the PDB [3].

Unfortunately, this method of submitting results in a standard,
computer-readable language is found in few areas of bioscience.
Currently, the vast majority of data in many biomedical subdomains
is only available as unstructured text spread across many publishers’
websites.

The study of metabolic pathways is one such field that suffers
from a lack of manually curated data in databases. BRENDA is a
large database of curated metabolic reactions, but individual reac-
tions are not linked together to form pathways (meaning that there
is little motivation to curate complete pathways from single organ-
isms) [4]. KEGG [5] and BioCyc [6] are two databases that were
developed to curate metabolic pathways. Ultimately, however, the
databases are populated by human curators, which means it is
practically impossible to keep up with all new articles being pub-
lished. Training of a FlyBase Genetic Literature Curator, for
instance, can take 6 months in addition to the time taken to actually
perform a curation [7].

Computer processors are designed to follow very strict com-
mands. This is reflected in the languages that are used to command
computers, which, while incredibly varied, ultimately come down
to providing a list of instructions for the various pieces of hardware
within the computer. Therefore, the data which a computer pro-
gram is designed to read and process must be stored in a strict
format which the program can follow strict instructions to parse.
Computer hardware, programs, and data storage formats are all
designed from the bottom up with this philosophy in mind. Natural
language, however, isn’t designed, but is constantly evolving and
rules can often be hard to define. The English language is particu-
larly notorious for having significant exceptions to the majority of
spelling and grammatical rules.

Text-mining development in bioscience initially focused on
systems for named entity recognition (NER), the process of classi-
fying elements in text into predefined categories. Current state-of-
the-art NER tools (focusing on entities such as proteins, small
molecules, drugs, and organisms) are able to achieve very high
levels of accuracy—typically with F-scores greater than 90 % (see
Note 1 ). Focus has, therefore, shifted to interaction extraction, the
process of determining the nature of relationships between differ-
ent named entities. Interaction extraction can be used to determine
abstract relationships, such as gene–disease relationships, or more
direct, physical relationships, such as protein–protein interactions
(PPIs). As metabolic reactions fall into the latter category and the

140 Jan M. Czarnecki and Adrian J. Shepherd



extraction of PPIs is the topic upon which most research has
focused, a review of PPI extraction methods provides a useful
backdrop for the development of an extraction method for meta-
bolic reactions.

2 Existing Protein–Protein Interaction Extraction Methods

There are a range of experimental methods that have been devel-
oped to characterize PPIs ranging from narrow focused methods
such as X-ray crystallography, which offers the most convincing
evidence that two proteins form a stable complex, to broad scoped
methods such as yeast two-hybrid screens, which can find potential
binding partners from a large pool of proteins. The IntAct database
[8] (which contains curated PPIs from the 14 members of the
IMEx Consortium [9]) contains interactions extracted from more
than 14,000 publications (as of April 2016). While this is a monu-
mental manual effort, it is still only a small fraction of the available
material.

PPI extraction was the subject of one task at BioCreative II
[10] in 2006, where teams were tasked with extracting PPIs from
documents curated by IntAct and MINT (which were separate
databases at the time before merging in the IMEx Consortium).
Extracted interactions could then be compared to the gold stan-
dard, manually curated interactions. The best performing tool
achieved an F-score of 29 %, far lower than the high performance
achieved by NER tools. Two general approaches to the problem
were identified in the subsequent analysis of the submitted tools—
which have been termed as local association analysis and global
association analysis. Local association analysis identifies co-
occurring proteins at either the sentence or passage level and may
use other approaches such as interaction word lists and/or machine
learning techniques to determine if an interaction between the co-
occurring pair is described. Global association analysis focuses less
on the characteristics of individual sentences, but rather looks at the
co-occurrence of protein names multiple times in a document or
over the whole collection. Global association analysis is more suit-
able for extracting well-known interactions that are described fre-
quently in the literature, but only local association analysis is able to
determine novel interactions that have only been described once.
The method described here incorporates both local and global
association analysis.

Kabiljo et al. [11] carried out a comparison on a range of PPI
extraction tools including AkanePPI [12], OpenDMAP [13], and
Whatizit [14]. AkanePPI is a state-of-the-art tool that utilizes many
natural language processing (NLP) methods. OpenDMAP is a
general purpose information extraction platform which uses a heu-
ristic approach. The patterns for PPI recognition were created

Metabolic Pathway Mining 141



manually to adapt the tool to the task. Whatizit is a suite of tools
that can perform many bioscientific NLP tasks. The PPI extraction
tool in Whatizit, Protein Corral, uses three methods which utilize
co-occurrence and heuristic techniques.

A simple baseline method was also developed for the compari-
son. The method was co-occurrence based, looking for two protein
or gene names within the same sentence as well as an “interaction”
verb, such as binds or phosphorylates (a manually curated list of
“interaction” verbs was used), in between the two entities—a simi-
lar methodology to the Co3 method of Protein Corral. The tools
were evaluated on five PPI corpora. While performance across the
five corpora by each tool was variable, the simple baseline method
showed an overall performance that was comparable to the more
sophisticated methods, while being far simpler. We followed this
simple methodology in the development of a metabolic pathway
extraction method.

BioCreative III [15] proposed a slightly different PPI extrac-
tion task to that in BioCreative II. The task required the develop-
ment of a tool capable of classifying and ranking abstracts according
to their suitability for manual curation of PPIs in the full text. This
behavior is required by PPI databases, such as IntAct, to effectively
manage their curator man-hours and to prevent the needless cura-
tion of irrelevant articles. Semi-automated selection of articles for
manual inspection is common across the majority of biological
annotation databases, but is typically carried out using simple
PubMed searches. While effective at selecting articles relevant to a
particular entity, this method is inadequate when dealing with
complex events and interactions involving multiple entities [16].

Jamieson et al. used text-mining to recreate the HIV-1, Human
Protein Interaction Database [17]. Protein NER was carried out by
BANNER [18] while interactions in text were identified using
2 tools, the Turku event extraction system [19] and EventMiner
[20]. The NER and event extraction were applied to 3090 titles and
abstracts and 49 full-text articles achieving a precision, recall, and F-
score of 87.5 %, 90.0 %, and 88.6 %, respectively. The pipeline was
able to completely replicate over 50 % of the database. The team
observed that the greatest obstacles to the automated extraction
were grammatically complex sentences and sentences containing
poor grammar.

While new methods for extracting PPIs are regularly released
[21, 22], attention is increasingly shifting towards more complex
relationships, with a particular focus on biomolecular networks and
pathways [23] such as PPI networks [24, 25], signal-transduction
pathways [26–28], protein metabolism (synthesis, modification,
and degradation) [23], and regulatory networks [29, 30]. This
protein/gene-centric focus has been enshrined in most of the
competitive text-mining events (such as BioCreative [31–33] and
BioNLP [23]). Indeed, in spite of this new focus on networks and
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pathways, one of the most important sub-topics—the construction
and curation of metabolic pathways—has largely been ignored.

3 Metabolic Interaction Extraction

Humphreys et al. [34] developed the template-based EMPathIE
system which aimed to extract metabolic reactions with contextual
information such as the source organism and pathway name. The
system achieved 23 % recall and 43 % precision on a small corpus of
seven journal articles. EMPathIE is no longer under active devel-
opment (R. Gaizauskas, personal communication) and no tool has
since been released to attempt to solve the problem. There are
certain generic systems, such as the GeneWays system for “extract-
ing, analyzing, visualizing and integrating molecular pathway data”
[26] and the MedScan sentence parsing system [35], that could
potentially be applied to metabolic pathway extraction, but neither
are freely available.

There appears to be a perception that metabolic pathway
extraction is a significantly more difficult problem compared to
gene/protein interaction extraction. In evaluating the performance
of GeneWays, the developers chose the extraction of signal-
transduction pathways instead of metabolic pathways, suggesting
that the former problem was an “easier target.” Metabolic pathway
extraction has a number of specific challenges compared to PPI
extraction:

l Multiple entity types: Metabolic reactions consist of both pro-
teins and small molecules, while PPIs consist of a single entity
type (for the purposes of NER, genes and proteins are
indistinguishable).

l Entity mismatch: There is a mismatch between the type of
entities involved in a metabolic reaction, enzymes, and metabo-
lites, and those extracted by popular NER tools, genes/proteins,
and small molecules.

l Ternary and n-ary interactions: While PPIs are typically consid-
ered binary (e.g., “protein A binds to protein B”), metabolic
reactions can consist of many entities including an enzyme,
multiple substrates, and multiple products. Furthermore the
enzyme is optional and may or may not be present in a descrip-
tion of a reaction, and the number of metabolites can vary
significantly. With a greater number of entities the likelihood
of information being split over multiple sentences increases.

In developing the method we describe here, we focused on the
goal of providing assistance to database curators andmodel builders
as opposed to the fully automated curation of the literature. Such
systems are commonplace in large scale curation efforts, such as
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FlyBase [36] and the Comparative Toxicogenomics Database [37].
In this context, high recall is typically deemed to be of paramount
importance, although excessive numbers of false positives detract
from the usability of such systems [38].

4 Components for Developers

Although the systems described so far cover a wide variety of
general purpose and specialist requirements, the unique character-
istics of many bioinformatics projects necessitate the development
of bespoke solutions. Also, it is frequently the case that algorithms
tuned for one specific domain will outperform their general pur-
pose rivals. Fortunately, there are various standalone programs and
libraries available that encapsulate functional building blocks of
text-mining systems and are available for free, some of which have
been developed from the ground up for bioinformatics applications
or retrained on biological data. Since there are hundreds of NLP
components and libraries available from the broader computational
linguistics community, this section will give preference to those that
are of particular utility or interest to bioinformatics developers. All
the tools we discuss are available as Java libraries, the most popular
language in the biomedical text-mining community.

4.1 General Text-

Mining Tools

Libraries written in most programming languages exist for carrying
out basic NLP tasks such as sentence parsing and part-of-speech
tagging. One toolkit was found to fit our criteria: Apache
OpenNLP [39].

OpenNLP is a machine learning-based Java library and, as such,
requires extensive training to create a suitable probabilistic model.
While a large number of models are provided alongside the library,
they are all the result of training the library on general-use language
(typically from newspaper articles). The language used in biomedi-
cal articles, however, is highly specialized [40]. Buyko et al. [41]
showed that transferring OpenNLP components to the biomedical
domain was as simple as retraining the tool using a biomedical
corpus, however, and that a specially designed tool was not
necessary—for the low level text-mining tasks that OpenNLP
deals with, at least. OpenNLP was retrained separately on two
corpora, GENIA [42] and PennBioIE [43], and the subsequent
performance of five OpenNLP components was assessed. Each
component performed well when trained with either corpus, with
the sentence splitter, tokenizer, and parts-of-speech tagger achiev-
ing accuracies of approximately 99 % and the chunker and parser
achieving average F-scores of 92 % and 86 %, respectively. The
group have released the trained models [44], allowing OpenNLP
to be implemented with no need of further training.
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OpenNLP was incorporated into the previously mentioned
Mayo clinical Text Analysis and Knowledge Extraction System
where a number of components were built on OpenNLP compo-
nents trained on clinical data [45].

4.2 Named Entity

Recognition

NER, typically the first step taken in a text-mining operation, aims
to find entities within text and assign each to a predefined category.
Solutions have been developed for the recognition of a wide range
of biological entities, but here we focus on those relevant to meta-
bolic networks: genes/proteins, small molecules, and organism
names.

4.2.1 Gene/Protein NER The recognition of gene and protein names is one of the best
studied fields in biomedical text-mining with the task being the
focus of many early competitions, such as BioNLP and BioCreative.
Until 2008 the best performing, freely available tool was ABNER
which was able to achieve an F-score of 83.7 % on the BioCreative I
test corpus.

Leaman and Gonzalez, recognizing a lack of freely available
tools, developed BANNER, an open-source gene NER tool based
on conditional random fields [18]. BANNER achieved an F-score
of 82.0 %—coming between the 9th and 10th ranked entries of
BioCreative II—while ABNER achieved an F-score of 78.3 % on
the same test corpus. This performance was repeated by Kabiljo
et al. [11] who found that BANNER outperformed ABNER on
four different corpora.

4.2.2 Small Molecule

NER

The recognition of small molecules has been the focus of signifi-
cantly less research. In 2006, Corbett andMurray-Rust released the
first freely available chemical NER tool, OSCAR3 [46], followed by
OSCAR4 in 2011 [47]. OSCAR, with its ability to recognize both
vernacular and systematic names, is widely used. The first tool to
compete against OSCAR4, ChemSpot, was released in 2012 [48].
The only comprehensive comparison of these tools is found in the
ChemSpot paper where both tools were tested against the SCAI
chemical corpus [49]. OSCAR4 achieved an F-score of 57.3 %
while ChemSpot achieved 68.1 %. The method described here
utilizes OSCAR4, but ChemSpot would certainly be worth inves-
tigating in its place.

4.2.3 Organism Name

NER

Recognizing mentions of organism names is necessary to determine
the context of any entities or interactions found in an article.
LINNAEUS is principally a dictionary-based method which imple-
ments some heuristic rules [50]. A dictionary of organism name
synonyms was created using the NCBI Taxonomy database and
abbreviated names were generated for each entry. Additional syno-
nyms were identified that occur frequently in the literature—such
as patient referring to Homo sapiens.
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The tool performed well on a manually annotated corpus of
100 full-text articles from the PMC Open-Access Subset with
94.3 % recall and 97.1 % precision. The BioCreative III gene nor-
malization task required the entries to determine the source organ-
ism of genes in order to link them to database entries [33].
LINNAEUS was the only publicly available organism NER tool at
the time and was used by the vast majority of teams. While the
teams did note some ambiguity in species names and taxonomy
IDs, the performance of LINNAEUS was well regarded.

5 Case Study: A Metabolic Pathway Extraction Tool

Here we present a heuristic metabolic pathway extraction method.
The method can be split into four principal subtasks:

1. The retrieval of relevant documents to mine.

2. The extraction of individual metabolic pathways using a heu-
ristic text-mining algorithm.

3. The merging and linking together of individual reaction
extractions.

4. The determination of reactions relevant to the user.

5.1 Document

Retrieval

The challenge of retrieving full-text articles has long held back
biomedical text-mining. All article titles and abstracts can be
obtained using the mature and stable E-Utils API provided by the
NCBI [1]. As the API allows article records, containing the article
abstract, to be retrieved in bulk and in a common format, early text-
mining work in the biomedical community concentrated on the
mining of these easily obtainable abstracts. While mining abstracts
can return important data (as the significant findings of a paper will
be repeated in the abstract), a great deal of potential useful data is
only found in the full article. There has been a clear move towards
developing tools using full-text articles with the BioCreative III
tasks using corpora of full-text articles for the competition [33].

Unfortunately, publishers have been reluctant to allow their
publications to be mined. While it is possible to retrieve content
programmatically from the publishers’ websites [51] (known as
“screen scraping”), typically the Robots Exclusion Standard of
most publishers’ websites disallows access to screen scraping tools
(with the exception of search engine spiders, such as the Google-
bot). While the rules set by the robots.txt file are purely advisory
and rely on the cooperation of the spider, web administrators can
block access if they wish (see Note 2 ).

Here we will discuss the use of the NCBI E-Utils API to
retrieve relevant abstracts.
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1. The user specifies a pathway (or multiple pathways) of interest,
by MetaCyc ID(s), and an organism of interest, by NCBI
Taxonomy ID.

2. A series of PubMed queries (one for each metabolite found in
the “seed” pathway(s)) are constructed from this user-supplied
information. For instance, consider the user specifies MetaCyc
pathway “glycolysis I (from glucose-6P)” and the organism
Mycobacterium tuberculosis. The following query would be
constructed for the metabolite pyruvate (truncated lists of
synonyms are used for presentation purposes):

(("M.tuberculosis"[All Fields]) OR ("Mycobacterium
tuberculosis"[All Fields]) OR

("Bacterium tuberculosis"[All Fields])) AND
(("pyruvate"[All Fields]) OR

("pyruvic acid"[All Fields]) OR ("alpha-ketopro-
pionic acid"[All Fields]))

Organism synonyms are retrieved using the dictionary
provided by the LINNAEUS organism NER library (which is
based on the NCBI Taxonomy database) [50]. Pathway data is
retrieved using the BioCyc API, while metabolite synonyms are
retrieved from a local ChEBI database [52]. It is not advisable
to include all metabolites in the query—currency molecules,
such as ATP and ADP, should be excluded as they are not
meaningful in the identification of pathways and may lead to
the retrieval of many irrelevant articles.

3. Use the NCBI E-Utils API to find articles matching each
query. The API uses a REST interface and PubMed can be
queried using the following general URL:

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi

The following general parameter string can be supplied as
either GET or POST parameters (see Note 3), where {term}
is the search query and {retmax} is the maximum number of
articles to retrieve:

db¼pubmed&term¼{term} &retmax¼{retmax}

The request will return an XML document containing a list of
PubMed IDs corresponding to articles matching the query (see
Note 4).

4. The metadata for each article can be retrieved in bulk using the
following URL:

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi

The following general parameter string can be supplied as
either GET or POST parameters, where {id} is a PubMed
ID retrieved in the previous step:
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db¼pubmed&retmode¼xml&id¼{id} ,{id} ,{id} . . .

The request will return an XML document containing meta-
data (such as the title, authors, and abstract) for each PubMed
ID supplied (see Note 5).

5.2 A Heuristic

Metabolic Reaction

Extraction Method

Czarnecki et al. describe a pattern-based method for extracting
individual metabolic reactions from text [53], which was imple-
mented in this pipeline. Proteins and small molecules are recog-
nized using the NER tools BANNER and OSCAR4, respectively.
Patterns (such as substrate–product or enzyme–product–substrate)
are assigned to individual sentences and each pattern assignment is
scored regarding the match of entities extracted by BANNER and
OSCAR4 and also words occurring between the entities. For
instance, if two small molecules are assigned as substrate and prod-
uct, the substrate would be expected to be preceded by a reaction
word, while a production word would be expected to occur
between the two entities (seeNote 6). Other words such as variants
of the verb catalyze, prepositions (e.g., to, from, and by), and the
coordinating conjunction and are also accounted for. A training set
was used to calculate appropriate scores for these individual factors,
which are added together to create a final assignment score. The
highest scoring assignment, if greater than a given threshold, is
returned to the user.

5.3 Forming

Networks from

Individual Metabolic

Reactions

The previous stage results in a list of putative individual metabolic
reactions. Before a network can be formed, reactions must first be
assigned to the correct host organism (seeNote 7). We developed a
simple heuristic method—similar to entries in the gene normaliza-
tion task of BioCreative III [33]. Based on a small development
corpus of 30 documents, we propose the following simple rules in
order of priority:

1. If an organism is mentioned within a reaction sentence, the
reaction is associated with this organism. If multiple organisms
are mentioned, the reaction is assigned to all.

2. If the previous point does not apply, the reaction described will
belong to the first organism mentioned in the paper.

Multiple individual extractions may describe the same meta-
bolic reactions, but extracted from separate sources (or from sepa-
rate sentences within the same source). Working out that multiple
extractions refer to the same reaction is not trivial, however, as
different sources may use different names for the metabolites and
not all metabolites may be included (particularly side-metabolites,
such as ATP and ADP).

Solving both of these problems requires linking metabolite
names to common identifiers (such as SMILES and InChI). Fortu-
nately there are a number of databases that catalogue small
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molecule synonyms—the largest of which, PubChem [54], has
catalogued approximately 50 million compounds. As a great many
reactions may be extracted by the algorithm using web services to
retrieve the InChI for a given small molecule would be unsuitable.
Rather, a local database should be utilized. Here we describe the
use of ChEBI [55]—a smaller database than PubChem, more
focused on metabolic pathways.

1. The entire ChEBI database can be downloaded as a series of
tab-delimited files. The three files containing data necessary for
this task are compounds.tsv, names.tsv, and inchis.tsv.
These files can be simply read into an SQL database (such as
MySQL) and the synonyms indexed. More complex searching
is required, however, as names used by authors may not corre-
spond exactly the those held in the database (for instance,
punctuation is often variable in small molecule names).

2. While complex querying can be provided through the imple-
mentation of a full search index (see Lucene for a standard Java
solution), a simpler solution is to pregenerate variants that
disregard elements that are likely to be variable in small mole-
cule names. Consider the small molecule aldehydo-D-glucose 6-
phosphate(2�). The following variants can be generated:

(a) Remove round and square brackets with their content.

aldehydo-D-glucose 6-phosphate

(b) Remove stereochemistry identifiers.

aldehydo-glucose 6-phosphate

(c) Remove all whitespace.

aldehydo-glucose6-phosphate

(d) Remove non-word characters (the set of word characters
contain the 26 letters, 10 numbers, and underscore).

aldehydoglucose6phosphate

(e) Remove any non-letters.
aldehydoglucosephosphate

3. Putative small molecules extracted by OSCAR4 undergo the
same variant generation and the variants (a) to (e) are queried
until a match is found. If a match is found the putative metab-
olite is assigned to the corresponding InChI.

4. Determining whether two extracted reactions are referring to
the same reaction is not trivial even once InChIs have been
assigned to all the metabolites. While two extractions contain-
ing the exact same metabolites can safely be merged, consider
the following two reactions:

A ! C
A þ B ! C
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There are two different ways of merging the reactions:

l Taking the union (creating a reaction including all metabo-
lites from all the merged reactions)—this is the correct
approach when B is a correct extraction, but is a side metab-
olite (such as ATP) which is not always included.

l Taking the intersection (creating a reaction including only
those metabolites found in all the merged reactions)—this is
the correct approach if B is an incorrect extraction.

5. We have evaluated both methods, but found weaknesses with
both. Ultimately we decided to only merge reactions that were
exactly the same, but other strategies may be viable.

6. While joining reactions together to form pathways is usually
trivial (i.e., if the product of one reaction has the same InChI as
a substrate of a different reaction, the reactions can be joined),
currency molecules can be problematic. Currency molecules,
such as ATP, tend to form a small number of highly connected
nodes which the rest of the network clusters around (due to
their involvement in many unrelated reactions). We use a man-
ually curated list of currency molecules and recognized each
mention of a particular currency molecule as unique entities
(see Note 8). Therefore, completely separate reactions that
both happen to convert ATP to ADP will not be linked
together. There are problems with using a static list to identify
currency molecules, however, as a metabolite’s status as cur-
rency or non-currency can depend on context. While acetyl-
coenzyme A is often confined to side reactions, it is an integral
metabolite in the TCA cycle—pathways downloaded from
BioCyc using the API make no distinction between “currency”
and “integral” metabolites.

5.4 Assessing

Reaction Relevance

A network created by following the previous steps will typically be
very large, containing hundreds (and often thousands) of individual
metabolic reactions. The extracted reactions can be classified into
three categories:

l Extractions that do not match the content of the source
sentence—either a described reaction is extracted incorrectly or
the sentence does not even describe a reaction.

l Extractions that accurately represent a described reaction, but
are irrelevant to the user.

l Correct extractions that are relevant to the user.

Unfortunately the third category is invariably in the minority.
While there are a number of possible methods for determining
whether an extraction accurately represents a real reaction (for
example, counting the number of times the reaction is extracted,
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or finding the reaction in a database of known reactions such as
BRENDA—seeNote 9), here we will focus on possible methods for
determining whether a given reaction is relevant to the user.

Initially if the reaction matches a reaction in the seed pathway
submitted by the user to construct the PubMed queries, the reac-
tion will typically be relevant to the user. We have found, however,
that a reaction simply containing just a single metabolite found in
the seed pathway will typically not be relevant—particularly with
metabolites that are found in many pathways.

MetaCyc groups pathways together that have the same purpose
(such as the biosynthesis or degradation of a specific metabolite),
but in different contexts. Such pathways are distinguished by their
titles ending with Roman numerals (for instance, “glycolysis I” and
“glycolysis II” describe glycolysis from two different starting meta-
bolites). Pathways containing an extracted reaction can be found
and their name compared to those used to construct the seed
pathway. If a match is found, the extracted reaction is likely to be
relevant.

These methods, however, rely on the extracted reaction already
being known, though not necessarily in the same organism, and
being present in MetaCyc—the reactions in a novel alternative
pathway will not be found as relevant. We have identified two
general properties that correlate with relevance, however, that do
not require prior knowledge:

l The number of times a reaction is extracted.

l The similarity of the set of metabolites in the seed pathway and
the set of metabolites mentioned in a source document as
measured using Jaccard Index (see Note 10).

Depending on the task at hand, however, more properties may
be identified. For instance, if links between pathways are of interest,
reactions in an unbroken route connecting a metabolite in the seed
pathway to that of a pathway of interest could be marked as rele-
vant. Here we consider the identification of alternative pathways
where one pathway takes a different route between two metabo-
lites. The following steps describe how to correctly weight these
properties using a training set:

1. Identify pairs of pathways in MetaCyc from two organisms
which show different routes between the same two metabo-
lites. Separate a small number out to use as a training set while
the others will form a test set.

2. Run the reaction extraction algorithm and network building
method using one pathway in the pair as a seed pathway, but
specifying the organism of interest as the host of the other
pathway.
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3. Using the other pathway in the pair as gold standard relevant
reactions, calculate the probabilities of a reaction being relevant
with regard to the number of times it has been extracted. For
instance, if from 20 reactions that have been extracted 3 times,
5 are found in the gold standard relevance pathway, reactions
extracted 3 times have a 0.25 probability of being relevant.

4. Calculate the similarity between the sets of metabolites in the
seed pathway and in each source document using Jaccard
Index. Sort all extracted reactions by this score (if a reaction is
extracted from multiple sources, simply take the greatest Jac-
card Index of any of the sources). Calculate the precision of
relevant reactions (i.e., reactions found in the gold standard
relevance pathway) in a moving window at each reaction in the
sorted list. Plot the Jaccard Index assigned to each reaction
against the precision of relevant items and calculate a curve of
best fit. The equation of the curve will be used to calculate a
probability of relevance using a given Jaccard Index.

5. Find branches connecting metabolites from the seed pathway.
Starting with such a metabolite, identify each reaction contain-
ing the metabolite as a substrate. Then do the same with the
products of these identified reactions and so on until another
metabolite from the seed pathway is discovered, the route
loops back on itself, or the route simply ends (see Note 11).

6. As the pairs of metabolic pathways in the training set only have
one alternative branch each, it is not possible to calculate a
meaningful probability for whether a given branch in the
extracted pathway is relevant. Branch relevance is instead cal-
culated from the length of the branch (a route containing only
two reactions connecting 2 metabolites found in the seed
pathway is more likely to be relevant than a route containing
6 reactions) and the correctness of each individual reaction
(a single incorrectly extracted reaction should lower the rele-
vance of the entire branch). The product of the individual
correctness probabilities can be calculated to take into account
both of these factors.

5.5 Outputting the

Extracted Pathway

There are a number of different use cases that demand the extracted
pathway in different formats. For a developer implementing the
tool as a library the extracted pathway should be returned in a
computer readable format, such as the XML-based format SBML
(for which there are mature Java libraries). An end-user, however,
would typically prefer the pathway in a human readable format.
This could entail outputting the extracted reactions (ordered by
relevance score, for instance) or as a network diagram. While there
are many network drawing libraries, outputting files that can be
drawn by a separate package, such as Cytoscape (see Note 12),
would be trivial to develop and could fit well into the user’s
workflow.
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6 Concluding Remarks

While machine-learning methods typically produce the best perfor-
mance of methods applied to text-mining tasks, heuristic methods,
such as the method described here, still have an important role in
the field. In a field such as metabolic pathway extraction, where
little work has been carried out, heuristic methods can be proto-
typed relatively quickly and can act as a baseline for more sophisti-
cated methods that follow. In addition, machine-learning methods
rely on the availability of large quantities of marked-up text for
training. For tasks such as NER and PPI extraction, large corpora
have been developed which have greatly aided the development of
methods. With no metabolic reaction corpus currently available,
however, machine-learning methods are not a serious option.

Despite this, we have found that the methods described here
perform strongly—roughly in line with methods used for PPI
extraction. Nevertheless, there are many opportunities to improve
the method:

l We have described the retrieval of abstracts and full-text open-
access articles from PMC. Unfortunately full-text non-open-
access articles have traditionally been impossible to obtain (with-
out contravening web scraping rules), limiting the practical use
of text-mining. There are signs that this is changing, however,
with publishers such as Elsevier releasing APIs for accessing their
libraries (although this has not been without controversy). Such
APIs, or the general CrossRef API, could be implemented in the
strategy we have described.

l The assignment of reactions to a specific organism is a key step in
the pipeline. Incorrect assignments can lead to reactions from
the wrong organism being included in the results or to the
hiding of correct information. The organism assignment
method described here uses a very simple method and was tested
on a small corpus. While the method generally performs well,
the significant effect of any errors may warrant the development
of a more sophisticated method.

l The assignment of InChIs to metabolites is another key step in
the pipeline. A failure to assign an InChI to a metabolite would
prevent the reaction from being merged with other occurrences
of the same reaction and from being linked to other reactions
through the particular metabolite. While the variant generation
method we have shown for the fuzzy searching of metabolite
names performs well with anticipated variants (such as missing
stereochemistry identifiers), other variants, such as incorrect or
rare spellings, are not possible to foresee (see Note 13). A full
search index, provided by a Java library such as Lucene, would
allow more sophisticated fuzzy matching.
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l When discussing the relevance of extracted reactions, we have
focused on the identification of alternative pathways (specifically
different routes between the same two metabolites). Other reac-
tions may be relevant, however, depending on the user’s needs.
The user may simply want to identify evidence for an already
established pathway or they might be interested in links to other
pathways or metabolites. Consequently, it would be possible to
develop multiple relevance algorithms and allow the user choose
the most appropriate. However, a more detailed discussion of
these options lies outside the scope of this chapter.

7 Notes

1. The quantitative assessment of text-mining systems tends to
involve the use of corpora—collections of documents with
entities and relationships manually annotated. The system
being assessed is run on the text within a corpus and the results
compared to the marked-up elements using the following
measures:

Precision The proportion of extracted instances that are cor-
rect extractions.

Precision ¼ true positives

true positives þ f alse positives

Recall The proportion of relevant instances that are cor-
rectly extracted.

Recall ¼ true positives

true positives þ f alse negatives

F1-score (Often abbreviated to F-score ) An overall measure
of accuracy—the harmonic mean of precision and
recall.

F1-score¼ 2� precision � recall

precision þ recall

2. We have investigated the use of web scraping to retrieve full
articles and while most publishers did not block access when
using a very conservative method with long delays, some pub-
lishers blocked us regardless.

3. While submitting the query as a GET parameter is typically
easier to code, there is a character limit which is easy to reach
with a small molecule with many synonyms. POST, however,
has no such limit.

4. If the full-text of the article is held in PubMed Central, this
XML document will contain the PMC ID. This does not
guarantee that the article is open-access and can be retrieved
using the E-Utils API, however.
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5. A similar query can be used to obtain articles from PMC if you
wish by changing db¼pubmed to db¼pmc. If the article is open-
access the returned XML document will contain the full-text
article.

6. A reaction word typically refers to the substrate and describes
the reaction, either specifically (e.g., hydrolysis) or generally
(e.g., converts). A list of specific reaction words were inferred
from the naming of enzymes in the Enzyme Classification (for
instance, alcohol dehydrogenase leads to the reaction word dehy-
drogenates) while the general reaction words were simply com-
plied from example text. Production words (e.g., forms,
produces) refer to the product. The word lists, in fact, hold
the word stems so that all variants need not be included.
Stemming was performed using a Java implementation [56]
of the standard Porter stemming algorithm [57]. See [53] for
the full list of words.

7. While the literature search strategy should retrieve articles rele-
vant to a specific organism, it remains necessary to assign
individual reactions to an organism as articles rarely mention
just a single organism. The organism of interest may be men-
tioned in passing in an article abstract while the article deals
principally with a different organism. Reactions in such an
article should not be assigned to the organism of interest. An
article dealing with the organism of interest may compare
against reactions in other organisms. Such reactions should be
recognized as not belonging to the organism of interest.

8. The following molecules are recognized (by their InChI) as
currency molecules: NAD+, NADH, NADP+, NADPH, ATP,
ADP, AMP, C, O, N, H+, CO2, and H2O.

9. To develop a correctness measure extract a number of pathways
using the algorithm and calculate the probability of a reaction
being correct given one or more features. For instance, con-
sider that the number of times a reaction is extracted is identi-
fied as the sole feature relevant to reaction correctness. If 60 %
of the reactions extracted once in the training set were correct
extractions, reactions extracted once would achieve a correct-
ness score of 0.6.

10. The Jaccard Index measuring the similarity of two sets is calcu-
lated by dividing the number of features common to both sets
by the total number of features. For instance, if a seed pathway
contains 10 metabolites and an article mentions 5 of these
metabolites in addition to a further 20 small molecules not
found in the seed pathway, the Jaccard Index would be calcu-
lated as follows:
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J ðA,BÞ ¼ A \ Bj j
A [ Bj j

¼ 5

10þ 25� 5

¼ 5

30
¼ 0:167

11. While this process can continue until these conditions are met,
we have found it useful to include a branch length threshold as
longer branches are more computationally expensive to calcu-
late and are typically not significant. We used a maximum
branch length of 6.

12. While Cytoscape can draw SBML files directly, it cannot read
custom annotations where relevance scores would be stored.
Reactions should instead by outputted to CSV files (one con-
taining entity attributes and another containing relationships
between entities) which can be used to read in arbitrary
attributes.

13. For instance, consider the small molecule D-glucose 1,6-bispho-
sphate. The search strategy would identify glucose-bisphosphate
as the same molecule, but not D-glucose 1,6-bisphosfate, despite
the latter’s closer spelling overall.
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Chapter 9

Analysis of Genome-Wide Association Data

Allan F. McRae

Abstract

The last decade has seen substantial advances in the understanding of the genetics of complex traits and
disease. This has been largely driven by genome-wide association studies (GWAS), which have identified
thousands of genetic loci associated with these traits and disease. This chapter provides a guide on how to
perform GWAS on both binary (case–control) and quantitative traits. As poor data quality, through both
genotyping failures and unobserved population structure, is a major cause of false-positive genetic associa-
tions, there is a particular focus on the crucial steps required to prepare the SNP data prior to analysis. This
is followed by the methods used to perform the actual GWAS and visualization of the results.

Key words Genome-wide association, SNP cleaning, Population stratification, Imputation, Case–-
control, Quantitative trait

1 Introduction

Unlike single gene disorders (such as Cystic fibrosis or Huntington’s
disease), complex traits (e.g., height, body mass index) and diseases
(e.g., schizophrenia, Type 2 diabetes) are the result of the combina-
tion ofmany genes and environmental factors, with each gene variant
individually affecting an individual’s trait or disease risk by a small
amount [1]. While we had been successful at the elucidation of the
genes and genetic variants underlying single gene disorders, no genes
underlying complex traits had been identified prior to the advent of
genome-wide association studies (GWAS) [2].

GWAS test the association of hundreds-of-thousands or
millions of single-nucleotide polymorphisms (SNPs) across the
genome with complex traits and diseases. While the first GWAS
occurred earlier [3, 4], the first large GWAS using SNPs that cover a
large percentage of the genome came from the Wellcome Trust
Case-Control Consortium (WTCCC) in 2007 [5]. In the 5 years
following that, over 2000 loci that were significantly and robustly
associated with complex traits were identified [6], with the number
of significant SNP-trait associations surpassing 14,000 in 2013 [2].
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The analysis of GWAS data has a number of statistical chal-
lenges and potential pitfalls. In particular, false-positive associations
can be generated through population stratification and poor quality
genotyping [7]. This chapter will discuss stringent preparation of
data for GWAS to avoid these pitfalls and the subsequent analysis
and visualization of the results.

2 Data Quality Control and Cleaning

The most important and time-consuming task in a GWAS is the
preparation of the data. As the final analysis will be testing the
association of hundreds of thousands, or millions, of SNPs with a
phenotype, even small systematic biases can lead to large numbers
of false-positive results, and potentially false-negative, findings [8].
The cleaning process is generally divided into two steps: first
removing any individuals with poor quality data and then removing
SNP markers that have substandard genotyping performance.
Performing the per-individual steps first prevents individuals with
poor quality genotypes having an undue influence on the removal
of SNP markers in the later step.

2.1 Per-Individual

Quality Control

Quality control at an individual level aims to remove samples that
have issues affecting their genotypes throughout the genome. This
will be divided into five steps: (1) removal of individuals with excess
missing genotypes, (2) removal of individuals with outlying homo-
zygosity values, (3) remove of samples showing a discordant sex,
(4) removal of related or duplicate samples, and (5) removal of
ancestry outliers. As the removal of an individual from the analysis is
costly—both in terms of the cost of the genotyping and the time
spent preparing the DNA sample—it is important to spend time
during the initial study design to ensure to the extent possible that
all individuals are from a common ancestral background and that
extracted DNA is of high quality.

1. Removal of individuals with excess missing genotypes: Modern
genotyping arrays call the genotype at a SNP by comparing the
intensity of florescence of the two alleles [9, 10]. Clusters are
formed for individuals with high intensity for the A allele and
low intensity for the B allele, for individuals with high intensity
for the B allele and low intensity for the A allele, and for those
with intermediate intensities for both alleles. Individuals falling
in these clusters are given the genotypes AA, BB, and AB,
respectively (Fig. 1). Any individual falling outside these geno-
type clusters is given a missing genotype. Large numbers of
missing SNP calls for an individual indicate that the genotype is
failing to fall into any of these clusters, which can be caused by
low quality or concentration of the DNA used for genotyping.
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Samples with a high missingness rate also tend to have higher
genotyping error in the genotypes that are called, so need to be
removed completely from analysis. Typically, a threshold in the
order of 5 % missingness is used to determine which samples
need to be removed; however, an appropriate threshold should
be determined for each experiment by looking at the distribu-
tion of missingness across samples and removing the outliers.
This step is particularly important when using a case–control
design, especially when the DNA extraction was performed
separately for cases and controls, as differential genotype qual-
ity may correlate with disease status and thus introduce a bias to
the analysis [7].

2. Removal of individuals with outlying homozygosity values:
The proportion of homozygous (or inversely heterozygous)
genotypes across an individual’s genome (excluding sex chro-
mosomes) can detect several issues with genotyping. Average
heterozygosity correlates with genotype missingness such that
samples with high missingness tend to have lower average
heterozygosity, although a reduction in heterozygosity can
also reflect inbreeding. Sample contamination, where multiple
samples are accidentally genotyped on a singe array, results in
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Fig. 1 Example of SNP genotype clustering. Three distinct classes of SNPs can be seen corresponding to the
AA, AB, and BB genotypes. A few individuals (colored gray) fall outside of these clusters and are unable to be
assigned a genotype
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high average heterozygosity. The average value of the propor-
tion of heterozygous genotypes will vary across populations
and genotyping platforms and as such the high and low thresh-
olds for sample removal need to be determined by examining
the distribution in your cohort.

3. Removal of samples showing a discordant sex: Determining
whether an individual is male or female is straightforward
from genotyping array data. Because males only have a single
copy of the X chromosome, they cannot be heterozygous for
any markers (outside the small psuedo-autosomal regions at
the end of the chromosome). Depending on the genotype-
calling algorithm, males may have a few heterozygous geno-
types due to the low background genotyping error rate,
although some platforms consider these as missing values.
Starting with females, individuals with low heterozygosity
across the X chromosome are indicative of a sample mix-up
with a male. For males, samples with high heterozygosity—or
excess missingness—are likely to be females. Provided males
and females have been randomly placed on plates for genotyp-
ing, patterns of mismatching sex can be used to rectify potential
plating errors.

4. Removal of related or duplicate samples: When using popula-
tion cohorts for GWAS, it is important to exclude related or
duplicated individuals from the analysis. While the case for
removing duplicated individuals is obvious, even individuals
with a relatively distant relationship can bias the analysis. For
example, if we have two related cases in a case–control analysis,
their genotypes being on average more similar to each other
than the rest of the cohort will provide a slight bias to the
estimate of the allele frequency in cases and its associated
standard error [8]. Even this small bias is important when
considering the number of statistical tests being performed.
Duplicate and related individuals are detected using the Iden-
tity-by-State (IBS) metric, which measures the average propor-
tion of alleles shared by two individuals across the autosomal
genome. The IBSmeasure can be converted to a measure of the
degree of relatedness between a pair called Identity-by-Descent
(IBD). IBD is interpreted as the proportion of the genome that
is shared between two individuals. For duplicate samples, or
monozygotic twins, we expect that IBD ¼ 1, IBD ¼ 0.5 for
first-degree relatives and 0.25 for second-degree relatives. A
maximal threshold of IBD ¼ 0.1875 (which is halfway
between that expected of second- and third-degree relatives)
is common [8], although selecting a smaller threshold that
removes outlying pairs from your cohort is warranted. If any
pair of individuals is found to be related, it is best to remove the
one with the lowest genotyping rate as determined earlier.
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5. Removal of ancestry outliers: Population stratification is a
major source of bias in GWAS, as it is common for disease or
quantitative traits to have different frequencies or distributions
across populations [11]. This is a particularly important con-
sideration for case–control studies although quantitative trait
studies are also affected. For example, Campbell et al. [12]
performed an association analysis on two groups of individuals
of European descent that were discordant for height and iden-
tified an association with the LCT locus. This locus has histori-
cally undergone strong selection in certain European
populations, resulting in the frequency of its variants differing
significantly across the populations who also differed in average
height. While this may be considered an extreme example, even
small amounts of population stratification in an apparently
homogeneous population can bias association results.

The most common method used to detect ancestral outliers
is principal component analysis (PCA), although other meth-
ods such as multidimensional scaling can equally be used.
Principal component analysis is a multivariate statistical method
that produces a set of uncorrelated variables (principal compo-
nents) such that the first principal component explains the most
variation in the data, followed by the second, and so on. Using
a reference population with large ancestry differences ensures
(at least) the first two principal components reflect major ances-
tral differences, with a commonly used reference being the
HapMap data [13] that includes populations from Africa
(YRI), Asia (CHB þ JPT), and Europe (CEU). When calcu-
lating principal components it is important to first filter the
SNPs into an approximately independent subset of approxi-
mately 50,000 SNPs to avoid undue influence of regions with
high linkage disequilibrium.

Once the principal components are generated from the ref-
erence populations, the PCA model is applied to the study
cohort to calculate their principal component values, allowing
them to be clustered alongside the HapMap individuals
(Fig. 2). Any outlying individuals should be removed from
the analysis, with a typical threshold being any individuals
that are further than four standard deviations away from the
cluster mean.

2.2 Per-Marker

Quality Control

The second stage of genotype cleaning involves looking at individ-
ual SNPs to determine genotype accuracy. As discussed earlier,
genotypes at each SNP are typically called by clustering individuals
into three clusters representing AA, AB, and BB genotypes. Ideally
each individual cluster plot would be investigated to confirm the
separation of clusters and thus accuracy of genotype calling. How-
ever, this is impractical with current genotyping arrays that have
hundreds of thousands of SNPs. Instead, statistical metrics of SNP
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quality are used to determine whether to remove them from the
analysis. While every SNP removed is potentially a missed associa-
tion, an attempt will be made to recover them using imputation in
the next section. This stage will be divided into four steps: (1)
removal of SNPs with excess missing genotypes, (2) removal of
SNPs that deviate from Hardy–Weinberg equilibrium, (3) removal
of SNPs with low minor allele frequency, and (4) comparing minor
allele frequency to known values.

1. Removal of SNPs with excess missing genotypes: Poor separa-
tion of clusters during genotype calling will result in an increase
in the number of individuals falling into a region that is not
clearly in one genotype cluster or another and thus having their
genotype called as missing. A SNP should be excluded from
further analysis if it has greater than 5 % missing genotypes,
although more stringent thresholds have also been applied.

When analyzing case–control association studies, a second-
ary check of the missing data rates is required. As missingness
can be nonrandom with respect to the underlying genotype,
differential missing genotype rates between cases and controls
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Fig. 2 Principal component analysis to detect ancestral outliers in a study population. The four HapMap
populations representing the three major ancestral groups are used as anchors to analyze the study population
(black crosses). In this example, the majority of the study population is of primarily European ancestry and is
clustered around the CEU population. A few individuals show admixture with a proportion of Asian ancestry
and need to be removed before performing the GWAS analysis
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can lead to false-positive results. Any SNP showing a difference
in missingness with p < 10-6 should be removed from further
analysis. This step is particularly important if the case and
control cohorts have been collected at different times as there
may be a difference in DNA quality between the cohorts.

2. Removal of SNPs that deviate from Hardy–Weinberg equilib-
rium: The principle of Hardy–Weinberg equilibrium (HWE)
provides us expected genotype frequencies given an allele fre-
quency. Poor genotype calling, including issues due to poor
cluster separation, can result in deviations from genotype fre-
quencies expected under HWE [14]. Typically a threshold of
p < 10-6 is used to exclude SNPs from further consideration.
One caveat is that selection can also cause deviations from
HWE, and thus exclusion due to this could result in missing
important disease associations [15]. Therefore, in case–control
studies, only the controls should be used to screen for devia-
tions from Hardy–Weinberg.

3. Removal of SNPs with low minor allele frequency: Typically,
any SNPs with a minor allele frequency less than 1 % are
removed from the analysis. SNPs at this frequency have very
few individuals with heterozygous genotype or the rare homo-
zygous genotype and thus it is difficult to determine accurate
genotype clusters when calling genotypes. Also, there is low
power to detect associations for SNPs at low frequencies and
alternative strategies for association testing combining multiple
variants should be used [16].

4. Comparing minor allele frequency to known values: A final
check of genotype quality is to compare the minor allele fre-
quency of the called genotypes to highly genotyped cohorts
such as the HapMap [13] and 1000 Genomes samples [17].
While there will be difference in allele frequency between the
two cohorts due to ancestry differences and sampling variation,
an overall similarity in allele frequencies ensures the annotation
of the SNPs being analyzed is correct and individual deviations
are a sign of genotyping error.

3 Imputation

Genotype imputation is the process of predicting, or imputing,
genotypes that are not known in a sample of individuals. This uses
a reference panel of densely genotyped individuals to impute SNP
genotypes for a study set that have only been genotyped at a subset
of those SNPs. Predicting these unobserved SNPs increases the
amount of SNPs that can be tested for association, which in turn
increases the power of the study and the ability to fine-map the
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causal variants [18]. It also facilitates a meta-analysis of multiple
cohorts by ensuring that all cohorts have a common set of SNPs.

Genotype imputation generally is performed in two steps. First,
the samples being imputed are phased—that is their genotypes are
separated into their two component haplotypes. While this step is
not strictly necessary for some imputation software, performing the
haplotyping step separately can improve overall computational per-
formance. The second step is to fill in missing genotypes in the
target sample using a reference panel of haplotypes with a dense set
of SNP. The basic principle relies on finding sections of a haplotype
in the reference population that share SNP alleles with the haplo-
type being imputed, which indicates that region of the genome is
descended from a common ancestor and thus carries the same SNP
alleles across the whole haplotype.

Clearly, the larger the reference panel of haplotypes, the greater
chance of finding a matching haplotype and the more accurate the
imputation will be. Initially the HapMap populations were used as a
reference for imputing, but larger reference samples are continu-
ously becoming available, including the 1000 Genomes individuals.
Even when imputing a sample from a single ancestral background,
the imputation accuracy is improved by using a reference panel
covering many ancestral backgrounds [19].

After imputation, each SNP is given a set of probabilities of
having the three possible genotypes. A number of measures have
been proposed to describe the accuracy of imputation at a given
SNP, although there is a strong correlation between each of them.
These statistics provide an R2 measure that lies within the range of
0–1, with a value of 1 indicate there is no uncertainty in the
imputed genotypes and 0 indicating that imputation provided no
information on that SNPs genotypes. A SNP imputation R2 value
in a sample of N individuals has the equivalent power to having
N � R2 actually genotyped individuals [18]. Any SNPs with poor
imputation accuracy are typically filtered out before any association
analysis. The threshold used depends whether the genotypes prob-
abilities are being used in the analysis, or whether a “best-guess”
genotype will be used by selecting the genotype with the highest
probability. When using genotype probabilities, a low threshold of
R2 > 0.3 can be used, although there is no bias introduced by
including all SNPs. A much more stringent threshold of at least
R2 > 0.8 should be used when considering best-guess genotypes.
If using best-guess genotypes, it is important to repeat the filtering
for Hardy–Weinberg equilibrium after the imputation.

4 Association Testing

After preparing the genetic data, performing the actual association
analysis is relatively straightforward. At each SNP in the genome, a
simple statistical test is performed to assess the association between
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the SNP and trait of interest. The analysis of quantitative traits and
disease (or binary) traits will be considered separately.

4.1 Quantitative

Traits

Genetic association analysis for quantitative traits is performed
using a linear regression. Typically a simple model is considered,
where each SNP is encoded 0, 1, or 2 representing the number of B
alleles in the genotypes AA, AB, and BB, respectively. For imputed
SNPs the equivalent value is calculated by taking 2 � PBB þ PAB
where PBB and PAB are the probabilities of genotypes BB and AB,
respectively. This is referred to as the additive model of association
as each copy of the B allele is represented as adding to the trait
value. While it is possible to test more complex modes of genetic
inheritance, in general we do not know the mechanism of inheri-
tance at a SNP a priori and in this case the simple additive model is
usually used.

Genetic association at each SNP in the genome is tested by
performing a linear regression of the trait value of the SNP value.
The use of a regression framework allows the inclusion of any
known covariates that may affect the trait, such as age or sex. Due
to the large number of statistical tests being performed, it is partic-
ularly important that the assumptions underlying the regression
model are satisfied. Of particular importance, the normality of
residuals needs to be ensured under the null hypothesis of no
association. If needed, this can be achieved by rank normalizing
the trait data, in which the trait is scaled such that it becomes
normally distributed. If covariates with large effects are included
in the analysis, it is preferential to correct for these in a linear
regression first and then ensure the normality of the residuals
from this model.

4.2 Disease Traits Genetic association tests for disease traits test whether the propor-
tion of B alleles at a SNP differs between cases and controls. This
tests for a multiplicative model of association, where each copy of
the B allele increases the risk of developing the disease by a factor r
for each B allele carried, i.e., a baseline risk of b for genotype AA, a
risk of br for genotype AB, and a risk of br2 for genotype BB. Again
more complex models could be applied to the data, but the true
inheritance model is generally unknown and thus multiplicative
models are used in the first instance.

Testing for association at a SNP can be done using a simple chi-
square contingency table test with a 2 � 2 matrix containing the
counts of A and B alleles for cases and controls in each row. A
Fisher’s Exact Test could also be used, although cell counts are
generally large enough to use the chi-square approximation given
the filtering of rare SNPs that was performed during the data
cleaning. For imputed data, the number of B alleles in an individual
can be generated as earlier for quantitative traits and the total across
all cases and controls taken. This will end up with noninteger
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number counts for each cell in the contingency table, meaning the
Fisher’s Exact Test cannot be used. If covariates are to be included
in the analysis, a logistic regression framework is used instead.
When no covariates are used, a logistic regression is statistically
equivalent to the contingency table model.

4.3 Significance It is important to correct for the large number of tests performed in
a GWAS study when assessing the significance of a result. Correct-
ing for the number of SNPs tested using (e.g.) a Bonferroni cor-
rection is overly conservative due to the linkage disequilibrium
between SNPs, particularly when using imputed data. It has been
shown that a significance threshold of 5 � 10�8 corrects for the
effective number of independent tests genome-wide [20]. A less
stringent threshold of 1 � 10�5 is widely used to indicate “sugges-
tive” significance, although many results are expected to achieve
this level of significance in a typical GWA study.

4.4 Visualization of

Results

GWAS results are typically represented using a Manhattan plot,
with genomic locations along theX-axis and the negative logarithm
(base 10) of the p-value along the Y-axis, with each point signifying
an individual SNP (Fig. 3a). The SNPs with the strongest associa-
tions will have the greatest negative logarithms and will tower over
the background of unassociated SNPs—much like skyscrapers
in the Manhattan skyline. This plot provides an additional check
on the quality of the association test, as multiple SNPs should be
contributing to each peak, especially when using imputed data. A
single outlying SNP can indicate poor quality genotyping and the
initial clustering of the genotypes for that SNP should be inspected.
In addition, a Manhattan plot showing significant points occurring
across the genome should be considered suspect and the presence
of confounder effects such as genotyping batch effects (particularly
for case–control studies), undetected relatedness and sample dupli-
cations, or population stratification will need to be reassessed.

A QQ plot is a common way to demonstrate the lack of con-
founding effects. In this plot, the ordered observed negative loga-
rithm of the p-values is plotted against the expected distribution.
Ideally, the points in the plot should align along the X ¼ Y line,
with deviation at the end for the significant associations (Fig. 3b).
One way to quantify the lack of global inflation in the QQ plot is
the genomic inflation factor (λGC). This is calculated by determin-
ing the median p-value of your GWAS test statistics, and calculating
the quantile in a chi-squared distribution with one degree of free-
dom that would give this p-value. This is divided by the median of a
chi-squared distribution with one degree of freedom (0.4549), to
give λGC. Deviations of this value away from 1.0 indicate genome-
wide confounding in the data.
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4.5 Replication of

Significant Results

Despite the care taken in ruling out confounding factors in any
study analysis, the gold standard in GWAS is to replicate all signifi-
cant results in a second independent population [21]. When repli-
cating, only individual SNPs need be considered. Thus, the burden
of multiple testing is much lower and a more modest level of
significance can be used.

5 Software

The majority of the initial data cleaning and association analysis can
be performed using any statistical package. For example, there are
several libraries available in the R suite of software. However, it is
advantageous to use software specifically designed for the genetic
association analysis. One of the most widely used pieces of software
in this field is PLINK [22], which has functions for performing
both data cleaning and association analyses. PLINK can perform
multidimensional scaling to investigate ancestral outliers, otherwise
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the principal component analysis can be performed using EIGEN-
SOFT [23]. A range of software packages is available to perform
haplotyping and imputation, with several of the leading software
implementations being roughly equivalent. One potential combi-
nation that provides robust, high-quality imputed genotypes is
using SHAPEIT for haplotyping [24, 25] and IMPUTE2 for the
imputation [19, 26].

References

1. Stranger BE, Stahl EA, Raj T (2011) Progress
and promise of genome-wide association stud-
ies for human complex trait genetics. Genetics
187:367–383

2. Welter D, MacArthur J, Morales J, Burdett T,
Hall P, Junkins H et al (2014) The NHGRI
GWAS Catalog, a curated resource of SNP-trait
associations. Nucleic Acids Res 42:
D1001–D1006

3. Dewan A, Liu M, Hartman S, Zhang SS-M,
Liu DTL, Zhao C et al (2006) HTRA1 pro-
moter polymorphism in wet age-related macu-
lar degeneration. Science 314(5801):989–992

4. Klein RJ, Zeiss C, Chew EY, Tsai J-Y, Sackler
RS, Haynes C et al (2005) Complement factor
H polymorphism in age-related macular
degeneration. Science 308(5720):385–389

5. TheWellcome Trust Case Control Consortium
(2007) Genome-wide association study of
14,000 cases of seven common diseases and
3,000 shared controls. Nature 447
(7145):661–678

6. Visscher PM, Brown MA, McCarthy MI, Yang
J (2012) Five years of GWAS discovery. Am J
Hum Genet 90(1):7–24

7. Clayton DG, Walker NM, Smyth DJ, Pask R,
Cooper JD, Maier LM et al (2005) Population
structure, differential bias and genomic control
in a large-scale, case-control association study.
Nat Genet 37(11):1243–1246

8. Anderson CA, Pettersson FH, Clarke GM,
Cardon LR, Morris AP, Zondervan KT
(2010) Data quality control in genetic case-
control association studies. Nat Protoc 5
(9):1564–1573

9. Rabbee N, Speed TP (2006) A genotype call-
ing algorithm for affymetrix SNP arrays. Bioin-
formatics 22(1):7–12

10. Teo YY, Inouye M, Small KS, Gwilliam R,
Deloukas P, Kwiatkowski DP et al (2007) A
genotype calling algorithm for the Illumina
BeadArray platform. Bioinformatics 23
(20):2741–2746

11. Cardon LR, Palmer LJ (2003) Population
stratification and spurious allelic association.
Lancet 361:598–604

12. Campbell CD, Ogburn EL, Lunetta KL, Lyon
HN, Freedman ML, Groop LC et al (2005)
Demonstrating stratification in a European
American population. Nat Genet 37
(8):868–872

13. The International HapMap 3 Consortium
(2010) Integrating common and rare genetic
variation in diverse human populations. Nature
467:52–58

14. Turner S, Armstrong LL, Bradford Y, Carlson
CS, Crawford DC, Crenshaw AT et al (2011)
Quality control procedures for genome-wide
association studies. Curr Protoc Hum Genet
Chapter 1, Unit 1.19

15. Wittke-Thompson JK, Pluzhnikov A, Cox NJ
(2005) Rational inferences about departures
from Hardy-Weinberg equilibrium. Am J
Hum Genet 76(6):967–986

16. Spencer CCA, Su Z, Donnelly P, Marchini J
(2009) Designing genome-wide association
studies: Sample size, power, imputation, and
the choice of genotyping chip. PLoS Genet 5
(5):e1000477

17. The 1000 Genomes Project Consortium
(2012) An integrated map of genetic variation
from 1,092 human genomes. Nature 491
(7422):56–65

18. Marchini J, Howie B (2010) Genotype impu-
tation for genome-wide association studies.
Nat Rev Genet 11(7):499–511

19. Howie B, Marchini J, Stephens M (2011)
Genotype imputation with thousands of gen-
omes. G3 1(6):457–470

20. Pe’er I, Yelensky R, Altshuler D, Daly MJ
(2008) Estimation of the multiple testing bur-
den for genomewide association studies of
nearly all common variants. Genet Epidemiol
32(4):381–385

21. Chanock SJ, Manolio T, Boehnke M, Boerwin-
kle E, Hunter DJ, Thomas G et al (2007)
Replicating genotype-phenotype associations.
Nature 447(7145):655–660

172 Allan F. McRae



22. Purcell S, Neale B, Todd-Brown K, Thomas L,
Ferreira MAR, Bender D et al (2007) PLINK: a
tool set for whole-genome association and
population-based linkage analyses. Am J Hum
Genet 81(3):559–575

23. Price AL, Patterson NJ, Plenge RM, Weinblatt
ME, Shadick NA, Reich D (2006) Principal
components analysis corrects for stratification
in genome-wide association studies. Nat Genet
38(8):904–909

24. Delaneau O, Marchini J, Zagury J-F (2011) A
linear complexity phasing method for

thousands of genomes. Nat Methods 9
(2):179–181

25. Delaneau O, Howie B, Cox AJ, Zagury JF,
Marchini J (2013) Haplotype estimation
using sequencing reads. Am J Hum Genet 93
(4):687–696

26. Howie B, Fuchsberger C, Stephens M, March-
ini J, Abecasis GR (2012) Fast and accurate
genotype imputation in genome-wide associa-
tion studies through pre-phasing. Nat Genet
44(8):955–959

Analysis of Genome-Wide Association Data 173



Chapter 10

Adjusting for Familial Relatedness in the Analysis
of GWAS Data

Russell Thomson and Rebekah McWhirter

Abstract

Relatedness within a sample can be of ancient (population stratification) or recent (familial structure) origin,
and can either be known (pedigree data) or unknown (cryptic relatedness). All of these forms of familial
relatedness have the potential to confound the results of genome-wide association studies. This chapter
reviews the major methods available to researchers to adjust for the biases introduced by relatedness and
maximize power to detect associations. The advantages and disadvantages of different methods are
presented with reference to elements of study design, population characteristics, and computational
requirements.

Key words Genome-wide association studies, GWAS, Relatedness, Confounding, Population stratifi-
cation, Cryptic relatedness, Familial structure

1 Introduction

Genome-wide association studies (GWAS) represent an effective
means of identifying genetic variants associated with disease risk,
and increasing sample sizes allow variants of diminishing effect size
to be identified. However, GWAS results can be confounded by
population stratification, in which ancestry differences result in
systematic differences in allele frequencies leading to spurious asso-
ciations, and familial relatedness, in which the presence of related
individuals within the sample have the potential to violate the
assumptions of common analytical tools and to artificially inflate
test statistics leading to false positives. Familial relatedness can be
further categorized into familial structure, in which relationships
are known and pedigrees can be constructed, and cryptic related-
ness, in which relationships are unknown.
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It can be argued that population stratification and cryptic relat-
edness are really two aspects of a single confounder: unknown
relationships between study participants [1]. The difference
between these two ideas is scale; while population structure refers
to the effect of ancient relatedness between groups of participants,
cryptic relatedness is unknown but relatively recent relatedness
between individual participants. However, it has been argued that
population structure and cryptic relatedness as such are not the
source of confounding, but rather these issues are proxies for the
real source of confounding, in which other causative loci confound
the estimate of the effect of a given locus, collectively known as
“genetic background” [2]. In order to avoid the reporting of false
associations, methods for addressing these potential sources of
confounding have had to be built into the study design and analyti-
cal phases of GWAS.

Early studies addressed these issues by recruiting participants
from homogeneous populations, making use of pedigree informa-
tion, and removing related individuals from analyses. It became
increasingly apparent, however, that in order to identify variants
of moderate or small effect size, as well as rarer variants, much
larger sample sizes were necessary [3]. As sample sizes have
increased, ensuring homogeneity has become an increasingly unre-
alistic goal, rendering these early methods based on study design
less viable.

There are also many circumstances in which pedigree informa-
tion is unobtainable or unreliable, introducing the problem of
cryptic relatedness. This is also a problem for studies undertaken
in population isolates, which are particularly useful in order to
increase power to detect rare variants, as well as for undertaking
homozygosity analyses to identify recessive variants [4, 5]. While
population isolates tend to exhibit greater phenotypic, environ-
mental, and genetic homogeneity, as well as increased rare allele
frequency resulting from bottlenecks, they also highlight the need
to mitigate the confounding effects of relatedness [6]. Similarly,
family based designs are robust to population stratification, but
need to account for relatedness.

For all these reasons, there have been substantial efforts
directed at developing statistical methods to correct for the biases
introduced by relatedness within a sample. Initially, simple correc-
tive techniques were employed for population stratification, such as
genomic control and principal components analysis (PCA). Geno-
mic control has been widely used both to identify and to correct
inflation of test statistics resulting from population stratification
[7], whereas PCA uses genotype data to identify the most impor-
tant dimensions of genetic variation, which can then be used to
adjust the data to account for the population structure they
describe [8]. The problem with these approaches is that they are
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aimed primarily at addressing population structure and are less
effective at addressing familial relatedness [9].

While these methods remain useful in certain circumstances,
they have since been superseded by a range of more computation-
ally sophisticated methods that have the additional benefit of also
addressing the problem of cryptic relatedness and family structure.
This chapter examines the more widely used tools and compares the
utility of these methods in terms of their advantages and limitations
for different study designs.

2 Methods

2.1 Association

Using Pedigree Data

In the past, genetic association was carried out using population
samples, and scientists with familial data carried out linkage studies.
Linkage methods involve searching for segments of chromosome
that segregate with a trait of interest in families. This approach has
proven useful for Mendelian diseases and rare variants in complex
diseases [10]. However, it has proven less effective for identifying
common variants in complex disease, leading to efforts to develop
approaches for combining association and linkage modeling meth-
ods in pedigree data [11]. One such method is contained in the
software LAMP (Linkage and Association Modeling in Pedigrees)
[12], which implements joint linkage and association using a maxi-
mum likelihood approach. Through this, it is possible to test
whether SNPs within a linkage signal are in linkage disequilibrium
with the putative disease allele. This can reduce the chromosomal
area of interest, from an often quite broad linkage peak.

The first family-based association method was developed for
nuclear families and dubbed the Transmission-Disequilibrium Test
(TDT) [13]. The TDT can detect linkage only when genetic asso-
ciation is present. While association can be observed through the
confounding, linkage is unaffected and so the TDT is robust to
population structure. There are a suite of methods that extend the
TDT to larger pedigrees, known collectively as the Family Based
Association Tests [14]. While the methods are designed for nuclear
family data, they can be used on large pedigree data. This is
achieved by treating nuclear families within pedigrees as indepen-
dent, under the null hypothesis of no association between the
marker and trait of interest. These methods, like the TDT, allow
for population stratification between families. Family based associ-
ation testing is implemented in the software FBAT.

Variance component (VC) methods have a long history of use
in the analysis of pedigree data in human quantitative genetics,
animal genetics and animal breeding. They can be used to measure
the genetic influence on a continuously varying quantitative trait,
and usually assume that the trait is normally distributed. The idea
behind these methods is to divide the phenotypic variance into
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genetic and environmental components, with the result that herita-
bility, linkage and association can all be determined using pedigree
data. VC methods rely on a linear mixed effects regression model,
where the non-independence among family members is accounted
for by modeling the variance structure of the relationships between
individuals as a random effect. As it is based on a linear regression
model, covariates (like age and sex), as well as relatedness, can be
adjusted for. However, VC methods do not account for population
structure.

SOLAR (Sequential Oligogenic Linkage Analysis Routines) is a
program designed to carry out linkage and association analyses,
based on a variance component method [15]. The SOLAR package
is well maintained and includes many extra features, such as esti-
mating identity-by-descent (IBD), allowing for a household effect,
multiple trait analyses, and genetic interactions, among many
others. An eigen-simplification of the calculation of the likelihood
has been incorporated into SOLAR, which has increased the speed of
the program, while still calculating exact p-values [16].

Another method that uses pedigree data in this way is based on
the MQLS statistic [17]. It is an extension of WQLS and CCQLS

statistics; in fact, MQLS stands for “modified” or “more powerful”
quasi-likelihood score, giving its name to the program, MQLS.
These methods calculate a statistic based on the difference in the
allele frequencies of the cases and controls, using a quasi-likelihood
method with a χ2 distribution on 1 degree of freedom under the
null hypothesis. The MQLS statistic provides greater weight to
individuals with closely related disease-carrying relatives, thus pro-
ducing an even more powerful test. This method has been shown to
be more powerful than other VC methods for a dichotomous trait
(such as case status); however, the disadvantage is that it is not
possible to adjust for covariates. GLOGS (Genome-wide LOGistic
mixed model/Score test) also uses a quasi-likelihood method for
dichotomous traits, while adjusting for relatedness [18]. This
approach is based on a logistic regression model, and it can be
used to adjust for up to three covariates while testing for
association.

MASTOR uses a variance components method to adjust for
relatedness from the known pedigrees [19]. This method is akin
to the MQLS method, but for detecting association with a continu-
ous trait. Unlike MQLS, it is possible to adjust for covariates. The
advantage MASTOR has over an earlier method, known as GTAM, is
that, similar to the MQLS method, it can account for missing phe-
notype, genotype or covariate data, even when missingness is
related to the trait of interest, and exploiting the relatedness within
the sample to model heritability and increase power. Approaches
like these are useful for studies containing participants with known
relatedness as well as unrelated participants.
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2.2 Association with

Adjustment for Cryptic

Relatedness and

Population Structure

There are numerous methods that use variance components to
adjust for relatedness by using genetic data to infer relatedness
between individuals. These methods can also adjust for population
stratification and are sometimes called genetic control methods. All
methods described in this section are based on variance compo-
nents methods, using a linear mixed effect model and assuming a
continuous trait. They can also be applied to a dichotomous trait
(such as disease status), under the assumption of a threshold-
liability model [20]. This assumes that, while the observed disease
status is dichotomous, the unobserved disease liability follows a
normal distribution and that there is a linear transformation
between the two. However, when analyzing a dichotomous trait
with a variance component method, it is not possible to calculate
the standard effect size of an odds ratio, which is often used for
pooling comparable data in genome-wide association meta-analyses
[21].

Variance component methods can be loosely divided into
approximate and exact methods. Approximate methods are useful
because of their improved computer speed and memory usage
compared to their exact counterparts, which become computation-
ally impracticable in larger cohorts. While the approximate meth-
ods maintain the same type I error rates as exact methods, for some
pedigree structures approximate methods suffer a loss of power
[22].

Nevertheless, there have been some advances in the speed of
exact algorithms. For example, the software GEMMA and FaST-LMM
are able to obtain the same p-values as the EMMAmethod, but within
a fraction of the time [22–24]. The GEMMA method fits a Bayesian
sparse linear mixed model (BSLMM) using Markov chain Monte
Carlo (MCMC) for estimating the proportion of variance in phe-
notypes explained. Similarly, the BOLT-LMMmethod uses a Bayesian
mixed model to more accurately model genetic architecture,
thereby increasing the power to detect associations in larger
cohorts with reduced time and memory demands [25].

The simplest method to implement is the GRAMMAR-Gamma
algorithm [26]. It fits a linear mixed model using the kinship matrix
and the phenotype of interest for the null model of no association
between phenotype and genotype. It then uses the residuals of the
null model to search for an association with genotype using a
standard linear model. This method is the fastest method available
and it is easy to implement within theR statistical framework, using
the library GenABEL [27]. However, it has been shown to have a
substantial loss of power for more complicated pedigree structures
[22].

There are a number of approximate methods available that
avoid re-estimating the variance components for each genotype
by rewriting the model in terms of a single parameter (the ratio of
genetic variance to residual variance). This keeps the heritability
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estimated from the null model fixed when testing each genotype,
resulting in a substantial reduction in memory and computer run
time. Methods such as P3D (Population Parameters Previously
Determined), GCTA, FaST_LMM and EMMAX can implement this
[28]. GCTA also can be used to estimate the variance explained
from all SNPs in a genome-wide study, providing the scope to
predict the trait of an individual in a replication set, based on
genome wide data [29]. The software that implements the P3D
method (TASSEL) also includes a method to further reduce com-
puter time (called compression), by clustering the individuals into
fewer groups based on the kinship among the individuals [30].

While FaST-LMM can calculate either exact or approximate p-
values, it can also capitalize on a few other approximate tricks to
speed the process up. One is to use a realized relationship matrix
instead of IBD, so that just one spectral decomposition is needed to
test all SNPs [31]. Another is to choose a subset of 4000 or 8000
equally spaced markers to estimate cryptic relatedness. A recent
simulation study, however, suggests that using a subset of markers
will adjust for cryptic relatedness, although population stratification
correction may be compromised as a result [32]. FaST-LMM-
Select addresses this issue by extending FaST-LMM to include
principal components of the genotype matrix as fixed effects [33].

Finally, there can be a loss of power when using the locus of
interest to estimate cryptic relatedness. FaST-LMM and GCTA-LOCO
can overcome this by implementing a method to leave out the
chromosome containing the candidate locus for estimating genetic
relatedness.

2.3 Known and

Unknown Relatedness

Methods that can incorporate both pedigree information and cryp-
tic relatedness are the most successful in accounting for confound-
ing due to population structure and relatedness. Two such packages
include ROADTRIPS and Mendel. The ROADTRIPS program uses
the quasi-likelihood methods (implemented in the MQLS and simi-
lar statistics), to incorporate both known and unknown relatedness
[34]. The inclusion of pedigree data, where it is known, increases
the power of this method to detect association in case–control
studies, and uses genomic data to estimate a covariance matrix for
unknown relationships, both recent and ancient.

Mendel is a software package that was first designed to imple-
ment a number of linkage algorithms. It has evolved over time to
now include the capability to run linkage, association, gene
dropping and many other genetic tools. Recently, it has included
a “Pedigree GWAS” option, that implements a rapid variance com-
ponents method that can adjust for both cryptic and known rela-
tionships in a genome wide association study [35].

2.4 Rare Variant and

Sequence Analysis

Genome-wide association studies are usually undertaken using SNP
array data, with newer chips covering millions of variants, including

180 Russell Thomson and Rebekah McWhirter



some rarer SNPs identified in the 1000 Genomes Project [36].
Furthermore, as rare variants are likely to contribute substantially
to heritability of complex diseases and the cost of whole exome and
whole genome sequencing continues to drop, the issue of main-
taining adequate power while adjusting for familial relatedness in
association testing of sequencing data becomes increasingly press-
ing. Early work suggests that similar methods will be effective, such
as combining LMMwith a kernel score test to aggregate the effects
of rare variants within a gene [11, 37]. That is, when investigating
the role of rare variants on the trait of interest, the assumption is
that multiple variants within a region have an effect, and it is
therefore useful to be able to group the rare variants together,
rather than assess them individually, as in standard GWAS methods.

Several other methods have been proposed to incorporate
information across genes or chromosome regions, to test for asso-
ciation with the trait of interest. While it is beyond the scope of this
chapter to go in to detail of each of these methods, we only list
them here. Some examples of methods that incorporate relatedness
adjustment include RHM (regional heritability mapping) with soft-
ware REACTA [38] and VEGAS [39]. The sequence analysis tool,
VAAST has been extended to allow the use of pedigree data
(pVAAST) [40]. The extension to the Quasi Likelihood Methods
for rare variants is implemented in MONSTER [41]. The R library
that implements the GRAMMAR-Gamma method, GenABEL also
has a function for rare variant analyses, called cocohet [42]. The
adjusted SKAT method, ASKAT, is useful for investigating rare
variants in family-based study designs as it combines the combines
SKAT and Fast-LMM methods to control for cryptic and family
relatedness [43]. And finally, the software FBAT, contains a test
FBAT-v that is specifically designed for rare variants [44]. All of
the above methods are summarized in Tables 1 and 2.

3 Example

To illustrate, we will work through an example of a genome wide
association scan using a simulated dataset, where the study partici-
pants are related (see Note 1).

3.1 Dataset The data consist of 165 individuals from the CEPH (Utah residents
with ancestry from northern and western Europe) hapmap data set
[45], including 50 trios, three parent–child relationships and nine
unrelated individuals. The genotype data contain 65,173 SNPs
across the genome.

This data set is designed to emulate a small GWAS study with
the intention to find evidence for genetic regions that are associated
with schizophrenia. Rather than a case–control study, this is a
population-based study, where the subclinical quantitative trait of
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the Ekman 60-Faces emotion recognition test [46] was used as an
endophenotype for schizophrenia. All individuals in the data set
have both genotype and phenotype information (see Note 2).

The phenotype is correlated with the covariates: age, sex and
education. The variance explained by the SNPs in this study was
50 %. There are six causal variants, with equal effect size distributed

Table 1
A list of available methods, with the authors and certain capabilities given

Method Authors Trait types
Adjust for
covariates?

Cryptic or
known
pedigree
structure

FBAT NM Laird Continuous/
Categorical/
Time-to-event

No Known

LAMP M Li and G Abecasis Categorical No Known

MQLS T Thornton and M-S McPeek Categorical No Known

GLOGS S Stanhorpe and M Abney Categorical Yes Known

MASTOR L Jakobsdottir and M-S McPeek Continuous Yes Known

SOLAR J Blangero, K Lange, T Dyer, L
Almasy, H Göring, J Williams, M
Boehnke, C Peterson

Continuous/
Categoricala

Yes Known

P3D E Buckler, T Casstevens, P Bradbury Continuous/
Categoricala

Yes Cryptic

EMMAX H Kang Continuous/
Categoricala

Yes Cryptic

FaST-LMM C Lippert, J Listgarten, and D
Heckerman

Continuous/
Categoricala

Yes Cryptic

GEMMA X Zhou and M Stephens Continuous/
Categoricala

Yes Cryptic

BOLT-LMM P-R Lou Continuous/
Categoricala

Yes Cryptic

GRAMMAR-
Gamma

YS Aulchenko Continuous/
Categoricala

Yes Cryptic

GCTA J Yang and P Visscher Continuous/
Categoricala

Yes Cryptic

ROADTRIPS T Thornton Categorical No Both

Mendel H Zhou, J Blangero, T Dyer, K Chan,
E Sobel, K Lange

Continuous/
Categoricala

Yes Both

aThese variance component methods are designed for a continuous trait; however, it is possible to use them to analyze a

categorical trait if proper attention is given to rare variants, rare diseases and small sample sizes
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across the genome. They are SNPs: rs2393646, rs10793370,
rs6769400, rs6774660, rs210400, rs1481440, and rs9465317
(see Note 3).

3.2 Method Here we describe, step-by-step the implementation of the GCTA
software to carry out the association while adjusting for relatedness.

Table 2
A list of available methods with software format and links to the software page

Method Software format Link

FBAT Command Line and menu driven. Source
Code and Win/Mac/Linux
executables

http://www.hsph.harvard.edu/fbat

LAMP Command Line. Source Code and Win/
Mac/Linux executables

http://www.sph.umich.edu/csg/abecasis/
LAMP

MQLS Command Line. Source Code and Win/
Mac/Linux executables

http://www.stat.uchicago.edu/~mcpeek/
software/MQLS/index.html or http://
www.sph.umich.edu/csg/liang/MQLS

GLOGS Command Line. C Source Code http://www.bioinformatics.org/~stanhope/
GLOGS

MASTOR Command Line. C Source Code http://www.stat.uchicago.edu/~mcpeek/
software/MASTOR

SOLAR Command Line. Win/Mac/Linux
Executable

http://solar.txbiomedgenetics.org/

P3D TASSEL: JAVA Command Line, Win/
Mac/Linux Executable. R Library
GAPIT. SAS Code

http://www.maizegenetics.net/statistical-
genetics

EMMAX Command Line. Source Code and Win/
Linux executables

http://genetics.cs.ucla.edu/emmax

FaST-LMM Command Line. Win/Linux executables http://mscompbio.codeplex.com/

GEMMA Command Line. Linux executable http://stephenslab.uchicago.edu/software.
html#gemma

BOLT-LMM Command Line. Linux executable http://www.hsph.harvard.edu/alkes-price/
software/

GRAMMAR-
Gamma

R library GenABEL http://www.genabel.org

GCTA Command Line. Linux executable http://www.complextraitgenomics.com/
software/gcta

ROADTRIPS Command Line. Source code http://www.stat.uchicago.edu/~mcpeek/
software/ROADTRIPS

Mendel Command Line. Source code http://genetics.ucla.edu/software/mendel
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1. Download the data (see Note 1) and the GCTA software
(see Table 2) and run the commands:

gcta64 --bfile CEU --make-brm --autosome --out CEU
gcta64--mlma-loco--mlma-no-adj-covar --bfile CEU
--grm-bin CEU --out EK --pheno EK.txt --qcovar
age_edu.txt --covar gender.txt

2. Load results in R [47] or Haploview [48] and create a Manhat-
tan plot (see Note 4).

3. Create a QQ-plot and genomic inflation factor (λ) (see Note 5).
Convention suggests that with λ < 1.05, your p-values are not
overly inflated due to relatedness, population stratification or
some other reason.

3.3 Results As can be seen in Fig. 1, there are no SNPs with a p-value less than
the conventional threshold for genome wide significance of
5 � 10�8. This study consists of multiple causal variants and a
small sample size. To reach genome wide significance would require
one causal variant with a large effect size and/or a very large sample
size. If you examine the p-values for the causal SNPs in this simula-
tion you will find that, while they have very small p-values, they do
not appear in a list of the top ten SNPs with the best evidence for
association. This indicates that any study with similar attributes, the
top ten hits are likely to be false positives.

Figure 2 shows the QQ-plot for the p-values produced when
adjusting for relatedness using the GCTA software, while Fig. 3
shows the QQ-plot when relatedness was not adjusted for (see
Note 6). Note that the points do not lie on the straight line in
Fig. 3 but they do in Fig. 2. This indicates that, unless relatedness is
taken into account, the p-values are spuriously inflated. When using
the leave-one-chromosome-out command in GCTA, the p-values

Fig. 1 A Manhattan plot of the results from the MLMA option in GCTA
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show a similarly high level of genomic inflation as in Fig. 3. This
suggests that, with as few as 65,000 SNPs, it is important to use all
available SNPs to estimate the genetic relationships matrix.

3.4 Discussion There is thus a large and continually expanding array of tools
available for undertaking genome-wide association studies in the
presence of relatedness, whether known or unknown, ancient or
recent. It is apparent that much research has focused on develop-
ment of linear mixed model methods, with an emphasis on refining
methods to reduce computational costs. Precisely which tool will
be most appropriate for a given study will depend on the character-
istics of the sample and the population from which it was drawn, as
well as considerations relating to computation time and memory
usage. The tables above provide a starting point for identifying the

Fig. 3 The QQ-plot for association results, not adjusted for relatedness (see Note 5)

Fig. 2 The QQ-plot for the GCTA MLMA results (see Note 5)
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salient features of each method, and for narrowing down the
choices.

All of the methods described here, except two (LAMP and
MQLS), can either adjust for unknown population stratification or
include principal components as a covariate. Care should be taken
when using principal components as a covariate as standard PCA
methods can potentially be confounded by the presence of related
individuals in a sample and so PCA methods accounting for this
should be used in preference [50].

Overall, the GRAMMAR-Gamma method implemented in
GenABEL is the fastest method, and one of the easiest to imple-
ment. However, it utilizes an approximate, rather than exact,
method that means it is not well-suited to samples with complicated
pedigrees or studies that are potentially under-powered [22]. In
such instances, an exact method would be preferable, despite the
increase in computational demands.

For case–control studies, the methods MQLS and ROAD-
TRIPS are best for incorporating participants with incomplete
data. This is a relatively common scenario, where a given study
may include participants with missing genotype, phenotype or
covariate data. In a familial prostate cancer study, for example, the
authors found that by using MQLS, and thus incorporating indi-
viduals with unknown case status (women and young men) and
unknown genotype (ungenotyped affected brothers), an increase in
power was obtained that was of similar size to the loss of power that
was a result of the cases being related [51]. It is also worth noting
that adjusting for relatedness using a mixed model approach can be
of value even in an ideal, unrelated population, because it will
address the issue of confounding introduced by “genetic back-
ground”; that is, other unidentified causal loci elsewhere in the
genome [2].

One final consideration is that case–control GWA studies often
oversample disease cases to increase study power. This leads to
ascertainment bias that can result in a loss of power when adjusting
for covariates [52]. Yang et al. [32] show, through simulation, that
in studies with large ascertainment bias (that is, when the disease
prevalence is small and the sample size is large), the linear mixed
effects methods described in this review will suffer a substantial loss
of power. For studies with unrelated individuals, it is better to
adjust for population structure using standard PCA methods. For
studies with ascertainment bias and related individuals that require
adjusting for covariates, it is possible that the method based on
logistic regression, GLOGS will not suffer the same loss of power.
However, further simulation studies are required to confirm this.

To minimize false GWAS positives, it is important to adjust for
confounding due to familial relatedness within samples. This review
has identified a range of tools that can be used to achieve this goal in
different scenarios. This is an area currently receiving a great deal of
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attention, and new packages are continually being developed. As
whole genome (and whole exome) sequencing becomes more
common, and sample sizes continue to expand, we can expect to
see more tools produced that address the needs of these studies and
address some of the limitations of the current methods.

4 Notes

1. This can be accessed at https://cloudstor.aarnet.edu.au/plus/
index.php/s/fzn0GhsDovA1A6z.

2. The nature of the data will influence the choice of analysis
software. In the current scenario, genotype information is avail-
able for all individuals and GCTA is therefore appropriate. When
working with a dataset that included ungenotyped individuals,
using ROADTRIPS for case–control studies or MASTOR for quan-
titative trait studies would allow these individuals to be included
and potentially increase the power of the study.

3. The simulation of the phenotype was based on (a)—linear
regression in R for the correlation with the covariates and
(b)—GCTA for the association with the causal variants. The
GCTA simulation used the option --simu-qt, which assumes a
simple additive genetic model.

4. To generate the Manhattan plot in Haploview, the output file
from GCTA (filename: EK.mlma) can be entered in to Haplo-
view using the PLINK format option. The R code to generate
the Manhattan plot is as follows:

gcta <- read.table("EK.mlma",header¼T)

lengthchr <- tapply(gcta$bp,gcta$Chr,max)

pos <- c(0,sapply(1:22,function(i)
sum(as.numeric(lengthchr[1:i]))))

png("manhattan_plot_gcta.png",width¼800,
height¼500)

par(mar¼c(4,5,1,1))

plot(pos[gcta$Chr]+gcta$bp,-1*log10(gcta$p),
cex¼0.6,xaxt¼"n",ylab¼"-log10(p-value)",
xlab¼"Chromosome",lwd¼2,cex.lab¼2,cex.
axis¼2,lwd¼2,col¼grey(0.4))

abline(v¼pos,lty¼2)

midpoint <- sapply(1:22,function(i) (pos[i]+pos[i
+1])/2)

axis(1,at¼pos,labels¼F)

axis(1,at¼midpoint,tick¼FALSE,labels¼1:22,cex.
axis¼2)

dev.off()
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5. The R code used to generate the QQ-plot is as follows:

gcta <- read.table("EK.mlma",header¼T)

pv ¼ gcta$p

m¼length(pv)

expect.stats¼-log10(seq(1/(m+1),m/(m+1),length.
out¼m))

lambda¼median(-log10(pv))/median(expect.stats)

png("QQplot_gcta.png")

par(mar¼c(5,5,1,1))

qqplot(expect.stats,-log10(pv),xlab¼"expected -
log10(pvalues)",ylab¼"observed -log10(pva-
lues)",cex.axis¼2,cex.lab¼2,lwd¼2)

abline(a¼0,b¼1)

text(0,5,bquote(lambda¼¼.(round(lambda,3))),
adj¼0,cex¼2)

dev.off()

6. This association analysis was conducted without adjusting for
relatedness using PLINK [49], via the command:
plink --noweb --bfile CEU --pheno EK.txt --linear --

covar age_edu.txt --sex --out CEU_assoc_plink
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Chapter 11

Analysis of Quantitative Trait Loci

David L. Duffy

Abstract

Although the term quantitative trait locus (QTL) strictly refers merely to a genetic variant that causes
changes in a quantitative phenotype such as height, QTL analysis more usually describes techniques used to
study oligogenic or polygenic traits where each identified locus contributes a relatively small amount to the
genetic determination of the trait, which may be categorical in nature. Originally, too, it would be clear that
it covered segregation and genetic linkage analysis, but now genetic association analysis in a genome-wide
SNP or sequencing experiment would be the commonest application. The same biometrical genetic
statistical apparatus used in this setting—analysis of variance, linear or generalized linear mixed models—
can actually be applied to categorical phenotypes, as well as to multiple traits simultaneously, dealing with
and taking advantage of genetic pleiotropy. Most recently, they are being used to make inferences about
population and evolutionary genetics, with applications ranging from human disease to control of disease-
causing organisms. Several computer software packages make it relatively straightforward to fit these
statistically complex models to the large amounts of genotype and phenotype data routinely collected today.

Key words Biometrical genetics, Mixed model, Kinship, Linkage analysis, Association analysis, Link-
age disequilibrium, Population genetics

1 Introduction

The basic QTL model is a simple linear regression equation with
one trait and one measured locus [1]:

yi ¼ gi þ ei

where yi is the trait value for the ith individual; gi is the average trait
value in that population for the particular genotype the individual
carries (genotypic mean); and ei is the perturbation from the geno-
typic mean in that individual (residual), due to the buffeting of
environmental and developmental factors, which we will model as
being a random value drawn from some statistical distribution such
as the Gaussian. The simplest extension of this model includes
terms for those environmental and developmental factors that can
be measured—a multiple regression.

Jonathan M. Keith (ed.), Bioinformatics: Volume II: Structure, Function, and Applications, Methods in Molecular Biology,
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The usual tests for the adequacy of a linear model must be
applied here; otherwise statistical tests of significance will not per-
form correctly. That is, the observed distribution of residuals
should match the chosen theoretical distribution, residuals should
be uncorrelated with genotype, and residuals should not be corre-
lated between different individuals. In most genome-wide associa-
tion scans (GWASs), a simple regression of this type is the
workhorse, fitting one regression per measured locus. The quanti-
le–quantile (QQ) plot seen in almost every GWAS paper is one
graphical test that can highlight failures in the distributional
assumptions. For example, when fewer significant loci are detected
than would be expected by chance, this suggests model misspecifi-
cation (or widespread data mismeasurement)—this will not be due
to confounding by population genetic structure, though it can
reflect batch effects in genotyping error rates if batches also differ
by phenotype [2]. A formal test for determining whether a mathe-
matical transformation of the trait values (e.g., log, square root) will
improve model adequacy is the Box–Cox maximum likelihood
approach [3].

The usual linear model is fitted via ordinary least squares
(OLS), which is equivalent to assuming a residual Gaussian distri-
bution. The far more flexible generalized linear model (GLM) [4]
incorporates a link function (a phenotype transformation) and a
variety of residuals distributions in a maximum likelihood frame-
work fitted by iterative methods. The most familiar GLM is logistic
regression, which allows the basic model to be applied to binary
traits (most usually disease states in the human literature), but
GLMs extend to ordered and unordered (multi-)categorical traits,
survival times, and odd-shaped continuous distributions, the com-
monest being Poisson, negative binomial, and Gamma distribu-
tions. These models are all available using standard statistical
software.

The cause of a correlation between residuals and genotype that
most concerns geneticists is the existence of ethnic stratification,
where different subpopulations differ in genotype frequencies and
in phenotype distribution [2]. This is particularly important
because the effects of individual QTLs studied are generally small.
If the presence of this stratification in a study sample is not recog-
nized, combining the subpopulations in an analysis leads to spuri-
ous QTL detection. A more extreme example is when the sample
contains close relatives. One approach to dealing with these phe-
nomena is to elaborate the linear model to allow correlated resi-
duals, a random effects model. Since we will retain the measured
genotypes and other covariates in the model, these are usually called
mixed models, because they contain both fixed and random effects
[5]. Random effects in genetic models are relatively unusual in that
we can strongly specify the correlations between the individuals
using either genetic theory (in the case of relatives we know these
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from Mendel’s laws) or genomic sharing (an empirical or realized
relationship) based on genome-wide genotyping [2]. This model
can be written [1]:

y ¼ Qg þ Xb þ Zu þ e

where y, u, e are now vectors of values for the sample (of length n);
g the regression coefficient for each genotype class (e.g., a vector of
length 3 for a simple nucleotide variant); b the regression coeffi-
cients for other measured covariates; u that portion of the residuals
that are correlated with one another; e the uncorrelated portion;
andQ andX are matrices indicating the genotype or covariate value
for each individual. The Z matrix maps individuals onto the u
values and will usually be an identity matrix for our purposes, but
can vary to handle monozygotic twins and repeated measures. For
the model to be fittable by iterative likelihood-based methods, we
must specify the correlation matrices for each random effect: for e,
an n � n diagonal matrix E (zero correlation between ei and ej,
i 6¼ j), while for u, it is the known relatedness of individuals i and j,
an n � n matrix G estimated from pedigree and/or GWAS data
[6–8]. Members of the same subpopulation (or family) will have
similar u values, which will capture the relationship between eth-
nicity and trait values that causes confounding in the simpler mod-
els. Again a number of computer packages are now available for this
task [9–11], but the computational task is intensive (i.e., time
consuming) for the large datasets currently studied.

Fitting of a generalized linear mixed model to, for example, a
binary trait is even more intensive, and so is usually not feasible for
an entire modern GWAS. Most current published studies using
mixed models for binary traits treat them as if they are continuous
(coding them as 0 and 1), a practice that can only ever be approxi-
mately correct (and which should be borne in mind assessing
significance tests from these studies). Categorical traits can also be
analyzed using the same software, by creating dummy binary vari-
ables that indicate membership of each category (dropping one
category to make the model identified). In practice, if the category
and genotypes proportions are high enough, then results are rea-
sonably trustworthy.

In the case that QTL genotypes are not directly measured,
these too can be treated as additional random effects. The appro-
priate correlation matrix for this random effect is the empirical
relationship matrix for the genetic region of the QTL—the corre-
lation matrix that measures the probability that alleles at the QTL in
a pair of individuals were inherited from the same ancestor (i.e., are
identical by descent). This is a variance components genetic linkage
analysis, and a likelihood ratio test can be used to determine linkage
of trait phenotypes to QTL genotypes. Statistical power of linkage
analysis in the natural pedigrees accessible for humans is much
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lower than that of association analysis using measured QTL geno-
types. It does have the advantage that linkage of markers to the
QTL extends over much greater distances along the chromosome
than linkage disequilibrium, so that fewer markers need to be
genotyped. In addition, because linkage extends further, a less
severe correction for multiple testing is required, so that a linkage
test P < 6 � 10�5 is genome-wide significant with an experiment-
wise Type 1 error rate of ~0.05 [12]. For historical reasons, the
linkage test result is usually displayed as the decimal log likelihood
ratio—lod, where the above P-value corresponds to a lod of 3.5.

More elaborate models that incorporate segregation and link-
age disequilibrium information from pedigrees can be fitted using
specialized software [13], but again these are most useful when the
effect size for the QTL is sizeable—examples would include the
ACE insertion–deletion polymorphism and serum ACE levels,
major “Mendelian” QTLs like those for familial hypercholesterol-
emia, and many variants affecting gene expression (eQTLs). In
families segregating these variants, the trait distribution is often
obviously multimodal, each mode representing a genotype. There
is much current interest in incorporating linkage information in the
identification of rare causative variants in sequence data as although
the information contribution from linkage analysis may not be
large, when combined with association and functional evidence, it
may be decisive in choosing between several likely variants [14].

The same equations can be extended to multiple phenotypes
simultaneously and to incorporate genotypes at multiple loci simul-
taneously. In the case of multitrait analyses, one is able to estimate
the contribution of the QTL to the phenotypic correlation between
pairs of traits. Furthermore, if traits are not strongly phenotypically
correlated, and a QTL is pleiotropic in action, then this increases
statistical power for gene detection [15].

When modeling multiple QTLs simultaneously, one often
encounters model identification problems due to having too few
data points per regression coefficient to be estimated. The first
simplification we can carry out is model genotypic effects as a sum
of allelic effects (a regression of allele dose on genotype means).
This additive model is usually quite appropriate (it neglects domi-
nance effects, which are mostly small) and halves the parameter
count. In another direction, approaches similar in spirit to stepwise
regression attempt to reduce the number of loci in the model to a
core set of influential QTLs and can be fitted more easily. These can
be Bayesian in nature or various types of penalized regression [16].

A related problem is the use of large-scale genotypic data to
predict an individual phenotype value (genomic prediction)—this is
of great interest to animal breeders, and in the populations they
study can be quite precise. In human populations, such a prediction
can be of interest for genetic epidemiology, notably when testing if
QTLs for one trait can be used to predict a second trait (a test of
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multilocus pleiotropy). A currently theoretical application is to use
the predicted value for a disease phenotype to tailor individual
disease screening regimens or therapy. In the dosage polygenic
risk score model, one fits an additive model to each locus in turn,
and uses the resulting coefficients in a full prediction model using
the observed genotypes. The assumption under this model is that
there is no significant epistasis, that is, gene-by-gene interaction.

2 A Standard Workflow for QTL Association Analysis of a GWAS

Almost all the computer programs suggested here are run from the
command line, usually in Unix or related operating systems such as
OSX, although many will run under Windows (see Note 1). Most
require a lot of memory. GWAS analyses are usually best run on
computer clusters, as the analyses can be parallelized easily by
dividing up data by chromosome or chromosome chunk.

Determine an appropriate transformation of the phenotype
under study. Usually, information will be available in the literature,
for example, log transformation of body mass index or serum
cholesterol levels. In the case of eQTLs, quite elaborate transfor-
mation (normalization) is essential. The Box–Cox procedure can
be used to confirm or select an optimal transform, ideally including
a number of known covariates in the regression. Alternatively, a
rankit transformation is not uncommonly used, where each value is
replaced with the normal score corresponding to the same rank in
the observed distribution. This preliminary is not specific to genetic
analysis but is an important first step.

If the dataset includes closely related individuals, carry out a
purely family based phenometric mixed model analysis, using the
kinship matrix based on the known pedigree. This gives an estimate
of the trait heritability. This can point to errors, and if enough data
is available, gives an upper bound to combined effects of the QTLs.
Most mixed model packages will allow one to enter a pedigree,
from which the appropriate correlation matrix (often the matrix
inverse, as this saves some calculation) will be calculated for this
analysis, e.g., polygenic() and polygenic_hglm() in the R GenABEL
package [17], the R MCMCglmm package [18], MERLIN [19],
MENDEL [13], or SOLAR [20].

Carry out appropriate cleaning of the available genotype data
(as discussed in Chapter 9 in this volume). Imputation of unob-
served genotypes has the advantage of increasing statistical power
by ~10 % and improving localization of the true QTL, as opposed
to nearby variants in linkage disequilibrium. Principal components
for study participant genotypes can be calculated to use as covari-
ates that offer another way of controlling effects of ethnic stratifi-
cation. Genotype data can be stored as PLINK or compressed VCF
files. The PLINK2 program is one package that can convert back-
wards and forwards between these formats (https://www.cog-geno
mics.org/plink2/).
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There is a large and increasing number of computer programs
that fit QTL models. The GEMMA package (http://www.xzlab.
org/software.html) [10, 21] is a (relatively) friendly and fast pro-
gram for estimating empirical kinship matrices and performing
linear mixed model association analysis. It also offers a Bayesian
sparse linear mixed model approach to reducing the number of
QTLs in the model to a manageable number. It reads a PLINK
(or a BIMBAM) genotype file and a plain text phenotype file. An
initial run calculates the empirical relationship matrix, which can
then be used in subsequent mixed model fitting runs. Here is
output from the calculation of the relationship matrix (based on
PLINK format data files colour4.fam, colour4.bim, col-
our4.bed, and phenotype file dummy4.dat):

## GEMMA Version ¼ 0.93

##

## Command Line Input ¼ -b colour4 -p dummy4.dat -gk -
miss 0.5 -o GABC

##

## Summary Statistics:

## number of total individuals ¼ 2190

## number of analyzed individuals ¼ 2190

## number of covariates ¼ 1

## number of total SNPs ¼ 911857

## number of analyzed SNPs ¼ 811485

##

## Computation Time:

## total computation time ¼ 54.8707 min

## computation time break down:

## time on calculating relatedness matrix ¼ 54.395 min

Since a small correlationmust exist between overall relationship and
resemblance at a QTL, it is now usual to produce a relationship
matrix excluding the chromosome of the genotype currently being
tested for association—this slightly increases power to detect QTLs
[22]. The results from testing for QTLs for human hair color
treated as four unordered categories using GEMMA, where the -
n option is used to select 3 of the 4 dummy variables (cols 1, 2, and
4) encoding these in the file dummy4.dat:

##

## GEMMA Version ¼ 0.94beta

##
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## Command Line Input ¼ -b colour4 -p dummy4.dat -n 1 2 4
-k GABC.cXX.txt -lmm -miss 0.5 -o hc4

##

## Summary Statistics:

## number of total individuals ¼ 2190

## number of analyzed individuals ¼ 1179

## number of covariates ¼ 1

## number of phenotypes ¼ 3

## number of total SNPs ¼ 1109421

## number of analyzed SNPs ¼ 810682

## REMLE log-likelihood in the null model ¼ 183.076

## MLE log-likelihood in the null model ¼ 185.732

## REMLE estimate for Vg in the null model:

0.0267261

0.000351117 0.187691

-0.00381588 -0.0265142 0.12686

## se(Vg):

0.00581771

0.00906147 0.0289283

0.00429616 0.0102545 0.00876679

followed by results for known hair color loci, processed using the
postgwas R package [23], which automatically recognizes GEMMA
output files (Table 1).

The R commands which automatically generated plots and the
previous table were as follows:

library(postgwas)

results ¼ read.delim("hc4.assoc.txt")

postgwas(results)

quit(save¼no)

Table 1
Significant associations for known hair color loci

SNP CHR BP P Gene name

rs35395 5 33948589 3.6e�08 SLC45A2

rs12203592 6 396321 2.8�11 IRF4

rs12913832 15 28365618 2.0e�31 HERC2

rs1805008 16 89986144 6.2e�21 MC1R
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3 A Standard Workflow for QTL Linkage Analysis

I will not specifically discuss experimental breeding studies, where
particular tailored methods can take advantage of the design (e.g.,
the R/QTL package [24]), but the general approaches later can be
applied to such data.

QTL linkage analysis of natural pedigrees is now usually per-
formed where SNP genotype data has been collected, though
microsatellite or RAPD markers may still be used in nonhuman
pedigrees. Specialized linkage SNP arrays with 7000–11,000 mar-
kers are still available from some suppliers, but the fall in cost of
denser SNP panels and of sequencing has made these less attractive.
Since linkage extends over long genetic distances, and linkage
disequilibrium actually makes linkage analysis more technically dif-
ficult, the data are first thinned to retain ~10,000 informative SNPs
in linkage equilibrium with one another. Marker informativeness
for linkage is proportional to the number of heterozygous
genotypes in the pedigrees to be analyzed (i.e., common SNPs are
more useful). SNP genotype data is cleaned as for association
analysis (see Chapter 27), with the availability of pedigree data
meaning that testing for genotype errors can take advantage of
Mendelian error detection, where genotypes of parents and off-
spring must also be consistent at each locus, and also in terms of
apparent recombination rates between neighboring loci (close dou-
ble recombinants are very likely to represent a genotyping error).
Similarly, the pedigree structure must be checked for nonpaternity
and sample mix-up by comparing the empirical kinship matrix to
the expected kinship matrix based on the reported pedigree.

Parametric QTL linkage analysis requires one to estimate or
specify a model for the relationship between QTL genotype and the
trait. If the QTL effect is large, this can be estimated using segrega-
tion analysis of pedigree data. The “nonparametric” variance com-
ponents linkage (i.e., mixed model) approach does not require this
step, and we concentrate on that later.

The MERLIN program (http://csg.sph.umich.edu/abecasis/
Merlin/index.html) [19] supports both parametric and nonpara-
metric linkage analysis, association analysis, and Mendelian error
detection. It also imputes missing genotypes utilizing the pedigree
structure. Three data files must be prepared (Table 2): one listing
the traits and markers (“.dat” file), a list of marker genetic map
positions in sex-averaged centiMorgans (“.map” file), and the
parents and actual genotype and phenotype data for each individual
(“.ped” file)—the first five fields of the pedigree file are pedigree
ID, individual ID, father ID, mother ID, and sex. Genetic map
positions for SNPs can be estimated from files under http://
hapmap.ncbi.nlm.nih.gov/downloads/recombination/, which
give sequence coordinates (bp) and genetic map positions (cM)
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along each chromosome. These MERLIN file formats differ only
slightly from the PLINK2 “.ped” and “.map” file formats (the
latter has fields for both sequence and genetic map positions).

The MERLIN-associated pedstats program produces summary
statistics and checks the pedigree file for errors. For example, all
included individuals need to have both parents specified and a
record for each included in the .ped file, or to have neither parent
specified (where the individual is a pedigree founder). It is called
from the command line as follows:

pedstats -d example.dat -p example.ped

MERLIN’s Mendelian errors checking is invoked, as are all the
other analyses, by using a command line flag:

merlin -d example.dat -m example.map -p example.ped --
errors

This produces a list of putative errors and a P-value in a file
merlin.err. Another program, pedwipe, can then delete these auto-
matically. The resulting “wiped.ped” file can then be analyzed. For
example,

merlin -d skincol.dat -m skincol.map -p skincol.ped --
assoc

gives the following output for an analysis of the region around the
SLC45A2 gene associated with human pigmentation (as evidenced
for hair color in the previous section), examining skin color
measured as an ordinal trait (the “—assoc” option automatically
performs linkage and association analyses, while the “—vc” option
gives linkage only):

Table 2
Input files required by MERLIN

.dat file .map file .ped file

T trait1 CHR MARKER POS Ped1id1 0 0 m12.1 1.11 3/ 1 1/ 14/ 4

C covariate1 13 rs9579484 0 Ped1id2 0 0 f14.4 2.32 0/ 0 0/ 00/ 0

C covariate2 13 rs9552488 0.021786 Ped1 id3 id1 id2 f 9.1 5.3 1 1/ 3 1/ 1
4/ 4

M rs9579484 13 rs9510743 4.99304 Ped1id4id1id2f16.22.711/31/1
4/ 4

M rs9552488

M rs9510743
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Extracting and plotting the positions and P-values from the
above output (see Fig. 1) shows again that both linkage and associ-
ation signals peak very closely, in both cases exceeding the thresh-
old for genome-wide significance.

4 Note

1. There are a large number of computer packages for QTL analy-
sis, and the number continues to increase. For example, our
group has recently moved from carrying out QTL association
analysis using MERLIN to RAREMETALWORKER [25],
which uses the same algorithms as MERLIN, but reads VCF
files natively and uses very little memory. Just within the R
statistical computing environment [26] alone, there are the
bqtl, boss, BayHap, dlmap, eqtl, gap, GenABEL, hapassoc, haplo.
stats, ibdreg, ldlasso, JAGUAR, MatrixEQTL, mqtl, multic, qtl
(R/QTL), qtlhot, qtlmt, qtlnet, QTLRel, SNPassoc, snpstats,
strum, wgaim, and WCQ packages. A certain amount of func-
tionality is common, so one should expect consistent answers
from different packages [27], but I routinely perform duplicate
analyses using different packages, at least for genomic regions

Fig. 1 Linkage and Association results for a region of human chromosome 5
around the SLC45A2 gene
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containing significant QTLs. In my own GWAS analyses, I usu-
ally deal with closely related individuals (either from nuclear or
large extended pedigrees), and so the common approach of
removing relatives from the dataset is not feasible. This is one
reason I have concentrated in this review on association methods
using empirical kinship matrices. Unfortunately, these matrices
can be estimated using different approaches, which sometimes
causes test results for a given locus to fluctuate significantly.
Several recent papers have explored methods of stabilizing this
effect by shrinkage estimation, regularization, or combination of
multiple estimates (e.g., pedigree and GWAS based) [28, 29].

References

1. Henderson C (1984) Applications of linear
models in animal breeding. University of
Guelph, Guelph, ON

2. Astle W, Balding DJ (2009) Population struc-
ture and cryptic relatedness in genetic associa-
tion studies. Stat Sci 24:451–471

3. Box GE, Cox DR (1964) An analysis of trans-
formations. J R Stat Soc B 26:211–252

4. Nelder JA, Nedderburn RW (1972)
Generalized linear models. J R Stat Soc Ser A
135:370–384

5. Eisenhart C (1947) The assumptions underly-
ing the analysis of variance. Biometrics 3:1–21

6. VanRaden PM (2008) Efficient methods to
compute genomic predictions. J Dairy Sci
91:4414–4423

7. Choi Y, Wijsman EM, Weir BS (2009) Case-
control association testing in the presence of
unknown relationships. Genet Epidemiol
33:668–678

8. Yang J, Benyamin B, McEvoy BP, Gordon S,
Henders AK, Nyholt DR, Madden PA, Heath
AC, Martin NG, Montgomery GW, Goddard
ME, Visscher PM (2010) Common SNPs
explain a large proportion of the heritability
for human height. Nat Genet 42:565–569

9. Bradbury PJ, Zhang Z, Kroon DE, Casstevens
TM, Ramdoss Y, Buckler ES (2007) TASSEL:
software for association mapping of complex
traits in diverse samples. Bioinformatics
23:2633–2635

10. Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ,
Tiwari HK, Gore MA, Bradbury PJ, Yu J,
Arnett DK, Ordovas JM, Buckler ES (2010)
Mixed linear model approach adapted for
genome-wide association studies. Nat Genet
42:355–360

11. Yang J, Lee SH, Goddard ME, Visscher PM
(2011) GCTA: a tool for genome-wide com-
plex trait analysis. Am J Hum Genet 88:76–82

12. Lander E, Kruglyak L (1995) Genetic dissec-
tion of complex traits: guidelines for interpret-
ing and reporting linkage results. Nat Genet
11:241–247

13. Lange K, Cantor R, Perola M, Sabatti C, Sin-
sheimer J, Sobel E (2001) MENDEL version
4.0: a complete package for the exact genetic
analysis of discrete traits in pedigrees and pop-
ulation data sets. Am J Hum Genet 69(Suppl):
A1886

14. HuH, Roach JC, Coon H, Guthery SL, Voelk-
erding KV,Margraf RL, Durtschi JD, Tavtigian
SV, Shankaracharya, Wu W, Scheet P, Wang S,
Xing J, Glusman G, Hubley R, Li H, Garg V,
Moore B, Hood L, Galas DJ, Srivastava D,
Reese MG, Jorde LB, Yandell M, Huff CD
(2014) A unified test of linkage analysis and
rare-variant association for analysis of pedigree
sequence data. Nat Biotechnol 32:663–669

15. Galesloot TE, van Steen K, Kiemeney LALM,
Janss LL, Vermeulen SH (2014) A comparison
of multivariate genome-wide association meth-
ods. PLoS One 9:e95923

16. Yi H, Breheny P, Imam N, Liu Y, Hoeschele I
(2015) Penalized multimarker vs. single-
marker regression methods for genome-wide
association studies of quantitative traits. Genet-
ics 199:205–222

17. Aulchenko YS, Ripke S, Isaacs A, van Duijn
CM (2007) GenABEL: an R library for
genome-wide association analysis. Bioinfor-
matics 23:1294–1296

18. Hadfield JD (2010) MCMC methods for
multi-response generalized linear mixed mod-
els: the MCMCglmm R package. J Stat Softw
33:1–22

19. Abecasis GR, Cherny SS, Cookson WO, Car-
don LR (2002) Merlin-rapid analysis of dense
genetic maps using sparse gene flow trees. Nat
Genet 30:97–101

202 David L. Duffy



20. Almasy L, Blangero J (1998) Multipoint
quantitative-trait linkage analysis in general
pedigrees. Am J Hum Genet 62:1198–1211

21. Zhou X, Stephens M (2014) Efficient multivar-
iate linear mixed model algorithms for
genome-wide association studies. NatMethods
11:407–409

22. Cheng R, Parker CC, Abney M, Palmer AA
(2013) Practical considerations regarding the
use of genotype and pedigree data to model
relatedness in the context of genome-wide
association studies. G3 (Bethesda)
3:1861–1867

23. Hiersche M, R€uhle F, Stoll M (2013) Post-
gwas: advanced GWAS interpretation in R.
PLoS One 8:e71775

24. Broman KW, Wu H, Sen S, Churchill GA
(2003) R/qtl: QTL mapping in experimental
crosses. Bioinformatics 19:889–890

25. Feng S, Liu D, Zhan X,WingMK, Abecasis GR
(2014) RAREMETAL: fast and powerful

meta-analysis for rare variants. Bioinformatics
30:2828–2829

26. R Core Team (2013) R: A language and envi-
ronment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria,
URL http://www.R-project.org/

27. Eu-Ahsunthornwattana J, Miller EN, Fakiola
M, WTCCC, Jeronimo SMB, Blackwell JM,
Cordell HJ (2014) Comparison of methods
to account for relatedness in genome-wide
association studies with family-based data.
PLoS Genet 10:e1004445

28. Crossett A, Lee AB, Klei L, Devlin B, Roeder K
(2013) Refining genetically inferred relation-
ships using treelet covariance smoothing. Ann
Appl Stat 7:669–690

29. Tucker G, Loh P-R, McLeod IM, Hayes BJ,
Goddard ME, Berger B, Price AL (2015) Two
variance component model improves genetic
prediction in family data sets. Am J Hum
Genet 97(5):677–690

Analysis of Quantitative Trait Loci 203

http://www.r-project.org/


Chapter 12

High-Dimensional Profiling for Computational Diagnosis

Claudio Lottaz, Wolfram Gronwald, Rainer Spang, and Julia C. Engelmann

Abstract

New technologies allow for high-dimensional profiling of patients. For instance, genome-wide gene
expression analysis in tumors or in blood is feasible with microarrays, if all transcripts are known, or even
without this restriction using high-throughput RNA sequencing. Other technologies like NMR finger
printing allow for high-dimensional profiling of metabolites in blood or urine. Such technologies for high-
dimensional patient profiling represent novel possibilities for molecular diagnostics. In clinical profiling
studies, researchers aim to predict disease type, survival, or treatment response for new patients using high-
dimensional profiles. In this process, they encounter a series of obstacles and pitfalls. We review fundamental
issues from machine learning and recommend a procedure for the computational aspects of a clinical
profiling study.

Key words Microarrays, Gene expression profiles, RNA sequencing, Metabolite analysis, NMR finger
printing, Statistical classification, Supervised machine learning, Feature selection, Model assessment

1 Introduction

In clinical microarray studies, tissue samples from patients are
examined using microarrays measuring gene expression levels of
as many as 50,000 transcripts. Such high-dimensional data, possi-
bly complemented by additional information about patients, pro-
vide novel opportunities for molecular diagnostics through
automatic classification.

For instance, Roepman et al. [1] describe a study on head and
neck squamous cell carcinomas. In this disease, treatment strongly
depends on the presence of metastases in lymph nodes near the
neck. However, diagnosis of metastases is difficult. With standard
diagnosis, more than half of the patients undergo surgery unneces-
sarily, while 23 % remain undertreated. Roepman et al. show that
treatment based on microarray prediction can be significantly more
accurate: in a validation cohort, undertreatment would have been
completely avoided while the rate of unnecessary surgery would
have dropped from 50 % to 14 %.
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From a statistical point of view, the major characteristic of
microarray studies is that the number of genes is orders of magni-
tude larger than the number of patients. For classification this leads
to problems involving overfitting and saturated models. When
blindly applying classification algorithms, a model rather adapts to
noise in the data than to the molecular characteristics of a disease.
Thus, the challenge is to findmolecular classification signatures that
are valid for entire disease populations.

In the following, we briefly describe the machine learning
theory, as it is needed for computational diagnostics using high-
dimensional data. We suggest software solutions in Subheading 2
and a procedure for a clinical profiling study in Subheading 3. In
the last section, we mention alternative data sources for high-
dimensional data, point out some alternative classification and
evaluation strategies, and describe pitfalls in the analysis and inter-
pretation of high-dimensional clinical studies.

1.1 The

Classification Problem

Classification is a well-investigated problem in machine learning.
This chapter gives a brief overview of the most fundamental issues
baring microarray gene expression analysis in mind as a prominent
example for the measurement of high-dimensional data. We refer to
[2–6] for further reading on the more theoretical concepts of
machine learning and to [7, 8] for an in-depth description of
their application to microarray data.

The task in classification is to determine classification rules
which enable discrimination between two or more classes of objects
based on a set of features. Supervised learning methods construct
classification rules based on training data with known classes. They
deduce rules by optimizing a classification quality criterion, for
example, by minimizing the number of misclassifications. In
microarray-based computational diagnostics, features are gene
expression levels, objects are tissue samples from patients, and
object classes are phenotypic characteristics of patients. Phenotypes
can include previously defined disease entities, as in the Microarray
Innovations in LEukemia study [9] and lymphoma-related studies
[10, 11]; risk groups, as in the breast cancer studies of van’t Veer
et al. [12]; treatment response, as in the leukemia study by Cheok
et al. [13]; or disease outcome, as in the breast cancer study of West
et al. [14]. In this context, classification rules are called diagnostic
signatures.

Study cases are always samples from a larger disease population.
Such a population comprises all patients who had a certain disease,
have it now, or will have it in the future. We aim for a diagnostic
signature with good performance not only on the patients in the
study but also in future clinical practice. That is, we aim for a
classification rule that generalizes beyond the training set. Different
learning algorithms determine signatures of different complexity.
We illustrate signature complexity using a toy example in which
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diagnosis of treatment response is based on the expression levels of
only two genes (Fig. 1). A linear signature corresponds to a straight
line, which separates the space defined by the two genes into two
parts, holding good and bad responders, respectively. When expres-
sion levels of many genes are measured, linear signatures corre-
spond to hyperplanes separating a high-dimensional space into
two parts. Other learning algorithms determine more complex
boundaries. In microarray classification, however, the improvement
achieved by sophisticated learning algorithms is controversial [15].
Complex models are more flexible to adapt to the data. However,
they also adapt to noise more easily and may thus miss the charac-
teristic features of the disease population. Consider Fig. 1, where
black data points represent bad responders and white data points
represent good responders. A linear signature is shown in the left
panel of Fig. 1, while a complex boundary is drawn in the right
panel. The linear signature reflects the general tendency of the data
but is not able to classify perfectly. On the other hand, the complex
boundary never misclassifies a sample, but it does not appear to be
well supported by the data. When applying both signatures to new
patients, it is not clear whether the complex boundary will outper-
form the linear signature. In fact, experience shows that complex
signatures often do not generalize well to new data, and hence
break down in clinical practice. This phenomenon is called
overfitting.

1.2 The Curse of

Dimensionality

In microarray studies, the number of genes is always orders of
magnitude larger than the number of patients. In this situation,
overfitting also occurs with linear signatures. To illustrate why this
is a problem, we use another simplistic toy example: two genes are

Gene B

Gene A

Gene B

Gene A

Fig. 1 Overfitting. The linear boundary (left-hand side) reflects characteristics of the disease population,
including an overlap of the two classes. The complex boundary (right-hand side) does not show any
misclassifications but adapts to noise. It is not expected to perform well on future patient data
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measured in only two patients. This is the simplest scenario where
the number of patients in a study does not exceed the number of
genes. We want to construct a linear signature that can discriminate
between the two classes, say good and bad responders, each repre-
sented by one patient. This is the same problem as finding a straight
line separating two points in a plane. Clearly, there is no unique
solution (see Fig. 2). Next, think about a third point, which does
not lie on the line going through the first two points. Imagine it
represents a new patient with unknown diagnosis. The dilemma is
that it is always possible to linearly separate the first two points such
that the new one lies on the same side as either one of them. No
matter where the third point lies, there is always one signature with
zero training error, which classifies the new patient as a good
responder, and a second signature, equally well supported by the
training data, which classifies the new patient as a bad responder.
The two training patients do not contain sufficient information to
diagnose the new patient. We are in this situation whenever there
are at least as many genes as training patients. Due to the large
number of genes on microarrays this problem is inherent in gene
expression studies.

The way out of the dilemma is regularization. Generally speaking,
regularization means imposing additional criteria in the signature
building process. A prominent method of regularization is gene selec-
tion, which restricts the number of genes contributing to the signa-
ture. This can be biologically motivated, since not all genes carry
information on disease states. In many cases, gene selection improves
the predictive performance of a signature [16]. Furthermore, ade-
quate selection of genes opens the opportunity to design smaller and
hence cheaper diagnostic microarrays or marker panels [17].

Bad 
responder

Good 
responder

Gene B

Gene A

?

Bad 
responder

Good 
responder

Gene B

Gene A

?

Fig. 2 Ill-posed classification problem. Even linear signatures are underdetermined when the number of
patients does not exceed the number of genes. The black and white data points represent the training data.
The linear signatures in both panels are equally valid but classify the novel data point (gray) differently
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Often genes are selected independently of the classification
algorithm according to univariate selection criteria. This is called
gene filtering [18]. In the context of classification, selection criteria
reflecting the correlation with the class labels are generally used.
Hence one favors genes with low expression levels in one class and
high expression levels in the other. Popular choices are variants of
the t-statistic or the nonparametric Wilcoxon rank sum statistic.

1.3 Calibrating

Model Complexity

As illustrated in the previous sections, regularization is essential in
the process of determining a good diagnostic signature. Aggressive
regularization, however, can be as harmful as too little of it. Hence
regularization needs to be calibrated. One way to do so is to vary
the number of genes included in the signature: weak regularization
means that most genes are kept, whereas strong regularization
removes most genes.

With little regularization, classification algorithms fit very flexi-
ble decision boundaries to the data. This results in few misclassifica-
tions on the training data. Nevertheless, due to overfitting, this
approach can have poor predictive performance in clinical practice.
With too much regularization, the resulting signatures are too
restricted. They have poor performance on both the study patients
and in future clinical practice. We refer to this situation as under-
fitting. The problem is schematically illustrated in Fig. 3, where two
error rates are compared. First there is the training error, which is
the number of misclassifications observed on data from which the
signature was learned. In addition, there is a test error, which is
observed on an independent test set of additional patients ran-
domly drawn from the disease population. Learning algorithms
minimize the training error, but the test error measures whether a
signature generalizes well.

Fig. 3 Overfitting–underfitting trade-off. The x-axis codes for model complexity and the y-axis for error rates.
The dashed line displays the training error, the solid line the test error. Low complexity models (strong
regularization) produce high test errors (underfitting) and so do highly complex models (weak regularization,
overfitting)
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In order to learn signatures that generalize well, we adapt
model complexity so that test errors are minimized. To this end,
we have to estimate test errors on an independent set of patients,
the calibration set, which is not used in signature learning. To
calibrate regularization, we learn signatures of varying complexity,
evaluate them on the calibration set, and pick the signature that
performs best.

1.4 Evaluation of

Diagnostic Signatures

Validation of a diagnostic signature is important, because the errors
on a training set do not reflect the expected error in clinical practice.
In fact, the validation step is most critical in computational diagno-
sis studies and several pitfalls are involved. Estimators can be overly
optimistic (biased) or they can have high sample variances. It also
makes a difference whether we are interested in the performance of
a fixed signature (which is usually the case in clinical studies), or
whether we are interested in the power of the learning algorithm
that builds the signatures (which is usually the case in methodolog-
ical projects). The performance of a fixed signature varies due to the
random sampling of the test set, while the performance of a
learning algorithm varies due to sampling of both training and
test set.

In computational diagnostics, we are usually more interested in
the evaluation of a fixed diagnostic signature. The corresponding
theoretical concept is the conditional error rate, also called true
error. It is defined as the probability of misclassifying new patients
given the training data used in the study. The true error is not
obtainable in practice, since its computation involves the unknown
population distribution. Estimates of the true error rate, however,
can be obtained by evaluating the diagnostic signature on indepen-
dent test samples.

2 Software

Implementations and corresponding documentation for most
computational methods we describe here can be found in packages
contributed to the statistical computing environment R [19, 20]
and are available from http://cran.R-project.org. In addition, the
Bioconductor project [21] containing many R-packages related to
the life sciences is found at the link http://www.bioconductor.org.

2.1 Classification

Software

LDA, QDA, and many other classification methods are implemen-
ted in the R-package MASS from the VR bundle; DLDA is
contained in the R-package supclust. An implementation of support
vector machines (SVMs) is part of the package e1071; svmpath can
compute the entire regularization path for SVMs. The nearest
centroid method is implemented in the Bioconductor package
pamr. The package MCRestimate from the Bioconductor project
implements many helpful functions for nested cross-validation.
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2.2 Additional

Software Related to

RNA Microarrays

The Bioconductor package oligo or aroma.affymetrix can be used
to generate logarithmic data on an additive scale from microarray
measurements. These packages focus on measurements from Affy-
metrix microarrays and can also be used to bring patient profiles to
a common scale. A normalization alternative is provided in the
Bioconductor package vsn.

2.3 Additional

Software Related to

RNA Sequencing

TopHat2 is one of many suggested tools independent of R to map
RNA sequence reads to genomes or transcriptomes for generating
count data. Bioconductor packages edgeR and DESeq2 can be used
to derive normalized expression values from RNA-seq count data.
The R package PoiClaClu implements sparse Poisson Linear Dis-
criminant Analysis (sPLDA) and is available from CRAN.

2.4 Additional

Software Related to

NMR Metabolite

Measurements

For the analysis of NMR spectra and binning of these the software
package AMIX (Bruker Biospin GmbH, Rheinstetten, Germany)
may be used. Normalization methods developed for microarrays
can also normalize data from NMR bins. Suitable choices are
variance stabilization and normalization (from the package vsn) or
quantile normalization (from the package limma). In metabolite
classification, random forests and support vector machines as
implemented in the R-packages randomForest and e1071, respec-
tively, performed particularly well.

3 Methods

Here we describe our choice of methods for the development of a
diagnostic signature when data is generated using microarrays. The
suggested methods, however, can also be applied and used likewise
on other high-dimensional data (see Note 1). In addition to nor-
malized expression profiles, patients have an attributed class label
reflecting a clinical phenotype. The challenge is to learn diagnostic
signatures on gene expression data that enable prediction of the
correct clinical phenotype for new patients.

3.1 Notation We measure p genes on n patients. The data from the microarray
corresponding to patient i is represented by the expression profile

x ið Þ∈ℜp. We denote the label indicating the phenotype of patient i
by yi∈ �1,f +1g. In this setting, the class labels are binary and we
restrict our discussion to this case. However, the discussed methods
can be extended to multiclass problems dealing with more than two
clinical phenotypes. The profiles are arranged as rows in a gene
expression matrix X∈ℜn�p. All labels together form the vector

y ¼ yi
� �

i¼1, ...,n
. The pair (X, y) is called a dataset D. It holds all

data of a study in pairs of observations x ið Þ; yi
� �� �

, i ¼ 1, . . . ,n.
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The computational task is to generate a mathematical model f
relating x to y.

Although we never have access to the complete disease popula-
tion, it is convenient to make it part of the mathematical formalism.
We assume that there is a data-generating distribution P(X, Y) on
ℜp � �1,f +1g. P(X, Y) is the joint distribution of expression pro-
files and associated clinical phenotypes. The patients who enrolled
for the study, as well as new patients who need to be diagnosed in
clinical practice, are modeled as independent samples {(x(i), yi)}
drawn from P. We denote a diagnostic signature, or classification
rule, by f : ℜp ! �1,f +1g.

3.2 Diagonal Linear

Discriminant Analysis

(DLDA)

Various learning algorithms have been suggested for microarray
analysis. Many of them implement rather sophisticated approaches
to model the training data. However, Wessels et al. [15] report that
in a comparison of the most popular algorithms and gene selection
methods, simple algorithms perform particularly well. They have
assessed the performance of learning algorithms using six datasets
from clinical microarray studies. Diagonal linear discriminant
analysis (DLDA) combined with univariate gene selection achieved
very good results. This finding is in accordance with other authors
(e.g., [16]). Thus, we recommend and describe this combination of
methods.

Diagonal linear discriminant analysis (DLDA) is based on a
comparison of multivariate Gaussian likelihoods for two classes.
The conditional density P x

��y ¼ c
� �

of the data given membership
to class c∈ �1,f +1g is modeled as a multivariate normal distribution
N(μc, Σc) with class mean μc and covariance matrix Σc. The two
means and covariance matrices are estimated from the training data.
A new point is classified to the class with higher likelihood. Restric-
tions on the form of the covariance matrix control model complex-
ity: Quadratic discriminant analysis (QDA) allows different
covariance matrices in both classes; linear discriminant analysis
(LDA) assumes that they are the same, and diagonal linear discrim-
inant analysis (DLDA) additionally restricts the covariance matrix
to diagonal form. The parameters needed by DLDA are therefore
class-wise mean expression values for each gene and one pooled
variance per gene.

To derive the decision rule applied in DLDA, consider the
multivariate Gaussian log-likelihood N(μc, Σ) for class c with diag-
onal covariance matrix Σ. The vector μc contains the mean gene
expression values μi

c for class c. It is also called the class centroid.
The covariance matrix Σ contains pooled gene-wise variances σi

2.
The log-likelihood Lc(x) can then be written in the form:
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Lc xð Þ ¼ �1

2
�
Xp

i¼1

log 2πσ2i
� �� 1

2
�
Xp

i¼1

xi � μ c
i

� �2

σ2i
:

The first term of Lc(x) does not depend on the class and is therefore
neglected in DLDA. DLDA places patients into the class for which
the absolute value of the second term is minimized.

3.3 Univariate Gene

Selection

Diagonal linear discriminant analysis can be directly applied to
microarray data. Nevertheless, gene selection considerably improves
its performance. In gene selection, we impose additional regulari-
zation by limiting the number of genes in the signature. A simple
way to select informative genes is to rank them according to a
univariate criterion measuring the difference in mean expression
values between the two classes. We suggest a regularized version of
the t-statistic also used for detecting differential gene expression.
For gene i, it is defined as

di ¼ μ�1
i � μþ1

i

σi þ σo
;

where σo denotes the statistic’s regularization parameter, the so-
called fudge factor. It is typically set to the median of all σi and
ensures that the statistic does not grow exceedingly when low
variances are underestimated. Only top-ranking genes in the result-
ing list are chosen for classification.

3.4 Generation of

Diagnostic Signatures

In this section, we suggest a simple procedure to generate and
validate a diagnostic signature within a clinical microarray study.
It is illustrated in Fig. 4.

3.4.1 Preprocess Your

Data

First, normalize your microarray data in order to make the expres-
sion values comparable.Various methods for microarray data pre-
processing and normalization have been suggested and are equally
valid in computational diagnostics. From now on, we assume that

Step1:
Preprocessing: 

filtering & 
normalization

Step 2: Split data 
into training set L

and test set E Step 3: 10-fold 
cross-validation on 

L to evaluate 
candidate Ks

Step 4: Learn 
f using

optK
on complete L

Step 5: 
Evaluate f on E

Adaptive model selection

Dataset preparation

Fig. 4 Overview of the suggested procedure to generate a diagnostic signature. K represents the regularization
level (e.g., number of genes selected), Kopt denotes the best regularization level found in cross-validation. L
represents the training set and E the test set
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gene expression profiles x(i) are normalized and on an additive scale
(log transformed).

3.4.2 Divide Your Data

into a Training and a Test

Set

In order to allow an unbiased evaluation of the generated diagnos-
tic signature, we suggest separating the study data right from the
start into two parts: the training set L for learning and the test set E
for evaluation. The entire learning process must be executed on the
training data only. The evaluation of the resulting diagnostic signa-
ture must be performed afterward using only the test set.

The training set’s exclusive purpose is to learn a diagnostic
signature. Unclear or controversial cases can and should be
excluded from learning. You may consider focusing on extreme
cases. For instance, Liu et al. improve their outcome prediction
by focusing the learning phase on very short and very long-term
survivors [22].

The test set’s exclusive purpose is to evaluate the diagnostic
signature. Since you want to estimate the performance of a signa-
ture in clinical practice, the test set should reflect expected popula-
tion properties of the investigated disease. For example, if the
disease is twice as common in women as in men, the gender ratio
should be close to 2:1 in the test set too.

The size of the training and test sets has an impact on both the
performance of the signature and the accuracy of its evaluation.
Large training sets lead to a better performance of the signature,
while large test sets lead to more accurate estimates of the perfor-
mance. Actually, small test sets result in unreliable error estimation
due to sampling variance (seeNote 2). We recommend splitting the
data in a ratio of 2:1.

3.4.3 Find the Best

Regularization Level

Search for the best regularization level exclusively using the training
data. Apply univariate gene filtering and DLDA to learn signatures
with varying complexity and estimate their performance on inde-
pendent data. Your best choice for the regularization level is the
one leading to the best performance. See Note 3 for alternative
learning algorithms and feature selection schemes.

To estimate performance on independent data we recommend
tenfold cross-validation. Partition the training set into 10 bins of
equal size. Take care to generate bins that are balanced with respect
to the classes to be discriminated. That is, classes should have the
same frequency in the bins as in the complete training data. Use
each bin in turn as the calibration set, and pool the other bins to
generate the learning set. In each iteration, select genes according
to the regularized t-statistics di and the regularization level K to be
evaluated, learn a signature by applying DLDA on the restricted
learning set, and compute the number of misclassifications in the
calibration bin. The cross-validation error is the sum of these errors.
Use this estimate for performance on independent data to
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determine the optimal amount of regularization [23, 24]. See Fig. 5
for an algorithmic representation of the cross-validation procedure.

A straightforward method for finding a good set of candidate
values for K is forward filtering. Starting with the most discrimi-
nating gene, include additional genes one by one until the cross-
validation error reaches an optimum. Stop iterating and set the
optimal regularization level Kopt to the value of K that produced
the smallest cross-validation error.

3.4.4 Learn the

Diagnostic Signature

For the optimal level of regularizationKopt, compute the diagnostic
signature f on the complete training set L. This is the final
signature.

3.4.5 Evaluate Your

Signature

Apply your final signature f to the test set E to estimate the mis-
classification rate. Note that the result is subject to sampling vari-
ance (see Note 4 for more information on sampling variance).

3.4.6 Document Your

Signature

Diagnostic signatures eventually need to be communicated to other
healthcare centers. It should be possible for your signature to be
used to diagnose patients worldwide, at least if the same measure-
ment technology and platform is used to profile them. You should
therefore provide a detailed description of the signature that you
propose. The list of genes contributing to the signature is not
enough. The mathematical form of both the classification and the
preprocessing models needs to be specified together with the values
of all parameters. For DLDA, communication of the centroid for
each group and the variance for each gene is necessary to specify the
signature completely. While exact documentation of the

1. Choose regularization level K .

2. Separate the training set L into 10 bins 1,L ...,L10

3. For i in 1 to 10 do

a. Select features S according to K from [ ]iLLD −

b. Learn )(Kfi on [ ]SLLD i ,−

c. Evaluate )(Kfi on [ ]SLD i ,

4. Average error rates determined in step 3.c

Fig. 5 Algorithmic representation of the tenfold cross-validation procedure. K is
the regularization level to be evaluated. D[L] denotes the study data restricted to
patients in the set L. D[L, S] represents the study data restricted to the patient
set L and the gene set S. The operator “�” is used for set difference
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classification signature is crucial, involvement of genes in a signa-
ture should not be interpreted biologically (see Note 5).

4 Notes

1. Alternative High-Dimensional Data for Classification: So far,
we have focused on classification based on microarray data.
Various new technologies have been developed to generate
high-dimensional multivariate data for profiling in the life
sciences. Data generated from these new technologies can
often be used for classification in a similar manner as just
described for microarray data.

Custom microarrays: General purpose genome-wide microar-
rays are too complex and expensive for routine diagnosis in
hospitals. Therefore, clinicians are interested in cost and time
effective, but officially approved tools to reliably diagnose
patients using high-dimensional gene expression measure-
ments. For instance, the custom AmpliChip Leukemia micro-
array (by Roche Molecular Systems) was specifically designed
for the classification of various types of leukemia [25]. The chip
contains 1480 distinct probe sets with 1457 of them used for
generating normalized signal intensities of disease-related
genes; the remaining probe sets interrogate control sequences
and housekeeping genes. The genes on the AmpliChip are
selected based on the MILE study on 2096 leukemia patients
using the large genome-wide standard Affymetrix microarray
HG-U133 plus 2.0 [9]. The AmpliChip is intended to identify
the correct type of leukemia for new patients. Thereby, it is
limited to a preselected set of leukemias. Because the Ampli-
Chip is based on the Affymetrix microarray technology, a clas-
sifier could be generated and applied for classification as
discussed earlier. At the same time, the AmpliChip comes
with the advantages of the Affymetrix microarray technology
such as good reproducibility, as well as drawbacks including
complex handling in the laboratory.

Digital multiplexed gene expression: One platform for digital
gene expression measurement by capturing and counting indi-
vidual mRNA transcripts is the NanoString nCounter gene
expression system. The developers report that the nCounter
system is limited to the measurement of about 500 human
genes, has a detection limit between 0.1 fM and 0.5 fM, and
a linear dynamic range of over 500-fold [26]. Hence, this
platform is limited to a subset of genes but can measure very
small amounts of material without amplification. Therefore,
the nCounter technology is more robust to partially degraded
RNA, which is expected in formalin-fixed paraffin-embedded
(FFPE) material.
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In the vast majority of hospitals, patient material is only used
and stored as FFPE material. Researchers have confirmed
microarray-based signatures for classification of diffuse large
b-cell lymphomas with the nCounter technology in FFPE
material [27, 28]. In both projects, researchers have measured
less than 100 genes and therefore needed particular protocols
for normalization. Masqué-Soler et al. [27] performed batch‐
to‐batch correction with sample-wise normalization factors
generated by individually averaging the internal controls. Sam-
ples were then normalized independently with quantile nor-
malization. Scott et al. [28] normalized each array by dividing
the observed expression values by the geometric mean of five
housekeeping genes. In addition, a reference array of synthetic
oligonucleotides of fixed concentration ratios was included in
each run, to adjust for potential batch effects between runs. In
both cases, the expression values were finally log2-transformed.
Masqué-Soler et al. as well as Scott et al. emphasize the simple
and efficient protocol for the gene expression measurement in
only 24–36 hours.

Classification on High-Throughput RNA Sequencing Data:
High-throughput RNA sequencing is on its way to replace
microarray transcriptome analyses for many applications. How-
ever, fundamental differences between the data delivered from
microarrays and data from RNA sequencing experiments must
be respected during data analysis. For high-throughput RNA
sequencing, first a cDNA library is prepared from RNA input
material, which is then PCR amplified and sheared into frag-
ments of similar size. These fragments are then sequenced from
one or both sides, giving rise to millions of single- or paired end
sequence reads. Strand-specific protocols can recover whether
the transcript originated from the plus or minus DNA strand,
while strand-unspecific protocols can not. Sequence reads are
then aligned to the genome with a splicing-aware mapping tool
such as TopHat2 [29], or de novo assembled if sequencing
depth is sufficient. For most gene expression analyses of well-
annotated species, the first-align-then-annotate strategy that
uses genomic sequence information and respects splicing
events is preferred, and a number of mappers have been pro-
posed for this task. From the mapped sequence reads, so-called
count tables that summarize the number of observed reads for
all features of interest (e.g., exons or genes) can be generated.
While expression values from microarrays are on a continuous
scale, reflecting fluorescence intensities with a distribution that
is close to log-normal, count data is Poisson or negative-
binomial distributed. To be able to apply classification algo-
rithms to sequence data, one must either (1) adapt the data
to use models that assume continuous and log-normal
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high-throughput data, or (2) adapt the models such that they
assume Poisson or negative binomial distributed data. In the
following paragraphs, we discuss these two approaches.

Deriving expression values from sequencing data: When high-
throughput sequencing technology first emerged, this was
considered the end of the microarray era. It was hoped that
RNA sequencing would deliver ‘digital’ gene expression esti-
mates in an unbiased and transcriptome-wide fashion that is
independent of annotation [30]. But from many experiments
conducted so far, it became evident that the sequence library
preparation as well as the fact that short sequence reads (for-
merly 25 nucleotides, now up to 150 nucleotides in single or
paired end mode, only for some technologies several hundred
or even a few thousand nucleotides, albeit with lower numbers
of total reads) are sequenced, can introduce substantial biases
in observed read counts [31]. A substantial fraction of the short
sequence reads are often not uniquely mappable to a genomic
region due to sequence similarities caused by, e.g., gene
families. But even for the uniquely mapped reads it might not
be obvious from which transcript they originated, when the
locus gives rise to more than one transcript. Therefore, estimat-
ing transcript and gene expression levels from RNA sequencing
data is not trivial. Simplistic approaches count only uniquely
mapped reads falling in exonic regions, disregarding the rest.
These counts can then be used to derive differentially expressed
genes and exons but hold no information on the transcript
level. Resolution on the transcript level requires allocation of
reads with multiple mapping sites—both within the same and
across genes—to specific isoforms. Many algorithms have been
proposed, the majority assign multimapping reads to isoforms
in an iterative process, which has first been described in Xing
et al [32]. These models allow inference about relative tran-
script abundance.

Numerous gene expression normalization methods for
RNA-sequencing data have been proposed, the most popular
(but also criticized) being RPKM (Reads per Kilobase of tran-
script per Million mapped reads) [33] and FPKM (Fragments
Per Kilobase of transcript per Million mapped reads) [34], the
later counting fragments from which the reads originated, to
avoid double counting when having paired-end sequencing
data. Modifications such as TPM (Transcripts Per Million)
[35] claim to better represent relative molar RNA concentra-
tion in the sample, the initial aim of the RPKM value. Software
packages written for finding differentially expressed genes from
RNA sequencing data usually work directly with the count data
and often use Negative Binomial models and some form of
dispersion shrinkage, as in DESeq2 [36] and edgeR [37].
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However, both DESeq2 and edgeR offer functionality to
retrieve expression values. In DESeq2, one can apply a ridge
regularization to transform the count data to log2 scale, reflect-
ing a normalized expression value. This rlog transformation
uses library size factors and minimizes differences between
samples for rows with small counts. In edgeR, fitted values
from the log-link negative binomial or Poisson generalized
linear model (GLM) that are used for differential expression
analysis can be extracted as moderated log counts per million
(CPM). Once gene or transcript expression levels are at hand,
the classification algorithms and procedures described earlier in
this chapter can be applied.

Classification with count data: An alternative approach to first
deriving expression estimates from RNA sequencing data is to
directly work on the count data but adapt the classification
procedure accordingly. For the identification of differentially
expressed genes, methods have adapted models for count data,
but classification has been lagging behind so far, with currently
only one proposed method for RNA sequencing data, namely,
the Poisson linear discriminant analysis (PLDA) classifier [38].
For classification using PLDA, the authors propose to normal-
ize the count data with an estimate of the size factor, which
represents the sequencing library size, followed by a power
transformation to account for overdispersion relative to the
Poisson model, meaning that the variance is larger than the
mean. Instead of assuming normally distributed data as in
standard linear discriminant analysis (LDA), Poisson linear
discriminant analysis assumes independent features from
which the data follow a Poisson distribution. The classification
rule that assigns test samples to a specific class is then linear.
Since it is not desirable to use all features of a high-dimensional
dataset for classification, sparse PLDA (sPLDA) uses shrinkage
similar to Nearest Shrunken Centroids (NSC) classifiers that
are also used by PAM for classification of microarray data (see
Note 3). sPLDA has been shown to perform well on slightly
overdispersed data relative to the Poisson model, but perfor-
mance decreases on severely overdispersed data. The authors of
sPLDA propose to investigate whether negative-binomial
models might increase performance for later case datasets.

Metabolomics: The aim of metabolomics is primarily the com-
prehensive analysis of the flow of small organic compounds
through bioenergetic and biosynthetic pathways by their quan-
titative analysis in cells, tissues, organs, biological fluids, and
whole organisms. Typical compounds include amino acids,
sugars, organic acids, bases, lipids, vitamins, and various con-
jugates of substances of exogenous origin. Fields of application
include such diverse topics as investigating the health status of
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dairy cows [39] or analysis of chronic kidney diseases [40].
Metabolomic investigations are mainly conducted by employ-
ing hyphenated mass spectrometry or nuclear magnetic reso-
nance (NMR) spectroscopy. Here, we will focus on the
application of solution NMR spectroscopy. NMR is a versatile
and powerful method for metabolite identification and quanti-
fication, as it allows the simultaneous detection of all proton-
containing metabolites present at least micromolar concentra-
tions in a given sample. NMR signal volumes scale linearly with
concentration enabling accurate quantification of analytes. Fur-
thermore, NMR requires very little sample pretreatment and,
typically, no prior chemical derivatization of molecules. On the
other hand, a disadvantage of NMR spectroscopy when com-
pared to mass spectrometry, for example, is its relatively poor
sensitivity.

NMR spectroscopy: The theory of NMR spectroscopy is well
established. For a comprehensive description, see for example
Ernst et al. [41]. For observing an NMR signal nuclei such as
protons possessing a spin unequal to zero are brought into a
static magnetic field, where only certain orientations, i.e., cer-
tain states of the magnetic moments of the nuclei are allowed.
By applying an additional electromagnetic field of appropriate
frequency, transitions between the different states can be
induced. This will lead to a time-dependent change of the
macroscopic magnetization of the nuclei which will be
recorded in the time domain as the NMR signal. By application
of Fourier transform to the NMR signal the final NMR spec-
trum will be obtained. The positions of the signals in an NMR
spectrum depend on the electronic environment of the nuclei.
As the electronic environment depends among other factors on
the type of molecule and on the position of a nucleus within a
molecule, in the final NMR spectrum each signal corresponds
to a certain nucleus or group of nuclei of a certain molecule. By
comparison with reference spectra obtained from pure com-
pounds, identification of metabolites becomes feasible. Signal
intensities scale linearly with metabolite abundance and can
thus be quantified relative to a given reference compound. An
example of a typical NMR spectrum of human urine, in which
the signals of up to several hundred different compounds may
be detected, is shown in Fig. 6.

Preprocessing: Acquisition of NMR spectra is generally followed
by multivariate statistical data analysis. Here, the first step
involves correction for variation in signal position across spec-
tra due to differences in pH, salt concentration, and/or sample
temperature. A widely used and robust method to compensate
for these effects is spectral binning, where an NMR spectrum is
split into a number of segments or bins. Equally sized bins are
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mostly used, albeit other schemes such as adaptive binning have
been proposed. Data points inside every bin are integrated so
that the whole spectrum is then represented as a vector of
bucket integrals. Alternative approaches include, for example,
signal alignment techniques [42].

Data normalization: Generally, metabolomic datasets are
prone to unwanted experimental and/or biological variances
and biases. To minimize these disturbing factors, data normali-
zation and scaling approaches may be used. The different stra-
tegies can be grouped into methods that either adjust the
variance of metabolites by variance stabilization and variable
scaling strategies, or remove unwanted sample to sample varia-
tions. A simple but often effective approach for reducing inter-
sample variations of urinary data is scaling relative to the signal
of creatinine. For other sample matrices scaling of every spec-
trum to a total sum of one may be used. Under the condition

Fig. 6 1D 1H NMR spectrum of human urine. As an example for metabolite identification the signals of
hippurate and creatinine are marked. The enlarged region demonstrates the high complexity of the spectrum
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that only a relatively small proportion of metabolites is regu-
lated in approximately equal shares up and down so that no
large systematic differences in total spectral area between
biological groups exist, Variance Stabilization and Normaliza-
tion [43] as well as Quantile Normalization [44] give reliable
results according to our experience [45].

Sample classification: Classification of an unknown sample to
known classes of disease (e.g., healthy or diseased) is a typical
application of metabolomics. Generally, classification algo-
rithms are trained on a training dataset where the class label
of each sample is known, followed by application of the trained
algorithm to additional independent test data. In case that test
data are difficult to obtain, performance evaluation is often
performed within a cross-validation setting, where the whole
dataset is iteratively split into training and test sets. By employ-
ing a nested cross-validation scheme, where parameters rele-
vant for the algorithm are optimized within inner loops, it is
ensured that results are not biased by training or parameter
optimization (see Note 4). In our experience, especially, Ran-
dom Forests [46] and Support Vector Machines [47–49] are
particularly suited for the analysis of high-dimensional NMR
data [50].

Conclusion: Many of the aforementioned methods were origi-
nally developed for analysis of gene expression micro-array data
and they might as well be applied to other high-dimensional
data such as metabolomic data generated by means of
hyphenated mass spectrometry as well as to proteomic datasets.

2. Pitfalls in Signature Evaluation: There are several pitfalls lead-
ing to overly optimistic estimations, for instance, using too
small or unbalanced validation sets [51]. When using a single
independent test set for evaluation of diagnostic signatures,
only training data is used for gene selection, classifier learning,
and adaptive model selection. The final signature is then eval-
uated on the independent test set. Unfortunately, this estima-
tor can have a substantial sample variance, due to the random
selection of patients in the test set. This is especially the case if
the test set is small. Thus, good performance in small studies
can be a chance artifact. For instance, Ntzani et al. [52] have
reviewed 84 microarray studies carried out before 2003 and
observed that positive results were reported strikingly often on
very small datasets.

Another prominent problem is the selection bias caused by
improperly combining cross-validation with gene selection
[14, 51, 53]. Gene selection has a strong impact on the predic-
tive performance of a signature. It is an essential part of the
signature-building algorithm. There are two possible ways to
combine gene selection with cross-validation: either apply gene
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selection to the complete dataset and then perform cross-
validation on the reduced data, or perform gene selection in
every single step of cross-validation anew. We call the first
alternative out-of-loop gene selection and the second in-loop
gene selection. In-loop gene selection gives the better estimate
of generalization performance, while the out-of-loop proce-
dure is overoptimistic and biased toward low error rates. In
out-of-loop gene selection, the genes selected for discrimina-
tive power on the whole dataset bear information on the sam-
ples used for testing. In-loop gene selection avoids this
problem. Here, genes are only selected on the training data of
each cross-validation iteration and the corresponding test sets
are independent.

The impact of overoptimistic evaluation through out-of-
loop gene selection can be very prominent. For example, Reid
et al. [54] report the reevaluation of two public studies on
treatment response in breast cancer. They observe classification
errors of 39 % and 46 %, respectively, when applying in-loop
gene selection. Using the overoptimistic out-of-loop gene
selection, error rates are underestimated at 25 % and 24 %,
respectively. Similarly, Simon et al. [51] describe a case in breast
cancer outcome prediction where the out-of-loop cross-
validation method estimates the error rate to 27 % while the
in-loop cross-validation method estimates an error rate of
41 %. Nevertheless, Ntzani et al. [52] report that 26 % of 84
reviewed microarray studies published before 2003 provide
overoptimistic error rates due to out-of-loop gene selection.
Seven of these studies have been reanalyzed by Michiels et al.
[55]. They determine classification rates using nested cross-
validation loops and average over many random cross-
validation partitionings. In five of the investigated datasets,
classification rates no better than random guessing are
observed.

3. Alternative Classification Algorithms: Several authors have
observed that complex classification algorithms quite often do
not outperform simple ones like diagonal linear discrimination
on clinical microarray data [15, 16, 29, 56]. We report two
more algorithms, however, which have shown good perfor-
mance on microarray data.

The first one is a variant of DLDA called Prediction Analysis
of Microarrays (PAM, [57, 58]). An outstanding feature of
PAM is gene shrinkage. Filtering uses a hard threshold: when
selecting k genes, gene k+1 is thrown away even if it bears as
much information as gene k. Gene shrinkage is a smoother,
continuous, soft-thresholding method. PAM is an application
of nearest centroid classification, in which the class centroids
are shrunken in the direction of the overall centroid. For each
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gene i the value δic measures the distance of the centroid for
class c to the overall centroid in units of its standard deviation.
Each δic is then reduced by an amountΔ in absolute value and is
set to zero if its value becomes negative. With increasing Δ, all
genes lose discriminative power and more and more of them
will fade away. Genes with high variance vanish faster than
genes with low variance. A link between PAM and classical
linear models is discussed in Huang et al. [59].

Support vector machines (SVMs, [2, 47–49]) avoid the ill-
posed problem shown in Fig. 2 in Subheading 1.2 by fitting a
maximal (soft) margin hyperplane between the two classes. In
high-dimensional problems there are always several perfectly
separating hyperplanes, but there is only one separating hyper-
plane with maximal distance to the nearest training points of
either class. Soft margin SVMs trade off the number of mis-
classifications with the distance between hyperplane and near-
est data points in the training set. This trade-off is controlled by
a tuning parameter C. The maximal margin hyperplane can be
constructed by means of inner products between training
examples. This observation is the key to the second building
block of SVMs: the inner product xi

Txj between two training
examples xi and xj is replaced by a nonlinear kernel function.
The use of kernel functions implicitly maps the data into a high-
dimensional space, where the maximal margin hyperplane is
constructed. Thus, in the original input space, boundaries
between the classes can be complex when choosing nonlinear
kernel functions. In microarray data, however, choosing a lin-
ear kernel and thus deducing linear decision boundaries usually
performs well.

A gene selection algorithm tailored to SVMs is recursive
feature elimination [60]. This procedure eliminates the feature
(gene) contributing least to the normal vector of the hyper-
plane before retraining the support vector machine on the data
excluding the gene. Elimination and retraining are iterated
until maximal training performance is reached. In high-
dimensional microarray data, eliminating features one by one
is computationally expensive. Therefore, usually several fea-
tures are eliminated in each iteration.

4. Alternative Evaluation Schemes: The signature evaluation sug-
gested in Subheading 3.4 yields an estimate of the signature’s
misclassification rate but does not provide any information on
its variability. In order to investigate this aspect, you can apply
methods designed to evaluate signature generating algorithms.
In order to evaluate the performance of a learning algorithm,
the sampling variability of the training set has to be taken into
account. One approach is to perform the partitioning into
training and test set (L and E) many times randomly and
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execute the complete procedure illustrated in Fig. 4 for each
partitioning. This yields a distribution of misclassification rates
reflecting sample variability of training and test sets. More
effective use of the data can be made via cross-validation.
Together with the procedure described in Subheading 3.4,
two nested cross-validation loops are needed [24, 61]. Braga-
Neto and Dougherty [62] advise averaging cross-validation
errors over many different partitionings. Ruschhaupt et al.
[61] and Wessels et al. [15] implement such complete valida-
tion procedures and compare various machine learning
methods.

In the leave-one-out version of cross-validation, each sample
is used in turn for evaluation while all other samples are attrib-
uted to the learning set. This evaluation method estimates the
expected error rate with almost no bias. For big sample sizes, it
is computationally more expensive than tenfold cross-
validation and suffers from high variance [5, 7, 63]. Efron
et al. [64] apply bootstrap smoothing to the leave-one-out
cross-validation estimate. The basic idea is to generate different
bootstrap replicates, apply leave-one-out cross-validation to
each and then average results. Each bootstrap replicate contains
n random draws from the original dataset (with replacement so
that samples may occur several times). A result of this approach
is the so-called 0.632þ estimator. It takes the possibility of
overfitting into account and reduces variance compared to the
regular cross-validation estimates. Ambroise et al. [53] have
found it to work well with gene expression data.

Cross-validation and bootstrap smoothing error rates, as
well as error rates determined by repeated separation of data
into training and test set, refer to the classification algorithm,
not to a single signature. In each iteration, a different classifier
is learnt based on different training data. The cross-validation
performance is the average of the performance of different
signatures. Nevertheless, cross-validation performance can be
used as an estimate of a signature’s expected error rate.

5. Biological Interpretation of Diagnostic Signatures: The meth-
odology earlier was presented in the classification context only.
In addition, you might be tempted to interpret the genes
driving the models biologically, but this is dangerous. First, it
is unclear how exactly regularization biases the selection of
signature genes. While this bias is a blessing from the diagnostic
perspective, this is not the case from a biological point of view.
Second, signatures are generally not unique: While outcome
prediction for breast cancer patients has been successful in
various studies [65–67], the respective signatures do not over-
lap at all. Moreover, Ein-Dor et al. [68] derived a large number
of almost equally performing nonoverlapping signatures from a
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single dataset. Also, Michiels et al. [55] report highly unstable
signatures when resampling the training set.

This is not too surprising considering the following: the
molecular cause of a clinical phenotype might involve only a
small set of genes. This primary event, however, has secondary
influences on other genes, which in turn deregulate more genes
and so on. In clinical microarray analysis we typically observe an
avalanche of secondary or later effects, often involving
thousands of differentially expressed genes. While complicating
biological interpretation of signatures, such an effect does not
compromise the clinical usefulness of predictors. On the con-
trary, it is conceivable that only signals enhanced through
propagation lead to a well generalizing signature.
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Chapter 13

Molecular Similarity Concepts for Informatics Applications

J€urgen Bajorath

Abstract

The assessment of small molecule similarity is a central task in chemoinformatics and medicinal chemistry.
A variety of molecular representations and metrics are applied to computationally evaluate and quantify
molecular similarity. A critically important aspect of molecular similarity analysis in chemoinformatics and
pharmaceutical research is that one is typically not interested in quantifying the degree of structural or
chemical similarity between compounds per se, but rather in extrapolating from molecular similarity to
property similarity. In other words, one assumes that there is a correlation between calculated similarity and
specific properties of small molecules including, first and foremost, biological activities. Although similarity
is a priori a subjective concept, and difficult to quantify, it must computationally be assessed in a formally
consistent manner. Otherwise, there is little utility of similarity calculations. Consistent treatment requires
approximations to be made and the consideration of alternative computational similarity concepts, as
discussed herein.

Key words Molecular similarity and dissimilarity, Similarity-property principle, Similarity functions,
Molecular descriptors, Fingerprints, Structure–activity relationships

1 Introduction

The assessment of molecular similarity is a key task in chemoinfor-
matics [1–3] and also of central relevance for medicinal chemistry
[3, 4]. Importantly, molecular similarity is qualitatively or quanti-
tatively evaluated as an indicator of activity similarity. However,
similarity is principally a subjective concept and no commonly
applicable similarity criteria or rules exist [3]. In evaluating similar-
ity relationships, many cognitive aspects play a role that often
unconsciously determine human judgment. Regardless of whether
similarity is assessed by humans or computationally, pattern recog-
nition plays a central role in this process. To illustrate and further
specify this key point, let us consider a quote from a recent work on
molecular similarity analysis [3]: “More than anything else, the rec-
ognition of molecular patterns, based on human or computational
exploration, provides a basis for arriving at decisions as to whether two
compounds are similar to each other or not. Since data complexity
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generally scales with the number of patterns that can be discovered, it
quickly becomes impossible for humans to consider them in a compre-
hensive manner. Therefore, humans intuitively, and often uncon-
sciously, reduce patterns to simpler ones that contain the essential
feature(s) of the original pattern. But unlike applications of compu-
tational pattern recognition, the precise nature of these key patterns in
human pattern recognition is unknown.” Importantly, the compu-
tational assessment of molecular similarity stringently requires a
consistent application of molecular representations and patterns
derived from these representations as well as a consistent quantifi-
cation of pattern correspondence in compounds under comparison.
Furthermore, to quote one more time, we should consider the
following [3]: “The key patterns used by humans or computers will
generally vary from individual to individual or from algorithm to
algorithm, a situation that most likely will yield results with varying
degrees of agreement for the same set of data. This follows because the
representations used by humans and by computers, which most likely
are significantly different, are crucial components in determining
what can be understood about relationships of objects to each other,
whether they are physical objects, concepts, ideas—or compounds.”
Moreover, human perception of molecules is strongly context-
and order-dependent [5], i.e., dependent on the order in which
we view compounds and their structural context, different conclu-
sions about molecular patterns and associated properties are usually
drawn. However, computational similarity methods must account
for molecular representations and patterns derived from such repre-
sentations in a constant and context-independent manner. Hence,
for computational analysis, the inherent subjectivity of the similarity
concept must be formalized in a predefined and transparent man-
ner, which requires approximations to be made. The introductory
section concludes with the definition (and differentiation) of a few
key terms to provide a basis for the following discussion of alterna-
tive computational similarity concepts.

1.1 Substructure

Matching vs. Similarity

Analysis

It is important to distinguish between substructure searching/
matching and similarity calculations. Substructure search methods
[6] are used to detect the presence or absence of a substructure
(fragment) in a compound. By definition, substructure matching
provides a binary (yes/no) result. In a substructure search, all
compounds are retrieved from a database that contains a prespeci-
fied substructure (query) or a combination of substructures. By
contrast, similarity analysis must differentiate between different
degrees of molecular similarity and hence capture a continuum of
similarity relationships. Importantly, the question if two com-
pounds are similar to each other and what their degree of similarity
is cannot be answered from first principles.
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1.2 Molecular vs.

Chemical Similarity

These terms are often synonymously used, which is not entirely
correct. Chemical similarity primarily considers reaction informa-
tion, the presence or absence of specific functional groups, and
physicochemical properties. By contrast, the assessment of molecu-
lar similarity is mostly based upon structural and topological
features of compounds. In chemoinformatics, one typically
attempts to extrapolate from molecular similarity to biological/
activity similarity, and not from chemical similarity (although the
boundaries are often fluid). Hence, herein the focus is on molecular
similarity.

1.3 Molecular

Similarity,

Dissimilarity,

and Diversity

It is also important to distinguish between similarity, dissimilarity,
and diversity. Dissimilarity is the inverse of similarity [7]. Molecular
similarity and dissimilarity are best rationalized at the level of
compounds pairs (i.e., on the basis of pairwise compound compar-
isons). By contrast, diversity is a property of a compound set, which
is closely related to chemical space coverage [8]. The major goal of
diversity analysis is the generation of a compound set of limited size
that best (evenly) covers a given chemical reference space [8]. In
this context, chemical space is best understood as a computational
construct, i.e., an n-dimensional reference space obtained from
n preselected descriptors [9] (see Note 1). Such descriptors are
generally defined as mathematical models of molecular structure
and/or properties and their complexity greatly varies [9].

2 Similarity Concepts

In the following, alternative concepts for molecular similarity anal-
ysis are presented. Key aspects of such similarity concepts are illu-
strated in Fig. 1. First, fundamental methodological requirements
are specified.

2.1 Key Components

of Computational

Similarity Analysis

Regardless of the specifics of molecular similarity analysis, the cal-
culation of similarity values (seeNote 2) requires two basic compo-
nents including (1) a molecular representation to capture
(similarity-relevant) molecular features and (2) a similarity function
(often called similarity coefficient) to quantitatively compare
chosen representations. In addition, a weighting scheme can be
introduced (and might be considered as a third basic component)
to differentially weigh (scale) individual features of a molecular
representation for similarity calculations (if all features are equally
considered, no weighting is required). Given this methodological
framework, similarity calculations mostly (but not exclusively) rely
on pairwise molecular comparisons, i.e., a pairwise assessment of
molecular similarity relationships. For many similarity functions/
coefficients, calculated similarity fall within the interval [0, 1].
A similarity value of ‘0’ reflects the presence of completely distinct
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representations and a value of ‘1’ the presence of identical repre-
sentations (see Note 3). This also gives rise to the fundamental
numerical relationship between similarity and dissimilarity:

Dissimilarity ¼ 1� Similarity

Although many similarity methods rely on pairwise compound
comparisons, this is not strictly required. For example, partitioning
algorithms operate by assigning compounds to subsets of similar
ones or, alternatively, to subsections of chemical reference space
(also termed cells) on the basis of descriptor (coordinates) [10].
In such cases, no pairwise compound comparisons are carried out.
Rather, proximity in chemical reference space, e.g., mapping to the
same cell, is applied as a similarity criterion.

2.2 Two- vs. Three-

Dimensional Similarity

Either 2D or 3Dmolecular representations can be utilized as a basis
for similarity calculations. In general, 2D representations are
derived from information provided by molecular graphs. Popular
2D representations for similarity analysis include ‘fingerprints’ that

Fig. 1 Different concepts for molecular similarity analysis are schematically illustrated. 2D similarity is
assessed on the basis of molecular graphs and 3D similarity on the basis of compound conformations.
Furthermore, global similarity methods compare representations of entire molecules (such as a structure-
and/or property-based bit string representation), whereas local similarity methods compare subgraphs or
predefined geometrical features of compounds

234 J€urgen Bajorath



capture, for example, molecular fragments and structural patterns
[11], topological pathways through compounds [12], or topologi-
cal atom environments [13]. Fingerprints encode this information
either as bit strings [11, 12] or feature sets [13]. Such 2D finger-
prints are often of very different design. For example, the molecular
access system structural key fingerprint (MACCS) [11] consists of
166 structural fragments with 1–10 nonhydrogen atoms. If a com-
pound contains a specific feature, the corresponding bit position is
set to ‘1’; otherwise, it is set to ‘0.’ This represents a common
procedure for many (but not all) binary fingerprint representations.
Different fromMACCS, the extended connectivity fingerprint with
bond diameter four (ECFP4) [13] captures local bond topologies
as atom environments that specify the connectivity of atoms in the
neighborhood of each nonhydrogen atom in a compound. The size
of the neighborhood depends on the bond diameter. Following the
ECFP design, many different atom environment features are gen-
erated in a molecule-specific manner. Thus, this fingerprint does
not have a fixed format but consists of a feature set. Furthermore,
approaches for similarity analysis that are based on 3D representa-
tions include different approaches to compare molecular conforma-
tions [14], shape matching algorithms [15], or 3D fingerprint
methods [16]. Such 3D fingerprints encode conformation-
dependent molecular properties or geometric compound features.
Because compounds are active in specific 3D conformations (so-
called bioactive conformations), 3D similarity methods should in
principle have higher information content than 2D approaches.
However, this does not mean that 3D methods necessarily perform
better than methods based upon 2D representations. Since molec-
ular similarity is typically assessed as an indicator of activity similar-
ity, as further discussed later, 3D similarity methods can only
produce meaningful results if they use information from bioactive
conformations. However, given the uncertainties associated with
identifying bioactive conformations of ligands in the absence of
experimental 3D structures, 2D approaches are often less error
prone and more robust than 3D methods and produce superior
results in activity predictions made on the basis of similarity analysis.

2.3 Global vs. Local

Similarity

Molecular similarity assessment can either focus on entire com-
pounds, applying a global view of similarity, or parts of compounds,
applying a local view. A prime example for local similarity assess-
ment is the ‘pharmacophore’ concept [17]. A pharmacophore is
generally defined as the (spatial) arrangement of those atoms or
groups in a compound that are responsible for its biological activity.
Thus, pharmacophore approaches apply a strictly local view of
similarity by attempting to directly focus on activity determinants.
As such, pharmacophore modeling is often hypothesis driven. In a
pharmacophore search, database compounds are selected as candi-
dates that match a given pharmacophore model, but structurally
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depart from known reference molecules (from which the pharma-
cophore was derived) in regions outside the pharmacophore [17].
Accordingly, pharmacophore searching is essentially a matching
procedure producing a binary (yes/no) readout, analogously to
substructure searching. By contrast, other computational
approaches to similarity evaluation apply a global, whole-molecule
view. For example, if compounds are translated into structural
fingerprints, as discussed earlier, global molecular representations
are obtained, the comparison of which results in global similarity
assessment. Such global views of similarity based upon more or less
abstract molecular representations are a hallmark of many chemoin-
formatics methods. These considerations directly lead us to a fun-
damental similarity principle.

2.4 Similarity-

Property Principle

From a book publication [18], which has been a milestone event for
the chemoinformatics field, the similarity-property principle (SPP)
emerged. The SPP simply states that similar compounds should have
similar properties, with biological activity representing the most
important property. This principle clearly reflects a central issue of
molecular similarity research (as already discussed previously), i.e.,
the extrapolation from computed molecular similarity to activity
similarity, without taking activity data directly into account. Despite
its apparent simplicity, the SPP has profound and complex meth-
odological consequences. First and foremost, it requires the appli-
cation of a global molecular view and a consistent definition and
computational assessment of similarity. In contrast to pharmaco-
phore modeling, the SPP does not make any assumptions about
substructures or functional groups in compounds that are activity
relevant. Rather, it implies that gradual changes in molecular struc-
ture are accompanied by gradual changes in activity. By contrast,
small structural modifications of compounds that greatly affect or
abolish biological activity, which are often observed in chemical
optimization (and best accounted for using local similarity con-
cepts), fall outside the applicability domain of the SPP, as illustrated
in Fig. 2. Despite the fact that the SPP cannot account for all
structure–activity relationships, it represents a paradigm for similar-
ity searching where one generally attempts to identify structurally
increasingly diverse compounds having biological activities similar
to known reference molecules [19]. Similarity searching represents
one of the most popular applications of molecular similarity analy-
sis. In the following, fingerprint similarity searching is discussed as
an example, which includes all key components of similarity analysis
and also illustrates major opportunities and limitations of similarity
calculations.
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3 Fingerprint Searching

Fingerprint similarity searching is conceptually based on the SPP.
Fingerprints including the exemplary MACCS and ECFP4 designs
introduced previously represent global molecular representations.
They are compared using similarity functions to obtain a numerical
value that quantifies fingerprint (bit string or feature set) overlap,
which is used as a measure of molecular similarity. In a typical
fingerprint search, one or more known active compounds are
selected as reference molecules and their fingerprint representations
are searched against fingerprints of database compounds [19]. The
outcome of a similarity search is a ranking of database compounds
according to decreasing similarity to the reference(s). The general
goal is the identification of compounds from the ranking that differ
structurally from the known reference(s) but have similar activity, as
further discussed later.

3.1 Similarity

Functions

A variety of similarity functions/coefficients have been introduced
for molecular similarity calculations (and were often adapted from
other research fields) [20, 21]. In chemoinformatics, the Tanimoto
coefficient (Tc) [21, 22] represents the most popular similarity
function. For two vectors of real values, A and B, the general
Tc (TcG) is defined as:

TcG A ,Bð Þ ¼

Xn

i¼1

AiBi

Xn

i¼1

A2
i þ

Xn

i¼1

B2
i �

Xn

i¼1

AiBi

For binary vectors such as theMACCS fingerprint, this formulation
is reduced to:

IC50 = 1.2 μM IC50 > 2000 μM

O

O
OH

NH2

O

O

OH

NO2

Fig. 2 A protein kinase inhibitor (left) and a structural analog (right) are shown. These compounds are very
similar and only distinguished by the substitution of an amino with a nitro group. However, the inhibitor on the
left is active, whereas the analog on the right is essentially inactive. On the basis of the SPP, these compounds
would not be distinguished and would be assumed to have similar activity if the compound on the left was
known to be active. As activity measurements, IC50 values are reported that give the compound concentration
at half-maximal inhibition. The figure was adapted from [2]
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Tc A;Bð Þ ¼ c

a þ b � c

Here, a and b are the number of features present in the fingerprints
of compounds A and B, respectively, (represented by bit positions
set to 1) and c is the number of features that are common toA and B.
Ai and Bi represent the ith instances of compounds that are com-
pared and n is the total number of compounds. Thus, the binary Tc
quantifies fingerprint overlap by producing similarity values between
0 and 1, which is the case for many similarity coefficients, as men-
tioned earlier.

The Tc is symmetric because the similarity of A with respect to
B is the same as the similarity of B with respect to A, which
represents a characteristic feature of many (but not all) similarity
coefficients that are used.

From the Tc, a dissimilarity measure is derived by calculating
the complement known as the Soergel distance (Sg) [20]:

Sg A;Bð Þ ¼ 1� Tc A;Bð Þ ¼ 1� c

a þ b � c

Another similarity function that can be used to introduce asymme-
try in similarity calculations is the Tversky coefficient (Tv) [21, 23]
defined as:

Tvα,β A;Bð Þ ¼ c

α a � cð Þ þ β b � cð Þ þ c

Here, a, b, and c correspond to the Tc formalism. The two
additional parameters α and β (typically representing values
between 0 and 1) are introduced to weigh the number of features
that are unique to A or B, i.e., a � cð Þ and b � cð Þ, respectively. If A
and B are fingerprints of a reference and database compound,
respectively, the larger α becomes relative to β, the more weight is
put on the unique bit settings of A and the less weight on the bit
settings of B (and vice versa). This introduces asymmetry in the
similarity calculations and makes it possible to emphasize unique
features of reference or database compounds. For the special case
α ¼ β ¼ 1, features of A and B are equally weighted and Tv is
identical to Tc. Furthermore, in the case α ¼ β ¼ 0:5, Tv is trans-
formed into the Dice coefficient (Dc) [20]:

Dc A;Bð Þ ¼ c
1
2 a þ bð Þ

Here, the denominator represents the arithmetic mean of the num-
ber of features in A and B.

These similarity functions illustrate the variety of coefficients
(there are many more) that have been adapted for quantifying the
similarity of molecular fingerprints (and other representations).
Although the Tc is currently the most popular coefficient, it is not
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a priori superior to others that yield different similarity values. As
further discussed later, the relative ranking of compounds is critical
for outcome of similarity searching, but not the absolute magni-
tude of similarity values. Regardless of chosen coefficients, it is of
critical importance for similarity analysis that a chosen similarity
function quantifies similarity relationships in a consistent manner.

However, a general statistically grounded complication of sim-
ilarity searching that principally affects all coefficients is that increas-
ing size or topological complexity of compounds typically increases
the feature (bit) density of binary fingerprints, which causes a
tendency to produce higher similarity values for larger compounds
[19]. Such molecular size or complexity effects in fingerprint
searching can be overcome by equally considering bits set to ‘1’
and ‘0’ (the latter reflect feature absence and are usually not taken
into account) [24] or by merging fingerprints with their bit com-
plements [25], thus producing representations of constant bit den-
sity for all compounds (see Note 4).

3.2 Search

Strategies

If only a single reference compound is available, its fingerprint is
compared to the fingerprints of all database compounds in a pair-
wise manner and the database compounds are ranked accordingly.
If multiple references are available, which usually increases the
information content of similarity searching, different strategies
can be applied to take this information into account. For example,
following the centroid approach [26], an average fingerprint is
calculated for all reference molecules and compared to individual
fingerprints of database compounds (see Note 5). Alternatively,
following a nearest neighbor approach [26], similarity values of a
given database compound are separately calculated for all reference
molecules. Then, the largest value is assigned to the database
compound or the topk values are averaged to yield a final similarity
score. Such nearest neighbor approaches are currently most widely
used to combine contributions from multiple reference molecules.

3.3 Significance of

Similarity Values

If calculated similarity values are to be used as indicators of
biological activity, key questions include (1) whether similarity
values are statistically significant and (2) whether similarity thresh-
old values exist that firmly indicate the presence of activity relation-
ships between reference and test compounds. Answering such
questions is a nontrivial task. First of all, similarity values typically
change for different combinations of fingerprints and similarity
coefficients [3, 27], as illustrated in Fig. 3. Hence, they must be
considered individually for given representations and similarity
function. From global similarity value distributions, statistical sig-
nificance of similarity values can be calculated using conventional
p-values [3]. For example, a Tc threshold at a significance level of
p ¼ 0.01 reflects a probability of 1 % that the Tc value calculated
for two randomly chosen compounds meets or exceeds this
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threshold. Importantly, however, significance levels are only based
upon the distributions of similarity values and do not take
biological activity as an associated property into account. Hence,
one ultimately needs to determine whether similarities of com-
pounds sharing the same activity occur by chance or if calculated
similarity values at a certain level are indicative of similar activity.
Therefore, different compound activity classes were used to calcu-
late MACCS Tc similarity values for all pairs of compounds sharing
the same activity [3]. Depending on the activity class, median
MACCS Tc values varied from ~0.3 to ~0.75. Thus, the similarity
values also showed strong compound class dependence. Further-
more, a MACCS Tc value of ~0.65 was found to correspond to a
significance level of p ¼ 0.01. Thus, many compounds sharing the

Fig. 3 Reported are Tc (dark gray) and Dc (light gray) similarity value distributions
for 10 million comparisons of randomly chosen small molecules using the (a)
MACCS and (b) ECFP4 fingerprint
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same activity yielded similarity values that not only varied but were
not statistically significant. Corresponding observations were made
for combinations of other fingerprints and similarity functions. It
follows that generally applicable fingerprint similarity threshold
values as potential indicators of specific biological activities cannot
be determined with certainty, which substantially complicates
similarity searching. Therefore, similarity-based compound rank-
ings must be carefully analyzed.

3.4 Compound

Rankings

The output of fingerprint similarity searching is a ranking of data-
base compounds according to decreasing similarity to reference
molecules. If we search a database for new active compounds, it is
a priori clear that most database compounds cannot be specifically
active. Hence, rankings are expected to mostly consist of inactive
compounds. A ranking begins with those compounds that are most
similar to the references(s) typically including structural analogs.
Such analogs have the highest probability to be active but are not
very interesting candidates for selection (they can be readily identi-
fied through a substructure search using a given core structure as a
query). Rather, one would like to identify compounds that struc-
turally depart from known references but retain similar activity, in
accord with the SPP. Figure 4 shows examples of structurally
diverse compounds having similar activity that were successfully
identified on the basis of similarity search calculations. In order to
identify such candidate compounds, one must proceed further
down the database ranking where more distant structural relation-
ships occur, without considering the magnitude of similarity values.
It has also been shown that fingerprint Tc threshold values that
would indicate a significant enrichment of specifically active com-
pounds in a database ranking cannot be determined [27], for the
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Fig. 4 Shown are examples of compounds with limited (remote) similarity that share the same specific
biological activity and were identified using similarity searching. The figure was adapted from [2]
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reasons discussed earlier. However, systematic fingerprint search
calculations have revealed that a few structurally novel active com-
pounds are usually found at relatively high rank positions [27, 28],
which reflects an early enrichment characteristic for small subsets of
available active compounds in similarity search calculations. For
example, one or more novel active compounds are frequently
detected among the ~100 top-ranked database compounds [28].
These candidate compounds cannot be identified on the basis of
calculated similarity values but by inspecting the continuum of
similarity relationships captured by compound rankings. One
does not know where exactly these active compounds are ranked
but often has a good chance of identifying at least some of them by
considering ~100 highly ranked candidates. Hence, despite the
difficulties associated with comparing absolute similarity values for
given fingerprints, similarity functions, and compound classes, the
results of similarity search calculations become meaningful when
focusing on individual compound rankings. Early enrichment char-
acteristics of fingerprint search calculations provide an opportunity
to identify small numbers of novel active compounds. However,
there is also global enrichment detectable, although one cannot
determine generally applicable similarity threshold values indicating
such enrichment. As a rule of thumb, it has been shown that there
typically is a statistically significant enrichment of available active
compounds in database rankings when at least ~1 % of all database
compounds are selected [27]. For a search database of today’s size
containing a million or more compounds, this fraction still corre-
sponds to 10,000 or more candidates, by far too many for inspec-
tion and individual selection. Nonetheless, such global enrichment
characteristics offer substantial opportunities for focusing of com-
pound libraries on individual targets. Even if 10 % of database
compounds would be selected on the basis of similarity search
calculations to ensure likely coverage of available active com-
pounds, significant progress would be made to limit the magnitude
of experimental efforts for compound screening.

4 Conclusions

Molecular similarity analysis is a core task in chemoinformatics.
Herein, alternative similarity concepts have been introduced and
discussed that are relevant for the comparison of small molecules
and evaluation of their similarity relationships. A key aspect of
similarity analysis is that one is typically not interested in evaluating
molecular similarity per se but in considering computed similarity
relationships as an indicator of activity similarity, as best exemplified
by the similarity-property principle. Molecular similarity analysis is
also becoming increasingly relevant for bioinformatics applications
such as the analysis of gene expression profiles of pharmaceutically
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relevant compounds or the systematic study of ligand–target inter-
actions and prediction of ligand-based target relationships. In such
cases, boundaries between chemo- and bioinformatics become
rather fluid. In order to review key aspects of (global) molecular
similarity analysis in context, fingerprint similarity searching has
been discussed, which highlights general opportunities and limita-
tions of similarity calculations. Fingerprints are bit string represen-
tations of molecular structure (and associated properties) that are
relatively simplistic in their design. Using similarity coefficients,
fingerprint overlap is quantified as a measure of molecular similarity
from which one extrapolates to activity similarity (without taking
activity data or parameters explicitly into account). It has been
emphasized that absolute similarity values have little, if any mean-
ing for biological activity and that similarity threshold values that
might be relevant for specific activities cannot be determined. In
fact, the strong molecular representation and compound class
dependence of similarity calculations continues to represent a
major conundrum in chemoinformatics that is just beginning to
be addressed in a comprehensive manner. Nonetheless, similarity
search calculations have value and practical utility in the identifica-
tion of novel active compounds. Computed similarity values are
informative on a relative scale and represent a continuum of simi-
larity relationships that can be further explored. Similarity-based
database rankings produced by fingerprint searching often display
an early enrichment of small numbers of active compounds. In
practical applications where a limited number of candidate com-
pounds are selected for testing, this is often sufficient to identify
novel active molecules. Regardless of any methodological consid-
erations and computational concepts, it should be understood that
similarity is in its essence a subjective concept and that any attempts
to quantify similarity relationships between molecules, or any other
objects, will have intrinsic shortcomings. Being aware of such lim-
itations will help to avoid pitfalls associated with (mis-)
interpretation of calculated similarity values and focus on opportu-
nities of the approach. After all, a consistent computational assess-
ment of molecular similarity relationships is an absolute must,
despite principal limitations, given that our ability to subjectively
judge about similarity relationships is limited to rather small num-
bers of compounds and clearly insufficient considering current data
volumes.

5 Notes

1. For informatics applications, chemical space is usually approxi-
mated using molecular descriptor-based reference spaces, which
typically vary depending on the specific requirements of a
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computational application. An a priori representation of chemi-
cal space does not exist.

2. Most but not all similarity methods calculate numerical similar-
ity values to quantify a similarity relationship between two com-
pounds. This is a major attraction of similarity analysis because
complex molecular relationships are ultimately reduced to a
simple numerical score. However, a caveat is that calculated
similarity values are often over- or mis-interpreted, as discussed
in the text.

3. It should be noted that a similarity coefficient value of ‘1’
resulting from the comparison of identical molecular represen-
tations does not necessarily mean that the compared compounds
are also identical. This is the case because molecular representa-
tions often abstract from compounds to varying degrees
(i.e., they are essentially compound models).

4. Merging a fingerprint with its complement effectively doubles
its length (which might lead to an increase in background noise
of search calculations in the absence of complexity effects) but
produces a constant bit density of 50 % for all test compounds,
irrespective of their size and complexity. It follows that this
modification renders the fingerprint representation independent
of molecular size and complexity effects (due to constant bit
density).

5. Even for binary fingerprints, the reference centroid represents a
real-valued vector, which requires the application of the general
Tc (TcG) to compare the centroid vector with binary fingerprints
of database compounds.
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Chapter 14

Compound Data Mining for Drug Discovery

J€urgen Bajorath

Abstract

In recent years, there has been unprecedented growth in compound activity data in the public domain.
These compound data provide an indispensable resource for drug discovery in academic environments as
well as in the pharmaceutical industry. To handle large volumes of heterogeneous and complex compound
data and extract discovery-relevant knowledge from these data, advanced computational mining approaches
are required. Herein, major public compound data repositories are introduced, data confidence criteria
reviewed, and selected data mining approaches discussed.

Key words Compound activity data, Public databases, Confidence criteria, Structure–activity rela-
tionships, Matched molecular pairs, Activity cliffs, Activity profiles

1 Introduction

The number of compounds and associated activity data available in
public domain databases currently increases at unprecedented rates.
Compound activity data provide an important knowledge base for
drug discovery if the data can be effectively mined [1]. Specifically,
structure–activity relationships (SARs) can be systematically
extracted for compounds active against current targets and utilized
in compound design and optimization. Historically, most com-
pound activity data have originated from the pharmaceutical indus-
try and, for the most part, have been kept proprietary. However,
with the changing drug discovery landscape, mergers and acquisi-
tions, increasing discovery activities in academia, and more empha-
sis on discovery collaborations between biotechnology companies,
the pharmaceutical industry, and academic environments, the situ-
ation has changed over the past decade. Consequences of structural
changes in traditional drug discovery settings, the advent of aca-
demic drug discovery initiatives, and much more frequent and
dynamic interactions between academia and pharma include,
among others, data publication and release at significantly increas-
ing rates. Chemical data are still not comparable in magnitude to
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biological data that continue to challenge bioinformatics. How-
ever, in addition to massively growing compound data volumes,
there also is rapidly increasing heterogeneity and complexity of
chemical data. Taken together, these developments continuously
increase the “big data” character of compound activity data, similar
to biological data [2]. The “big data” nature in terms of volumes
and complexity substantially challenges data organization, cura-
tion, and mining activities, not only in the pharmaceutical industry
but also in the public domain. While public compound and data
repositories have become essential foundations of drug discovery
research in academia, it is also being recognized in pharmaceutical
settings that one can no longer afford to ignore publicly available
data as a source of knowledge to complement and further advance
in-house research and development activities. Hence, there clearly
is increasing focus on public domain compound data.

2 Compounds, Structures, and Activity Data

2.1 Public Domain

Repositories

Current major publicly accessible databases for compounds and
activity data include ChEMBL [3, 4], BindingDB [5], PubChem
[6, 7], Open PHACTS [8], and DrugBank [9]. In addition, there
are a number of more specialized smaller public databases (and also
large commercial databases) that are not discussed herein.
ChEMBL has become the major repository for compound activity
data from medicinal chemistry sources and has recently also added
patent information [4], which is of high relevance for drug discov-
ery. The ChEMBL database has originated from a small company
environment and later become a part of the European Bioinformat-
ics Institute Outstation of the European Molecular Biology Labo-
ratory where it is further developed [3, 10]. BindingDB was
founded in academia where it continues to be advanced and main-
tained. It was initially designed to collect data for compounds active
against targets for which three-dimensional structural information
was available and has then increasingly incorporated compound
activity data from the medicinal chemistry literature and other
sources [4, 10]. In addition, as a repository for the Molecular
Libraries Initiative of the US National Institutes of Health, Pub-
Chem has become the major public domain resource for biological
screening data [6] and also maintains large compound and sub-
stance collections [7]. Open PHACTS resulted from a joint venture
of a variety of academic institutions, small companies, and large
pharmaceutical companies to provide pharmacological information
for drug discovery in both the public and private sector via semantic
web technologies [8]. The basic data unit is a so-called pharmaco-
logical record. An Open PHACTS pharmacology record reports a
biological target and associated information and/or the activity of a
given compound. Moreover, DrugBank, which also originated
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from an academic setting, is one of the major resources for
approved and experimental drugs as well as drug target information
[9]. There is ongoing exchange of data between major public
repositories including ChEMBL, BindingDB, and PubChem. It is
fair to say that ChEMBL and PubChem currently represent the
major public sources of compounds and activity data from medici-
nal chemistry and biological screening, respectively.

2.2 Data Volumes At the beginning of 2014, the ChEMBL database (release 17)
alone contained more than 1.3 million compounds with unique
structures associated with more than 12million activity annotations
for ~9300 biological targets. In addition, PubChem’s Compound
[6], Substance [6], and BioAssay [7] collections contained ~49
million compounds, ~128 million substances, and activity data
from ~740,000 assays, respectively. Furthermore, there were
3846 confirmatory bioassays available in PubChem involving
2533 biological targets. The availability of such compound data
volumes could not have been imagined just a few years ago. Data
volumes in these public repositories further increase on a daily basis.
For example, in the current version of ChEMBL (release 18) com-
pound activity data for ~100 additional targets have become avail-
able (compared to release 17).

2.3 Data Complexity In addition to growing volumes, heterogeneity and complexity of
compound activity data continuously increase [2]. Different types
of assays, activity measurements, and target annotations at varying
confidence levels are reported. In addition, structural information
is often represented and organized in different ways. Information
provided for active compounds or drugs in different databases is
usually overlapping but distinct. This is best illustrated using an
example. Figure 1 shows the kinase inhibitors lapatinib and imati-
nib that are approved drugs used in cancer treatment. For these
drugs, one can readily compare the activity and target information
available in different databases [2]. Early in 2014, DrugBank
recorded eight targets for lapatinib, ChEMBL reported three tar-
gets for which high-confidence activity data was available, and
BindingDB 814 records with defined activity measurements for
this drug. Imatinib, on the other hand, was annotated with 24
targets in DrugBank and 30 high-confidence targets in ChEMBL.
Furthermore, in PubChem, lapatinib was assayed 1556 times and
active in 311 assays and imatinib was tested in 2467 assays and
active in 469 of these. Hence, even for established and well-
characterized drugs, many different measurements and target
annotations are available, which are often difficult to reconcile.

2.4 Confidence

Criteria

In light of the above, it is of critical importance to carefully consider
data curation and confidence criteria. This can also be illustrated
using an example [11]. Figure 2 shows two similar drugs,
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pyrimethamine and milrinone, which are used for different thera-
peutic indications, i.e., pyrimethamine is an antimalarial com-
pounds and milrinone an inotropic cardiotonic agent. In
DrugBank, pyrimethamine and milrinone were annotated with
two targets and one target, respectively. By contrast, the protein
target summary function of ChEMBL provided 22 and 42 targets
for pyrimethamine and milrinone, respectively, hence indicating a
large potential inconsistency. However, one needs to take into
consideration that the protein target summary lists all potential
targets for an active compound or drug, regardless of the assays
used, the type of activity measurements, and the confidence level of
target annotations. Thus, when stringent data selection criteria

Fig. 1 Shown are the two marketed protein kinase inhibitors lapatinib und imatinib

Fig. 2 Shown are two structurally distantly related drugs, pyrimethamine and milrinone, which are used for
different therapeutic indications
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were applied to search ChEMBL (see Note 1) only one target
remained for each pyrimethamine and milrinone, which closely
matched the target annotations reported in DrugBank. Thus, care
must be taken to critically evaluate activity data and be aware of
database-specific organization schemes, data acceptance criteria,
reported measurements, and confidence levels to avoid drawing
premature conclusions.

3 Data Mining

Given the volumes, heterogeneity, and complexity of compound
activity data, there is a need for clearly defined data selection criteria
and the development of advanced data mining concepts [1]. In the
following, examples of advanced data mining strategies are dis-
cussed that focus the exploration of compound activity data in
different ways on systematic SAR analysis and knowledge extraction
for compound design and optimization. On the other hand, virtual
screening aims to identify new active compounds rather than
explore activity and SAR information.

3.1 Virtual

Compound Screening

For more than two decades, virtual screening has been one of the
most popular approaches in chemoinformatics and computational
medicinal chemistry [12]. Ligand-based virtual screening aims at
the identification of novel active compounds on the basis of known
active reference molecules [12]. Here, the main goal is the identifi-
cation of structurally diverse compounds having activity similar to
the references, often referred to as “scaffold hopping” [13]. For
this purpose, similarity-based computational screening methods are
applied [14]. Compound potency is typically not taken into
account as a search parameter in virtual screening. Rather, one
attempts to computationally extrapolate from active reference
molecules by applying principles of molecular similarity and dissim-
ilarity [14], regardless of the potency levels of the references.
Because virtual screening aims at the identification of novel active
compounds, it is often not carried out in biologically annotated
databases such as ChEMBL, but rather in compound databases
such as ZINC [15], which currently contains ~35 millions of
small molecules that are typically not biologically annotated. If
virtual screening campaigns are carried out in biologically anno-
tated databases, they mostly try to identify additional targets for
known active compounds. Other exemplary data mining
approaches discussed in the following focus much more on the
large-scale assessment of SAR information, rather than the identifi-
cation of novel hits.

3.2 Matched

Molecular Pairs

The concept of matched molecular pairs (MMP) [16] has become
increasingly important in medicinal chemistry and compound data
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mining. An MMP is defined as a pair of compounds that only differ
by a structural change at a single site, i.e., the exchange of a
substructure [16]. Exemplary MMPs are shown in Fig. 3. MMPs
can be algorithmically effectively generated from large compound
sets [17]. This renders theMMP formalism applicable to large-scale
compound data mining. A major attraction of this approach is that
changes in activity or other molecular properties associated with
MMP formation can be readily identified and compared for system-
atically generated MMPs. Hence, well-defined structural changes
encoded by MMPs can be directly related to changes in biological
activity or other drug-discovery relevant properties [16]. This pro-
vides a basis for the prediction of property effects in compound
design and optimization. For example, structural modifications can
be identified that consistently increase the potency of compounds
active against a specific target. In addition, compound series can be
detected that represent SAR transfer events [18]. SAR transfer
involves series of pairwise corresponding structural analogs (i.e.,
pairs of compounds with corresponding chemical modifications)
that contain distinct core structures but display similar potency
progression. Hence, the identification of SAR transfer series
makes it possible to replace one compound series, which might be
toxic or exhibit other liabilities, with another series having similar
(desired) SAR behavior, which is affected by such liabilities.

Fig. 3 Two pairs of structurally analogous inhibitors of cyclin-dependent kinase 2 (CDK2) are shown that form
matched molecular pairs (MMPs) and activity cliffs (MMP-cliffs). Substructures that distinguish the com-
pounds in MMPs are encircled and logarithmic potency (pIC50) values of compounds are reported. IC50 values
give the compound concentration at half-maximal inhibition
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Therefore, the exploitation of SAR transfer events is highly attrac-
tive for compound optimization efforts.

3.3 Activity Cliffs The activity cliff concept is also highly relevant for SAR analysis and
compound optimization and amenable to large-scale data mining.
An activity cliff is generally defined as a pair of structurally similar or
analogous compounds that are active against the same target but
display a large difference in potency [19]. Accordingly, structural
modifications of active compounds can be deduced that cause
significant biological effects, which rationalizes the relevance of
activity cliffs for SAR analysis and compound design. For data
mining, similarity and potency difference criteria for activity cliff
formation must be clearly defined and consistently applied [19].
Compound similarity can be computationally assessed in a variety of
ways [14] including the formation ofMMPs, as discussed above (see
Note 2). Thus, MMP-cliffs have been introduced as a structurally
conservative and generally applicable representation of activity cliffs
[20]. An MMP-cliff is formed by an MMP encoding a small struc-
tural modification (similarity criterion) if the participating com-
pounds are active against the same target and display a potency
difference of at least two orders of magnitude (potency difference
criterion) [20]. Hence, the pairs of active compounds in Fig. 3 also
represent MMP-cliffs. Applying alternative criteria for activity cliff
formation (including MMP-cliffs), all activity cliffs formed by pub-
lic domain active compounds have recently been extracted from
ChEMBL and organized by targets [21]. It was found that
~10–20 % of active compounds formed activity cliffs in most
target-based compound data sets (depending on the data set and
the applied activity cliff definition). Thus, a significant proportion
of currently available bioactive compounds form activity cliffs,
which provide a large knowledge base for SAR exploration and
compound optimization. From activity cliffs, SAR determinants
can often be deduced. Utilizing the MMP and activity cliff con-
cepts, compound data mining has already provided a large body of
information for practical medicinal chemistry and drug discovery
applications.

3.4 Activity Profiles Computational methods can also be applied to systematically
extract all high-confidence target annotations of compounds from
activity data and generate compound activity profiles. This makes it
possible to systematically assess the promiscuity of bioactive com-
pounds [22] (see Note 3). Similarity relationships between com-
pounds do not need to be considered to assess their promiscuity.
However, compounds can also be structurally organized, for exam-
ple on the basis of their scaffolds (see Note 4). Through data
mining, activity profiles of compounds and corresponding scaffolds
have been systematically determined and organized according to
their degree of promiscuity [23]. Activity profiles of promiscuous
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scaffolds can then be used to aid in the design of compounds with
multi-target activities, which addresses another increasingly attrac-
tive objective in drug discovery research.

3.5 Conclusions Compound activity data currently grow at unprecedented rates in
the public domain and provide a valuable resource for drug discov-
ery in academia and the pharmaceutical industry. Compound data
are not the only source of discovery-relevant information.
Biological, pharmacological, and clinical data are equally, if not
more important, depending on the stage of drug discovery and
development efforts. However, compound activity data are most
relevant for medicinal chemistry and early-phase compound devel-
opment. Compound data growth is accompanied by substantially
increasing data heterogeneity and complexity, which challenges
data mining and knowledge extraction. Herein, major public com-
pound data repositories have been introduced and data volume,
complexity, and confidence issues discussed. Since there is a clear
need for advanced computational approaches and data mining
strategies, selected concepts have also been reviewed that focus on
large-scale SAR exploration with utility for compound design and
optimization. It is anticipated that additional computational meth-
ods will be developed that closely link large-scale data mining
efforts and predictive modeling to systematically generate experi-
mentally testable SAR hypothesis and facilitate automated com-
pound design.

4 Notes

1. The following specifies a protocol for the selection of high-
confidence activity data from ChEMBL that we routinely
apply:

“Only compounds with direct interactions (i.e., ChEMBL target
relationship type “D”) at the highest confidence level (i.e.,
ChEMBL target confidence score 9) are extracted. Two different
types of potency measurements are separately considered including
(assay-independent) equilibrium constants (Ki values) and
(assay-dependent) IC50 values. Furthermore, approximate mea-
surements such as “>”, “<”, or “�” are disregarded. For com-
pounds with multiple Ki or IC50 values for the same target, the
geometric mean of all potency values is calculated to yield the final
potency annotation, provided all potency measurements fall
within the same order of magnitude. If this is not the case, the
measurements are discarded.”

The application of these selection criteria typically eliminates
experimental inconsistencies, focuses on high-confidence data,
and leads to reliable target annotations (which are separately
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considered forKi or IC50 measurements that cannot be directly
compared).

2. Alternative similarity criteria for activity cliff assessment include
the calculation of similarity values on the basis of molecular
descriptors such as fingerprints that exceed a predefined thresh-
old value. Such similarity values can also be consistently calcu-
lated and are often used for activity cliff analysis. A potential
drawback of their use is that similarity relationships calculated
on the basis of molecular descriptors are often more difficult to
interpret chemically than substructure relationships estab-
lished, for example, on the basis of MMPs. Principles of molec-
ular similarity analysis and similarity calculations are discussed
in more detail in the accompanying chapter by the same author.

3. Promiscuity refers here to the presence of specific interactions
between a bioactive compound and multiple targets (as
opposed to nonspecific binding events). The so-defined pro-
miscuity provides the molecular basis of polypharmacology,
which is an emerging theme in drug discovery. It is being
recognized that many active compounds elicit therapeutically
relevant effects through interactions with multiple targets and
the ensuing pharmacological consequences (for example, by
activating or interfering with multiple signaling pathways).

4. A scaffold essentially represents the core structure of a com-
pound. Scaffolds can be generated in different ways, for exam-
ple, by removing all substituents from a molecule and retaining
the substructure containing all rings. An activity profile of a
given scaffold is obtained by calculating the union of the activ-
ity profiles of all compounds the scaffold represents. This pro-
file can be further refined by weighting individual activities by
their frequency of occurrence in the activity profiles of different
compounds represented by the scaffold.
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Chapter 15

Studying Antibody Repertoires with Next-Generation
Sequencing

William D. Lees and Adrian J. Shepherd

Abstract

Next-generation sequencing is making it possible to study the antibody repertoire of an organism in
unprecedented detail, and, by so doing, to characterize its behavior in the response to infection and in
pathological conditions such as autoimmunity and cancer. The polymorphic nature of the repertoire poses
unique challenges that rule out the use of many commonly used NGS methods and require tradeoffs to be
made when considering experimental design.
We outline the main contexts in which antibody repertoire analysis has been used, and summarize the key

tools that are available. The humoral immune response to vaccination has been a particular focus of
repertoire analyses, and we review the key conclusions and methods used in these studies.

Key words Antibodies, Antibodyome, Repertoire analysis, Rep-Seq, Next generation sequencing

1 Introduction

The adaptive immune system embodies huge diversity, and current
methods are not capable of determining the entire antibodyome—
the complete set of antibodies—of a mammalian species. Neverthe-
less, with high-throughput sequencing, it is now possible to sample
at a sufficient level to gain an overview of the molecular response to
a pathogen. This response is generally targeted towards a restricted
set of antigens (molecules that induce an immune response). For
example, the surface glycoproteins hemagglutinin and neuramini-
dase are the main targets of antibodies directed against the influ-
enza A virus.

Vaccination, with its origins in medieval China and India, is
probably the single most important public health measure of all
time, and yet there are many pathogens, among them HIV, for
which no successful vaccine has yet been developed. Even among
well-established vaccines, some, such as those against influenza and
tuberculosis, have limited effectiveness and breadth. By studying the
change in antibody repertoire during a course of vaccination and
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during the course of a disease, we can determine the molecular
impact of vaccination on immune memory, and compare it with
the memory elicited by the disease itself. By doing so, we can identify
the best antigens and presentations to use in vaccines, and verify their
ability to raise a lasting and broadly neutralizing response across the
population as a whole [1]. We can also improve our understanding of
the applicability and limits of animal models, which are often used in
the surveillance of human infection as well as in the development of
new treatments. As well as their use in the defense against external
pathogens, antibodyome studies are used in cancer research, both to
understand the natural immune response, and to establish how it
could be changed or steered through vaccination, either before or
after the cancer is established [2].

What information can computational repertoire analysis pro-
vide in pursuit of these goals? The questions asked in a study
typically include the following:

– Which antibody germlines (see Subheading 2.2) are active in the
response to a particular antigen, and how prevalent are they in
the population as a whole?

– What antibody clonotypes (see Subheading 2.2) are elicited, how
abundant are they, and how broad-spectrum is their response?

– Is there evidence of convergence, with antibodies originating
from different germlines directed at the same antigenic target?

– Is there appropriate isotype switching (see Subheading 2.3)?

– How long is the development pathway to a given antibody of
interest, and what are the key development steps?

– Is the initial response converted into long-lasting immune mem-
ory (see Subheading 2.4)?

– Are there potential obstacles to the development of an effective
vaccine, for example undue focus on the development of non-
neutralizing antibodies?

Computational techniques are mandated by the sheer volume
of information obtained from sequencing studies. The challenges
imposed by the antibodyome, in particular the high degree of
sequence polymorphism and the particular mutation characteristics
of somatic hypermutation, have driven the development of special-
ist tools, which we will highlight in this chapter. The current
generation of tools tend to have limitations in terms of species
coverage, sequencing requirements, performance, and so on,
meaning that a careful match must be made for a particular experi-
mental analysis.

Repertoire studies frequently bring together other sources of
data, besides that available from next-generation sequencing. Anti-
body germline libraries, such as those available from the IMGT
databases [3], are used to determine germline ancestry. Isolated

258 William D. Lees and Adrian J. Shepherd



antibodies of interest, such as those that are identified as binding to
the target antigen, are often sequenced by low-throughput methods.
Crystallographic studies of antibody–antigen complexes may be
available, and can be used to inform studies of clonotype evolution.
Finally, other high-throughput tools, such as molecular mass spec-
trography, may be employed to characterize particular isolates [4].

2 Background Concepts

Here we briefly describe the key immunological concepts that are
relevant to this work, and provide references for further informa-
tion. We focus on human immunity, although the overall mechan-
isms and principles are broadly applicable. A more detailed
introduction to the topics discussed can be found in Murphy [5].

2.1 Antigen

Recognition

Antibodies are molecules which exist both as the membrane-bound
receptors of B cells and as discrete molecules secreted by plasma
cells. The monomeric form has a Y-shaped structure, in which the
two identical arms of the Y contain the antigen receptors (Fig. 1).
The molecule is made up of two identical heavy chains and two
identical light chains, bound by disulfide bonds. At the N terminus
of the four chains are the variable regions, which bind to antigen.

Variable
region

Constant
region

N terminus

C terminus

Light chain

Heavy chain

Disulphide
bonds

Antigen binding
sites

Fig. 1 Antibody structure. The antibody is composed of four chains: two identical heavy chains, and two
identical light chains. The chains are joined by disulfide bonds. The variable regions of each chain, at the N
terminal end, contain the antigen receptors. The constant regions at the C terminal end contain the effectors,
which determine the antibody function
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Light chains have in addition a single constant region, while heavy
chains have three constant regions. The C terminal constant region
of the heavy chain, CH3, contains the antibody effector, which
determines the antibody function and hence its class, or isotype.

The variable regions are each composed of three hypervariable
loops, or complementary-determining regions, CDRs 1–3. Inter-
spersed with these are four framing regions, FRs 1–4. During the
development of receptor specificity, mutations occur primarily in
the CDRs, and it is mainly residues in the CDRs that make contact
with antigen, although evidence that non-CDR residues play a
crucial role is growing [6, 7].

2.2 Receptor

Development

The variable region of the heavy chain is encoded by three DNA
segments. At the 30 end is the V segment, which encodes framing
regions FRs 1–3, CDRs 1 and 2, and a component of CDR3. The
next is a short D segment, which encodes a part of CDR3, and
finally the J segment encodes the 50 end of the CDR3 and FR4.
Multiple sequentially diverse copies of each segment exist in the
germline. In an antibody-producing cell, specific V, D, and J genes
are brought together to form a complete sequence by a process of
gene rearrangement. A similar process is followed for the light
chain, except that there are only two segments, V and J [8, 9].

Part of the diversity of antibodies comes from the random
combination of gene segments, as described above. Further diver-
sity comes from the process by which the segments come together
to form the “junction” of which CDR3 is composed. The combi-
nation process is noisy, allowing for gene segments to be truncated
and also for additional nucleotides to be inserted. Insight can be
gained from determining the germline origin of an antibody (i.e.,
the particular segments from which it was derived), but the process
of recombination can make it difficult to determine the origin of all
segments with certainty. Because recombination involves the inser-
tion and deletion of nucleotides it can lead to frame shifts. Result-
ing DNA sequences are classified as productive or nonproductive,
depending on whether they can encode a functional protein. Fur-
ther development and diversity follows through somatic hypermu-
tation, a process through which mutations are introduced into the
variable region during transcription through the action of
activation-induced cytidine deaminase (AID). Through a process
known as affinity maturation, B cells expressing antibody with high
affinity to a target antigen are selected [10].

B-cells that share a common rearrangement (and hence
descend from an identical naı̈ve B-cell) are said to share the same
clonotype. The human response to a single specific antigen is
estimated from experiment to elicit <100 clonotypes [11]. Exami-
nation of the somatic hypermutation of clonotypes can cast light on
the evolution of antigen specificity. As the phylogenetic evolution
of distinct clonotypes proceeds independently, clonotypes provide
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the best basis for the understanding of maturation pathways. How-
ever, just as germline attribution cannot in most cases be deter-
mined conclusively, there is scope for error in the attribution of
clonotypes.

While the focus of this chapter is on B cells, it should be noted
that T cell receptor structure and development follows a similar
course, except that T cell receptors do not undergo somatic hyper-
mutation. Software tools developed for T cell analysis may be useful
for B cell analysis also, but may require modification to account for
the greater sequence diversity.

2.3 Isotypes There are five main isotypes: IgA, IgD, IgE, IgG, and IgM. IgM is
the isotype produced initially by maturing B cells, and is therefore
the isotype seen first in an immune response. As well as being
present on the cellular membrane it can be secreted as a discrete
molecule, where it has a pentameric structure and is found almost
exclusively in the bloodstream. Through the process of isotype
switching, again mediated by AID, mature B cells can switch irre-
versibly to another isotype [12]. The two types of most interest in
vaccine-induced repertoire studies are IgA and IgG. Both can be
secreted as discrete molecules. IgA is monomeric or dimeric, and is
the principal class in mucosal secretions. IgG is always monomeric,
and is the principal class in serum. A strong immune response will
feature class switching from IgM to an appropriate combination of
isotypes for the infection: as an example, the best response to a
respiratory infection might be expected to contain a component of
IgA: however this could be challenging to elicit with inoculation,
which the immune system will recognize as a blood-borne
pathogen.

2.4 Immunological

Memory

While antibody-secreting plasma cells generally have a brief life-
time, estimated to range from several days to several months, a
subset migrate to survival niches in which they can survive and
continue to secrete antibodies for sustained periods that can last
for many years [13]. Memory is also preserved by memory B cells,
which can last for the lifetime of an individual, without the need for
repeated exposure to an antigen for reinforcement. Memory B cells
develop towards the end of an infection, populating the spleen and
lymph nodes and circulating at low levels in the blood [14].

3 High-Throughput Determination of Antibody Repertoires

The total number of antibody rearrangements made possible by the
mechanisms of gene rearrangement and somatic hypermutation is
thought, in humans, to exceed 1011. The number of unique rear-
rangements in an individual at any one time is lower but still
considerable: one study estimating the number of unique B-cells
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as at least 3.5 � 1010 [15]. Often, for experimental or ethical
reasons, only a limited sample, such as a sample of peripheral
blood, is available for analysis, although it has been estimated that
only 2 % of B-cell diversity is present in peripheral blood [16]. Even
where the entire organism is available, the diversity in mammals is
several orders of magnitude above our current sequencing capabil-
ities, and the cautions of working with small samples apply.

High-throughput sequencing of antibody repertoires, which
has become known as Rep-Seq [17, 18], starts with the isolation
of genomic DNA (gDNA) or messenger RNA (mRNA) from cells
of interest. mRNA is considered to be more informative of the
repertoire, as apparently viable gDNA sequences may be nonfunc-
tional as a result of monoallelic gene expression or other mechan-
isms, but as levels of mRNAmay vary from cell to cell, there is a risk
that mRNA read counts will not correlate well with cell popula-
tions. However, a recent study did find high correlation between
functional gDNA and mRNA sequence frequencies in human
peripheral blood samples [19].

V-region mRNA is typically isolated for sequencing by nested
RT-PCR. Multiplexed primers are required because of the degree
of polymorphism. For full V-region amplification, 30 primers are
usually selected to be complementary to a section of the constant
region, making them independent of the variable region germline.
50 primers, on the other hand, are often complementary to a section
of the V-region FR1, and a set of V-gene germline-dependent
primers must therefore be chosen. This raises the possibility of
germline-dependent amplification bias, which must be checked
for if sequence counts are used to infer germline abundance, for
example by comparing V-germline abundance inferred from PCR/
NGS data with that inferred by single-cell analysis, or by checking
for correlation in gene utilization calculations derived from two
independent primer sets. An alternative approach to PCR amplifi-
cation is to use 50 RACE (rapid amplification of cDNA ends), which
does not require a 50 primer: however, RACE protocols are suscep-
tible to nonspecific amplification and can have low efficiency.

Because of the high diversity of V-gene sequences, exacerbated
by the concentration of that diversity into short CDRs separated by
relatively constant FRs, it is not possible to employ sequence
assembly to join the short reads typically generated by current
high-throughput sequencers. The sequencers typically employed
for Rep-Seq are the Roche 454 the Illumina MiSeq and the Illu-
mina HiSeq. These are capable of covering the entire V-gene
(Table 1), although the HiSeq only acquired this capability in late
2014, and many HiSeq-based studies have been limited to a specific
region, typically the CDR3. New sequencing technologies, that will
provide increased depth-of-coverage at reduced cost, are under
development, but the overall tradeoff between entire V-gene
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coverage on the one hand and maximum depth of coverage on the
other is likely to persist for some time.

Because of the high degree of polymorphism in V-regions,
separating sequencing read errors and PCR amplification errors
from genuine diversity presents a challenge. An approach taken in
many studies is to eliminate from consideration all V-sequences
which are only observed once, on the assumption that a repeated
error at the same location will be rare. Greater discrimination can be
gained by adding a randomized barcode to each RNA molecule
prior to PCR amplification. All reads with the same barcode should
share the same sequence, and the error-free sequence can therefore
be determined by consensus [20, 21]. Sequence abundance can be
determined from unique barcodes, removing the risk of PCR
amplification bias. Three analysis pipelines that can process bar-
coded reads have been published: Migec [22], Presto [23] and
IgRepertoireConstructor [24]. Migec and IgRepertoireConstruc-
tor also have the capability to parse the V(D)J junction (see next
section).

The heavy and light chains of an antibody are joined by disul-
fide bonds, and the sequencing techniques discussed above are not
capable of determining which heavy and light chains are paired in
particular antibodies. To determine this pairing, mRNA or gDNA
products from individual cells must be isolated and identified prior
to sequencing. A number of enhanced throughput techniques have
been developed for this [25–27] but these techniques remain
highly specialized and none have been reported that will determine
the pairing at the high volumes at which sequencing is possible. In
the absence of a method to determine the actual pairing, likely
pairing of functionally active antibodies may be inferred via combi-
natorial phage display in which the chain of interest is paired with
many possible chains derived from the sample [28].

Table 1
Characteristics of sequencers typically employed for Rep-Seq studies

Sequencer Read length (nt) Max. reads per sample Approx. per-base error rate

Roche 454 700–1000 ~1 � 106 ~10�4

Illumina MiSeq 600 (2 � 300) ~2.5 � 106 ~10�4

Illumina HiSeq 500 (2 � 250) ~3 � 108 ~10�3

The V-gene can extend in some cases to >400 nt in length. With suitable PCR primers, the sequencers listed can

sequence entire V-genes. The number of reads per sample is taken from manufacturers’ data sheets, and numbers

obtained in practice are often an order of magnitude lower
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4 Sequence Analysis and Inference of Germline Ancestry

Once sequences have been obtained, the next step will usually be to
determine the boundaries of the complementary-determining and
framework regions, by reference to the antibody germline
sequences of the organism concerned. Determining the sequences
and boundaries of CDR1 and CDR2, and the framework regions
adjacent to them, is relatively straightforward as the entirety of
these regions is coded in the V-gene. Assuming that a reference
set of germline V-gene sequences is available, and prealigned
against a reference numbering scheme such as that provided by
the IMGT numbering scheme [29], the sequence of interest can
be aligned against the closest-matching germline, and its constitu-
ent frames determined from the alignment. While this approach has
been used successfully in many analyses, and forms the backbone of
the online analysis tools described later in this section, it should be
noted that V-sequences may be formed by an alternate process of
gene conversion, in which sections of the ancestral V-gene are
replaced by sections from alternate genes. This form of rearrange-
ment has been observed most notably in the rabbit, but can also
occur in other organisms including humans [30–32]. In B-cells,
affinity maturation through the mechanism of somatic hypermuta-
tion also gives rise in some cases to highly diverged V-sequences
where the germline ancestry may not be readily deduced.

A similar analysis of the V(D)J junction, based on the ancestry
of the constituent genes, is more challenging for a number of
reasons. The relatively small size of the D- and J-genes can make a
definitive determination of ancestry difficult. The insertion and
deletion of nucleotides at the junction between segments can
make it difficult or impossible to infer with certainty exactly
which nucleotides at the boundary were attributable to which
gene. In a small number of cases—estimated at ~0.5 % of recombi-
nations in humans—two D-genes can combine in tandem, to form
a V-D-D-J junction [33]. The overall approach adopted by the
majority of published tools relies on the presence of a conserved
cysteine at the 50 end of the junction and a conserved residue at the
30 end—tryptophan for heavy chains and phenylalanine for light
chains and T-cell receptor chains. In this approach, the algorithm
first considers nucleotides at the 50 end, starting from the conserved
cysteine, comparing them to the nucleotides expected for the
germline V-gene. The V-gene boundary is identified at the point
that nucleotide divergence from the germline exceeds a defined
threshold. The same process is then initiated at the 30 end, working
downwards through the junction and comparing observed nucleo-
tides against those of the parent J-gene in order to determine the
J-gene boundary. The residual sequence lying between the V-gene
and J-gene boundaries is then scored against all possible D-genes.
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Finally, heuristics are applied to determine inserted palindromic
sequences and inserted N-nucleotides [34, 35]. Another important
component of junction analysis is the identification of nonproduc-
tive recombinations, containing frame shifts or stop codons.

Where it is not critical to establish the germline ancestry of the
V(D)J region, the sequence can be determined using pattern-
matching methods that take advantage of the conserved residues.
An advantage of this approach is that, because it does not rely on
the determination of V-gene ancestry, it can be applied to short
reads that do not extend substantially into the V-region [36, 37].

Both online tools and downloadable analysis tools are available
(Table 2). The most frequently cited online tool for high-volume
analysis is IMGT/High V-Quest [38]. While High V-Quest is
supported by germline libraries for a growing number of species,
it is not possible to use the tool with a customized or user-supplied
germline library, limiting its use in certain applications. It is only
available as an online service, and analysis completion times are
dependent on system load. Another high-volume online service is

Table 2
Software tools for analysis of the V(D)J junction and associated ancestry

Tool Online version? Local version? Source code? Custom germlines?

IMGT V-Quest, High V-Quest Yes No No No

IgBLAST Yes Yes No Yes

iHMMune-align [42] Yes Yes Yes Yes

Ab-origin [43] No Yes No Yes

JOINSOLVER [44] Yes No No No

SoDA2 [45] Yes No No No

VDJSolver [46] Yes Yes Yes Yes

Vidjil [47] No Yes Yes No

ARPP [48] No Yes No No

Decombinator [49] No Yes Yes No

Migec [22] No Yes Yes No

MiTCR [50] No Yes Yes No

VDJ [28] No Yes Yes No

VDJFasta [15]a No Yes Yes No

IgSCUEAL [40] Yes Yes Yes Yes

IgRepertoireConstructor [24] No Yes Yes Yes

Tools which do not allow a custom germline library to be defined through the user interface are indicated: these tools are
provided with a built-in library and the ease with which it could be replaced has not been assessed. aVDJFasta is available

at http://sourceforge.net/vdjfasta. The download location of other tools is documented in the referenced article
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NCBI IgBlast [39], which employs the BLAST algorithm to deter-
mine germline matches. IgBlast does support the use of customized
germline libraries, and is available as a standalone program to run
locally. IgSCUEAL [40], available both online and to run locally,
takes a phylogenetic approach to germline assignment. It is hosted
by the HyPhy genetic sequence analysis program [41]. While it is
scalable, the approach is relatively compute intensive, requiring a
high-performance compute cluster for high-volume analyses. IgRe-
pertoireConstructor [24] is an open-source package for the con-
struction of repertoires from Illumina sequence sets. It incorporates
a novel approach to sequence error correction, and supports bar-
coded reads and the integration of proteomics analyses.

A number of approaches have been taken to identify clonotypes
from high-volume sequencing data [51]. Strictly speaking, one
would wish to establish that the V, D, and J genes of clonotypes
have identical ancestry, and that they share a common pattern of N-
insertions, however there is uncertainty in each of these determina-
tions, particularly where the sequence is highly diverged. A starting
point is to cluster sequences with the same inferred V, D, and J
germline ancestry. Subsequent clonotype clustering may then pro-
ceed on the basis of amino acid similarity [52] or nucleotide simi-
larity [53]. While the latter approach appears a priori to conform
more closely to the underlying mechanism of rearrangement, and in
particular is more likely to respond to differences in “N” insertions,
our own experience is that the two approaches provide broadly
similar results, with both yielding well-differentiated clusters. A
somewhat different approach is described by Giraud et al. [47]
and implemented in Vidjil (see Table 2): in this approach, junction
similarity is determined heuristically without full germline analysis.
The Immunoglobulin Analysis Tool (IgAT) is a Microsoft Excel-
based tool which provides extended analysis of IMGT results sets,
including clonotype analysis [54].

Selective pressure in V-region development can be determined
by comparing the ratio of observed non-silent to silent mutations:
however there are specific biases in sequence specificity and base
substitution in somatic hypermutation [55]. BASELINe is an
online tool, also available as public domain software, which calcu-
lates the selective pressure in CD and framework regions. It can be
used, for example, to compare selective pressure in different regions
and in different isotypes [56, 57].

5 Monitoring the Humoral Immune Response to Vaccination

High-volume sequencing studies have been conducted with the
aim of examining the B-cell response to vaccination or infection,
and in particular to understand the process and pathways of somatic
hypermutation. This is driven in large part by interest in the
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development of vaccines that will elicit broad-spectrum responses
to highly polymorphic viruses such as influenza and HIV. It is of
particular interest in HIV, where the germline ancestors of broad
spectrum antibodies are found to have little or no reactivity, sug-
gesting that their elicitation may require a particular development
path to be followed involving exposure to multiple antigens [58].
In this section, we describe the analyses that are typically conducted
in these studies, and discuss their relevance to the overall problem.

A number of Rep-Seq studies have confirmed that the B-cell
response to viral antigens is associated with clonal expansion and
isotype switching from IgM to IgA/IgG [20, 59–61]. Clonal
expansion has been observed also in patients with cancer [62]. A
subset of the plasmablasts generated during peak response will
survive as long-lived plasma cells. Booster vaccination studies with
influenza vaccine and tetanus toxoid vaccine have found peak plas-
mablast production occurring 6–7 days after vaccination [60, 63].
Clonal analysis of samples taken at multiple time points, one around
the peak period of plasmablast production, and one or more at
times several weeks or months into the future, will facilitate the
understanding of these two processes of rapid diversification and
incorporation into long-term immune memory. An understanding
of relative IgM levels at the different timepoints may be helpful in
understanding the extent to which the response is based on the
recall of immune memory [61].

Phylogenetic analysis can be used to characterize the develop-
ment of antibodies of interest, but the combined effects of antibody
recombination and NGS sequence read errors make this challeng-
ing. Specific tools have been developed for the analysis of variable
region ancestry and inference of intermediates [48, 64–66]. Phy-
logenies that depict descent from a specific V-gene germline should
be treated with care, as they are likely to combine descents from
multiple V(D)J recombinations. Within specific clonotypes,
sequence logo diagrams [67] provide a depiction that illustrates
the residues explored by the clonotype, and the potential key
residues that remain conserved.

Identity/divergence plots (Fig. 2) (also known as divergence-
mutation scatter plots) have been used by a number of authors to
investigate the relationship between an antibody of interest (typi-
cally an antibody known to be broadly or strongly neutralizing) and
its germline, together with other antibodies that have the same
germline ancestor [65, 68]. These plots tend to show a small
number of sequences that are similar to the target antibody, and a
large mass of sequences that are not. It is worth noting that this
large mass of sequences is itself quite diverse, and this can be
illustrated by coloring the points by clonotype [65]—an approach
that will also draw out possible convergence between clonotypes
towards the target antibody.
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antibody of interest (marked in red) are plotted in terms of their identity to the antibody and their divergence
from the germline (marked with a blue cross). As over 200,000 sequences are represented in this plot, they
are represented by means of a contour plot indicating density
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Chapter 16

Using the QAPgrid Visualization Approach for Biomarker
Identification of Cell-Specific Transcriptomic Signatures

Chloe Warren, Mario Inostroza-Ponta, and Pablo Moscato

Abstract

In this chapter, we illustrate the use of an integrated mathematical method for joint clustering and
visualization of large-scale datasets. In applying these clustering methodologies to biological datasets, we
aim to identify differentially expressed genes according to cell type by building molecular signatures
supported by statistical scores. In doing so, we also aim to find a global map of highly co-expressed clusters.
Variations in these clusters may well indicate other pathological trends and changes.

Key words Clustering, Visualization, Neuroscience, Genetics

1 Introduction

We have previously developed these methods for the analysis of
gene expression microarray (GEM) datasets [1], such as those
produced by studies that seek to reverse engineer the functional
genomics of model organisms like Saccharomyces cerevisiae [2]. We
have also applied the methods to the whole-genome analysis of
RNA stability [3] and we have created an interactive map based
on the results. In addition, our method has also been used to
generate a successful redefinition of clinical cases of proctitis syn-
drome [4]. Interestingly, in all these cases, we have dealt with
situations in which the values under consideration (gene expres-
sion, symptom measurements) change over time. This has lead us
to evaluate this method as a potential tool to provide new insights
into our understanding of coherent patterns of co-expression dur-
ing the progression of neurodegeneration, which occurs in a num-
ber of diseases including Alzheimer’s, Parkinson’s diseases and
multiple sclerosis.

However, preliminary investigation of some of the GEM data-
sets associated with these diseases has led us to prioritize the work
we present here in our research agenda. This work came about as a
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consequence of one of the shortcomings of GEM technologies.
Namely, the biological samples used to generate GEM data can be
comprised of whole tissue, meaning that there are multiple cell
types present within any one sample. Such sample heterogeneity
can complicate the functional biological interpretation of data, as
well as the identification of biomarkers [5–7]. Herein we have been
inspired to generate methodologies to identify clusters of gene
expression signatures that define different cell types.

With this contextual information, we introduce the QAPgrid
integrated clustering and visualization approach in the field of
identification of neurological cell-specific transcriptomes. We use
a GEM data set of distinct cell types (neurons, astrocytes, and
oligodendrocytes) taken from mouse brains [8]. As previously
mentioned, sample heterogeneity can be a major hindrance to the
interpretation of biological data. In particular, the brain is
renowned for its complex cellular composition. As such, these
data were collected using novel cell separation techniques in order
to provide a resource for improved understanding of the develop-
ment, physiology and pathology of the brain [8].

We envisage that further development of these data visualiza-
tion and analysis methods will lead to the production of a multidi-
mensional resource, wherein graphical representation of expression
clusters will be hyperlinked to specific expression data as well as
online gene function information.

2 Methodology

The GEM data used in these investigations is publically available in
the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.
nlm.nih.gov/geo/), via the accession number GSE9566. The
data were gathered using Affymetrix GeneChip Arrays, and repre-
sents three different cell types (neurons; astrocytes; oligodendro-
cytes) which were acutely isolated from the forebrains of healthy
mice. The mice’s ages varied between 7 and 17 days. The data were
annotated with gene names and symbols using SOURCE (http://
smd.stanford.edu/cgi-bin/source/sourceSearch), and normalized
such that the sum of all the probe sets values in a sample was equal
to 1.

2.1 Well Described

Biomarker Gene Lists

The lists of well described biomarker genes (see Tables 1, 2, and 3)
were obtained from the original publication of the data [8], but it is
significant that the basis for selection of these markers was not on
the data itself, but on previous studies (see full list of references, see
Table 4); it is therefore unbiased in its nature. It should be noted
that, in GEMs, genes are often represented by multiple probe sets,
which are comprised of 25-base sequences designed to hybridize to
various points within the target gene [9]. A common issue with
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GEM interpretation is that probe sets for the same gene often have
different expression patterns [9, 10]. There are multiple explana-
tions for this; probe sets can hybridize to splice variants of a gene, or
can inadvertently hybridize nonspecifically to a different (i.e.,
wrong) gene due to sequence similarity [9]. In an attempt to
limit the affect this issue has on our analysis of the effectiveness of
our methods, we have discounted probe sets whose expression is
non-cell specific from the lists of well described biomarkers, as seen
in Tables 1, 2, and 3.

2.2 Clustering Clustering algorithms applied to gene expression data aim to find
groups of related probe sets that share common characteristics, like
relative expression values or expression profiles across a sample set.
These common characteristics are usually measured using either a
similarity or distance metric. The most common of such measures

Table 1
Well described biomarker probe sets for astrocytes, and their location in super clusters and clusters,
as specified by application of MST-kNN unsupervised clustering algorithm to GEM dataset of pooled
cell types (astrocytes, neurons, and oligodendrocytes) isolated from mouse forebrains

Gene name
Gene
symbol Probe sets ID

Super
cluster Cluster

Solute carrier family 1 (glial high affinity glutamate
transporter), member 2

Slc1a2 1438194_at 1 445
1459014_at 1 254
1433094_at 1 445
1457800_at 1 445
1439940_at 1 445
1451627_a_at 1 445

Gap junction protein, beta 6 Gjb6 1448397_at 1 254

Glial fibrillary acidic protein Gfap 1440142_s_at 1 254
1426509_s_at 1 254
1426508_at 1 254

Solute carrier family 1 (glial high affinity glutamate
transporter), member 3

Slc1a3 1426341_at 1 254
1439072_at 1 445
1440491_at 1 254
1452031_at 1 254
1443749_x_at 1 254
1426340_at 1 254

Aquaporin 4 Aqp4 1447745_at 1 254
1425382_a_at 1 254
1434449_at 1 254

Aldolase C, fructose-bisphosphate Aldoc 1424714_at 1 254
1451461_a_at 1 559

Fibroblast growth factor receptor 3 Fgfr3 1421841_at 1 254
1425796_a_at 1 445
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are the Euclidean based metric and correlation-based metrics. The
choice of metric is a key step, as (1) it defines when two probe sets
are going to be considered similar and (2) it has to be relevant for
the questions being asked (for instance, the use of robust correla-
tion metrics may be necessary for some problem domains). In order
to analyze GEM data and find groups of related probe sets, we use
the unsupervised graph-based clustering algorithm, MSTkNN [11,
12]. We use the Pearson correlation distance metric, as shown in
Eq. (1). This metric defines a distance between 0, totally uncorre-
lated probe sets, and 2, totally correlated probe sets. It has the
advantage of not being sensitive to the amount of expression, and

Table 2
Well described biomarker probe sets for oligodendrocytes, and their location in super clusters and
clusters, as specified by application of MST-kNN unsupervised clustering algorithm to a GEM dataset
of pooled cell types (astrocytes, neurons, and oligodendrocytes) isolated from mouse forebrains

Gene name
Gene
symbol Probe sets ID

Super
cluster Cluster

SRY-box containing gene 10 Sox10 1451689_a_at 1 1
1424985_a_at 1 1

Platelet derived growth factor receptor, alpha
polypeptide

Pdgfra 1421916_at 1 1

Gap junction protein, gamma 2 Gjc2 1450483_at 1 1
1435214_at 1 1

Myelin basic protein Mbp 1451961_a_at 1 1
1419646_a_at 1 11
1436201_x_at 1 11
1454651_x_at 1 11
1456228_x_at 1 11
1433532_a_at 1 11
1425263_a_at 0 5

Myelin oligodendrocyte glycoprotein Mog 1448768_at 1 1

Myelin-associated oligodendrocytic basic protein Mobp 1433785_at 1 11
1421010_at 1 1
1436263_at 1 1
1450088_a_at 1 1

UDP galactosyltransferase 8A Ugt8a 1419064_a_at 1 1
1419063_at 1 1

Galactose-3-O-sulfotransferase 1
Gal3st1

Gal3st1 1454078_a_at 1 1

Myelin-associated glycoprotein Mag 1460219_at 1 1

Myelin and lymphocyte protein, T cell
differentiation protein

Mal 1432558_a_at 0 0
1417275_at 1 26
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being able to identify similar expression profiles between two probe
sets.

dxy ¼ 1� ρxy ð1Þ

The MSTkNN clustering algorithm is based on the use of two
proximity graphs, namely the Minimum Spanning Tree (MST),
and k Nearest Neighbor graph (kNN). The MST is a connected
acyclic graph with the smallest sum of edge’s weights, and in the
kNN graph, two vertices are connected if either one or the other are
among the k closest neighbors of each other according to the edge’s
weights. The algorithm first builds a complete graph G(V,E,W),
with a vertex v for each of the probe sets, and an edge exy for each of
the probe set pairs (x,y), with the edge’s weight being the distance
between the expression profiles of probe sets. First, the algorithm
computes the Minimum Spanning Tree GMST(V,EMST,WMST),
where EMST and WMST are subsets of E and W respectively. Second,
the algorithm computes the k-Nearest Neighbor graph GkNN(V,
EkNN,WkNN), where again EkNN and WkNN are subsets of E and W
respectively. The number of nearest neighbors to be considered is
automatically computed using Eq. (2) (see below). Then, the algo-
rithm computes the intersection of the edge sets of both graphs
(EMST \ EkNN), which will produce a partition of the graph in
c � 1 connected components. If c ¼ 1, then the algorithm stops.

Table 3
Well described biomarker probe sets for neurons, and their location in super clusters and clusters, as
specified by application of MST-kNN unsupervised clustering algorithm to a GEM dataset of pooled
cell types (astrocytes, neurons, and oligodendrocytes) isolated from mouse forebrains

Gene name
Gene
symbol Probe sets ID

Super
cluster Cluster

Neurofilament, light polypeptide Nefl 1426255_at 8 561
1454672_at 8 190

Gamma-aminobutyric acid (GABA) A receptor,
subunit alpha 1

Gabra1 1455766_at 8 190
1436889_at 2 472
1421281_at 8 190

Synaptotagmin I Syt1 1421990_at 8 190
1431191_a_at 8 561
1433884_at 2 499

Solute carrier family 12, member 5 Slc12a5 1451674_at 2 499

Synaptosomal-associated protein 25 Snap25 1416828_at 8 190

Synaptic vesicle glycoprotein 2 b Sv2b 1434800_at 8 190
1435687_at 8 531

Potassium voltage-gated channel, subfamily Q,
member 2

Kcnq2 1451595_a_at 2 152
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Otherwise (c > 1), the algorithm is recursively applied in each of
the connected components. Algorithm 1 shows the pseudocode of
the clustering algorithm. It receives a distance matrix and it returns
a graph with c � 1 connected components. A schematic represen-
tation of the algorithm is shown in Fig. 1.

k ¼ min ln nð Þ, mink = Gk is connectedf g ð2Þ

Firstly, the algorithm uses a large number of nearest neighbors
to find clusters. It then uses a smaller number depending on the
number of probe sets. It is also possible to restrict the number of
nearest neighbors to a kmax by adding it to Eq. (2):
k ¼ min ln nð Þ, mink = Gk is connected, kmaxf g. This condition
forces the algorithm to consider only up to the kmax larger simila-
rities (or smallest distances).

Table 4
Literature references for well described marker genes of neurons, oligodendrocytes, and astrocytes

Cell type Well described marker Symbol Reference

Neuron Neurofilament, light polypeptide Nefl [19]
Gamma-aminobutyric acid (GABA) A receptor, subunit
alpha 1

Gabra1 [20]

Synaptotagmin I Syt1 [20]
Solute carrier family 12, member 5 Slc12a5 [20]
Synaptosomal-associated protein 25 Snap25 [21]
Potassium voltage-gated channel, subfamily Q, member 2 Kcnq2 [22]
Synaptic vesicle glycoprotein 2 b Sv2b [23]

Oligodendrocyte Chondroitin sulfate proteoglycan 4 Cspg4 [24]
SRY-box containing gene 10 Sox10 [25, 26]
Platelet derived growth factor receptor, alpha polypeptide Pdgfra [20, 27]
Gap junction protein, gamma 2 Gjc2 [28]
Myelin basic protein Mbp [29, 30]
Myelin oligodendrocyte glycoprotein Mog [30]
UDP galactosyltransferase 8A Ugt8a [31]
Galactose-3-O-sulfotransferase 1/(Cerebroside
sulfotransferase)

Gal3st1 [32]

Myelin-associated oligodendrocytic basic protein Mobp [33]
Myelin-associated glycoprotein Mag [30]
Myelin and lymphocyte protein, T cell differentiation protein Mal [34]

Astrocyte Solute carrier family 1 (glial high affinity glutamate
transporter), member 2

Slc1a2 [35]

Gap junction protein, beta 6 Gjb6 [36]
Glial fibrillary acidic protein Gfap [29, 37, 38]
Solute carrier family 1 (glial high affinity glutamate
transporter), member 3

Slc1a3 [39]

Aquaporin 4 Aqp4 [40]
Aldolase C, fructose-bisphosphate Aldoc [41]
Fibroblast growth factor receptor 3 Fgfr3 [42]
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Fig. 1 Schema of the clustering algorithm MSTkNN used for the analysis of
mouse brain tissue. The algorithm automatically decides the number of neigh-
bors to be considered in each step

Algorithm 1
MSTkNN clustering algorithm. Function connectedComponents(G) returns
the number of connected components in G. Function submatrix(D,
GCLUSTER
i ) get the distance matrix of the elements of the ith connected

component in GCLUSTER

MSTkNN(D: distance matrix)

1. Compute G
2. Compute GMST

3. Compute GkNN, with k ¼ min ln nð Þ,mink = Gk is connectedf g
4. GCLUSTER ¼ {VCLUSTER ¼ V, ECLUSTER ¼ EMST \ EkNN }
5. c ¼ connectedComponents(GCLUSTER)
6. IF (c > 1) THEN
7. GCLUSTER ¼ \ c

i¼1MSTkNN submatrix D;G i
CLUSTER

� �� �
8. ENDIF
9. RETURN GCLUSTER

END MSTkNN



For this data set, theMSTkNN algorithm found 760 clusters of
similarly expressed probe sets, with the five largest clusters consist-
ing of 2520 (cluster 252), 2067 (cluster 190), 1581 (cluster 2),
1371 (cluster 50), and 1306 (cluster 68) probe sets. The large
number of clusters found makes it hard to analyze the results. To
help the analysis, we now group clusters of similarly expressed
genes. We apply the clustering algorithm considering that each
cluster is now an object, and the distance between two clusters
corresponds to the average pairwise distance between all members
of two clusters. In this new data set, the MSTkNN algorithm
produces 14 “superclusters” (14 clusters of clusters). The largest
supercluster consists of 324 clusters (supercluster 1).

2.3 QAPgrid A clustering algorithm will deliver one or more groups that are
related according to some criteria. One of the well-known short-
comings of any clustering algorithm is that it can be too sensitive
and therefore separate a group of probe sets that should be
together. On the other hand, the algorithm might not separate
probe sets that should be separated. In order to deal with these
situations, we use a layout procedure based on the pairwise rela-
tionships of all probe sets. The relationship between any two probe
sets can be measured using any similarity/distance measure, in a
similar way to that of the clustering algorithm. The layout proce-
dure of the QAPgrid is a combinatorial optimization approach to
generating an ordered layout which is mathematically guided in
order to place highly related objects in nearby positions in a 2D
grid. The layout problem is modeled as an instance of the Quadratic
Assignment Problem, and since the QAP belongs to the NP-hard
class of problems, we use an ad hoc Memetic algorithm [13, 14]
which we have developed to deal with the QAP instances. In QAP,
we need to assign a set of n > 0 facilities to m locations, given as
input to a flow matrix between the facilities and the distance
between locations to which these facilities would be assigned. The
flow between facilities and distances between locations are repre-
sented using matrices F and L, respectively. The goal is to minimize
the overall flow C in the system shown in Eq. (3) below, where s(i)
represents the assigned location of facility i in a solution s, and ls(i)s(j)
represents the distance between locations of facilities i and j, while
fij represents the flow between facilities i and j. Then, a good
solution for the QAP will put in nearby locations facilities sharing
a high flow according to the objective function C given by:

C ¼
Xn
i¼1

Xn
j¼iþ1

f ij l s ið Þs jð Þ ð3Þ

In order to create instances of the QAP for the layout problem at
hand, each probe set is represented by a facility, and the flow
between facilities is created using Eq. (4). Following this, we create
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a square grid of m locations, with m � n, such that the algorithm
has no space restrictions to produce the layout. Additionally, we are
able to consider other information, such as a graph model that
highlights certain probe sets’ relationships in the data set. Say we
have a graphH(V,E), where each vertex in V represents a probe. In
this graph, there would be an edge between two vertices if there was
intent that these two vertices may be prioritized to be close in the
final layout (i.e., apart from their similarity there might be other
specific criteria). We bias the search towards attempting to co-locate
these two probe sets together by increasing the flow value between
the two given probe sets by a factor of M � n as it is shown in
Eq. (4).

f ij ¼

0 if i ¼ j
M

dij
if eij∈E

1

dij
otherwise

8>>>><
>>>>:

ð4Þ

The QAPgrid algorithm first produces the layout of each cluster
independently, before producing a layout of the clusters, as it is
shown in Fig. 2. Then, probe sets in a cluster are organized accord-
ing to their similarity, and clusters are also organized according to
the similarities of the clusters’ members.

The whole map generated can be seen in Figs. 3, 4 and 5. In
these Figures, each element (yellow and purple) represents a cluster
of probe sets and they are organized according to the output of the
QAPgrid. In Subheading 4, we analyze the results aided by the
layout produced.

2.4 CM2 Score In order to investigate the validity of our methodology wherein we
can be presented with large quantities of candidate probe sets
(some of the clusters generated contain more than 2500), it was
seen as appropriate to select ten representative probe sets from each
cluster. In order to select the most appropriate probe sets, we have
ranked the data by the CM2 value (see below), and then selected the
top ten.

For each of the probe sets, we compute the difference between
expression values between the classes of cells (samples) we are
interested in versus the rest of the samples. We call this measure
CM2. Probe sets which have the biggest difference in expression
between cell types are ranked highest; these are the most likely
candidates for biomarkers. Let’s say we are looking for candidate
biomarkers for samples of class 1 (c1) and we refer to the rest of the
samples as class 2 (c2). Then, the CM2 score is the difference
between the average value of expression in Class 1 and Class
2 divided by the minimum range observed in Class 1 and Class 2.
To compute the range of observed probe set expression values in a
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class, we need to identify the maximum and subtract the minimum
value observed in the class. As a consequence, the CM2 score aims
at identifying probe sets which are differentially expressed (on
average). It does this by scaling the difference of averages by
using the least variable class (the class that has the minimum
range value).

3 Analysis

By comparing well described biomarker genes for cell type (see
Tables 1, 2, and 3) to the clustering results, we can identify the

Fig. 2 Schema of the QAPgrid algorithm. For each cluster of objects, the
algorithm produces a layout of the objects. Then, the algorithm produces a
second level layout of each of the clusters
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Fig. 3 (a) QAPgrid generated map graphic of gene clusters generated by application of MSTkNN unsupervised
clustering algorithm to microarray dataset of pooled cell types (astrocytes, neurons, and oligodendrocytes)
isolated from mouse forebrains. The location of clusters 224 and 445 is indicated. (b) Location of clusters 224
and 445 at a larger magnification, where the location of neighboring nodes and edges in immediate region are
displayed. (c) Location of clusters 224 and 445 (indicated by squares) at a larger magnification, where
representative heat maps of neighboring clusters are also displayed. A candidate cluster for astrocyte markers
is indicated by a circle
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Fig. 4 (a) QAP generated map graphic of gene clusters, as generated by application of MSTkNN unsupervised
clustering algorithm to microarray dataset of pooled cell types (astrocytes, neurons, and oligodendrocytes)
isolated from mouse forebrains. The location of clusters 1 and 11 is indicated. (b) Location of clusters 1 and
11 at a larger magnification, where the location of neighboring nodes and edges of the immediate region are
displayed. (c) Location of clusters 1 and 11 (indicated by squares) at a larger magnification, where represen-
tative heat maps of neighboring clusters are also displayed. A candidate cluster for oligodendrocyte markers is
indicated by a circle
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Fig. 5 (a) QAP generated map graphic of gene clusters, as generated by application of MSTkNN unsupervised
clustering algorithm tomicroarray datasets of pooled cell types (astrocytes, neurons, and oligodendrocytes) isolated
from mouse forebrains. The location of clusters 190 and 499 are indicated. (b) Location of cluster 190 at a larger
magnification, where the location of neighboring nodes and edges in immediate region are displayed. (c) Location of
cluster 190 (squared) at a larger magnification, where representative heat maps of neighboring clusters are
displayed. (*d) Location of cluster 499 at a largermagnification, where the location of neighboringmodes and edges
are displayed. (e) Location of cluster 499 (squared) at a larger magnification, where representative heat maps of
neighboring clusters are displayed. **Circles in (c) and (e) represent candidate clusters for neuron markers



extent to which the algorithm has successfully clustered together
probe sets with similar expression patterns. In addition, we can
track these well described biomarker genes in order to find candi-
date biomarkers within the same cluster.

By researching those probe sets with the highest CM2 score
within clusters which are brought to our attention, we are able
to demonstrate that these methods are successful in the search
for biomarkers; there are multiple genes whose expression pro-
file is notoriously cell specific within these clusters (see Tables 5,
6, and 7). Just as significantly, the QAPgrid approach aids with
the identification of further clusters wherein further biomarkers
may be found, as clusters which consist of probe sets with
similar expression profiles are mapped close together (see
Figs. 4, 5, and 6).

When we locate well described biomarker genes for astrocytes
within the clusters and the QAPgrid, we see that their representa-
tive probe sets are restricted mainly to just two clusters: 254 and
445 (see Table 1), both of which are within super cluster 1 (see
Table 1 and Fig. 3). All seven of the biomarker genes have
representative probe sets localized to cluster 254 (see Table 1
and Fig. 6). Upon closer inspection of these clusters (see Fig. 6),
it is evident that the composite probe sets of both clusters share a
similar pattern of expression across the cell types. In order to
determine which of the 2520 (cluster 254) and 321 (cluster
445) probe sets may give best candidates for a cell type marker,
we can apply the CM2 equation in order to rank the candidate
probe sets appropriately. Some of the results (the top ten probe
sets) of this approach can be seen in Table 5, wherein a literature
review summary indicates the likelihood that we have indeed
found a candidate cell marker.

Furthermore, by examining the location of these clusters
within the entire QAPgrid map, we can see that some of their
neighbors also contain some probe sets whose expression pattern
is cell specific, namely cluster 685 (see Fig. 3c).

In searching for the location of well described biomarker genes
for oligodendrocytes, we can see that the majority of the probe sets
are within clusters 1 and 11 (both of which are within super cluster 1)
(see Fig. 4 and Table 2). All but one of the ten well described
biomarker genes for oligodendrocytes have representative probe
sets in the same cluster, namely cluster 1 (see Table 2). Analysis of
the representative heat maps for these clusters reveals an interesting
pattern within cluster 11 (consisting of 25 probe sets), wherein there
is an observable group of probe sets whose expression profile is
highly similar (see Fig. 7). When we sort all 25 of the composite
probe sets in this cluster by their CM2 score, it is the constituent
probe sets of this observed group (1433785_at, 1433532_a_at,
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1436201_x_at, 1419646_a_at, 1454651_x_at, 1456228_x_at)
which have the highest CM2 ranking (see Table 5). These probe
sets map to the well described biomarker genes, myelin-associated
oligodendrocytic basic protein and myelin basic protein, herein
proving the efficacy of our methods wherein application of CM2

Fig. 6 (a) Cluster 254 and (b) Cluster 445; generated by application of MSTkNN unsupervised clustering
algorithm to microarray dataset of pooled cell types; astrocytes (A), neurons (N) and oligodendrocyte (O)
isolated from mouse forebrains. Both clusters contain representative probe sets for described astrocyte
markers (see Table 1). (a) Cluster 254; Slc1a2, Gjb6, Gfap, Slc1a3, Aqp4, Fgfr3. (b) Cluster 445; Slcla2, Slcla3,
Fgfr3

Fig. 7 (a) Cluster 1 and (b) Cluster 11 generated by application of MSTkNN unsupervised clustering algorithm
to microarray dataset of pooled cell types; astrocytes (A), neurons (N) and oligodendrocyte (O) isolated from
mouse forebrains. Both clusters contain representative probe sets for described oligodendrocyte markers (see
Table 1). (a) Cluster 1; Sox10, Pdgfra, Gjc2, Mbp, Mog, Ugt8a, Gal3st1, Mag. (b) Cluster 11; Mbp, Mobp. A
region of probes sharing highly similar expression is indicated with asterisk
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can assist with identifying likely candidates for biomarkers. Indeed,
of the 20 probe sets selected by CM2 filtering, 14 hold previous
evidence for cell-specific expression patterns (see Table 5).

Looking at the location of these clusters of interest in the
QAPgrid, we can identify yet another candidate of interest with
highly specific gene expression profiles, namely cluster 18 (see
Fig. 4c).

Though the probe sets for well described neuronal biomarker
genes are not as concentrated into the same clusters as with the
other cell types under investigation (Fig. 5), when we look at the
other probe sets which are within these particular clusters wherein
the majority of the biomarkers lie (190, 499, and 561), we see that
there are still plenty of candidate cell markers there. This indicates
the usefulness of our methods (see Table 7). In addition, the QAP-
grid shows that there are multiple neighboring clusters depicting
cell-specific expression (see Fig. 8).

4 Conclusions

We present an integrated approach for clustering, selection, and
visualization of patterns of gene expression that constitute molecu-
lar signatures of cell-specific transcription. We validate its usefulness
by employing a dataset that allowed us to identify both known
markers of neuronal, oligodendrocyte, and astrocytic cell types as
well as others that warrant further investigation. Our study suggests
the following putative novel biomarkers of cell type: for astrocytes,
pdk4, slc15a2, Ttpa, Rfx4, Gli3, Sardh, Lonrf3, and Slc27a1; for
oligodendrocytes, Adamts4, Bcl7a, and Atf6; and for neurons,
Tmod3, Kcns2, Dync1i1, Mapk8ip2, Sphkap, Epb4.9, Zrsr2,
Pmg211, Tmem130, Klc1. The validation of these other putative
biomarkers of cell type requires wet lab investigations. We believe
these will soon follow as some of these genes have already attracted
the attention of researchers working in neurodegenerative diseases.
For instance Klc1 seems to have a role in amyloid-beta accumula-
tion and intracellular trafficking, thus linking it to Alzheimer’s
disease [15–17]. We thus expect that researchers would be moti-
vated to identify if all populations of neurons express Klc1 and if, in
addition, there are anatomical observable differences. Levels of
KLC1 have been observed to be reduced in the frontal cortex,
but not in the cerebellar cortex, of Alzheimer’s disease patients
[18]. Our method allows a comprehensive analysis of all major
groups of gene expression patterns across three different cell types
and provides a basis for an investigation on disruption of these
co-expression patterns in neurodegenerative diseases in model
organisms.

Using the QAPgrid Visualization Approach for Biomarker. . . 293



Acknowledgments

The authors would like to thank Prof. Manuel Graeber for his
suggestion about the datasets to be explored.

References

1. Schena M, Shalon D, Davis RW, Brown PO
(1995) Quantitative monitoring of gene
expression patterns with a complementary
DNA microarray. Science 270:467–470

2. Inostroza-Ponta M, Berretta R, Moscato P
(2011) QAPgrid: a two level QAP-based
approach for large-scale data analysis and visu-
alization. PLoS One 6:e14468

3. Clark MB, Johnston RL, Inostroza-Ponta M,
Fox AH, Fortini E et al (2012) Genome-wide
analysis of long noncoding RNA stability.
Genome Res 22:885–898

4. Capp A, Inostroza-Ponta M, Bill D, Moscato
P, Lai C et al (2009) Is there more than one
proctitis syndrome? A revisitation using data
from the TROG 96.01 trial. Radiother Oncol
90:400–407

Fig. 8 (a) Cluster 190, (b) Cluster 499 and (c) Cluster 561; generated by application of MSTkNN supervised
clustering algorithm to dataset of pooled cell types; astrocytes (A), neurons (N) and oligodendrocyte (O)
isolated from mouse forebrains. Both clusters contain representative probe sets for described neuronal
markers (see Table 1). (a) Cluster 190; Nefl, Gabra1, Syt1, Snap25m, Sv2b. (b) Cluster 11; Syt1, Slcl25a.
(c) Cluster 561; Nefl, Syt1

294 Chloe Warren et al.



5. Geschwind DH, Konopka G (2009) Neurosci-
ence in the era of functional genomics and
systems biology. Nature 461:908–915

6. Okaty BW, Sugino K, Nelson SB (2011) Cell
type-specific transcriptomics in the brain. J
Neurosci 31:6939–6943

7. Okaty BW, Sugino K, Nelson SB (2011) A
quantitative comparison of cell-type-specific
microarray gene expression profiling methods
in the mouse brain. PLoS One 6:e16493

8. Cahoy JD, Emery B, Kaushal A, Foo LC,
Zamanian JL et al (2008) A transcriptome
database for astrocytes, neurons, and oligoden-
drocytes: a new resource for understanding
brain development and function. J Neurosci
28:264–278

9. Stalteri MA, Harrison AP (2007) Interpreta-
tion of multiple probe sets mapping to the
same gene in Affymetrix GeneChips. BMC
Bioinformatics 8:13

10. Upton GJ, Sanchez-Graillet O, Rowsell J,
Arteaga-Salas JM, Graham NS et al (2009)
On the causes of outliers in Affymetrix Gene-
Chip data. Brief Funct Genomic Proteomic
8:199–212

11. Inostroza-Ponta M, Mendes A, Berretta R,
Moscato P (2007) An integrated QAP-based
approach to visualize patterns of gene expres-
sion similarity. Prog Artif Life Proc
4828:156–167

12. Inostroza-Ponta M, Berretta R, Mendes A,
Moscato P (2006) An automatic graph layout
procedure to visualize correlated data. Artif
Intell Theory Pract 217:179–188

13. Moscato P, Norman MG (1992) A “Memetic”
approach for the traveling salesman problem
implementation of a computational ecology
for combinatorial optimization on message-
passing systems. Parallel Comput Transp Appl
Pts 1 and 2 28:177–186

14. Moscato P, Mendes A, Berretta R (2007)
Benchmarking a memetic algorithm for order-
ing microarray data. Biosystems 88:56–75

15. Morihara T, Hayashi N, Yokokoji M, Akatsu H,
SilvermanMA et al (2014) Transcriptome anal-
ysis of distinct mouse strains reveals kinesin
light chain-1 splicing as an amyloid-beta accu-
mulation modifier. Proc Natl Acad Sci U S A
111:2638–2643

16. Killian RL, Flippin JD, Herrera CM, Almenar-
Queralt A, Goldstein LS (2012) Kinesin light
chain 1 suppression impairs human embryonic
stem cell neural differentiation and amyloid
precursor protein metabolism. PLoS One 7:
e29755

17. Szpankowski L, Encalada SE, Goldstein LS
(2012) Subpixel colocalization reveals amyloid

precursor protein-dependent kinesin-1 and
dynein association with axonal vesicles. Proc
Natl Acad Sci U S A 109:8582–8587

18. Morel M, Heraud C, Nicaise C, Suain V, Brion
JP (2012) Levels of kinesin light chain and
dynein intermediate chain are reduced in the
frontal cortex in Alzheimer’s disease: implica-
tions for axoplasmic transport. Acta Neuro-
pathol 123:71–84

19. Trojanowski JQ, Walkenstein N, Lee VM
(1986) Expression of neurofilament subunits
in neurons of the central and peripheral ner-
vous system: an immunohistochemical study
with monoclonal antibodies. J Neurosci
6:650–660

20. Riddick G, Fine HA (2011) Integration and
analysis of genome-scale data from gliomas.
Nat Rev Neurol 7:439–450

21. Geddes JW, Hess EJ, Hart RA, Kesslak JP, Cot-
man CW et al (1990) Lesions of hippocampal
circuitry define synaptosomal-associated
protein-25 (SNAP-25) as a novel presynaptic
marker. Neuroscience 38:515–525

22. Selyanko AA, Hadley JK, Wood IC, Abogadie
FC, Delmas P et al (1999) Two types of K(+)
channel subunit, Erg1 and KCNQ2/3, con-
tribute to the M-like current in a mammalian
neuronal cell. J Neurosci 19:7742–7756

23. Janz R, Goda Y, GeppertM,Missler M, Sudhof
TC (1999) SV2A and SV2B function as redun-
dant Ca2+ regulators in neurotransmitter
release. Neuron 24:1003–1016

24. Aguirre A, Dupree JL, Mangin JM, Gallo V
(2007) A functional role for EGFR signaling
in myelination and remyelination. Nat Neu-
rosci 10:990–1002

25. Komitova M, Eriksson PS (2004) Sox-2 is
expressed by neural progenitors and astroglia
in the adult rat brain. Neurosci Lett 369:24–27

26. Baer K, Eriksson PS, Faull RL, Rees MI, Curtis
MA (2007) Sox-2 is expressed by glial and
progenitor cells and Pax-6 is expressed by neu-
roblasts in the human subventricular zone. Exp
Neurol 204:828–831

27. Spassky N, Olivier C, Perez-Villegas E, Goujet-
Zalc C, Martinez S et al (2000) Single or mul-
tiple oligodendroglial lineages: a controversy.
Glia 29:143–148

28. Menichella DM, Goodenough DA, Sirkowski
E, Scherer SS, Paul DL (2003) Connexins are
critical for normal myelination in the CNS. J
Neurosci 23:5963–5973

29. Brunner C, Lassmann H, Waehneldt TV, Mat-
thieu JM, Linington C (1989) Differential
ultrastructural localization of myelin basic pro-
tein, myelin/oligodendroglial glycoprotein, and
20,30-cyclic nucleotide 30-phosphodiesterase in

Using the QAPgrid Visualization Approach for Biomarker. . . 295



the CNS of adult rats. J Neurochem
52:296–304

30. Baumann N, Pham-Dinh D (2001) Biology of
oligodendrocyte and myelin in the mammalian
central nervous system. Physiol Rev
81:871–927

31. Schulte S, Stoffel W (1993) Ceramide UDP
galactosyltransferase from myelinating rat
brain: purification, cloning, and expression.
Proc Natl Acad Sci U S A 90:10265–10269

32. Hayashi A, Kaneko N, Tomihira C, Baba H
(2013) Sulfatide decrease in myelin influences
formation of the paranodal axo-glial junction
and conduction velocity in the sciatic nerve.
Glia 61:466–474

33. Yamamoto Y, Mizuno R, Nishimura T, Ogawa
Y, Yoshikawa H et al (1994) Cloning and
expression of myelin-associated oligodendro-
cytic basic protein. A novel basic protein con-
stituting the central nervous system myelin. J
Biol Chem 269:31725–31730

34. Schaeren-Wiemers N, Valenzuela DM, Frank
M, Schwab ME (1995) Characterization of a
rat gene, rMAL, encoding a protein with four
hydrophobic domains in central and peripheral
myelin. J Neurosci 15:5753–5764

35. Rothstein JD, Martin L, Levey AI, Dykes-
Hoberg M, Jin L et al (1994) Localization of
neuronal and glial glutamate transporters.
Neuron 13:713–725

36. Dermietzel R, Gao Y, Scemes E, Vieira D,
Urban M et al (2000) Connexin43 null mice
reveal that astrocytes express multiple connex-
ins. Brain Res Brain Res Rev 32:45–56

37. Pekny M, Nilsson M (2005) Astrocyte activa-
tion and reactive gliosis. Glia 50:427–434

38. Eng LF, Ghirnikar RS, Lee YL (2000) Glial
fibrillary acidic protein: GFAP-thirty-one
years (1969–2000). Neurochem Res
25:1439–1451

39. Kondo K, Hashimoto H, Kitanaka J, Sawada
M, Suzumura A et al (1995) Expression of
glutamate transporters in cultured glial cells.
Neurosci Lett 188:140–142

40. Nagelhus EA, Veruki ML, Torp R, Haug FM,
Laake JH et al (1998) Aquaporin-4 water chan-
nel protein in the rat retina and optic nerve:
polarized expression in Muller cells and fibrous
astrocytes. J Neurosci 18:2506–2519

41. Staugaitis SM, Zerlin M, Hawkes R, Levine
JM, Goldman JE (2001) Aldolase C/zebrin II
expression in the neonatal rat forebrain reveals
cellular heterogeneity within the subventricular
zone and early astrocyte differentiation. J Neu-
rosci 21:6195–6205

42. Balaci L, Presta M, Ennas MG, Dell’Era P,
Sogos V et al (1994) Differential expression of

fibroblast growth factor receptors by human
neurones, astrocytes and microglia. Neurore-
port 6:197–200

43. Gimenez MA, Sim JE, Russell JH (2004)
TNFR1-dependent VCAM-1 expression by
astrocytes exposes the CNS to destructive
inflammation. J Neuroimmunol 151:116–125

44. Rosenman SJ, Shrikant P, Dubb L, Benveniste
EN, Ransohoff RM (1995) Cytokine-induced
expression of vascular cell adhesion molecule-1
(VCAM-1) by astrocytes and astrocytoma cell
lines. J Immunol 154:1888–1899

45. Bachoo RM, Kim RS, Ligon KL, Maher EA,
Brennan C et al (2004) Molecular diversity of
astrocytes with implications for neurological
disorders. Proc Natl Acad Sci U S A
101:8384–8389

46. Allaman I, Pellerin L, Magistretti PJ (2000)
Protein targeting to glycogen mRNA expres-
sion is stimulated by noradrenaline in mouse
cortical astrocytes. Glia 30:382–391

47. Brunet JF, Allaman I, Magistretti PJ, Pellerin L
(2010) Glycogen metabolism as a marker of
astrocyte differentiation. J Cereb Blood Flow
Metab 30:51–55

48. Torp R, Danbolt NC, Babaie E, Bjoras M,
Seeberg E et al (1994) Differential expression
of two glial glutamate transporters in the rat
brain: an in situ hybridization study. Eur J
Neurosci 6:936–942

49. Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I
et al (2011) Molecular comparison of GLT1+
and ALDH1L1+ astrocytes in vivo in astroglial
reporter mice. Glia 59:200–207

50. Schwarting GA, Gridley T, Henion TR (2007)
Notch1 expression and ligand interactions in
progenitor cells of the mouse olfactory epithe-
lium. J Mol Histol 38:543–553

51. Wink MR, Braganhol E, Tamajusuku AS, Lenz
G, Zerbini LF et al (2006) Nucleoside triphos-
phate diphosphohydrolase-2 (NTPDase2/
CD39L1) is the dominant ectonucleotidase
expressed by rat astrocytes. Neuroscience
138:421–432

52. Sallis ES, Mazzanti CM, Mazzanti A, Pereira
LA, Arroteia KF et al (2006) OSP-
Immunofluorescent remyelinating oligoden-
drocytes in the brainstem of toxically-
demyelinated Wistar rats. Arq Neuropsiquiatr
64:240–244

53. Worzfeld T, Puschel AW, Offermanns S, Kuner
R (2004) Plexin-B family members demon-
strate non-redundant expression patterns in
the developing mouse nervous system: an ana-
tomical basis for morphogenetic effects of
Sema4D during development. Eur J Neurosci
19:2622–2632

296 Chloe Warren et al.



54. Koenning M, Jackson S, Hay CM, Faux C,
Kilpatrick TJ et al (2012) Myelin gene regu-
latory factor is required for maintenance of
myelin and mature oligodendrocyte identity
in the adult CNS. J Neurosci 32:12528–12542

55. Kim MY, Jeong BC, Lee JH, Kee HJ, Kook H
et al (2006) A repressor complex, AP4 tran-
scription factor and geminin, negatively regu-
lates expression of target genes in nonneuronal
cells. Proc Natl Acad Sci U S A
103:13074–13079

56. Velaz-Faircloth M, Guadano-Ferraz A, Henzi
VA, Fremeau RT Jr (1995) Mammalian brain-
specific L-proline transporter. Neuronal locali-
zation of mRNA and enrichment of transporter
protein in synaptic plasma membranes. J Biol
Chem 270:15755–15761

57. Zhang J, Twelvetrees AE, Lazarus JE, Blasier
KR, Yao X et al (2013) Establishing a novel
knock-in mouse line for studying neuronal
cytoplasmic dynein under normal and patho-
logic conditions. Cytoskeleton (Hoboken)
70:215–227

58. Kuta A, Deng W, Morsi El-Kadi A, Banks GT,
Hafezparast M et al (2010) Mouse cytoplasmic
dynein intermediate chains: identification of
new isoforms, alternative splicing and tissue
distribution of transcripts. PLoS One 5:
e11682

59. Salata MW, Dillman JF 3rd, Lye RJ, Pfister KK
(2001) Growth factor regulation of cytoplas-
mic dynein intermediate chain subunit expres-
sion preceding neurite extension. J Neurosci
Res 65:408–416

60. Pfister KK, Salata MW, Dillman JF 3rd, Torre
E, Lye RJ (1996) Identification and develop-
mental regulation of a neuron-specific subunit
of cytoplasmic dynein. Mol Biol Cell
7:331–343

61. Pfister KK, Salata MW, Dillman JF 3rd,
Vaughan KT, Vallee RB et al (1996) Differen-
tial expression and phosphorylation of the 74-
kDa intermediate chains of cytoplasmic dynein
in cultured neurons and glia. J Biol Chem
271:1687–1694

62. Bhaskar K, Shareef MM, Sharma VM, Shetty
AP, Ramamohan Y et al (2004) Co-purification
and localization of Munc18-1 (p67) and Cdk5
with neuronal cytoskeletal proteins. Neuro-
chem Int 44:35–44

63. MacDonald JI, Dietrich A, Gamble S, Hryciw
T, Grant RI et al (2012) Nesca, a novel

neuronal adapter protein, links the molecular
motor kinesin with the pre-synaptic membrane
protein, syntaxin-1, in hippocampal neurons. J
Neurochem 121:861–880

64. Saitoh O, Masuho I, ItohM, Abe H, Komori K
et al (2003) Distribution of regulator of G
protein signaling 8 (RGS8) protein in the cere-
bellum. Cerebellum 2:154–160

65. Richards KS, Bommert K, Szabo G, Miles R
(2007) Differential expression of Na+/K + -
ATPase alpha- subunits in mouse hippocampal
interneurones and pyramidal cells. J Physiol
585:491–505

66. Kim JG, Armstrong RC, v Agoston D,
Robinsky A, Wiese C et al (1997) Myelin tran-
scription factor 1 (Myt1) of the oligodendro-
cyte lineage, along with a closely related
CCHC zinc finger, is expressed in developing
neurons in the mammalian central nervous sys-
tem. J Neurosci Res 50:272–290

67. Frangakis MV, Chatila T, Wood ER, Sahyoun
N (1991) Expression of a neuronal Ca2+/cal-
modulin- dependent protein kinase, CaM
kinase-Gr, in rat thymus. J Biol Chem
266:17592–17596

68. Wagnon JL, Mahaffey CL, Sun W, Yang Y,
Chao HT et al (2011) Etiology of a genetically
complex seizure disorder in Celf4 mutant mice.
Genes Brain Behav 10:765–777

69. Kim KK, Kim YC, Adelstein RS, Kawamoto S
(2011) Fox-3 and PSF interact to activate neu-
ral cell-specific alternative splicing. Nucleic
Acids Res 39:3064–3078

70. Ambasudhan R, Talantova M, Coleman R,
Yuan X, Zhu S et al (2011) Direct reprogram-
ming of adult human fibroblasts to functional
neurons under defined conditions. Cell Stem
Cell 9:113–118

71. Pham TV, Hartomo TB, Lee MJ, Hasegawa D,
Ishida T et al (2012) Rab15 alternative splicing
is altered in spheres of neuroblastoma cells.
Oncol Rep 27:2045–2049

72. Kim KK, Adelstein RS, Kawamoto S (2009)
Identification of neuronal nuclei (NeuN) as
Fox-3, a new member of the Fox-1 gene family
of splicing factors. J Biol Chem
284:31052–31061

73. Mar L, Yang FC, Ma Q (2012) Genetic mark-
ing and characterization of Tac2-expressing
neurons in the central and peripheral nervous
system. Mol Brain 5:3

Using the QAPgrid Visualization Approach for Biomarker. . . 297



Chapter 17

Computer-Aided Breast Cancer Diagnosis with Optimal
Feature Sets: Reduction Rules and Optimization Techniques

Luke Mathieson, Alexandre Mendes, John Marsden, Jeffrey Pond,
and Pablo Moscato

Abstract

This chapter introduces a newmethod for knowledge extraction from databases for the purpose of finding a
discriminative set of features that is also a robust set for within-class classification. Our method is generic
and we introduce it here in the field of breast cancer diagnosis from digital mammography data. The
mathematical formalism is based on a generalization of the k-Feature Set problem called (α, β)-k-Feature Set
problem, introduced by Cotta and Moscato (J Comput Syst Sci 67(4):686–690, 2003). This method
proceeds in two steps: first, an optimal (α, β)-k-feature set of minimum cardinality is identified and then, a
set of classification rules using these features is obtained. We obtain the (α, β)-k-feature set in two phases;
first a series of extremely powerful reduction techniques, which do not lose the optimal solution, are
employed; and second, a metaheuristic search to identify the remaining features to be considered or
disregarded. Two algorithms were tested with a public domain digital mammography dataset composed
of 71 malignant and 75 benign cases. Based on the results provided by the algorithms, we obtain
classification rules that employ only a subset of these features.

Key words Safe data reduction, Combinatorial optimization, Minimum feature set, Breast cancer
diagnostics, Memetic algorithms

1 Introduction

Breast cancer is one of the most common types of cancer in women
all over the world, for which the most effective detection method is
screening mammography analysis. Unfortunately, the method is
prone to misjudgments and subjective opinion. Diagnostic error
rate ranges vary but have been reported as ranging between 20 %
and 43 % [1], and out of all the biopsies performed in suspicious
mammograms, between 70 % and 89 % of them will be found
benign [2].

This chapter introduces a new approach to improve computer-
aided diagnostic methods by selecting, from a given data set, a
subset of the features that would allow the identification of a lesion
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as an intraductal carcinoma or otherwise, and the different problem
of deciding whether a lesion is malignant or benign. The technique
is generic and can be applied to some other knowledge extraction
methods from available databases [3]. The breast cancer diagnosis
issue has been addressed by Kovalerchuk et al. in [4]. In our work
we use the same breast cancer data set, which is composed of 149
samples and 16 features. The data is unidentified and was obtained
from patients’ exams at the Woman’s Hospital of Baton Rouge,
Louisiana, USA. The features include a number of calcifications,
irregularities in shape and size of the calcifications and density of the
lesion, among others. We refer to [4] and the supplementary web
page for more information on the dataset.

The goal is to find a set of features that can be used to perfectly
classify all cases. At this point, we must emphasize that we are not
over-fitting and that this method should not be used as a stand-
alone procedure. In fact, classifiers with a high generalization ability
(i.e., that can correctly classify new samples) might arise when one
applies methods such as neural networks, but only using features
that are relevant. This work concerns the problem of finding such
features.

2 The k-Feature Set Problem

The k-Feature Set problem has undoubtedly many applications in
knowledge extraction from life sciences and medical databases. It
appears as a crucial component in several areas, such as gene dis-
covery, disease diagnosis, drug discovery or pharmacogenomics,
toxicogenomics, and cancer research. It can be formalized as
follows [5]:

2.1 k-Feature Set

(decision version)

Input: A setX ofm examples (which are composed of a binary value
specifying the value of the target feature and a vector of n binary
values specifying the values of the other features) and an integer
k > 0.

Question: Does there exist a set S of non-target features (i.e., S � {1,
. . ., n}) such that:

l |S| � k

l No two examples in X that have identical values for all the
features in S have different values for the target feature?

Clearly, this problem could be extended to an alphabet which is
not binary. This is the case with the data used in this work.
Although there are binary values attributed to some of the features,
for some of them we have a ternary or quaternary alphabet, and one
with rational values. We return to this issue later. An example can be
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seen in Table 1: here we have replaced the value of “1” for “good”
(for instance, absence of cancer) and “0” for “bad” (cancer).

Referring to the example given in Table 1, the reader will note
three feature sets with cardinality k ¼ 3: S1 ¼ {F1; F2; F4},
S2 ¼ {F1; F3; F4}, and S3 ¼ {F2; F3; F4}. The question of interest
is if there is a feature set with cardinality k ¼ 2.

Computer scientists are always interested in determining the
computational complexity of the basic problem. This decision
problem has already shown to be NP-complete by a reduction
from k-Vertex Cover [5]; another problem belonging to this class.
NP-completeness is generally viewed as a reflection of the “compu-
tational intractability” of a given mathematical problem. What this
typically means, in practical terms, is that it is highly improbable
that we will be able to find an algorithm that solves this problem
efficiently for general instances. Efficiently, in computational terms,
means a time which is proportional to a polynomial function of the
size of the input.

This does not mean that the problem cannot be addressed by
other means. For small instances or for small values of k, it may still
be possible to solve it with exact algorithms. Although they may
have exponential worst-case behavior, it may be possible that such
algorithms can provide the optimal solution in reasonable amounts
of time. On the other hand, for large instances, there are now
powerful newmathematical methods, generically named metaheur-
istics, which would allow solving these problems in practice for
large instances. Some of these methods are based on the evolution
of alternative feasible solutions for the optimization versions of the
problem. Examples of this type are Genetic [6] and Memetic Algo-
rithms [7]. An important research question, particularly for the
analysis of large instances of this problem in the field of Functional
Genetics, is if there is a fixed-parameter algorithm for this problem.
In 2003, Cotta and Moscato proved that the problem is not only

Table 1
An instance of the k-Feature Set problem

Example # F1 F2 F3 F4 Target

1 1 0 0 1 1

2 0 0 1 1 1

3 1 1 0 0 0

4 0 1 0 1 0

5 0 0 1 0 0

Columns represent features; rows are samples. The last column represents the target of
each sample. Features have a binary representation: “1” if they are true for that sample;

“0” otherwise
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NP-complete but W[2]-complete [8]. This means it is likely that a
fixed-parameter tractable algorithm does not exist for this problem.

The W[2]-completeness of k-Feature Set shows that attention
should be concentrated on finding efficient rules that do not
remove the optimal solution, but can help to reduce the size of
the instance. In the parameterized complexity context, this is called
reduction to a problem kernel. This will allow a search algorithm to
increase the chances of finding the optimal solution and may enable
exponential-time exact searches for smaller instances.

We now discuss the characteristics of the application we are
using to introduce this methodology. We then discuss the generali-
zation of k-Feature Set and how the problem can be formalized as
an optimization problem in a particular type of graph.

3 The Breast Cancer Data Set—Initial Preprocessing

As mentioned before, the breast cancer data set used in this work is
the same as used by Kovalerchuk et al. [9]. What is available in the
public domain is a small subset of a larger database related to tumor
exams from patients at the Woman’s Hospital of Baton Rouge,
Louisiana, USA. We refer the reader to the authors’ webpage.1

The reader will identify that there are 149 examples and that each
example in the dataset has 17 features (corresponding to the attri-
butes numbered from 2 to 18 inclusive).

With this data, we conducted two independent tests, each with
a binary target. The first was to predict an intraductal carcinoma,
and the second to identify whether the tumor is malignant or
benign. From the 17 features, we only consider the 16 which are
represented by a finite alphabet for our study. This departs from [9]
and leaves out from our data set the feature #2: “Approximate
volume of the lesion in cubic centimeters”. This does not mean
that we consider the volume of the lesion “irrelevant” at all. When a
given feature that can assume any integer value (or any value in an
infinite alphabet), a common approach is to determine appropriate
thresholds for each of the features. These problems are generally
known as optimal thresholding problems and in some cases they
lead to other NP-hard problems. In particular, the decision prob-
lem for the thresholding for k-Feature Set is NP-complete [3].

Considering the 149 examples present in the dataset, there are
two samples (#102 and #134, following the original dataset num-
bering) that have the same values for all features, except for the
volume of calcifications, but have differing target values. Even for
the volume of calcifications, the difference is minimal—0.048
against 0.072—considering that the observed values range between

1 http://www.csc.lsu.edu/trianta/ResearchAreas/DigitalMammography/index.html.
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0.008 and 218.416. Since the k-Feature Set problem does not
allow different outcomes for the same feature pattern, we decided
to remove both examples.

Another inconsistency found was with sample #140. The value
of attribute “ductal orientation” can only take either yes/no values
(labeled “A” and “B” respectively), but in example #140 there is an
invalid entry “D.” Since it was not possible to infer the correct
value, we ignored the sample. This leaves us with 146 samples with
16 features. The sixteen features x1, . . ., x16 we consider are the
following:

l x1—number of calcifications per cm2 (A: <10; B: 10 to 20;
C: >20)

l x2—total number of calcifications (A:<10; B: 10 to 30; C:>30)

l x3—irregularity in shape of calcifications (A: mild; B: moderate;
C: marked)

l x4—variation in the shape of calcif. (A: mild; B: moderate; C:
marked)

l x5—irregularity in the size of calcif. (A: mild; B: moderate; C:
marked)

l x6—variation in the density of calcif. (A: mild; B: moderate; C:
marked)

l x7–x11—LeGal type of lesion (A given lesionmay contain several
types)

l x12—ductal orientation (A: yes; B: no)

l x13—density of the calcifications (A: low; B: moderate; C: high)

l x14—density of the parenchyma (A: low; B: moderate; C: high)

l x15—comparison with previous exam (A: change in the number
or character of calcifications; B: not defined; C: newly devel-
oped; D: no previous exam)

l x16—associated findings (A: multifocality; B: architectural dis-
tortion; C: mass; D: none)

The thresholds are the same used in Kovalerchuch et al. [4].
The target feature separates the examples into two main groups.
Each example can be classified in the first test as A: intraductal
carcinoma or B: everything else (i.e., other cases), totaling 37 and
109 examples for each group respectively. In the second test we
classify the examples as A: malignant (71 examples) or B: benign
(75 examples).
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4 The (α, β)-k-Feature Set Problem

In this combinatorial optimization problem the practical objective
is to find the minimum set of features that can differentiate every
pair of examples belonging to different classes (see Note 1). In
addition, this feature set must also explain every pair of examples
that belong to the same class. The greater the parameters α and β,
the greater the reliability of the classification system, at the expense
of a larger optimal feature set. Formally, the decision version of the
(α, β)-k-feature set problem we are addressing in this chapter is the
following:

4.1 (α, β)-k-Feature
Set (Decision Version)

Input: A set of m examples X ¼ {x(1), . . ., x(m)}, such that for all i,
x(i) ¼ {x1

(i), x2
(i), . . ., xn

(i), t(i)} ∈ {0,1}n+1, and three integers
k > 0, and α, β � 0.

Question: Does there exist an (α, β)-k-feature set S, i.e., S � {1, . . .,
n}, with |S| � k and such that:

l for all pairs of examples (xi, xj), i 6¼ j; if t(i) 6¼ t(j) there exists
S0 � S such that |S0| � α and for all l ∈ S0 x1

(i) 6¼ x1
(j), and

l for all pairs of examples i 6¼ j, if t(i) ¼ t(j) there exists S0 � S
such that |S0| � β and for all l ∈ S0 x1

(i) ¼ x1
(j) ?

In the definition above the set S0 is not fixed for all pairs of
examples, but it is a function of the pair of examples chosen, so we
mean S0 ¼ S0(i, j). The basic idea is to improve robustness of the
original method by allowing some redundancy in example discrim-
ination. We seek to have at least α features for differentiating
between any two samples of different classes. Similarly, we want to
have at least β features with consistent values for any two samples of
the same class. Note that each feature may have its own distinct
alphabet.

Clearly this problem is also NP-complete (the k-feature set
problem is a special case with α ¼ 1 and β ¼ 0). We also note
that this naturally leads to a multiobjective optimization problem
in which, for a given input data, we try to maximize the values of α,
β > 0 and at the same time minimize the value of k > 0.

5 The (α, β)-k-Feature Set as an Optimization Problem in Graphs

It is very useful to reformulate the (α, β)-k-feature set as an optimi-
zation problem in a graph. This is beneficial as it allows the use of
powerful reduction techniques that significantly reduce the compu-
tational effort. Next, we define how to create a bipartite graphG(V,
E) from an instance of the problem.

304 Luke Mathieson et al.



Initially, partition the set of nodes of the graph into three
disjoint sets A, B and F such that A [ B [ F ¼ V. We have said
that the graph is bipartite so this may seem confusing at first glance,
let us note that one of the partitions ofG is the set F and the other is
A [ B.

We will now proceed to define how we build the graph, starting
with the set of vertices. Each node in the first subset of vertices (A)
represents each unique pair of examples which have different target
values. Analogously, we define B as the subset of nodes of G such
that each node corresponds to a pair of examples which have the
same target value. Each node in the remaining subset F represents a
different feature.

We now define the edge set E. There are only two types of
edges, those that connect nodes in F with nodes inA and those that
connect nodes in F with nodes in B. There is an edge between a
node f ∈ F and a node a ∈ A if and only if the pair of examples that
node a represents have different values for feature f.

Analogously, there is an edge between a node f ∈ F and a node
b ∈ B if and only if the pair of examples that node b represents they
have the same value for feature f. The graph appearance is shown in
Fig. 1, labeled as “Original Graph”.

Fig. 1 Graph representation of the (α, β)-k-Feature Set problem. The top-left diagram shows the graph
constructed from the example in Table 1. The other three show the action of the reduction rules. Rule #1
searches for pairs of examples that are explained by a single feature. Rule #2 looks for features that explain
pairs or examples already covered by another feature. Rule #3 searches for pairs of examples that are
irrelevant from the graph domination point-of-view
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For the data we are considering, direct application of this graph
transformation leads to a large graph, with 10,731 nodes and
87,341 edges. We show how some powerful reduction techniques
can then be applied. They will help by selecting “relevant” features
(features that must be in the optimal solution), irrelevant features
(features that contribute nothing to the optimal solution) and by
removing nodes from A and B that do not provide any extra
information. These reductions are safe as no information is lost in
the process, thus even though we may have a drastic reduction in
the size of the graph, we can still find an optimal solution in the
graph.

6 Reduction Techniques

The application of the reduction rules for the generic problem of
knowledge discovery we address here is inspired by the influential
work of Weihe [10]. He showed how they can be very useful for
solving large, real-world optimization problems. As the graph built
from the instance of the problem under study now contains nodes
which have degree one (in both A and B), we can at most have one
feature which explains the differences/similarities of the pairs of
examples represented by these nodes, and thus this data set allows
at maximum α ¼ β ¼ 1. For this reason we explain the reduction
rules specifically for this condition. If α and β could assume larger
values, the rules would be slightly different, although the principle
remains the same. Illustrations of the following rules can be seen in
Fig. 1.

6.1 Reduction Rule 1:

Relevant and

Mandatory Features

This rule searches for features that must be in any minimal cardi-
nality (1, 1)-k-feature set. If there is a node in either A (or B) that
has degree one, the feature at the other endpoint of the connecting
edge must be in the feature set.

6.2 Reduction Rule 2:

Irrelevant Features

This rule helps to identify features that can be considered irrelevant.
A feature can be deemed irrelevant if it can only explain pairs of
examples which are a subset of other pairs already explained by
another feature. When we say “explain” we refer to the fact that
the presence of a feature can account for the difference or the
similarity between a pair of examples. Let NA1 and NA2 be subsets
of pairs of examples belonging to A, such that NA1 � NA2. Then,
consider that every element in NA1 is connected to feature fi and
that all elements in NA2 are connected to a different feature fj.
Moreover, let NB1 and NB2 be subsets of pairs of examples belong-
ing to B, such that NB1 � NB2. Then, consider that every element
inNB1 is connected to fi and that all elements inNB2 are connected
to fj. Under such conditions, feature fi is irrelevant and will not be
present in the optimal feature set. If two or more features explain
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exactly the same pairs of examples, they are condensed into a single
new feature. Then, if such new feature is selected as optimal, the
researcher can analyze its components individually and decide
which to use.

6.3 Reduction Rule 3:

Redundant Pairs of

Examples

The third reduction rule is motivated by the aim to efficiently find
pairs of examples whose differences (or similarities) are already
accounted for when dealing with another pair of examples. Let
F1 � F2 � F, where v1 ∈ A \ B is connected to all of F1 and
v2 ∈ A \ B is connected to all of F2. In this case, a suitable set of
features in F1 that dominates v1will automatically dominate v2, too.
Thus we can delete v2, as it provides no extra information about the
features required for the feature set. Here note that we make no
distinction between example vertices from A and B. This generali-
zation only holds when α ¼ β. If α 6¼ β we must use the more
generic rule presented in [3].

6.4 Recursion For a more general version of these rules, which consider any α and
β values, please refer to Cotta, Sloper and Moscato [3]. The reduc-
tion rules are recursively applied on the original graph in a sequen-
tial way, starting with rule 1, until no reduction can be obtained
anymore by any of the three.

7 Memetic algorithm

As mentioned before, the decision version of the (α, β)-k-feature set
problem is NP-complete. Therefore, complete enumeration or
exact solution search methods [11] can only be used when the
graph is rather small, since the computational complexity grows
exponentially with the number of features and samples. Most times,
even after the preprocessing step, the graph still remains too large
for exact methods to be used in practice.

In such cases, it would be wise to resort to stochastic or
informed search algorithms, or more powerful metaheuristics, so
as to provide high quality solutions. Towards illustrating this aim,
we have implemented a population-based metaheuristic; a memetic
algorithm [7, 12, 13], and we give some details of its implementa-
tion. We focus on the main aspects, which are important for the
Feature Set problem itself.

7.1 Representation

and Recombination

The representation chosen for the Feature Set problem assigns each
feature to a position in a binary array. The positions can assume
true/false values that will indicate whether the corresponding fea-
ture is in the feature set (effective) or not (ineffective). In a graph
context, if a feature becomes ineffective, the corresponding node
and all edges connected to it are erased.
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Recombination creates new solutions by combining informa-
tion taken from two original solutions. In this work, the recombi-
nation has both deterministic and stochastic aspects. The first phase
is deterministic, where features which are effective in both original
solutions are set as effective in the new one. The rest of the new
solution is completed by randomly choosing an ineffective feature
and making it effective, until the solution becomes feasible.

7.2 Local Search Local Search (LS) is applied to all new solutions created through
recombination, as is usual in many memetic algorithms. The goal is
to improve the solution by testing a series of changes—related to a
neighborhood definition—in the solution and keeping the changes
that actually improve the solution’s quality with regard to the
objective function. Since only feasible solutions are generated by
the recombination procedure, the only avenue for improvement is
to reduce the number of effective features in the solution. In order
to do so, three neighborhoods were tested.

The first neighborhood sequentially selects every effective fea-
ture and makes it ineffective. If the resulting solution is still feasible,
then the feature set size was reduced by one. If the solution became
infeasible, then the feature returns to its original state.

The second neighborhood tries to reduce the number of fea-
tures by removing two features from the feature set and adding only
one new feature. It initially selects two effective features, making
them ineffective. Then it selects an ineffective feature, different
from the two removed, and makes it effective. If the solution
remains feasible, the feature set size was reduced, otherwise all
features return to their original states.

The last neighborhood is an extension of the second one.
Instead of extracting two effective features, it extracts three and
adds two, different from those removed. The dimension of this
third neighborhood is very large and it could only be applied
because the resulting graph after the reduction rules was very
small. Depending on the instance size, only the two smaller neigh-
borhoods might be used. The use of local search techniques for
such a small instance is not necessary at all. However, when dealing
with larger instances, where even after the use of the reduction rules
the search space is still considerably large, its use will become
imperative.

The three local searches are applied to the solution in a sequen-
tial way, until no further improvement can be obtained. When this
happens, we conclude the solution has reached a local minimum for
all neighborhoods and stop the process.
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8 Computational Results

The algorithms described above were implemented using the Java
Programming Language (JDK 1.7.0) on a Pentium 4 HT PC
running at 3.0 GHz, with 1 GB RAM. The CPU time required
by the reduction techniques was quite considerable, just over
78 min, but still drastically smaller than many current approaches
for solving NP-hard problems. As this was a pilot study on the
power of this tandem approach, no systematic effort was conducted
towards implementation details that could have delivered a speed
up of the reduction rules. Although the CPU time was significant,
application of the reduction rules was very beneficial. The reduced
graph became an almost trivial task for the memetic algorithm.

The three reduction techniques give very good results for both
instances under consideration. In Table 2 we present figures that
show the magnitude of the reduction obtained. The decrease in the
size of the instances is impressive, both in terms of nodes and edges.
Again, we must emphasize that the reduction is not a heuristic, and
it is a safe procedure as a minimum cardinality (α, β)-k-feature set is
still obtainable from the output of the reductions and the optimal
solution of the reduced graph. Concerning the features, for intra-
ductal carcinoma vs. other cases, the reduction rules found that x7,
x8, x9, and x15 must be in the feature set, and feature x11 should be
discarded. It is interesting to remark that x11 (indicating one of the
Le Gal types of the lesion) was not relevant (at least if we include the
other three Le Gal type features x7, x8, and x9) and the presence of
x15 reinforces the relevance of including the comparison with pre-
vious exam as an aid to the diagnosis. For malignant vs. benign, the
reduction rules found that x2, x7, x8, and x14 must be in the feature
set, but none of the remaining features were ruled out.

On the reduced graph, the memetic algorithm found an
(α ¼ 1, β ¼ 1)-k-feature set with k ¼ 6 features for the intraductal

Table 2
Results for the breast cancer-related graph reduction

Instance # of nodes # of edges # of features

Intraductal carcinoma test (original) 10,731 87,341 16

Intraductal carcinoma test (reduced) 32 93 11

Reduction 99.7 % 99.9 % 31.2 %

Malignancy test (original) 10,585 88,460 16

Malignancy test (reduced) 31 91 12

Reduction 99.7 % 99.9 % 25.0 %

Notice the extreme reduction in the graph’s size—always more than 99 % for the number of nodes and edges. The

reduction in the number of features was also significant
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carcinoma case. After testing all the possible solutions with five or
less features—a brute force procedure could be used because of the
instance size—none of the 462 sets was found feasible. That means
the minimum size of a (1, 1)-k-feature set that explains the data set
is ten—four from the kernel plus six from the memetic algorithm.

Regarding the malignant case, this time the memetic algorithm
found a feature set of cardinality five. That translates into nine
features to explain the data set—five from the memetic algorithm
and four from the kernel. This was also confirmed to be the mini-
mum cardinality feature set possible. The complete enumeration by
brute force took just over 10 s while both the MA and the Greedy
procedure took a fraction of a second. In Table 3 we present the
number of features obtained by the two algorithms.

9 Classification Rules

After the determination of the relevant features, the determination
of classification rules comes naturally. Considering the intraductal
carcinoma case, Table 4 presents the list of rules that classify the
data based on the feature set found by the memetic procedure.
Table 5 presents the rules associated with the malignant vs. benign
cases, attained from the results of the memetic algorithm.

The rules were found using the WEKA data mining software
package (http://www.cs.waikato.ac.nz/ml/weka/). WEKA employs
several traditional techniques such as ID3 and C4.5 [14]. We have
used the PART heuristic from this package, which uses a divide-and-
conquer approach to build these rules. It builds a partial C4.5 decision
tree in each iteration, and turns the “best” leaf into a rule. The rules
should be used in a cascaded manner (i.e., successive if-else state-
ments). Thus, it must be initially checked if the given example satisfies
the first rule. If it does not, we proceed checking if it satisfies the
second one, and so on, until the last rule. The initial rules are able to
better discriminate a larger number of examples, mainly because—at
this stage—most of the examples are still unclassified. However, as we
approach the end, almost all examples have already been classified by

Table 3
Feature set results for α ¼ β ¼ 1 for the memetic algorithm

Memetic algorithm test Feature set elements—(# of features)

Intraductal carcinoma vs. other x2, x5, x6, x7, x8, x9, x12, x13, x15, x16—(10)

Malignant vs. benign x2, x3, x5, x7, x8, x12, x13, x14, x15—(9)

We show in boldface those features that have been already identified by the reduction rules alone. From the 11 features
after the reduction procedure (see Table 2), ten are needed to perfectly classify intraductal carcinomas. Similarly, nine

features out of the 12 remaining after the reduction are needed to classify malignancy
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Table 4
Classification rules for the memetic algorithm—intraductal carcinoma vs. other

Rule Rule’s clauses (# of samples covered—intraductal carcinoma? [Y/N])

1 ¬(x5 ¼ C) ∧ ¬(x6 ¼ C) ∧ (x7 ¼ 0) ∧ (x8 ¼ 2) ∧ (x9 ¼ 0) ∧ (x12 ¼ B) ∧ ¬(x15 ¼ B) ∧
¬(x16 ¼ B) (24 – N)

2 ¬(x2 ¼ C) ∧ ¬(x6 ¼ C) ∧ ¬(x15 ¼ B) ∧ (x16 ¼ B) (9 – N)

3 ¬(x6 ¼ C) ∧ (x7 ¼ 1) ∧ (x9 ¼ 0) ∧ ¬(x15 ¼ B) (8 – N)

4 ¬(x2 ¼ C) ∧ ¬(x5 ¼ B) ∧ ¬(x6 ¼ C) ∧ (x7 ¼ 0) ∧ (x8 ¼ 0) ∧ (x12 ¼ B) ∧ ¬(x15 ¼ B) ∧
¬(x15 ¼ C) ∧ (x16 ¼ D) (14 – N)

5 ¬(x5 ¼ A) ∧ ¬(x6 ¼ C) ∧ ¬(x13 ¼ B) ∧ ¬(x15 ¼ A) ∧ ¬(x15 ¼ B) (9 – N)

6 (x6 ¼ C) ∧ (x15 ¼ C) (6 – Y)

7 ¬(x6 ¼ B) ∧ (x7 ¼ 1) ∧ ¬(x15 ¼ B) (4 – N)

8 ¬(x5 ¼ B) ∧ (x7 ¼ 0) ∧ ¬(x15 ¼ B) ∧ (x16 ¼ B) (3 – Y)

9 (x2 ¼ B) ∧ ¬(x5 ¼ A) ∧ (x7 ¼ 0) ∧ (x8 ¼ 0) ∧(x9 ¼ 0) ∧ ¬(x13 ¼ A) ∧
¬(x15 ¼ B) ∧ (x16 ¼ C) (5 – N)

10 ¬(x6 ¼ B) ∧ (x7 ¼ 0) ∧ (x8 ¼ 0) ∧ ¬(x13 ¼ C) ∧ (x15 ¼ C) ∧ ¬(x16 ¼ B) (4 – Y)

11 ¬(x2 ¼ C) ∧ (x5 ¼ B) ∧ ¬(x6 ¼ B) ∧ (x7 ¼ 0) ∧ ¬(x15 ¼ B) ∧ ¬(x15 ¼ C) ∧ ¬(x16 ¼ B)
(8 – N)

12 ¬(x2 ¼ C) ∧ (x7 ¼ 0) ∧ (x8 ¼ 2) ∧ ¬(x15 ¼ B) ∧ ¬(x15 ¼ C) ∧ ¬(x16 ¼ B) (5 – Y)

13 (x2 ¼ B) ∧ ¬(x6 ¼ A) ∧ (x7 ¼ 0) ∧ ¬(x13 ¼ C) ∧ ¬(x15 ¼ B) ∧ ¬(x15 ¼ C) (6 – Y)

14 ¬(x2 ¼ A) ∧ (x6 ¼ A) ∧ (x7 ¼ 0) ∧ (x13 ¼ A) ∧ ¬(x15 ¼ B) ∧ ¬(x16 ¼ C) (8 – N)

15 (x7 ¼ 0) ∧ (x15 ¼ C) (3 – N)

16 (x5 ¼ A) ∧ (x7 ¼ 0) ∧ ¬(x13 ¼ A) ∧ ¬(x15 ¼ A) ∧ ¬(x15 ¼ B) ∧ ¬(x16 ¼ B) (2 – Y)

17 ¬(x2 ¼ C) ∧ (x7 ¼ 0) ∧ ¬(x15 ¼ B) (4 – N)

18 ¬(x5 ¼ A) ∧ ¬(x6 ¼ B) ∧ (x7 ¼ 0) ∧ (x8 ¼ 2) ∧ ¬(x13 ¼ A) ∧ ¬(x16 ¼ B) (3 – N)

19 (x13 ¼ A) ∧ ¬(x16 ¼ B) (2 – Y)

20 ¬(x5 ¼ A) ∧ ¬(x6 ¼ B) ∧ (x9 ¼ 3) ∧ ¬(x13 ¼ A) (2 – N)

21 ¬(x5 ¼ B) ∧ (x8 ¼ 0) ∧ (x9 ¼ 0) ∧ (x12 ¼ A) ∧ (x13 ¼ B) (3 – N)

22 (x12 ¼ A) ∧ ¬(x13 ¼ A) ∧ (x15 ¼ A) ∧ ¬(x16 ¼ C) (4 – Y)

23 (x8 ¼ 0) ∧ (x15 ¼ A) ∧ ¬(x16 ¼ A) (4 – N)

24 ¬(x13 ¼ A) (5 – Y)

25 All the rest (1 – N)

There are 25 rules in total, which should be read in a cascading way. That is, rule #1 classifies 24 samples as non-
intraductal carcinoma. For the remaining samples, rule #2 classifies 9 of them as non-intraductal carcinoma again, and so

on
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Table 5
Classification rules for the memetic algorithm—Malignant vs. Benign

Rule Rule’s clauses (# of samples covered—Malignant? [Y/N])

1 ¬(x3 ¼ B) ∧ (x7 ¼ 1) (10 – N)

2 ¬(x3 ¼ A) ∧ (x12 ¼ A) ∧ (x13 ¼ B) (15 – Y)

3 (x2 ¼ C) ∧ ¬(x3 ¼ A) ∧ (x5 ¼ C) ∧ (x12 ¼ B) ∧ ¬(x13 ¼ A) (6 – Y)

4 (x3 ¼ B) ∧ (x15 ¼ C) (4 – Y)

5 ¬(x5 ¼ C) ∧ (x8 ¼ 2) ∧ (x12 ¼ B) ∧ (x13 ¼ C) ∧ ¬(x15 ¼ B) (8 – N)

6 (x2 ¼ B) ∧ ¬(x3 ¼ B) ∧ ¬(x5 ¼ C) ∧ (x7 ¼ 0) ∧ (x8 ¼ 2) ∧ (x12 ¼ B) ∧ ¬(x15 ¼ B) ∧
¬(x15 ¼ C) (5 – N)

7 (x2 ¼ A) ∧ ¬(x3 ¼ A) ∧ ¬(x15 ¼ B) (13 – N)

8 ¬(x2 ¼ C) ∧ ¬(x5 ¼ A) ∧ (x7 ¼ 0) ∧ (x12 ¼ B) ∧ (x13 ¼ A) ∧ (x15 ¼ A) (6 – Y)

9 ¬(x2 ¼ A) ∧ (x3 ¼ C) ∧ ¬(x5 ¼ B) ∧ (x8 ¼ 0) ∧ (x13 ¼ C) ∧ ¬(x14 ¼ C) ∧ ¬(x15 ¼ B) ∧
¬(x15 ¼ C) (3 – Y)

10 (x7 ¼ 0) ∧ (x8 ¼ 0) ∧ (x14 ¼ C) ∧ (x15 ¼ A) (5 – N)

11 (x3 ¼ A) ∧ (x14 ¼ C) ∧ ¬(x15 ¼ B) (4 – Y)

12 ¬(x2 ¼ B) ∧ (x8 ¼ 2) ∧ ¬(x13 ¼ C) ∧ ¬(x15 ¼ A) ∧ ¬(x15 ¼ B) (10 – N)

13 (x3 ¼ A) ∧ (x7 ¼ 0) ∧ ¬(x15 ¼ A) ∧ ¬(x15 ¼ B) (7 – Y)

14 (x5 ¼ B) ∧ (x7 ¼ 0) ∧ (x15 ¼ D) (4 – Y)

15 (x7 ¼ 0) ∧ ¬(x13 ¼ C) ∧ ¬(x14 ¼ A) ∧ (x15 ¼ D) (4 – Y)

16 ¬(x2 ¼ A) ∧ ¬(x3 ¼ A) ∧ (x5 ¼ A) ∧ ¬(x14 ¼ A) ∧ ¬(x15 ¼ B) (7 – N)

17 ¬(x2 ¼ C) ∧ (x7 ¼ 0) ∧ (x8 ¼ 2) ∧ ¬(x14 ¼ C) ∧ ¬(x15 ¼ B) (5 – Y)

18 (x2 ¼ B) ∧ (x7 ¼ 0) ∧ (x15 ¼ D) (3 – N)

19 (x2 ¼ C) ∧ ¬(x3 ¼ B) ∧ (x7 ¼ 0) ∧ ¬(x13 ¼ B) ∧ ¬(x15 ¼ B) ∧ ¬(x15 ¼ D) (5 – N)

20 ¬(x2 ¼ A) ∧ ¬(x3 ¼ C) ∧ (x5 ¼ B) ∧ (x7 ¼ 0) ∧ ¬(x13 ¼ C) ∧ ¬(x14 ¼ C) ∧
¬ (x15 ¼ B) ∧ ¬(x15 ¼ D) (4 – Y)

21 (x12 ¼ A) (3 – N)

22 ¬(x2 ¼ A) ∧ (x3 ¼ A) (3 – Y)

23 (x2 ¼ A) (2 – N)

24 (x5 ¼ A) ∧ (x7 ¼ 0) ∧ (x8 ¼ 0) ∧ (x13 ¼ B) ∧ ¬(x15 ¼ C) (2 – Y)

25 (x13 ¼ B) (2 – N)

26 (x2 ¼ B) ∧ ¬(x3 ¼ B) ∧ (x14 ¼ B) (2 – Y)

27 (x2 ¼ B) (2 – N)

28 All the rest (2 – N)

The rules should be interpreted as in Table 4
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the previous rules and thus only outliers remained. The consequence is
a reduction in the number of samples being classified by the last rules.

Using the features provided by the memetic algorithm for the
intraductal carcinoma case, the total number of rules was 25 (see
Table 4 and Note 2). For the malignant vs. benign case (Table 5
and Note 3) the PART heuristic returned 28 rules.

One may be inclined to believe that the number of rules created
may be a symptom of over-fitting. Again, we must emphasize that
we are not over-fitting (at least not in the negative sense of loss of
generalization). What we aim to do is to fit exactly in order to find
relevant features, in which future classification efforts should be
concentrated. The rules presented in Tables 4 and 5 are a contribu-
tion to this classification effort, but with no generalization preten-
sions. Again, we reinforce that the rules must be applied in cascade
and no rule can be interpreted stand-alone. For this reason, even
though the last rules have fewer features, they are still relevant
because all previous rules are required to be false. Following this
idea, the last rules might actually rely on information present in as
many features as the initial rules.

Concerning the trade-off between the number of features and
the number of classification rules, two aspects must be taken into
account. The first is that the use of more features than necessary—
i.e., a superset of the optimal feature set—does not necessarily
improve the reliability of the rules. Indeed, given a certain number
of examples to work with, finding the optimal set of features that
can explain the data is expected to improve the a priori generaliza-
tion capability of the generated rules. The second aspect, which
may be important in other application areas, not necessarily this one
but it would be relevant to mention en passant, is related to cost of
data collection. Working with more features generally means that
more time—and financial resources, particularly in the clinical
domain,—is going to be spent on extracting the same information
from the data set.

10 Discussion

In this section we discuss the results we have obtained in the
malignant vs. benign and the intraductal carcinoma vs. other clas-
sification tasks from the database used. We first note that our
conclusions are based only on this data, and we aim at pointing
out some conclusions from this study only. We also expect that a
larger sample database will lead to the development of other types
of classification rules or give more support to the ones obtained
here. However, the results need to be put into the perspective of
other results in the medical literature and this is our aim.
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10.1 Malignancy vs.

Benign Classification

Considering this classification, one of the most relevant works is
from Kovalerchuk et al. [9]. Therein, the authors obtain two rules
from radiology experts that are commonly accepted as indicating
the possibility of malignant lesions. After translating them into our
format to identify the features they become:

l IF (x1 ¼ C and x2 ¼ C and x3 ¼ C) THEN the lesion is highly
suspicious for malignancy.

l IF (x1 ¼ C and x2 ¼ C and x5 ¼ C and x6 ¼ C and x13 ¼ C)
THEN the lesion is highly suspicious for malignancy.

When the rules were applied to the data set, the result was
unsatisfactory. The first rule classified four malignant cases correctly
and one benign was classified as malignant. The other 67 malignant
cases were missed. The second rule had an even worse performance,
classifying correctly only two samples. It misclassified two benign
cases as malignant and missed the other 69 malignant cases. The
conclusion wemight draw is that these types of rules, which wemay
label as worst-case rules, could be intuitively appealing but are not
suitable to help in the diagnosis of this data set.

Another previous work also dealing with malignant/benign
diagnosis is Yunus et al. [15]. In their work they show a strong
correlation between malignancy and five features: x1, x2, x5, x6, and
x13. From these, we have three of them (x2, x5, and x13) in the
optimal feature set found by our algorithm. Also, the dataset used
in [15] contains 19 cases with Le Gal type 5 and all of them are
malignant. In the database used in this study, this correlation is not
so strong but nevertheless very important. From 27 Le Gal type 5
cases, 21 are malignant, corresponding to a ratio of almost 80 %. In
our results, the only relevant Le Gal types for optimal discrimina-
tion power were 1 and 2 (of course, complemented by the other
features in the optimal set). Le Gal type 1 appears only in rule #1
and the rule classifies ten samples as benign. Le Gal type 2 appears
in rules #5, #6, #12, and #17. These rules classify 23 samples as
benign and five samples as malignant, in total. That gives a 21 %
malignancy ratio, which is close to the expected malignancy pro-
portion for Le Gal type 2.

10.2 Intraductal

Carcinoma

Now we discuss the intraductal carcinoma vs. other cases classifica-
tion task. For this case our algorithm found eight different feature
sets with 10 features. After finding the set of rules for each of them
we decided to report the one with the least rules—25 in total. The
number of rules varied from 25 to 34. A potential indication of the
importance of a feature set, when there is more than one optimal
feature set of a given cardinality, is to count the number of times
that a feature has appeared in one of the optimal solutions; sec-
ondly, the set of rules for all solutions should be generated and their
sizes checked.
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The number of times each feature not in the kernel appears in
the optimal solutions is: x1(2), x2(3), x3(1), x4(2), x5(4), x6(6),
x10(4), x12(6), x13(7), x14(6), and x16(7) (of course, those in the
kernel appear in all eight optimal solutions). This indicates that,
beside the fact we selected the optimum feature set with the lowest
number of rules, it could also be good in terms of the number of
times its features have appeared in an optimal solution (33 out of a
maximum of 36).

A direct comparison with the results of Kovalerchuk et al. [4] is
not possible since firstly, they use almost all of the features (16 in
total), however, we proved that only ten features are required for
the harder task of finding a discriminative feature set which also
maximizes within class similarity (β ¼ 1 which is the maximum in
this case). Secondly, their results are also based on a feature (volume
of calcifications) which we have initially removed from consider-
ation in this article since we believe there is no support for its
inclusion. By including it, while not associating particular thresh-
olds that would quantize it, the feature also seems to be generating
a large number of “poor rules” (using the authors’ own words) or
rules with a small support in the dataset.

In the kernel, we have three features corresponding to Le Gal
types (1, 2, and 3) that must be in any optimal solution. This gives
some support to the usefulness of this classification system. The
other feature in the kernel is the “comparison with the previous
exam,” which also seems to be well-correlated with current practice
and recommendations. It is interesting to remark that the Le Gal
type 4 also appears in half of the total number of optimal solutions
while Le Gal type 5 does not appear in any of them.

10.3 Clustering

Using the Optimal

Feature Sets

To illustrate other aspects of our discussion, we employ a visualiza-
tion approach and clustering algorithm based on our work in gene
expression data analysis [16, 17]. We refer the reader to those
articles to understand the details of the method. In essence, the
aim is to arrange, on two dimensions, a large number of one-
dimensional arrays (containing the information of interest) in
such a way that consecutive, or closely placed arrays, are as similar
as possible. This is an NP-hard optimization problem, but our
method can obtain either optimal or very close to optimal solu-
tions. We thus provide a permutation of all the samples in the data
set (without permuting the feature order) which helps to under-
stand the data.

In Fig. 2 we show two images. The samples were first divided
according to their target feature and then clustered within each
group. The goal is to visually identify correlations between the
features in the optimal solution and the classification itself. If it is
possible to find features that assume consistently different values for
different classes, the classification problem becomes easier. On the
other hand, the absence of any significant difference indicates that
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the classification problem is more difficult and the rules need to be
more complex.

Beginning with the left image of Fig. 2, the most visually
relevant feature is x7 (Le Gal type 1), which is also in the kernel
found by the reduction rules. For the other features we could not
see any clear differences between the groups. This indicates that the
relations between the features and the tumor classification are very
fuzzy, reflecting the practical difficulty of establishing rules for
intraductal carcinoma using only individual features. In the right
image of the same figure we can see the relation between features
and classification better. Excepting features x12, x13, x14, and x15,
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Fig. 2 Samples separated into two groups, according to their classification, and then clustered within each
group using the algorithm of [16]. Intraductal carcinoma vs. other cases (left) and Malignant vs. Benign (right).
The gray scale used helps to identify the feature attributes for each sample. Images were created using the
software for data clustering and visualization NBIMiner (Moscato et al. [17])
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the others show different average behaviors for both classes. The
large number of features with distinct behaviors indicate that clas-
sification of malignant vs. benign is easier than intraductal carci-
noma vs other cases. This was also reflected in the different sizes of
the optimal feature sets found for both cases.

11 Conclusion

This work tackled the (α, β)-k-Feature Set problem using a Graph
Theoretic approach. One of the main contributions is the new
insights derived from a transformation from one problem
(computer-aided rule generation for clinical diagnosis) into a con-
strained graph domination problem. The approach also shows the
power of three simple reduction techniques used to shrink the size
of the resulting graph, without losing the optimal solution we seek.
These reduction techniques were able to eliminate over 99 % of the
graph’s nodes and edges allowing us to obtain provably optimal
solutions.

The reduction rules were applied to two classification pro-
blems: intraductal carcinoma vs. others and malignant vs. benign
lesions. They found out that x7, x8, x9, and x15 (Le Gal types I, II,
III and “comparison with previous exam,” respectively) must be in
the feature set, and feature x11 (Le Gal type V) should be discarded
for the intraductal carcinoma case, and that features x2, x7, x8, and
x14 (“total number of calcifications,” Le Gal types I, II and “density
of the parenchyma”) must be in the feature set for the malignant vs.
benign dichotomy classification. The original problem, which
would be a challenge for most optimization techniques, became a
much more tractable one, in computational terms, after the reduc-
tion rules were used.

As well as the reduction techniques, we implemented a meme-
tic algorithm (MA) to find the optimum feature sets for both cases.
The MA was able to reach solutions proved to be optimal after an
exhaustive search was conducted. The method found feature sets
with sizes 10 and 9 for the intraductal carcinoma and malignancy
problems, respectively.

Finally, we determined a set of classification rules, obtained
from the feature sets returned by the MA. These rules can, in
principle, be applied to classify breast cancer tumors, although
generalization concerns might arise. A promising direction for
future research might arise if the algorithm introduced here is
used to determine relevant features that can be used by other
classification techniques, such as neural networks. However it is
necessary that additional tests with instances composed of many
more samples be conducted.

Our method also points out the importance of large-scale
combinatorial optimization models and exact and heuristic
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techniques coupled with large databases of population-studies of
breast cancer to help evolve better computer-aided predictions.
The generalization capability is likely to improve when the number
of samples increases to larger values, on the order of thousands of
samples. The relevance of the reduction rules in analyzing the data
suggests that this is an exciting future area of research indicating
that computer automated methods for knowledge extraction from
large medical databases of population-wide studies are a viable
alternative to traditional methods. We also support the availability
of these databases on public domain in raw format (instead of
expert quantization of the attributes), since different thresholding
techniques such as those from [3] could lead to smaller feature sets
with higher robustness.

12 Notes

1. Since its introduction, the approach of employing data mining
techniques in high-dimensional datasets by using the (α, β)-k-
feature set problem as a combinatorial model to reduce the
dimensionality has found several applications. Its applications
in the selection of biomarkers for prediction of Alzheimer’s
disease [18–20], transcriptomic analyses of brain tissues
[21–23], and identification of multiple sclerosis biomarkers in
whole blood [24] were of great importance. It also helped to
produce the first detection of childhood absence epilepsy using
basal clinical EEGs [25], and has been applied in cancer research
[26]. Integer programming formulations and current commer-
cial software showed that the approach scales well in practice
[11]. Our combinatorial approach offers a new alternative to
statistical-only univariate procedures for the detection of bio-
markers [26–28]. For clinicians, we think that our work could
entice the interest in Le Gal’s classification of microcalcifications
[29–31] and their role as a possible early marker for pattern
recognition panels [32–43]. The use of the PART heuristic
leads to one particular approach to generate rules for classifica-
tion and we have included this particular heuristic in our study as
a novelty to the clinical community. We note however, that after
employing the (α, β)-k-feature set approach, the information
provided by the reduced set of features can be used as an input
for ensemble-based classifiers. This active area of research in
machine learning has only recently been applied to problems in
breast cancer [44–50]. We also expect that techniques based on
mining disjunctive closed item sets could be used after feature
selection [51, 52]. We expect that the synergies coming from the
combination of these techniques will soon translate in improved
early tests for the diagnosis of this disease.
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2. In this Note we present the first eight rules from Table 4,
obtained from the feature set generated with the memetic algo-
rithm for the intraductal carcinoma case in natural language. As
noted earlier in the chapter, these rules operate in a cascading
fashion, that is, each rule must be applied in order, beginning
with rule #1, until a rule applies.

l Rule 1: If the following conditions are true THEN the pre-
diction is NO for intraductal carcinoma (24 samples
classified).

Conditions:
The irregularity in the size of calcifications is not marked

and the variation in the density of the calcifications is not
marked

and Le Gal type is not #1

and Le Gal type is #2

and Le Gal type is not #3

and there is no ductal orientation

and the comparison with previous exam is defined (not
“not defined”)

and the associated findings do not show architectural
distortion.

l Rule 2: If the following conditions are true, and the previous
rule does not apply, THEN the prediction is NO for intra-
ductal carcinoma (9 samples classified).

Conditions:

The total number of calcifications is less than (or equal to) 30

and the variation in the density of the calcifications is not
marked

and the comparison with previous exam is defined

and the associated findings do show architectural
distortion.

l Rule 3: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is NO for intraduc-
tal carcinoma (8 samples classified).

Conditions:

The variation in the density of the calcifications is not marked

and Le Gal type is #1

and Le Gal type is not #3

and the comparison with previous exam is defined.

l Rule 4: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is NO for intraduc-
tal carcinoma (14 samples classified).
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Conditions:

The total number of calcifications is less than (or equal to) 30

and the irregularity in the size of the calcifications is not
moderate

and the variation in the density of the calcifications is not
marked

and Le Gal type is not #1

and Le Gal type is not #2

and there is no ductal orientation

and the comparison with previous exam is defined

and the comparison with previous exam is not newly
developed

and there are no associated findings.

l Rule 5: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is NO for intraduc-
tal carcinoma (nine samples classified).

Conditions:

The irregularity in the size of the calcifications is not mild

and the variation in the density of the calcifications is not
marked

and the density of the calcifications is not moderate

and the comparison with previous exam does not show a
change in the number or character of calcifications

and the comparison with previous exam is defined.

l Rule 6: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is YES for intraduc-
tal carcinoma (six samples classified).

Conditions:
The variation in the density of the calcifications is marked

and the comparison with previous exam is newly developed.

l Rule 7: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is NO for intraduc-
tal carcinoma (four samples classified).

Conditions:

The variation in the density of the calcifications is not
moderate

and Le Gal type is #1

and the comparison with previous exam is defined.

l Rule 8: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is YES for intraduc-
tal carcinoma (three samples classified).
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Conditions:

The irregularity in the size of the calcifications is not
moderate

and Le Gal type is not #1

and the comparison with previous exam is defined

and the associated findings show architectural distortion.

3. In this Note we present the first eight rules from Table 5, for the
malignant tumor case, generated from the feature set obtained
by a Memetic algorithm, in natural language. Once again, these
rules are to be used in a cascade fashion. That is, they are to be
applied successively, beginning with rule #1, until a rule is
satisfied.

l Rule 1: If the following conditions are true THEN the pre-
diction is NO for malignant (ten samples classified).

Conditions:

The irregularity in the shape of the calcifications is not
moderate

and Le Gal type is #1.

l Rule 2: If the following conditions are true, and the previous
rule does not apply, THEN the prediction is YES for malig-
nant (15 samples classified).

Conditions:

The irregularity in the shape of the calcifications is not mild

and there is ductal orientation

and the density of the calcifications is moderate.

l Rule 3: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is YES for malignant
(six samples classified).

Conditions:

The total number of calcifications is greater than 30

and the irregularity in the shape of the calcifications is not
mild

and the irregularity in the size of the calcifications is marked

and there is no ductal orientation

and the density of the calcifications is not low.

l Rule 4: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is YES for malignant
(four samples classified).

Conditions:
The irregularity in the shape of the calcifications is moderate

and the comparison with previous exam is newly developed.

Computer-Aided Breast Cancer Diagnosis with Optimal. . . 321



l Rule 5: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is NO for malignant
(eight samples classified).

Conditions:

The irregularity in the size of the calcifications is not marked

and Le Gal type is #2

and there is no ductal orientation

and the density of the calcifications is high

and the comparison with previous exam is defined.

l Rule 6: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is NO for malignant
(five samples classified).

Conditions:

The total number of calcifications is between 10 and 30

and the irregularity in the shape of the calcifications is not
moderate

and the irregularity in the size of the calcifications is not
marked

and Le Gal type is not #1

and Le Gal type is #2

and there is no ductal orientation

and the comparison with previous exam is defined

and the comparison with previous exam is not newly
developed.

l Rule 7: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is NO for malignant
(13 samples classified).

Conditions:
The total number of calcifications is less than 10

and the irregularity in the shape of the calcifications is not
mild

and the comparison with previous exam is defined.

l Rule 8: If the following conditions are true, and the previous
rules do not apply, THEN the prediction is YES for malignant
(six samples classified).

Conditions:
The total number of calcifications is less than (or equal to) 30

and the irregularity in the size of the calcifications is not mild

and Le Gal type is not #1

and there is no ductal orientation

and the density of the calcifications is low
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and the comparison with previous exam shows a change in
the number or character of calcifications.
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Chapter 18

Inference Method for Developing Mathematical Models
of Cell Signaling Pathways Using Proteomic Datasets

Tianhai Tian and Jiangning Song

Abstract

The progress in proteomics technologies has led to a rapid accumulation of large-scale proteomic datasets in
recent years, which provides an unprecedented opportunity and valuable resources to understand how
living organisms perform necessary functions at systems levels. This work presents a computational method
for designing mathematical models based on proteomic datasets. Using the mitogen-activated protein
(MAP) kinase pathway as the test system, we first develop a mathematical model including the cytosolic and
nuclear subsystems. A key step of modeling is to apply a genetic algorithm to infer unknown model
parameters. Then the robustness property of mathematical models is used as a criterion to select appropriate
rate constants from the estimated candidates. Moreover, quantitative information such as the absolute
protein concentrations is used to further refine the mathematical model. The successful application of this
inference method to the MAP kinase pathway suggests that it is a useful and powerful approach for
developing accurate mathematical models to gain important insights into the regulatory mechanisms of
cell signaling pathways.

Key words Cell signaling pathway, Reverse engineering, Proteomics, Robustness

1 Introduction

Proteomics is considered as the next crucial step to study biological
systems in the post-genomic era, as it allows large-scale determina-
tion of genetic and cellular functions at the proteome level [1, 2].
The proteome is the complete repertoire of proteins, including
posttranslational modifications (PTMs) that occur in a particular
set of proteins. The purpose of proteomics research is to determine
the relative or absolute amount of proteins presented in a biological
sample. Advanced proteomic technologies, including mass spec-
trometry (MS), two-dimensional gel electrophoresis and protein
arrays, provide powerful methods for analyzing protein samples.
Proteomics technologies have emerged as potent tools for rapid
identification of proteins in complex biological samples and charac-
terization of PTMs and protein–protein interactions [3, 4].
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An important application of MS-based proteomics is to charac-
terize cell signaling cascades, which involve the binding of extracel-
lular signaling molecules to cell-surface receptors, triggering events
inside the cell [5]. Phosphorylation, a key reversible PTM, plays a
key role in regulating protein functions and localizations in this
process. Phosphoproteomics thus serves as a branch of proteomics
with the purpose of identifying and characterizing proteins that
contain a phosphate group as a PTM [5]. As a consequence, phos-
phoproteome studies are able to provide a global and integrated
description of cellular signaling networks [6, 7]. However, the
complex nature of the cell signaling pathways remains to be fully
characterized as to how they are exactly regulated in vivo and what
parameters are responsible for determining their dynamics [8].
To address these questions, mathematical modeling is a powerful
approach for deducing regulatory principles and interpreting
signal transduction mechanisms that underlie various cellular
functions [9].

The lack of kinetic rates for mathematical modeling is a major
challenge for developing systems biology approaches. These
should, in principle, be measured by experiments or estimated
from experimental data. However, due to the limited amount of
experimental data, a commonly adopted approach in systems biol-
ogy studies is to collect published experimental data obtained from
different cell types under various conditions. Therefore, the prog-
ress in proteomics technologies and the rapid accumulation of
proteomic data have offered an unprecedented opportunity to
better understand how living organisms perform necessary func-
tions at systems levels. From a systems biology perspective, the
dynamic temporal data generated by phosphoproteomics experi-
ments represent valuable resources for inferring unknown model
parameters and modeling cell signaling networks [10]. However, to
date, only limited work has been done to utilize the temporal
dynamic proteome datasets for mathematical modeling of
biological systems. This chapter presents a computational frame-
work for developing accurate mathematical models using proteo-
mic datasets.

2 Review of Modeling for the MAP Kinase Pathway

The mitogen-activated protein (MAP) kinase pathway is one of the
most extensively studied signaling pathways. It communicates signals
from the growth factor receptors on the cell surface to effector
molecules located in the cytoplasm and nucleus. The MAP kinase
cascade can be activated by the upstream input signal Ras protein,
and comprises a set of three protein kinases: Raf, MEK, and ERK,
together with a highly conserved molecular architecture that acts
sequentially [11]. The activatedMAP kinase is able to phosphorylate
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multiple different substrates, including transcription factors, protein
kinases, phospholipases, and cytoskeletal proteins, and regulate a
wide range of physiological responses, including cell proliferation,
differentiation, apoptosis, and tissue development. The signaling
downstream of Ras protein has an incredible complexity, which
includes positive and negative feedback loops, protein re-
localization, signaling complex formation, and cross talk between
parallel signaling pathways.

The EGF-regulated MAP kinase pathway is considered as the
best-characterized signal transduction pathway. In the last two
decades there has been a significant amount of experimental data
published regarding signaling entities, regulatory interactions,
kinase activities, protein absolute concentrations, and perturbation
studies. Moreover, the advances in systems biology have led to the
development of a large number of sophisticated mathematical mod-
els with various assumptions about the regulatory mechanisms at
different levels as well as model parameters inferred from experi-
mental data under various experimental conditions and from dif-
ferent cell types. Although the principal hierarchy of the signaling
pathway and its activation sequence are well established, recent
experimental studies have provided additional information on criti-
cal protein–protein interactions, regulatory loops, and spatiotem-
poral organization [12].

In the last decade, theMAP kinase pathway has often been used
as a testable paradigm for interrogating systems biology
approaches. In 1996, Huang and Ferrell developed the first mathe-
matical model by focusing on the Ras-dependent activation of the
MAP kinase module. Themodel could predict highly ultra-sensitive
responses of the MAP kinase cascade and was then confirmed by
experimentation [13]. The success of this work has stimulated a
great deal of interest in developing kinetic models to provide test-
able predictions and novel insights into signaling events. For exam-
ple, Bhalla et al. combined experiments and modeling to support
the hypothesis that MAP kinase was involved in a bistable feedback
loop [14]; Schoeberl et al. developed a mathematical model for the
EGF-regulated MAP kinase pathway [15]; we demonstrated a crit-
ical function of Ras nanoclusters in generating high-fidelity signal
transduction [16]; and a recent study investigated functional cross
talks between the MAP kinase pathway and other signaling path-
ways [17]. In addition, we have developed a mathematical model
that contains a nuclear subsystem of ERK kinase activation [18] and
studied the robustness property of various kinase modules [19].
Nevertheless, the molecular mechanisms that underlie precise but
robust control of MAP kinase signal intensity with a range of
activation kinetics and diverse biological outcomes remain poorly
understood. Using the MAP kinase pathway as the test system, this
chapter discusses how to design a computational framework for
developing accurate mathematical models of cell signaling pathway
using proteomic datasets.
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3 Methods

3.1 Experimental

Data

Olsen et al. have recently applied an integrated phosphoproteomic
technology to identify and quantitate the global in vivo phospho-
proteome and its temporal dynamics upon growth-factor stimula-
tion in human HeLa cells. In this study, human Hela cells were
stimulated with 150 ng/ml of EGF for different time intervals.
This proteome dataset includes the quantitative temporal activity
ratios of 2244 proteins with a total of 6600 phosphorylation sites,
and is available as an excel file in the supplementary information of
the reference [6]. However, this dataset includes a proportion of
missing values for quite a large number of proteins (see Note 1).

We used the proteomic data of the ARaf1 protein, the dual
specificity mitogen-activated protein kinase kinase 2 (MEK) and the
mitogen-activated protein kinase 1 (ERK) in the supplementary
table. In this dataset, the kinase activities were measured at 0, 1,
5, 10, and 20 min. The activities of each kinase were further
normalized by its activity at 5 min. While the activities of ARaf1
were obtained in the cytosol only, the activities of MEK and ERK
were available in both the cytosol and nucleus. Since the kinase
activities in the proteomic dataset were mostly available at five time
points, we used the linear interpolation to generate kinase activities
at another 16 time points during the time interval [0, 20] (min).

Additional experimental data were also available using Western
blotting analysis and other experimental techniques in human
HeLa cells [20]. Hela cells were stimulated with 50 ng/ml of
EGF for different time periods. Therefore, both datasets in previ-
ous studies [6, 20] can be combined in our study. The Ras activity
in Ref. [20] was used as the signal input of the MAP kinase module.
The absolute kinase concentrations and the fractions of the acti-
vated kinases (at 5 min) in Ref. [20] were also used and led to the
absolute activated kinase concentrations at 5 min shown in Table 1.
The relative kinase activities in the proteomic study were then re-
scaled using the absolute activated kinase concentrations at 5 min.
It is noteworthy that the Raf, MEK, and ERK kinase activities in
Ref. [20] were utilized only to compare with the simulated kinase
activities and served as evidence to validate the feasibility of the
proposed modeling framework.

3.2 Development of

Mathematical Model

Our MAP kinase pathway model comprises a cytosolic subsystem
and a nuclear subsystem [18]. In the cytosolic subsystem, the Ras-
GTP is the signal input of the MAP kinase cascade and activates Raf
molecules in a single step. This activation is followed by sequential
activation of the dual-specificity MAP kinase kinase (i.e., MEK) by
Raf* (i.e., activated Raf) in a single-step processive module (see
Note 2). The activated MEKpp (i.e., phosphorylated MEK at two
residue positions) in turn activates ERK in a two-step distributive
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module [21]. The activated ERKpp (i.e., phosphorylated ERK at
two residue positions) is the signal output of the MAK kinase
module. Both activated and inactivated MEK and ERK kinases
diffuse between the cytosol and nucleus freely. In the nuclear
subsystem, the activated MEKpp further activates the ERK kinase
via the distributive two-step phosphorylation module. In addition,
phosphatases, such as Raf-P’ase, MEK-P’ase, and ERK-P’ase, can
respectively deactivate the activated Raf*, MEKpp, and ERKpp
kinases at different subcellular locations.

The detailed process of kinase activation is described by a set of
chemical reactions [18]. Briefly, the activated kinase (or phospha-
tase) K binds to its substrate S (or activated kinase Sp) to form a
protein complex K-S (or K-Sp), which leads to the activated sub-
strate Sp (or deactivated kinase S). Examples of these reactions are
provided below:

1. Processive phosphorylation module of MEK kinase

Raf* þMEK
!ai

 
di

Raf* �MEK!ki Raf* þMEKpp ð1Þ

2. Distributive phosphorylation module of ERK kinase

MEKppþ ERK
!aj

 
dj

MEKpp� ERK!kj MEKppþ ERKp ð2Þ

Table 1
Protein concentrations of the pathway models

Initial condition
of System 1

Initial condition
of Systems 2

Max % of the activated
kinase at 5 min in System 2

Activated kinases at
5 min in System 2

[Ras] 1 0.4 [20] 0.4

[Raf] 1 0.013 [20] 0.013

[Raf-P’ase] 1 0.002 [15]

[MEK] 1 1.4 [20] 5 % [20] 0.07

[MEK-P’ase] 1 0.14 [15]

[ERK] 1 0.96 [20] 50 % [20] 0.48

[ERK-P’ase] 1 0.48 [15]

System 1 is the model based on the proteomic data only with normalized protein concentrations, while System 2 is the

model based on both proteomic and other experimental data with absolute protein concentrations. Except the variables
in this table, the initial conditions of other variables are set as zeros. The concentrations of three phosphatases are

calculated based on both the absolute kinase concentration in Ref. [20] and ratio of phosphatase concentration to the

corresponding kinase concentration in Ref. [15]
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MEKppþ ERKp
!aj

 
dj

MEKpp� ERKp!kj MEKppþ ERKpp ð3Þ

3. Dephosphorylation reactions of activated ERK kinase

ERKp þERK‐P’ase
!aj

 
dj

ERKp�ERK‐P’ase!kj ERKþERK‐P’ase ð4Þ

ERKppþERK‐P’ase
!aj
 
dj

ERKpp�ERK‐P’ase!kj ERKp þERK‐P’ase ð5Þ

where ai, di and ki represent protein binding, dissociation and
activation rate constants, respectively. The diffusion of MEK kinase,
for example, between the cytosolic and nuclear subsystems is repre-
sented by

MEK
!f i
 
bi

N‐MEK; ð6Þ

where MEK and N-MEK are MEK kinases located in the cytosolic
and nuclear subsystems, respectively, fi and bi are diffusion rate
constants.

A mathematical model has been constructed according to the
chemical rate equations of these chemical reactions [18]. For exam-
ple, Reaction 1 leads to the differential equation for the dynamics of
the Raf*-MEK complex, which is given by

d Raf*�MEK½ �
dt

¼ ai Raf*½ �MEK½ � � di þ kið Þ Raf*�MEK½ � ð7Þ

This mathematical model comprises 33 differential equations which
represent the dynamics of 33 variables in the system. To test all the
possibilities of molecular mechanisms, we make no assumptions
about the model rate constants and as a result there are 57
unknown reaction rate constants. A promising research topic is to
develop sophisticated models with less unknown parameters
(see Note 3).

3.3 Estimation

of Model’s Kinetic

Rates

A genetic algorithm is used to estimate all model parameters. The
MATLAB toolbox developed by Chipperfield et al. [22] is
employed to infer the 57 unknown rate constants. It uses MATLAB
functions to build a set of versatile routines for implementation of a
wide range of genetic algorithms. The genetic algorithm is run over
500 generations for each rate estimate, and a population of 100
individuals in each generation is used. The values of rate constants
are taken initially from the uniform distribution in the range of
[0, Wmax], and the value of Wmax is fixed to 1000 for each rate
constant.
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The estimation error is measured by the weighted distance
between the simulated kinase activities and experimental data.
The weight of each kinase is determined by its corresponding
maximal activity. The total error is calculated by

E ¼
XN
i¼1

XM
j¼1

xi t j
� �� x*ij

��� ���
maxj xi t j

� �� � ð8Þ

where xij
* and xi(tj) are the simulated and experimentally measured

activities of kinase xi at time point tj, respectively.

First, we use the genetic algorithm to infer the model kinetic
rates based on the proteomic dataset [6]. The corresponding model
is termed System 1. The total concentration of each kinase or
phosphatase is assumed to be one unit. The initial condition of
the differential equation model is given in Table 1. To be consistent
with the normalized kinase activities in the proteomic dataset [6],
the simulated activity of each kinase is also normalized by its activity
at 5 min; and we choose maxj xi t j

� �� � ¼ 1 in Eq. (8) for calculat-
ing the error between the simulation and proteomic data. The
parameter set that produces smaller simulation error with respect
to the proteomics data is selected as the estimated model rate
constants. Due to the local maxima issue of the genetic algorithm,
we implement the genetic algorithm with different random seeds
that lead to different estimates of the model’s kinetic rates. Accord-
ingly, we obtain 20 sets of estimated rate constants and select the
top ten estimates with smaller simulation errors when compared to
the proteomic data for further analysis. Next, we use the robustness
property of the model as an additional criterion to select the opti-
mal rate constants.

Figure 1 provides the simulation results of the MAP kinase
pathway using the model that has the smallest estimation error.
The corresponding estimated model parameters are given in the
Supplementary Table 1 in Ref. [18]. To compare with the proteo-
mic data, simulations are also normalized by the simulated kinase
activity at 5 min. The total activity of MEK in Fig. 1c (ERK in
Fig. 1d) is also normalized by the corresponding total kinase activ-
ity at 5 min. The results show that the simulated kinase activities
match the Raf* activities in the cytosol (Fig. 1b) and ERKpp
activities in both the cytosol and nucleus (Fig. 1f) very well. How-
ever, there is a large difference between the simulated MEK activ-
ities and proteomic data in Fig. 1c, possibly because of difference
between the MEK kinase proteomic data in the cytosol and nucleus
as well as noise in proteomic data (see Note 4). In addition, the
simulated MEK activities in the nucleus are also in good agreement
with the proteomic data.
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3.4 Robustness

Property Analysis

Robustness can be defined as the ability of a system to function
correctly in the presence of both internal and external uncertainty.
As robustness is a ubiquitously observed property of biological
systems [23, 24], it has been widely used as an important measure
to select the optimal network structure or model rate constants
from estimated candidates, including the MAP kinase pathway [25,
26]. A formal and abstract definition of the robustness property,
given by Kitano [27], is consistent with the general principle of the
robustness property of complex systems, and has been widely used
in the analysis of robustness properties of biological systems.

Here, we use the concept proposed by Kitano [27] to measure
the robustness property of the model. The robustness property of a
mathematical model with respect to a set of perturbations P is
defined as the average of an evaluation function Da,P

s of the system
over all perturbations p∈P , weighted by the perturbation prob-
abilities prob(p), given by

Rs
a,P ¼

Z
p∈P

prob pð ÞDs
a,Pdp ð9Þ

Fig. 1 Simulations of the normalized kinase activities. (a) Normalized Ras activity as the signal input from [20].
(b) Raf activity; (c) Total MEK activity; and (d) Total ERK activity (blue-line: simulation; green-line: normalized
Western blotting data [20]; red-line: proteomic data [6]). (e) MEK activity and (f) ERK activity at different
locations (blue-line: simulation in the cytosol, red-line: proteomic data in the cytosol, green-line: simulation in
the nucleus, black-line: proteomic data in the nucleus)
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Here, the following measure is used to evaluate the average
behavior

RM
a,P ¼

X
i, j

Z
p∈P

prob pð Þxij pð Þdp
" #

ð10Þ

which is the mean of kinase activities that should be close to the
simulated kinase activity obtained from the unperturbed rate con-
stants. In addition, the impact of perturbations on nominal behav-
ior is defined by

RN
a,P ¼

X
i, j

Z
p∈P

prob pð Þ xij pð Þ � xij pð Þ
� �2

dp

" #
ð11Þ

where xij(p) and xij are the simulated activities of kinase xi at time
point tj with perturbed and unperturbed rate constants, respec-
tively, and xij pð Þ is the mean of xij(p) over all the perturbed kinetic
rates.

For each rate constant ki, the perturbation is set to

ki ¼ max ki 1þ μ U � 0:5ð Þð Þ, 0f g ð12Þ
with a uniformly distributed random variable U(0,1) or

ki ¼ max ki 1þ μNð Þ, 0f g ð13Þ
with the standard Gaussian random variable N(0,1). Here μ repre-
sents the perturbation strength.

To identify the best set of kinetic rates, we perform the robust-
ness analysis of the mathematical model for the selected ten esti-
mates of kinetic rates. For each set of model rate constants, we first
use the estimated kinetic rates without any perturbation to produce
a simulation that is used as the standard kinase activity. Then we
perturb the value of each parameter using the generated random
number. New simulations are obtained using the perturbed rate
constants, and we then compare the new simulations with the
standard simulation derived from the unperturbed model rate con-
stants. The system with a particular set of rate constants is more
stable if the difference between the new simulations and standard
simulation is smaller. For each set of estimated rate constants, we
generate 10,000 sets of perturbed rate constants using the uni-
formly distributed random variable and μ ¼ 0:5 in Eq. (12).
According to Kitano’s definition of robustness [27], we use the
average behavior, which is the sum of all the means of each kinase
activity as calculated by Eq. (8), and the nominal behavior, which is
the sum of all the variances of each kinase activity as calculated by
Eq. (9), as the measure of the robustness property.

Figure 2a and b illustrate the average behavior and nominal
behavior of the mathematical model with ten different sets of
estimated rate constants. We further test the robustness property
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of this model in cases where the ten sets of estimated rate constants
are perturbed by the Gaussian random variable with strength
μ ¼ 0:5 in Eq. (11). In this case, the simulated perturbations of
kinase activities are smaller than but still proportional to the
corresponding perturbations in Fig. 2a and b (results not shown).
In addition, we test the robustness property of the model using the
ten sets of the rejected rate constants that generate simulations with
larger errors. Simulation results suggest that there is no correlation
between the model estimation error and robustness property.

To demonstrate the feasibility of our approach, we compare our
simulated kinase activities in Fig. 1 with the kinase activities
measured in vivo by Western blotting that are also normalized by
its activity at 5 min [20]. Figure 1 shows that our computer
simulation matches the Raf activity (Fig. 1b) and ERK activity
(Fig. 1d) very well. However, the measured MEK activity in
Fig. 1c is different from the proteomic data, and interestingly, the
simulated MEK activity is located between the proteomic data and
Western blotting data. The simulated MEK activity is smaller,

Fig. 2 Robustness analysis. (a, b) Robustness analysis of the proposed model with ten sets of estimated
kinetic rates derived from the normalized proteomic data. (a) The average behavior and (b) nominal behavior
of the model with perturbed kinetic rates. (c, d) Robustness analysis of the proposed model with ten sets of
estimated kinetic rates that were derived from more resources of experimental data. (c) The average behavior
and (d) nominal behavior of the model with perturbed kinetic rates. (Blue-line: Raf; green-line: MEK, red-line:
ERK. The horizontal dash lines in (a) and (c) are the simulated kinase activities based on the unperturbed
model kinetic rates)
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instead of being larger than the proteomic data, with the increasing
time. This suggests that in the cell signaling cascade, the down-
stream signal activity may be used to calibrate the measurement
errors of the upstream signals present in the proteomic datasets.

3.5 Model

Refinement by

Incorporating More

Experimental Data

Although the normalized simulation results match the proteomic
and experimental data very well in Fig. 1, the robustness analysis
shown in Fig. 2 suggest that the percentages of the activated kinases
are quite low. In addition, the fraction of the activated MEK kinase
is larger than that of the activated ERK, which is contradictory to
previous observations [15, 16, 20]. When using the absolute pro-
tein concentrations as the initial condition to simulate the model,
we find a large difference between the predicted kinase activities
and experimentally measured activities [20]. These results suggest
that the normalized proteomic data might not be adequate for
accurate inference of cell signaling pathway. To achieve better
inference results, more experimental data, such as proteomic data,
should be incorporated to the model [28] (see Note 5).

Therefore, to further refine the mathematical model, we use
the experimentally measured absolute total concentrations of each
kinase, which is also the initial condition of System 2 in Table 1,
together with the information on the maximal percentages of MEK
and ERK kinases that are activated by EGF stimulation [20], pre-
sented in Table 1. Then the normalized proteomic data (with kinase
activity of unit one at 5 min) are rescaled by the absolute kinase
activities in Table 1. The kinase activity is calculated by

kinase activity½ � ¼ proteomic kinase activity½ �* kinase activity at 5min in System2½ �:

Note that the related activities of each kinase remain unchanged. In
addition, the absolute concentrations of the three phosphatases,
namely Raf-P’ase, MEK-P’ase, and ERK-P’ase, are also included in
the model using experimentally measured data [15, 20], which is
part of the initial conditions of System 2 in Table 1. Note that the
Raf, MEK, and ERK kinase activities in Fig. 7 in Ref. [20] are only
used to compare with the simulated kinase activities. As no further
information is currently available regarding the distributions of
activated MEK and ERK kinases at different subcellular locations,
we use the proteomic data to generate normalized kinase activities
in the cytosol and nucleus. In summary, the experimental data
provide: (1) the absolute concentrations of the activated Raf, total
MEK activity and total ERK activity in the first 20 min stimulated
by Ras-GTP-binding; (2) the normalized activities of MEK and
ERK kinases in the cytosol and nucleus in the first 20 min.

We use these experimental data to infer the model rate con-
stants once again. To balance the errors of different kinases, the
weight to scale the error of each kinase in Eq. (8) is the experimen-
tally measured maximal activity of that kinase. However, for the
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normalized activities of MEK and ERK in the cytosol and nucleus,
the weight in Eq. (8) is set to unit one. In this case, we also derive
20 sets of estimated model rate constants by repeated implementa-
tions of the genetic algorithm and select the top ten sets with
smaller estimation errors. For the top ten sets of model rate con-
stants, we use the samemethod previously described to perform the
robustness analysis, and select kinetic rates that lead to the best
robustness property of the system as our final estimate [18].

The major advantage of incorporating more experimental data
is that the mathematical model can realize experimental observa-
tions in a much more accurate manner and accordingly computer
simulations are able to provide testable predictions regarding the
regulatory mechanisms. Figure 3 displays the simulated system
dynamics with the absolute kinase activities. We can see that com-
puter simulations match the experimental data very well for the Raf
activities in Fig. 3b, and the total ERK kinase activities in Fig. 3d.
Moreover, the normalized MEK activity in the cytosol is very close
to that in the nucleus, which is consistent with the experimental
observation [20]. Another advantage of the refined model is that it
has a very good robustness property in response to the perturba-
tions of rate constants. Compared with the results in Fig. 2a and b,
the numerical results in Fig. 2c and d suggest that the developed
model based on the absolute kinase concentrations has a better
robustness property than that based on the normalized kinase
concentrations.

4 Framework for Developing Mathematical Models

In summary, the flowchart of our proposed modeling framework is
illustrated in Fig. 4. The model may also include a graphical sche-
matic structure of the signaling pathway, a list of all chemical
reactions involved and a mathematical model that is a system of
differential equations. The proteomic data are the time-course
quantitative data of kinase activities. The other datasets include
data resources obtained by other experimental techniques such as
the FRET imaging and Western blotting. Using the genetic algo-
rithm, we can obtain a number of candidate estimates of model
parameters. The robustness analysis will be applied to the estimated
candidates to identify the parameter set that has the best robustness
property as our final parameter estimate. Finally, we can apply the
built model to make testable predictions regarding the signal out-
put under various system conditions.
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5 Notes

1. A major challenging issue in using proteomic data is missing
values of kinase activities. Although a number of statistical meth-
ods have been proposed to estimate the missing value, the
implementation of these methods will be extremely difficult, if
the activity of a protein is completely unavailable in the proteo-
mics dataset. An example is the Ras protein whose activities are
not available in the proteomic dataset at all. Thus, other sources
of biological data must be used to fill these data gaps.

2. TheMAP kinase cascade comprises a set of three protein kinases,
namely MAP kinase kinase kinase (MAPKKK or MAP3K), MAP
kinase kinase (MAPKK or MAP2K), and MAP kinase (MAPK),
with a highly conserved molecular architecture that acts sequen-
tially [11]. In the MAP kinase pathway discussed in this chapter,
these three kinases are Raf, MEK, and ERK proteins.

3. This chapter focuses on the issue of establishing mathematical
models from proteomic datasets. However, only small amounts
of experimental data are used in this work to refine the

Fig. 3 Simulated kinase activities based on the incorporation of proteomic data and Western blotting data. (a)
Normalized Ras activity as the signal input [20]. (b) Raf activity; (c) Total MEK activity, and (d) Total ERK
activity (blue-line: simulation; green-line: Western blotting data [20]; red-line: re-scaled proteomic data [6]).
(e) MEK activity and (f) ERK activity at different locations (blue-line: simulation in the cytosol, red-line:
proteomic data in the cytosol, green-line: simulation in the nucleus, black-line: proteomic data in the nucleus)
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developed mathematical model. As a result, simulation results
suggest that integration of more experimental data could further
improve the accuracy of the mathematical model substantially.
Future work should thus include the development of more
sophisticated models for cell signaling pathways through the
combination of large-scale proteomic datasets, more experimen-
tal data, more signaling regulatory mechanisms as well as esti-
mated model parameters.

4. Proteomics data suffer from considerable noise, including not
only the technical noise arising from repeated experimental pro-
cesses but also analysis noise [29]. Noise, such as the error of
MEK kinase activity in this study, may result in significant varia-
tions during the inference of mathematical models. However,
compared with the developed stochastic methods for interrogat-
ing the role of noise in microarray expression data [30, 31], the
study of noise in proteomic data is still at the very early stage of
development. More work is required to investigate the influence
of noise on the development of mathematical models based on
the noisy proteomic datasets.

5. Another issue is the normalization of proteomic data that causes
the uncertainty of protein concentrations in mathematical

Fig. 4 Flowchart of the proposed modeling framework for developing mathematical models of cell signaling
pathways using proteomic datasets
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modeling. In this framework we first use the unified protein
concentrations, where the information of the absolute protein
concentrations is not known a priori. Although the normalized
simulations can match the normalized experimental data very
well, the simulated relative protein concentrations do not neces-
sarily reflect the real scenario of signaling pathways, since the
concentrations of proteins may also play an important role in
modulating signaling transduction. Therefore, it is necessary to
enrich the data by integrating more sources of experimental data
prior to model simulation.
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Chapter 19

Clustering

G.J. McLachlan, R.W. Bean, and S.K. Ng

Abstract

Clustering techniques are used to arrange genes in some natural way, that is, to organize genes into groups
or clusters with similar behavior across relevant tissue samples (or cell lines). These techniques can also be
applied to tissues rather than genes. Methods such as hierarchical agglomerative clustering, k-means
clustering, the self-organizing map, and model-based methods have been used. Here we focus on mixtures
of normals to provide a model-based clustering of tissue samples (gene signatures) and of gene profiles,
including time-course gene expression data.

Key words Clustering of tissue samples, Clustering of gene profiles, Hierarchical agglomerative
methods, Partitional methods, k-means, Model-based methods, Normal mixture models, Mixtures
of factor analyzers, Mixtures of linear mixed-effects models, Time-course data, Autoregressive random
effects

1 Introduction

DNA microarray technology, first described in the mid-1990s, is a
method to perform experiments on thousands of gene fragments in
parallel. Its widespread use has led to a huge growth in the amount
of expression data available. A variety of multivariate analysis meth-
ods has been used to explore these data for relationships among the
genes and the tissue samples. Cluster analysis has been one of the
most frequently used methods for these purposes. It has demon-
strated its utility in the elucidation of unknown gene function, the
validation of gene discoveries, and the interpretation of biological
processes; see [1, 2] for examples.

The main goal of microarray analysis of many diseases, in
particular of unclassified cancer, is to identify as yet unclassified
cancer subtypes for subsequent validation and prediction, and ulti-
mately to develop individualized prognosis and therapy. Limiting
factors include the difficulties of tissue acquisition and the expense
of microarray experiments. Thus, often microarray studies attempt
to perform a cluster analysis of a small number of tumor samples on
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the basis of a large number of genes, and can result in gene-to-
sample ratios of approximately 100-fold.

Many researchers have explored the use of clustering techni-
ques to arrange genes in some natural order, that is, to organize
genes into clusters with similar behavior across relevant tissue sam-
ples (or cell lines). Although a cluster does not automatically corre-
spond to a pathway, it is a reasonable approximation that genes in
the same cluster have something to do with each other or are
directly involved in the same pathway.

It can be seen there are two distinct but related clustering
problems with microarray data. One problem concerns the cluster-
ing of the tissues on the basis of the genes; the other concerns the
clustering of the genes on the basis of the tissues. This duality in
cluster analysis is quite common. In the present context of micro-
array data, one may be interested in grouping tissues (patients) with
similar expression values or in grouping genes on patients with
similar types of tumors or similar survival rates.

One of the difficulties of clustering is that the notion of a
cluster is vague. A useful way to think about the different clustering
procedures is in terms of the shape of the clusters produced [3].
The majority of the existing clustering methods assume that a
similarity measure or metric is known a priori; often the Euclidean
metric is used. But clearly, it would be more appropriate to use a
metric that depends on the shape of the clusters. As pointed out by
[4], the difficulty is that the shape of the clusters is not known until
the clusters have been found, and the clusters cannot be effectively
identified unless the shapes are known.

Before we proceed to consider the clustering of microarray
data, we give a brief account of clustering in a general context.
For a more detailed account of cluster analysis, the reader is referred
to the many books that either consider or are devoted exclusively to
this topic; for example, [5–9] and [10, Chapter 7]. A recent review
article on clustering is [11].

1.1 Brief Review of

Some Clustering

Methods

Cluster analysis is concerned with grouping a number (n) of entities
into a smaller number (g) of groups on the basis of observations
measured on some variables associated with each entity. We let

yj ¼ y1j ; . . . ; ypj

� �T
be the observation or feature vector containing

the values of p measurements y1j, . . ., ypj made on the jth entity
(j ¼ 1, . . ., n) to be clustered. These data can be organized as a
matrix,

Yp�n ¼ yvj

� �� �
; ð1Þ

that is, the jth column of Yp�n is the observation vector yj.

In discriminant analysis (supervised learning), the data are
classified with respect to g known classes and the intent is to form
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a classifier or prediction rule on the basis of these classified data for
assigning an unclassified entity to one of the g classes on the basis of
its feature vector. In contrast to discriminant analysis, in cluster
analysis (unsupervised learning) there is no prior information on
the group structure of the data or, in the case where it is known that
the population consists of a number of classes, there are no data of
known origin with respect to the classes. The clustering problem
falls into two main categories which overlap to some extent [12]:

1. What is the best way of dividing the entities into a given number
of groups, where there is no implication that the resulting
groups are in any sense a natural division of the data. This is
sometimes called dissection or segmentation.

2. What is the best way to find a natural subdivision of the entities
into groups. Here by natural clusters, it is meant that the clusters
can be described as continuous regions of the feature space
containing a relatively high density of points, separated from
other such regions by regions containing a relatively low density
of points [5]. It is therefore intended that natural clusters pos-
sess the two intuitive qualities of internal cohesion and external
isolation [13].

Sometimes the distinction between the search for naturally
occurring clusters as in (2) and other groupings as in (1) is stressed;
see, for example, [14]. But often it is not made, particularly as most
methods for finding natural clusters are also useful for segmenting
the data. Essentially, all methods of cluster analysis attempt to
imitate what the eye and brain do so well in p ¼ 2 dimensions.
For example, in the scatter plot (Fig. 1) of the expression values of
two smooth muscle related genes on ten tumors and ten normal
tissues from the colon cancer data of [15], it is very easy to detect
the presence of two clusters of equal size without making the
meaning of the term “cluster” explicit.

Clustering methods can be categorized broadly as being hier-
archical or nonhierarchical. With a method in the former category,
every cluster obtained at any stage is a merger or split of clusters
obtained at the previous stage. Hierarchical methods can be imple-
mented in a so-called agglomerative manner (bottom-up), starting
with g ¼ n clusters or in a divisive manner (top-down), starting
with the n entities to be clustered as a single cluster. In practice,
divisive methods can be computationally prohibitive unless the
sample size n is very small. For instance, there are 2 n�1ð Þ � 1 ways
of making the first subdivision. Hence hierarchical methods are
usually implemented in an agglomerative manner, as to be dis-
cussed further in the next section. In [16], a hybrid clustering
method was proposed that combines the strengths of bottom-up
hierarchical clustering with that of top-down clustering. The first
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method is good at identifying small clusters, but not large ones; the
strengths are reversed for top-down clustering.

One of the most popular nonhierarchical methods of clustering
is k-means, where “k” refers to the number of clusters to be
imposed on the data. It seeks to find k ¼ g clusters that minimize
the sum of the squared Euclidean distances between each observa-
tion yj and its respective cluster mean; that is, it seeks to minimize
the trace of W, tr W, where

W ¼
Xg
i¼1

Xn
j¼1

zij yj � yi

� �
yj � yi

� �T
ð2Þ

is the pooled within-cluster sums of squares and products matrix,
and

Fig. 1 Scatter plot of the expression values of two genes on ten colon cancer tumors (times) and ten normal
tissues (open circle)
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yi ¼
Xn
j¼1

yj=
Xn
j¼1

zij ð3Þ

is the sample mean of the ith cluster. Here zij is a zero-one indicator
variable that is one or zero, according as yj belongs or does not
belong to the ith cluster (i ¼ 1, . . ., g; j ¼ 1, . . ., n). It is impossible
to consider all partitions of the n observations into g clusters unless
n is very small, since the number of such partitions with nonempty
clusters is the Stirling number of the second kind,

1

g !

Xg
i¼0

ð�1Þðg�iÞ g
i

� �
in ð4Þ

which can be approximated by gn/g !; see [8]. In practice, k-means
is therefore implemented by iteratively moving points between
clusters so as to minimize tr W. In its simplest form, each observa-
tion yj is assigned to the cluster with the nearest center (sample
mean) and then the center of the cluster is updated before moving
on to the next observation. Often the centers are estimated initially
by selecting k points at random from the sample to be clustered.

Other partitioning methods have been developed, including
k-medoids [8], which is similar to k-means, but constrains each
cluster center to be one of the observations yj. The self-organizing
map [17] is similar to k-means, but the cluster centers are con-
strained to lie on a (two-dimensional) lattice. It is well known that
k-means tends to lead to spherical clusters since it is predicated on
normal clusters with (equal) spherical covariance matrices. One way
to achieve elliptical clusters is to seek clusters that minimize the
determinant ofW, |W|, rather than its trace, as in [18]; see also [19]
who derived this criterion under certain assumptions of normality
for the clusters.

In the absence of any prior knowledge of the metric, it is
reasonable to adopt a clustering procedure that is invariant under
affine transformations of the data; that is, invariant under transfor-
mations of the data of the form,

y ! Cyþ a ð5Þ
where C is a nonsingular matrix. If the clustering of a procedure is
invariant under (5) for only diagonal C, then it is invariant under
change of measuring units but not rotations. But as commented
upon in [20], this form of invariance is more compelling than affine
invariance. The clustering produced by minimization of |W| is
affine invariant.

In the statistical and pattern recognition literature in recent
times, attention has been focussed on model-based clustering via
mixtures of normal densities. With this approach, each observation
vector yj is assumed to have a g-component normal mixture density,
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f yj ;Ψ
� �

¼
Xg
i¼1

πiϕ yj ; μi;Σi

� �
; ð6Þ

where ϕ(y; μi, Σi) denotes the p-variate normal density function
with mean μi and covariance matrix Σi, and the πi denote the
mixing proportions, which are nonnegative and sum to one. Here
the vector Ψ of unknown parameters consists of the mixing propor-
tions πi, the elements of the component means μi, and the distinct
elements of the component-covariance matrix Σi, and it can be
estimated by its maximum likelihood estimate calculated via the
EM algorithm; see [21, 22]. This approach gives a probabilistic
clustering defined in terms of the estimated posterior probabilities
of component membership τi yj ; Ψ̂

� �
, where τi yj ; Ψ̂

� �
denotes the

posterior probability that the jth feature vector with observed value
yj belongs to the ith component of the mixture (i ¼ 1, . . ., g; j ¼ 1,
. . ., n). Using Bayes’ theorem, it can be expressed as

τi yj ;Ψ
� �

¼
πiϕ yj ; μi;Σi

� �
Xg
h¼1

πhϕ yj ; μh;Σh

� � : ð7Þ

It can be seen that with this approach, we can have a “soft”
clustering, whereby each observation may partly belong to more
than one cluster. An outright clustering can be obtained by assign-
ing yj to the component to which it has the greatest estimated
posterior probability of belonging. The number of components g
in the normal mixture model (Eq. 6) has to be specified in advance
(see Note 1).

As noted in [23], “Clustering methods based on such mixture
models allow estimation and hypothesis testing within the frame-
work of standard statistical theory.” Previously, Marriott [12, page
70) had noted that the mixture likelihood-based approach “is
about the only clustering technique that is entirely satisfactory
from the mathematical point of view. It assumes a well-defined
mathematical model, investigates it by well-established statistical
techniques, and provides a test of significance for the results.” One
potential drawback with this approach is that normality is assumed
for the cluster distributions. However, this assumption would
appear to be reasonable for the clustering of microarray data after
appropriate normalization.

One attractive feature of adopting mixture models with ellipti-
cally symmetric components such as the normal or its more robust
version in the form of the t density [22] is that the implied cluster-
ing is invariant under affine transformations in Eq. (5). Also, in the
case where the components of the mixture correspond to externally
defined subpopulations, the unknown parameter vector Ψ can be
estimated consistently by a sequence of roots of the likelihood
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equation. Note that this is not the case if a criterion such as mini-
mizing |W| is used.

In the above, we have focussed exclusively on methods that are
applicable for the clustering of the observations and the variables
considered separately; that is, in the context of clustering micro-
array data, methods that would be suitable for clustering the tissue
samples and the genes considered separately rather than simulta-
neously. Pollard and van der Laan [24] proposed a statistical frame-
work for two-way clustering; see also [25] and the references therein
for earlier approaches to this problem.More recently, [26] reported
some results on two-way clustering (biclustering) of tissues and
genes. In their work, they obtained similar results to those obtained
when the tissues and the genes were clustered separately.

2 Methods

Although biological experiments vary considerably in their design,
the data generated by microarray experiments can be viewed as a
matrix of expression levels. For M microarray experiments
(corresponding toM tissue samples), where we measure the expres-
sion levels of N genes in each experiment, the results can be
represented by a N � M matrix. For each tissue, we can consider
the expression levels of the N genes, called its expression signature.
Conversely, for each gene, we can consider its expression levels
across the different tissue samples, called its expression profile. The
M tissue samples might correspond to each of M different patients
or, say, to samples from a single patient taken at M different time
points. TheN � Mmatrix is portrayed in Fig. 2, where each sample

Fig. 2 Gene expression data from M microarray experiments represented as a
matrix of expression levels with the N rows corresponding to the N genes and the
M columns to the M tissue samples
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represents a separate microarray experiment and generates a set of
N expression levels, one for each gene.

Against the above background of clustering methods in a gen-
eral context as given in the previous section, we now consider their
application to microarray data, concentrating on a model-based
approach using normal mixtures. But firstly, we consider the appli-
cation of hierarchical agglomerative methods, given their extensive
use for this purpose in bioinformatics.

2.1 Clustering of

Tissues: Hierarchical

Methods

For the clustering of the tissue samples, the microarray data por-
trayed in Fig. 2 are in the form of the matrix in Eq. (1) with n ¼ M
and p ¼ N, and the observation vector yj corresponds to the
expression signature for the jth tissue sample. In statistics, it is
usual to refer to the entirety of the tissue samples as the sample,
whereas the biologists tend to refer to each individual expression
signature as a sample; we follow the latter practice here.

The commonly used hierarchical agglomerative methods can
be applied directly to this matrix to cluster the tissue samples, since
they can be implemented by consideration of the matrix of proxi-
mities, or equivalently, the distances, between each pair of observa-
tions. Thus they require only O(n2) or at worst O(n3) calculations,
where n ¼ M and the numberM of tissue samples is limited usually
to being less than 100. The situation would be different with the
clustering of the genes as then n ¼ N and the number N of genes
could be in the tens of thousands.

In order to compute the pairwise distances between the obser-
vations, one needs to select an appropriate distance metric. Metrics
that are used include Euclidean distance and the Pearson correla-
tion coefficient, although the latter is equivalent to the former if the
observations have been normalized beforehand to have zero means
and unit variances. Having selected a distance measure for the
observations, there is a need to specify a linkage metric between
clusters. Some commonly used metrics include single linkage, com-
plete linkage, average linkage, and centroid linkage. With single
linkage, the distance between two clusters is defined by the distance
between the two nearest observations (one from each cluster),
while with complete linkage, the cluster distance is defined in
terms of the distance between the two most distant observations
(one from each cluster). Average linkage is defined in terms of the
average of the n1n2 distances between all possible pairs of observa-
tions (one from each cluster), where n1 and n2 denote the number
of observations in the two clusters in question. For centroid link-
age, the distance between two clusters is the distance between the
cluster centroids (sample means). Another commonly used method
is Ward’s procedure [27], which joins clusters so as to minimize the
within-cluster variance (the trace of W). Lance and Williams [28]
have presented a simple linear system of equations as a unifying
framework for these different linkage measures. Eisen et al. [2]
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were the first to apply cluster analysis to microarray data, using
average linkage with a correlation-based metric. The nested clusters
produced by an hierarchical method of clustering can be portrayed
in a tree diagram, in which the extremities (usually shown at the
bottom) represent the individual observations, and the branching
of the tree gives the order of joining together. The height at which
clusters of points are joined corresponds to the distance between
the clusters. However, it is not clear in general how to choose the
number of clusters.

To illustrate hierarchical agglomerative clustering, we use
nested polygons in Fig. 3 to show the clusters obtained by applying
it to six bivariate points, using single-linkage with Euclidean dis-
tance as the distance measure. It can be seen that the cluster of
observations 5 and 6 is considerably closer to the cluster of 1 and
2 than observation 4 is.

Fig. 3 An illustrative example of hierarchical agglomerative clustering
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There is no reason why the clusters should be hierarchical for
microarray data. It is true that if there is a clear, unequivocal
grouping, with little or no overlap between the groups, any method
will reach this grouping. But as pointed out by [12], “hierarchical
methods are not primarily adapted to finding groups.” For
instance, if the division into g ¼ 2 groups given by some hierarchi-
cal method is optimum with respect to some criterion, then the
subsequent division into g ¼ 3 groups is unlikely to be so. This is
due to the restriction that one of the groups must be the same in
both the g ¼ 2 and g ¼ 3 clusterings. As explained by [12], this
restriction is not a natural one to impose if the purpose is to find a
natural grouping of the data. In the sequel, we therefore focus on
nonhierarchical methods of clustering. As advocated by [12, page
67), “it is better to consider the clustering problem ab initio,
without imposing any conditions.”

2.2 Clustering of

Tissues: Normal

Mixtures

More recently, increasing attention is being given to model-based
methods of clustering of microarray data [29–32]. However, the
normal mixture model (Eq. 6) cannot be directly fitted to the tissue
samples if the number of genes p used in the expression signature is
large. This is because the component-covariance matrices Σi are
highly parameterized with 1

2p pð +1Þ distinct elements each. A simple
way of proceeding in the clustering of high-dimensional data would
be to take the component-covariance matrices Σi to be diagonal.
But this leads to clusters whose axes are aligned with those of the
feature space, whereas in practice the clusters are of arbitrary orien-
tation. For instance, taking the Σi to be a common multiple of the
identity matrix leads to a soft-version of k-means which produces
spherical clusters.

Banfield and Raftery [33] introduced a parameterization of the
component-covariance matrix Σi based on a variant of the standard
spectral decomposition of Σi i ¼ 1, . . . gð Þ. But if p is large relative
to the sample size n, it may not be possible to use this decomposi-
tion to infer an appropriate model for the component-covariance
matrices. Even if it were possible, the results may not be reliable due
to potential problems with near-singular estimates of the
component-covariance matrices when p is large relative to n.

Hence, in fitting normal mixture models with unrestricted
component-covariance matrices to high-dimensional data, we
need to consider first some form of dimension reduction and/or
some form of regularization. A common approach to reducing the
number of dimensions is to perform a principal component analysis
(PCA). However, the latter provides only a global linear model for
the representation of the data in a lower-dimensional subspace.
Thus it has limited scope in revealing group structure in a data
set. A global nonlinear approach can be obtained by postulating a
finite mixture of linear (factor) submodels for the distribution of
the full observation vector yj given a relatively small number of
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(unobservable) factors. That is, we can provide a local dimension-
ality reduction method by a mixture of factor analyzers model,
which is given by Eq. (6) by imposing on the component-
covariance matrix Σi, the constraint

Σi ¼ BiB
T
i þDi i ¼ 1, . . . , gð Þ; ð8Þ

where Bi is a p � q matrix of factor loadings and Di is a diagonal
matrix (i ¼ 1, . . ., g). We can think of the use of this mixture of
factor analyzers model as being purely a method of regularization.
But in the present context, it might be possible to make a case for it
being a reasonable model for the correlation structure between the
genes. This model implies that the latter can be explained by the
linear dependence of the genes on a small number of latent (unob-
servable variables) specific to each component.

The EMMIX-GENE program of [31] has been designed for
the clustering of tissue samples via mixtures of factor analyzers. In
practice we may wish to work with a subset of the available genes,
particularly as the fitting of a mixture of factor analyzers will involve
a considerable amount of computation time for an extremely large
number of genes. Indeed, the simultaneous use of too many genes
in the cluster analysis may serve only to create noise that masks the
effect of a smaller number of genes. Also, the intent of the cluster
analysis may not be to produce a clustering of the tissues on the
basis of all the available genes, but rather to discover and study
different clusterings of the tissues corresponding to different sub-
sets of the genes [24, 34]. As explained in [35], the tissues (cell
lines or biological samples) may cluster according to cell or tissue
type (for example, cancerous or healthy) or according to cancer
type (for example, breast cancer or melanoma). However, the same
samples may cluster differently according to other cellular charac-
teristics, such as progression through the cell cycle, drug metabo-
lism, mutation, growth rate, or interferon response, all of which
have a genetic basis.

Therefore, the EMMIX-GENE procedure has two optional
steps before the final step of clustering the tissues. The first step
considers the selection of a subset of relevant genes from the
available set of genes by screening the genes on an individual basis
to eliminate those which are of little use in clustering the tissue
samples. The usefulness of a given gene to the clustering process
can be assessed formally by a test of the null hypothesis that it has a
single component normal distribution over the tissue samples (see
Note 2). Even after this step has been completed, there may still be
too many genes remaining. Thus there is a second step in EMMIX-
GENE in which the retained gene profiles are clustered (after
standardization) into a number of groups on the basis of Euclidean
distance so that genes with similar profiles are put into the same
group. In general, care has to be taken with the scaling of variables
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before clustering of the observations, as the nature of the variables
can be intrinsically different. In the present context the variables
(gene expressions) are measured on the same scale. Also, as noted
above, the clustering of the observations (tissues) via normal mix-
ture models is invariant under changes in scale and location. The
clustering of the tissue samples can be carried out on the basis of the
groups considered individually using some or all of the genes within
a group or collectively. For the latter, we can replace each group by
a representative (a metagene) such as the sample mean as in the
EMMIX-GENE procedure.

To illustrate this approach, we applied the EMMIX-GENE
procedure to the colon cancer data of [15]. It consists of
n ¼ 2000 genes and p ¼ 62 columns denoting 40 tumors and 22
normal tissues. After applying the selection step to this set, there
were 446 genes remaining in the set. The remaining genes were
then clustered into 20 groups, which were ranked on the basis of
�2logλ, where λ is the likelihood ratio statistic for testing g ¼ 1
versus g ¼ 2 components in the mixture model. The heat map of
the second ranked group G2 is shown in Fig. 4. The clustering of
the tissues on the basis of the 24 genes in G2 resulted in a partition
of the tissues in which one cluster contains 37 tumors (1–29,
31–32, 34–35, 37–40) and 3 normals (48, 58, 60), and the other
cluster contains 3 tumors (30, 33, 36) and 19 normals (41–47,
49–57, 59, 61–62). This corresponds to an error rate of 6 out of 62
tissues compared to the “true” classification given in [15]. (This is
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Fig. 4 Heat map of 24 genes in group G2 on 40 tumor and 22 normal tissues in
Alon data
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why here we examine the heat map ofG2 instead ofG1.) For further
details about the results of the tissue clustering procedure on this
data set, see [31].

2.3 Clustering of

Gene Profiles

In order to cluster gene profiles, it might seem possible just to
interchange rows and columns in the data matrix in Eq. (1). But
with most applications of cluster analysis in practice it is assumed
that

(a) there are no replications on any particular entity specifically
identified as such;

(b) all the observations on the entities are independent of one
another.

These assumptions should hold for the clustering of the tissue
samples, although the tissue samples have been known to be corre-
lated for different tissues due to flawed experimental conditions.
However, condition (b) will not hold for the clustering of gene
profiles, since not all the genes are independently distributed, and
condition (a) will generally not hold either as the gene profiles may
be measured over time or on technical replicates. While this corre-
lated structure can be incorporated into the normal mixture model
in Eq. (6) by appropriate specification of the component-covariance
matrices Σi, it is difficult to fit the model under such specifications.
For example, the M-step (the maximization step of the EM algo-
rithm) may not exist in closed form. Accordingly, we now consider
the EMMIX-WIRE model of Ng et al. [36], who adopt condition-
ally a mixture of linear mixed models to specify this correlation
structure among the tissue samples and to allow for correlations
among the genes. It also enables covariate information to be
incorporated into the clustering process.

For a gene microarray experiment with repeated measure-
ments, we have for the jth gene ( j ¼ 1,. . .,n), when n ¼ N, a

feature vector (profile vector) yj ¼ y T1j ; . . . ; y
T
tj

� �T
, where t is the

number of distinct tissues in the experiment and

ylj ¼ yl1j ; . . . ; ylrj

� �T
l ¼ 1, . . . , tð Þ

contains the r replications on the jth gene from the lth tissue. Note
that here, the r replications can also be time points. The dimension
p of the profile vector yj is equal to the number of microarray
experiments, p ¼ rt. Conditional on its membership of the ith
component of the mixture, the EMMIX-WIRE procedure assumes
that yj follows a linear mixed-effects model (LMM),

yj ¼ Xβi þUbij þ Vci þ εij ; ð9Þ
where the elements of βi (a m-dimensional vector) are fixed effects
(unknown constants) (i ¼ 1,. . .,g). In Eq. (9), bij (a qb-dimensional
vector) and ci (a qc-dimensional vector) represent the unobservable
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gene- and tissue-specific random effects, respectively, conditional
on membership of the ith cluster. These random effects represent
the variation due to the heterogeneity of genes and tissues
(corresponding to bi ¼ b T

i1; . . . ; b
T
in

� �T
and ci, respectively). The

random effects bij and ci, and the measurement error vector εij are
assumed to be mutually independent. In Eq. (9), X, U, and V are
known design matrices of the corresponding fixed or random
effects. The dimensions qb and qc of the random effects terms bij
and ci are determined by the design matricesU and V which, along
with X and H, specify the experimental design to be adopted.

With the LMM, the distributions of bij and ci are taken, respec-
tively, to be multivariate normal Nqb 0, θbiIqb

� �
and Nqc 0, θciIqc

� �
,

where Iqb and Iqc are identity matrices with dimensions being
specified by the subscripts. The measurement error vector εij is
also taken to be multivariate normal Np(0, Ai), where
Ai ¼ diag Hφið Þ is a diagonal matrix constructed from the vector

(Hφi) withφi ¼ σ2i1; . . . ; σ
2
iqe

� �T
andH is a known p � qe zero-one

design matrix. That is, we allow the ith component-variance to be
different among the p microarray experiments.

The vector Ψ of unknown parameters can be obtained by
maximum likelihood via the EM algorithm, proceeding condition-
ally on the tissue-specific random effects ci. The E- and M-steps can
be implemented in closed form. In particular, an approximation to
the E-step by carrying out time-consuming Monte Carlo methods
is not required. A probabilistic or an outright clustering of the
genes into g components can be obtained, based on the estimated
posterior probabilities of component membership given the profile
vectors and the estimated tissue-specific random effects
ĉ i i ¼ 1, . . . , gð Þ.

To illustrate this method, we report here an example from [37]
who extended the EMMIX-WIRE model to incorporate first-order
autoregressive AR(1) random effects for clustering some time-
course data from the yeast cell-cycle study of Cho et al. [38]. The
data consist of the expression levels of 237 genes over two cycles for
the yeast cells at p ¼ 17 time points, sampling at 10-min intervals,
where the raw data were log transformed and normalized by col-
umns and rows. A general form of the first-order Fourier series
expansion is adopted to model periodic gene expression [39]. With
reference to Eq. (9), the design matrix was taken be an 17 � 2
matrix (m ¼2) with the (l þ 1)th row (l ¼ 0,. . .,16)

cos 2π 10lð Þ=ωþ Φð Þ sin 2π 10lð Þ=ωþ Φð Þð Þ; ð10Þ
where the period of the cell cycle ω was taken to be 85 and the
phase offset Φ was set to zero. The design matrices for the random
effects parts were specified as U ¼ I17 and V ¼ I17. That is, it is
assumed that there exist random gene effects bij with qb ¼ 17 and
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random temporal effects ci ¼ ci1, . . . ciqc
� �T

with qc ¼ p ¼ 17. The
latter introduce dependence among expression levels within the
same cluster obtained at the same time point. Also, H ¼ 117 and

φi ¼ σ2i ( qe ¼ 1 ) so that the component variances are common
among the p ¼ 17 experiments. To account for the time dependent
random gene effects, an AR(1) correlation structure is adopted for
the gene profiles, so that bij follows a N(0, θiA(ρi)) distribution,
where

A ρið Þ ¼ 1

1� ρ2i

1 ρi � � � ρ16i
ρi 1 � � � ρ15i
⋮ ⋮ ⋮ ⋮
ρ16i ρ15i � � � 1

0
BB@

1
CCA: ð11Þ

The inverse of A(ρi) can be expressed as

A ρið Þ�1 ¼ 1þ ρ2i
� �

I � ρiJ � ρ2i K ; ð12Þ
and

trace
∂A ρið Þ�1

∂ρi
A ρið Þ

 !
¼ � 2ρi

1� ρ2i
� � : ð13Þ

In Eq. (12), all I, J, and K are 17� 17 matrices, where I is the
identity matrix, J has its sub-diagonal entries ones and zeros else-
where, andK takes on the value 1 at the first and last elements of its
principal diagonal and zeros elsewhere; see [37] for detailed
derivation.

With this data set, the 237 genes were categorized with respect
to the four categories in the MIPS database (DNA synthesis and
replication, organization of centrosome, nitrogen and sulfur
metabolism, and ribosomal proteins); see [40]. The clustering
results using the extended EMMIX-WIRE model for g ¼ 4 are
given in Fig. 5, where the expression profiles for genes in each
cluster are presented. The adjusted Rand index [36], for assessing
the degree of agreement between the clustering results and the four
categories of genes, was 0.6189, which is the best match (the
largest index) compared with several model-based and hierarchical
clustering algorithms considered in [40]; see [37] for more details.

3 Notes

1. For both procedures, as with other partitional clustering meth-
ods, the number of clusters g needs to be specified at the outset.
As both procedures are model-based, we can make a choice as to
an appropriate value of g by consideration of the likelihood
function. In the absence of any prior information as to the
number of clusters present in the data, we monitor the increase
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in the log likelihood function as the value of g increases. At
any stage, the choice of g ¼ go versus g ¼ g1, for instance g1 ¼
go þ 1, can be made by either performing the likelihood ratio
test or by using some information-based criterion, such as BIC
(Bayesian information criterion). Unfortunately, regularity con-
ditions do not hold for the likelihood ratio test statistic λ to have
its usual null distribution of chi-squared with degrees of free-
dom equal to the difference d in the number of parameters for
g ¼ g1 and g ¼ go components in the mixture models. One way
to proceed is to use a resampling approach as in [41]. Alterna-
tively, one can apply BIC, which leads to the selection of g ¼ g1
over g ¼ go if �2log λ is greater than d log(n). The value of d is
obvious in applications of EMMIX-GENE, but is not so clear
with applications of EMMIX-WIRE, due to the presence of
random effects terms [36].

Fig. 5 Clustering results for Cho’s yeast cell cycle data. For all the plots, the x-axis is the time point and the y-
axis is the gene-expression level
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2. The most time-consuming step of the three steps is the gene
selection step of EMMIX-GENE. This step is slower than the
others as a mixture of two normals is fitted for each gene, instead
of a multivariate normal being fitted to a group of genes or a
metagene simultaneously. A faster but ad hoc selection step is to
make the decision for each gene on the basis of the interquartile
range of the gene expression values over the tissues.

References

1. Alizadeh A, Eisen MB, Davis RE et al (2000)
Distinct types of diffuse large B-cell lymphoma
identified by gene expression profiling. Nature
403:503–511

2. Eisen MB, Spellman PT, Brown PO, Botstein
D (1998) Cluster analysis and display of
genome-wide expression patterns. Proc Natl
Acad Sci U S A 95:14863–14868

3. Reilly C, Wang C, Rutherford R (2005) A
rapid method for the comparison of cluster
analyses. Stat Sin 15:19–33

4. Coleman D, Dong XP, Hardin J, Rocke DM,
Woodruff DL (1999) Some computational
issues in cluster analysis with no a priori metric.
Comput Stat Data Anal 31:1–11

5. Everitt BS (1993) Cluster analysis, 3rd edn.
Edward Arnold, London

6. Hartigan JA (1975) Clustering algorithms.
Wiley, New York

7. Hastie T, Tibshirani RJ, Friedman JH (2001)
The elements of statistical learning. Springer,
New York

8. Kaufman L, Rousseeuw P (1990) Finding
groups in data: an introduction to cluster anal-
ysis. Wiley, New York

9. Ripley BD (1996) Pattern recognition and
neural networks. Cambridge University Press,
Cambridge

10. Seber GAF (1984) Multivariate observations.
Wiley, New York

11. Kettenring JR (2006) The practice of cluster
analysis. J Classif 23:3–30

12. Marriott FHC (1974) The interpretation of
multiple observations. Academic, London

13. Cormack RM (1971) A review of classification
(with discussion). J R Stat Soc A 134:321–367

14. Hand DJ, Heard NA (2005) Finding groups in
gene expression data. J Biomed Biotechnol
2005:215–225

15. Alon U, Barkai N, Notterman DA, Gish K et al
(1999) Broad patterns of gene expression
revealed by clustering analysis of tumor and
normal colon tissues probed by

oligonucleotide arrays. Proc Natl Acad Sci U
S A 96:6745–6750

16. Chipman H, Tibshirani R (2006) Hybrid hier-
archical clustering with applications to micro-
array data. Biostatistics 7:286–301

17. Kohonen T (1989) Self-organization and asso-
ciative memory, 3rd edn. Springer, Berlin

18. Friedman HP, Rubin J (1967) On some invari-
ant criteria for grouping data. J Am Stat Assoc
62:1159–1178

19. Scott AJ, Symons MJ (1971) Clustering meth-
ods based on likelihood ratio criteria.
Biometrics 27:387–397

20. Hartigan JA (1975) Statistical theory in clus-
tering. J Classif 2:63–76

21. McLachlan GJ, Basford KE (1988) Mixture
models: inference and applications to cluster-
ing. Marcel Dekker, New York

22. McLachlan GJ, Peel D (2000) Finite mixture
models. Wiley, New York

23. Aitkin M, Anderson D, Hinde J (1981) Statis-
tical modelling of data on teaching styles (with
discussion). J R Stat Soc A 144:419–461

24. Pollard KS, van der Laan MJ (2002) Statistical
inference for simultaneous clustering of gene
expression data. Math Biosci 176:99–121

25. Getz G, Levine E, Domany E (2000) Coupled
two-way clustering analysis of gene microarray
data. Cell Biol 97:12079–12084

26. Ambroise C, Govaert G (2006) Model based
hierarchical clustering. Unpublished
manuscript

27. Ward JH (1963) Hierarchical grouping to opti-
mize an objective function. J Am Stat Assoc
58:236–244

28. Lance GN, Williams WT (1967) A generalized
theory of classificatory sorting strategies: I.
Hierarchical systems. Comput J 9:373–380

29. Ghosh D, Chinnaiyan AM (2002) Mixture
modelling of gene expression data from micro-
array experiments. Bioinformatics 18:275–286

30. Yeung KY, Fraley C, Murua A, Raftery AE,
Ruzzo WL (2001) Model-based clustering

Clustering 361



and data transformations for gene expression
data. Bioinformatics 17:977–987

31. McLachlan GJ, Bean RW, Peel D (2002) A
mixture model-based approach to the cluster-
ing of microarray expression data. Bioinformat-
ics 18:413–422

32. Medvedovic M, Sivaganesan S (2002) Bayesian
infinite mixture model based clustering of gene
expression profiles. Bioinformatics
18:1194–1206

33. Banfield JD, Raftery AE (1993) Model-based
Gaussian and non-Gaussian clustering.
Biometrics 49:803–821

34. Friedman JH, Meulman JJ (2004) Clustering
objects on subsets of attributes (with discus-
sion). J R Stat Soc B 66:815–849

35. Belitskaya-Levy I (2006) A generalized cluster-
ing problem, with application to DNA micro-
arrays. Stat Appl Genet Mol Biol 5, Article 2

36. Ng SK, McLachlan GJ, Wang K, Ben-Tovim
Jones L, Ng S-W (2006) A mixture model with
random-effects components for clustering cor-
related gene-expression profiles. Bioinformat-
ics 22:1745–1752

37. Wang K, Ng SK, McLachlan GJ (2012) Clus-
tering of time-course gene expression profiles
using normal mixture models with autoregres-
sive random-effects. BMC Bioinformatics
13:300

38. Cho RJ, Huang M, Campbell MJ, Dong H,
Steinmetz L, Sapinoso L, Hampton G, Elledge
SJ, Davis RW, Lockhart DJ (2001) Transcrip-
tional regulation and function during the
human cell cycle. Nat Genet 27:48–54

39. Kim BR, Zhang L, Berg A, Fan J, Wu R (2008)
A computational approach to the functional
clustering of periodic gene-expression profiles.
Genetics 180:821–834

40. Wong DSV, Wong FK, Wood GR (2007) A
multi-stage approach to clustering and imputa-
tion of gene expression profiles. Bioinformatics
23:998–1005

41. McLachlan GJ (1987) On bootstrapping the
likelihood ratio test statistic for the number of
components in a normal mixture. Appl Stat
36:318–324

362 G.J. McLachlan et al.



Chapter 20

Parameterized Algorithmics for Finding Exact
Solutions of NP-Hard Biological Problems

Falk H€uffner, Christian Komusiewicz, Rolf Niedermeier,
and Sebastian Wernicke

Abstract

Fixed-parameter algorithms are designed to efficiently find optimal solutions to some computationally hard
(NP-hard) problems by identifying and exploiting “small” problem-specific parameters. We survey practical
techniques to develop such algorithms. Each technique is introduced and supported by case studies of
applications to biological problems, with additional pointers to experimental results.

Key words Computational intractability, NP-hard problems, Algorithm design, Exponential running
times, Discrete problems, Fixed-parameter tractability, Optimal solutions

1 Introduction

Many problems that emerge in bioinformatics require vast amounts
of computer time to be solved optimally. An illustrative example,
though somewhat oversimplified, would be the following: Given a
set of n experiments of which some pairs have conflicting results
(that is, at least one result must be wrong), identify a minimum-size
subset of experiments to eliminate such that no conflict remains.
This problem, while simple to describe, has no known algorithm
that solves it efficiently on all inputs. From a theoretical standpoint,
such computational hardness can be traced back to the NP-hardness
of a problem. Assuming a widely believed conjecture in complexity
theory, the classification of a computational problem as NP-hard
implies that the time needed to solve it grows very quickly (usually
exponentially) with the input size [61]. However, the demand to
solve NP-hard problems commonly arises in practical settings,
including bioinformatics. To obtain solutions to these problems
despite their NP-hardness, it is common to sacrifice solution quality
for efficiency, for example, by employing heuristic algorithms or
approximation algorithms. A different approach is to insist on exact
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solutions and accept that the algorithm will not be efficient on all
inputs but hopefully on those that arise in the application at hand.

Most theory on computational hardness is based on the
assumption that the difficulty of solving an instance of a computa-
tional problem is determined by the size of that instance. The
crucial observation this chapter is based on is that often it is not
the size of an instance that makes a problem computationally hard
to solve, but rather its structure. Parameterized algorithmics renders
this observation precise by quantifying structural hardness with the
so-called parameters, typically a nonnegative integer variable
denoted by k or a tuple of such variables. A parameterized problem
is then called fixed-parameter tractable (FPT) if it can be solved
efficiently when the parameter is small; the corresponding algo-
rithm is called fixed-parameter algorithm. The concept of fixed-
parameter tractability thus formalizes and generalizes the concept
of “tractable special cases” that are known for virtually all NP-hard
problems. For example, as we will discuss in more detail below, our
introductory problem can be solved quickly whenever the number
of conflicting experiments is small (a reasonable assumption in
practical settings, since the results would otherwise not be worth
much anyway).

Often, there are many possible parameters to choose from. For
example, for solving our introductory problem we could choose the
maximum number of conflicts for a single experiment to be the
parameter or, alternatively, the size of the largest group of pairwise
conflicting experiments. This makes parameterized algorithmics a
multipronged attack that can be adapted to different practical
applications. Of course, not all parameters lead to efficient algo-
rithms; in fact, parameterized algorithmics also provides tools to
classify parameters as “not helpful” in the sense that we cannot
expect provably efficient algorithms even when these parameters are
small.

Fixed-parameter algorithms have by now facilitated many suc-
cess stories and several techniques have emerged as being applicable
to large classes of problems [81]. This chapter presents several of
these techniques, namely kernelization (Subheading 2), depth-
bounded search trees (Subheading 3), dynamic programming
(Subheading 4), tree decompositions of graphs (Subheading 5),
color-coding (Subheading 6), and iterative compression (Subhead-
ing 7). We start each section by introducing the basic concepts and
ideas, followed by some case studies concerning practically relevant
bioinformatics problems. Concluding each section, we survey
known applications, implementations, and experimental results,
thereby highlighting the strengths and fields of applicability for
each technique.

Another commonly used strategy for exactly solving NP-hard
problems is to reduce the problem at hand to “general-purpose
problems” such as integer linear programming [7, 8] and
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satisfiability solving [14, 105, 127]. For these, there exist highly
optimized tools with years of algorithm engineering effort that
went into their development. Therefore, if an NP-hard problem
can be efficiently expressed as one of these general-purpose pro-
blems, these tools might be able to find an optimum solution
without the need for any further algorithm design. In many appli-
cation scenarios, it will actually make sense to try and combine these
general-purpose approaches and the more problem-specific
approach of parameterized algorithmics since the specific advantage
of fixed-parameter algorithms is that they are usually crafted
directly for the problem at hand and thus may allow a better
exploitation of problem-specific features to substantially gain effi-
ciency. In particular, the polynomial-time data reduction techni-
ques that are introduced in Subheading 2 usually combine nicely
and productively with the more general solver tools.

Before discussing the main techniques of fixed-parameter algo-
rithms in the following sections, the remainder of this section
provides a crash course in computational complexity theory and a
few formal definitions related to parameterized complexity analysis.
Furthermore, some terms from graph theory are introduced, and
we present our running example problem VERTEX COVER.

1.1 Computational

Complexity Theory

In this survey, we are concerned with efficiently solving computa-
tional problems. A standard format for specifying these problems is
to phrase them in an “Input/Task” way that formally specifies the
input and desired output. A core topic of computational complexity
theory is the evaluation and comparison of different algorithms for
a given problem [106, 113]. Since most algorithms are designed to
work with variable inputs, the efficiency (or complexity) of an algo-
rithm is not just stated for some concrete inputs (instances), but
rather as a function that relates the input length n to the number of
steps that are required to execute the algorithm. Generally, this
function is given in an asymptotic sense, the standard way being
the big-O notation where we write f(n) ¼ O(g(n)) to express that f
(n)/g(n) is upper-bounded by a positive constant in the limit for
large n [45, 86, 122]. Since instances of the same size might take
different amounts of time, it is implicitly assumed in this chapter
that we are considering the worst-case running time among all
instances of the same size; that is, we deliberately exclude from
our analysis the potentially efficient solvability of some specific
input instances of a computational problem.

Determining the computational complexity of problems
(meaning the best possible worst-case running time of an algorithm
for them) is a key issue in theoretical computer science. Herein, it is
of central importance to distinguish between problems that can be
solved efficiently and those that presumably cannot. To this end,
theoretical computer science has coined the notions of polynomial-
time solvability, on the one hand, and NP-hardness, on the

Parameterized Algorithmics for Finding Exact Solutions of NP-Hard Biological Problems 365



other [61]. Here, polynomial-time solvability means that for every
size-n input instance of a problem, an optimal solution can be
computed in nO(1) time. In contrast, the (unproven, yet widely
believed) working hypothesis of theoretical computer science is
that NP-hard problems cannot be solved in nO(1) time. More
specifically, typical running times for NP-hard problems are of the
formO(cn) for some constant c > 1; that is, we have an exponential
growth in the number of computation steps as instances grow
larger. In this sense, polynomial-time solvability has become a
synonym for efficient solvability.

As there are thousands of known NP-hard optimization pro-
blems and their number is continuously growing [106, 114], sev-
eral approaches have been developed that try to circumvent the
assumed computational intractability of NP-hard problems. One
such approach is based on polynomial-time approximation algo-
rithms, where one gives up seeking optimal solutions in order to
have efficient algorithms [9, 128, 131]. Another common strategy
is to use heuristics, where one gives up provable performance
guarantees (concerning running time or solution quality) by devel-
oping algorithms that behave well in “most” practical applica-
tions [104, 106].

1.2 Parameterized

Complexity

For many applications, the compromises inherent to approximation
algorithms and heuristics are not satisfactory. Fixed-parameter
algorithms can provide an alternative by providing exact solutions
with useful running time guarantees [53, 59, 109]. The core con-
cept is formalized as follows:

Definition 1. A parameterized problem instance consists of a problem
instance I and a parameter k. A parameterized problem is fixed-
parameter tractable if it can be solved in f(k) � | I | O(1) time, where f
is a (computable) function solely depending on the parameter k.

For NP-hard problems, f(k) will typically be an exponential
function like 2k rather than a polynomial function.

Note the difference between “fixed-parameter tractable”
and “polynomial-time solvable for fixed k”: an algorithm running
in | I | f(k) time demonstrates that a problem is polynomial-time
solvable for any fixed k, but does not show fixed-parameter tracta-
bility since the degree of the polynomial depends on k; ideally, a
fixed-parameter algorithm provides a linear-time algorithm for each
fixed k [126].

As an example for this “parameterized perspective,” consider
again the identification of k faulty experiments among n experi-
ments. We could naively solve this problem in O(2n) time by trying
all possible subsets of the n experiments. However, this would not
be practically feasible for n > 40. In contrast, a simple fixed-
parameter algorithm with running time O(2k � n) exists for this
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problem, which allows it to be solved even for n > 1000, as long as
k < 20 (as we will discuss in Subheading 2.4, real-world instances
can often be solved for much larger values of k by an extension of
this approach).

Unfortunately, there are parameterized problems for which
there is good evidence that they are not fixed-parameter tractable
(see Note 1).

1.2.1 A Few Words on

the Art of Problem

Parameterization

Typically, a problem allows for more than one parameteriza-
tion [90, 110]. From a theoretical point of view, parameterization
is a key to better understand the nature of computational intracta-
bility. The ultimate goal here is to learn how parameters influence
the computational complexity of problems. The more we know
about these interactions, the more likely it becomes to cope with
computational intractability. In a sense, it may be considered as an
art to find the most useful parameterizations of a computational
problem.

From an applied point of view, the identification of parameters
for a concrete problem should go hand-in-hand with an extensive
data analysis. One natural way for spotting relevant parameteriza-
tions of a problem in real-world applications is to analyze the given
input data and check which quantifiable aspects of it appear to be
small and might thus be suitable as parameters. For example, if the
input is a network, one such observable parameter could be the
maximum vertex degree. Often, real-world input instances also
carry some hidden structure that might be exploited. Again turning
to graphs, well-known parameters such as “feedback vertex set
number” or “treewidth” measure how tree-like a graph is. These
parameters are motivated by the observation that many intractable
graph problems become tractable when restricted to trees. For NP-
hard string problems, which also occur frequently in bioinformat-
ics, natural parameters are, for example, the size of the alphabet or
the number of occurrences of a letter [35].

1.3 Graph Theory Many of the problemswe deal with in this work can be formulated in
graph-theoretic terms [48, 129]. An undirected graph G ¼ (V, E)
is given by a set of vertices V and a set of edges E, where each edge
{v, w} is an undirected connection of two vertices v andw. Through-
out this work, we use n: ¼ | V | to denote the number of vertices
and m: ¼ | E | to denote the number of edges. For a set of verti-
ces V 0 � V, the induced subgraph G[V 0] is the graph (V 0, {{v, w} 2
Ejv, w 2 V 0}), that is, the graph G restricted to the vertices in V 0.
We denote the open neighborhood of a vertex v byN(v): ¼ {uj{u, v}
2 E} and its closed neighborhood byN[v]: ¼ N(v) [{ v}.

It is not hard to see that we can formalize our introductory
problem of recognizing faulty experiments as a graph problem
where vertices correspond to experiments and edges correspond
to pairs of conflicting experiments. Thus, we need to choose a small
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set of vertices (the experiments to eliminate) so that each edge is
incident with at least one chosen vertex. This is known as the NP-
hard VERTEX COVER problem, which serves as a running example for
several techniques in this work.

VERTEX COVER

Input: An undirected graph G ¼ (V, E) and a nonnegative integer k.
Task: Find a set C � V of at most k vertices such that each edge in E has at
least one of its endpoints in C.

The problem is illustrated in Fig. 1. VERTEX COVER can well be
considered a poster child of fixed-parameter research, as many
discoveries that influenced the whole field originated from the
study of this single problem.

2 Kernelization: Data Reduction with Guaranteed Effectiveness

The idea of data reduction is to quickly presolve those parts of a
given problem instance that are easy to cope with, shrinking it to
those parts that form its hard core [73, 94]. Computationally
expensive algorithms need then only be applied to this core. In
some practical scenarios, data reduction may even reduce instances
of a seemingly hard problem to triviality. Once an effective (and
efficient) reduction rule has been found, it is typically not only
useful in the context of parameterized algorithmics, but also in
other problem solving contexts, whether they be heuristic, approx-
imative, or exact.

This section introduces the concept of kernelization, that is,
polynomial-time data reduction with guaranteed effectiveness. Ker-
nelization is closely connected to fixed-parameter tractability and
emerges within its framework.

2.1 Basic Concepts There are many examples of combinatorial problems that would
not be solvable without employing heuristic data reduction and
preprocessing algorithms. For example, commercial solvers for
hard combinatorial problems such as the integer linear program
solver CPLEX heavily rely on data-reducing preprocessors for their
efficiency [15]. Obviously, many practitioners are aware of the
general concept of data reduction. Parameterized algorithmics

Fig. 1 A graph with a size-8 vertex cover (cover vertices are marked black)
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adds to this by providing a way to use data reduction rules not only
heuristically, but also with guaranteed performance quality. These
so-called kernelizations guarantee an upper bound on the size of the
reduced instance, which solely depends on the parameter value.
More precisely, the concept is defined as follows:

Definition 2 ([53, 109]). Let I be an instance of a parameterized
problem with given parameter k. A reduction to a problem kernel (or
kernelization) is a polynomial-time algorithm that replaces I by a new
instance I0 and k by a new parameter k0 such that

l the size of I0 and the value of k0 are guaranteed to only depend on
some function of k, and

l the new instance I0 has a solution with respect to the new param-
eter k0 if and only if I has a solution with respect to the original
parameter k.

Kernelizations can help to understand the practical effective-
ness of some data reduction rules and, conversely, the quest for
kernelizations can lead to new and powerful data reduction rules
based on deep structural insights.

Intriguingly, there is a close connection between fixed-
parameter tractable problems and those problems for which there
exists a kernelization—in fact, they are exactly the same [36].
Unfortunately, the running time of a fixed-parameter algorithm
directly obtained from a kernelization is usually not practical and,
in the other direction, there exists no constructive scheme for
developing data reduction rules for a fixed-parameter tractable
problem. Nevertheless, this equivalence can establish the fixed-
parameter tractability and amenability to kernelization of a problem
by knowing just one of these two properties.

2.2 Case Studies In this section, we first illustrate the concept of kernelization by a
simple example concerning the VERTEX COVER problem. We then
show a more involved kernelization algorithm for the graph clus-
tering problem CLUSTER EDITING. Finally, we discuss the limits of the
kernelization approach for fixed-parameter tractable problems and
present an extension of the kernelization concept that can be used
to cope with the nonexistence of problem kernels.

2.2.1 A Simple

Kernelization for Vertex

Cover

Consider our running example VERTEX COVER. In order to cover an
edge in the graph, one of its two endpoints must be in the vertex
cover. If one of these is a degree-1 vertex (that is, it has exactly one
neighbor), then the other endpoint has the potential to cover more
edges than this degree-1 vertex, leading to a first data reduction
rule.

Reduction Rule VC1
If there is a degree-1 vertex, then put its neighboring vertex into the cover.
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Here, “put into the cover” means adding the vertex to the
solution set and removing it and its incident edges from the
instance. Note that this reduction rule assumes that we are only
looking for one optimal solution to the VERTEX COVER instance we
are trying to solve; there may exist other minimum vertex covers
that do include the reduced degree-1 vertex (see Note 2).

After having applied Rule VC1, we can further do the following
in the fixed-parameter setting where we ask for a vertex cover of size
at most k.

Reduction Rule VC2
If there is a vertex v of degree at least k + 1, then put v into the cover.

The reason this rule is correct is that if we did not take v into the
cover, then we would have to take every single one of its k + 1
neighbors into the cover in order to cover all edges incident with v.
This is not possible because the maximum allowed size of the cover
is k.

After exhaustively performing Rules VC1 and VC2, all vertices
in the remaining graph have degree at most k. Thus, at most k edges
can be covered by choosing an additional vertex into the cover.
Since the solution set may be no larger than k, the remaining graph
can have at most k2 edges if it has a solution. Clearly, we can assume
without loss of generality that there are no isolated vertices (that is,
vertices with no incident edges) in a given instance. In conjunction
with Rule VC1, this means that every vertex has degree at least two.
Hence, the remaining graph can contain at most k2 vertices.

Stepping back, what we have just done is the following: After
applying two polynomial-time data reduction rules to an instance of
VERTEX COVER, we arrived at a reduced instance whose size can be
expressed solely in terms of the parameter k. Hence, considering
Definition 2, we have found a kernelization for VERTEX COVER.

2.2.2 A Kernelization for

Cluster Editing

In the above example kernelization for VERTEX COVER, there is a
notable difference between Rules VC1 and VC2: Rule VC1 is
based on a local optimality argument whereas Rule VC2 makes
explicit use of the parameter k. In applications, the first type of
data reduction rules is usually preferable, as they can be applied
independently of the value of k and this value is only used in the
analysis of the power of the data reduction rules. For the NP-hard
graph clustering problem CLUSTER EDITING, we now present an
efficient kernelization algorithm that is based solely on a data
reduction rule of the first type.

CLUSTER EDITING

Input: An undirected graph G ¼ (V, E), an edge-weight function

ω : V 2 ! Nþ, and a nonnegative integer k.
Task: Find whether we can modify G to consist of vertex-disjoint cliques
(that is, fully connected components) by adding or deleting a set of edges
whose weights sum up to at most k.
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CLUSTER EDITING can be used, for example, to cluster proteins
with high sequence similarity [23] and to identify cancer sub-
types [133]; a comprehensive overview of its applications is given
by Böcker and Baumbach [20]. Many theoretical studies consider
the case in which all edges have weight one, but the weighted
version of CLUSTER EDITING is more relevant in biological applica-
tions. The positive edge weights describe the cost to delete an
existing edge or to insert a missing edge, respectively. Figure 2
shows an instance of the unweighted problem variant together
with a solution. A simple kernelization for CLUSTER EDITING uses
similar high-degree reduction rules as the VERTEX COVER kerneliza-
tion described above. These rules yield a kernel with O(k2) verti-
ces [67]. This bound can be improved to O(k) vertices using
reduction rules whose correctness is based on local optimality
arguments. We now describe such a kernelization algorithm for
CLUSTER EDITING that was developed by Cao and Chen [39].

The idea of this kernelization is to examine for each vertex v of
the graph whether its neighborhood is already very dense and only
loosely connected to the rest of the graph. If this is the case, then it
is optimal to put all neighbors of v in the same cluster as v. This
knowledge can be used to identify edges that have to be deleted or
edges that have to be added. Formally, the algorithm computes the
sum of the weights of the missing edges in the neighborhoodN[v];
this number is denoted by δ(v). Then it computes the sum of the
edge weights between N[v] and V∖N[v]; this number is denoted
by γ(v). These two measures are combined to form what is called
the stable cost of a vertex v defined as c(v) ¼ 2δ(v) +γ(v). Now a
vertex v is called reducible if c(v) < | N[v] | . The main conse-
quence of being reducible is that if N[v] is reducible, then there is
an optimal solution such that N[v] is contained in a single cluster.
This implies the correctness of the following data reduction rules;
an example application of the first two reduction rules is given
in Fig. 3.

The first rule adds missing edges in neighborhoods of reducible
vertices.

Reduction Rule CE1
If there is a reducible vertex v and a pair of vertices u, x in N[v] that are not
neighbors, then add {u, x} to G and decrease k by ω({u, x}).

Fig. 2 Illustration for CLUSTER EDITING with unit weights: By removing two edges
from and adding one edge to the graph on the left (that is, k ¼ 3), we can obtain
a graph that consists of two vertex-disjoint cliques
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The next rule finds vertices that have some but only few neigh-
bors in N[v]. In an optimal solution, these vertices are never in the
same cluster as N[v]. Thus, the edges between these vertices
and N[v] may be deleted.

Reduction Rule CE2
If there is a reducible vertex v and a vertex u =2N[v] such that it is more costly
to add all missing edges between u and N[v] than to remove all edges
between u and N[v], then remove all edges between u and N[v] and
decrease k accordingly.

The final rule mergesN[v] into one vertex and adjusts the edge
weights accordingly.

Reduction Rule CE3
If there is a reducible vertex v to which Rules CE1 and CE2 do not apply,
then merge N[v] into a single vertex v0. For each vertex u 2 V∖ N[v]
set ω({u, v0}): ¼ Σx 2 N[v]ω({u, x}).

As long as the instance contains a reducible vertex, the reduc-
tion rules will either modify an edge or merge a vertex. If there are
no more reducible vertices, then the last trivial step of the kerneli-
zation algorithm is to remove all isolated vertices from the instance.
Afterwards, the instance has at most 2k vertices. The intuition
behind this size bound is the following. Every edge has weight at
least one, so a solution contains at most k edges. Since each edge
has two endpoints, the modifications can affect at most 2k vertices.
Now if in a cluster every vertex is affected, then the size of the
cluster is at least two times the number of edge modifications
within the cluster plus the number of edge modifications between
this cluster and other clusters. If there is a vertex v in the cluster that
is not affected by the solution, then the same bound on the cluster
size holds, in this case because v is not reducible. Summing these
size bounds over all clusters, we obtain a sum of edges in which each
solution edge appears at most twice. This gives the size bound of 2k
vertices.

2.3 Limits and

Extensions of

Kernelization

The two example problems VERTEX COVER and CLUSTER EDITING are
especially amenable to kernelization since they admit polynomial-
size problem kernels. That is, the size bound for the kernel is a
polynomial function in the parameter k. While all fixed-parameter

v u w

Rule CE1

v u w

Rule CE2

v u w

Fig. 3 The application of Reduction Rules CE1 and CE2 to an instance of CLUSTER EDITING. In the example, the
weight of all existing and missing edges is 1. Initially, the vertex v is reducible. Then, Rule CE1 inserts the
missing edge in N[v]. Subsequently, Rule CE2 deletes the edge between u and w, since it is more costly to
make w adjacent to all vertices of N[v] than to delete this edge
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tractable problems admit a problem kernelization, it is not the case
that all fixed-parameter tractable problems admit polynomial ker-
nels [53, 94]. It is beyond the scope of this paper to introduce the
proof techniques for showing nonexistence of polynomial problem
kernels. We will give, however, an example of a biologically moti-
vated graph problem that does not admit a polynomial problem
kernel and describe one way of circumventing this hardness result.

2-CLUB

Input: An undirected graph G ¼ (V, E) and a nonnegative integer k.
Task: Find a set S � V of at least k vertices such that the subgraph induced
by S has diameter at most two.

The NP-hard 2-CLUB problem attempts to identify large cohe-
sive subgroups of an input graph. The idea behind the formulation
is to relax the overly restrictive definition of the CLIQUE problem
which only accepts solutions that are complete graphs or, equiva-
lently, that have diameter one. The 2-CLUB problem finds applica-
tions in the detection of protein interaction complexes [115]; an
instance of 2-CLUB with a maximum-cardinality solution is shown
in Fig. 4.

As we will see, 2-CLUB is fixed-parameter tractable with respect
to the parameter solution size k. It does not, however, admit a
polynomial problem kernel for this parameter [119] (see Note 3
for a brief discussion).

In spite of this hardness result, one can still perform a useful
parameterized data reduction for 2-CLUB. The idea is to reduce the
problem to many problem kernels instead of just one. This
approach is called Turing kernelization. In the case of 2-CLUB, the
Turing kernelization consists of two simple parts. First, one looks
for a trivial solution using the following observation: for every
vertex v in a graph, its closed neighborhoodN[v] has diameter two.

Reduction Rule 2-C
If there is a vertex v with at least k � 1 neighbors, then return N[v].

After this rule has been applied, we have either obtained a
solution or the maximum degree of the graph is at most k � 2.
Now, the Turing kernelization uses only one further observation:
To find a largest 2-club it is sufficient to examine for each vertex v of
the input graph G the subgraph of G that contains only the vertices
which have distance at most two to v. We can now use the fact
that the maximum degree is bounded: every vertex v has at

Fig. 4 A graph with a 2-club of size six (marked black)
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most k � 2 neighbors and each of these has at most k � 3 further
neighbors. Thus, 2-CLUB can be solved by independently solving n
small instances withO(k2) vertices each. Formally, this means that 2-
CLUB admits a Turing kernelization with O(k2) vertices.

2.4 Applications and

Implementations

Solving VERTEX COVER is relevant in many bioinformatics-related
scenarios such as analysis of gene expression data [44] and the
computation of multiple sequence alignments [40]. Besides solving
instances of VERTEX COVER, another application of VERTEX COVER

kernelizations is to search maximum-cardinality cliques (that is,
maximum-size complete subgraphs) in a graph. Here, use is made
of the fact that an n-vertex graphG has a clique of size (n� k) if and
only if its complement graph, that is, the graph that contains exactly
the edges not contained in G, has a size-k vertex cover. The best
known kernel for VERTEX COVER (up to minor improvements) has 2k
vertices [108]. Abu-Khzam et al. [1] studied various kernelization
methods for VERTEX COVER and their practical performance on
biological networks with respect to running time and resulting
kernel size. Experimental results for the computation of large cli-
ques via VERTEX COVER are given, for example, by Abu-Khzam
et al. [2].

Several kernelization approaches including the one presented
in Subheading 2.2.2 have been implemented for CLUSTER EDIT-

ING [25, 76]. The Turing kernelization for 2-CLUB was implemented
and experimentally evaluated; it turned out to be a crucial ingredi-
ent for obtaining an efficient algorithm for this problem [77].
Another biologically relevant clustering problem where kerneliza-
tions have been successfully implemented is the CLIQUECOVER prob-
lem. Here, the task is to cover all edges of a graph using at most k
cliques (these may overlap). Using data reduction, Gramm
et al. [69] solved even large instances with 1 000 vertices and
k � 6 000 as long as they are sparse (m � 7 000).

3 Depth-Bounded Search Trees

Once data reductions as discussed in the previous section have been
applied to a problem instance, we are left with the “really hard”
problem kernel to be solved. A standard way to explore the huge
search space of a computationally hard problem is to perform a
systematic exhaustive search. This can be organized in a tree-like
fashion, which is the subject of this section.

3.1 Basic Concepts Search tree algorithms—also known as backtracking algorithms,
branching algorithms, or splitting algorithms—certainly are no
new idea and have extensively been used in the design of exact
algorithms (e.g., see [45, 60, 122]). The main contribution of
parameterized algorithmics to search tree algorithms is the
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consideration of search trees whose depth is constrained by a func-
tion in the parameter. Combined with insights on how to find
useful—and possibly non-obvious—parameters, this can lead to
search trees that are much smaller than those of naive brute-force
searches. For example, a very naive search tree approach for solving
VERTEX COVER is to just take one vertex and branch into two cases:
either this vertex is in the vertex cover or not. For an n-vertex
graph, this leads to a search tree of size O(2n). As we outline in
this section, we can do much better than that and obtain a search
tree whose depth is upper-bounded by k, giving a size bound
of O(2k). Extending what we discuss here, even better search trees
of size O(1. 28k) are possible [43]. Since usually k � n, this can
draw the problem into the zone of feasibility even for large graphs.

Besides depth-bounding, parameterized algorithmics provides
additional means to provably improve the speed of search tree
exploration, particularly by interleaving this exploration with ker-
nelizations, that is, applying data reduction to partially solved
instances during the exploration.

3.2 Case Studies Starting with our running example VERTEX COVER, this section
introduces the concept of depth-bounded search trees by three
case studies.

3.2.1 Vertex Cover

Revisited

For many search tree algorithms, the basic idea is to find a small
subset of the input instance in polynomial time such that at least
one element of this subset must be part of an optimal solution to
the problem. In the case of VERTEX COVER, the most simple such
subset is any set of two adjacent vertices. By definition of the
problem, one of these two vertices has to be part of a solution, or
the respective edge would not be covered. Thus, a simple search-
tree algorithm to solve VERTEX COVER on a graph G ¼ (V, E) can
proceed by picking an arbitrary edge e ¼ { v, w} and recursively
searching for a vertex cover of size k � 1 both in G[V∖{v}] and
G[V∖{w}], that is, in the graphs obtained by removing either v and
its incident edges or w and its incident edges. In this way, the
algorithm branches into two subcases knowing one of them must
lead to a solution of size at most k (provided that it exists).

As shown in Fig. 5, the recursive calls of the simple VERTEX

COVER algorithm can be visualized as a tree structure. Because the
depth of the recursion is upper-bounded by the parameter value
and we always branch into two subcases, the number of cases that
are considered by this tree—its size, so to say—is O(2k). Indepen-
dent of the size of the input instance, it only depends on the value
of the parameter k.

The currently “best” search trees for VERTEX COVER have worst-
case size O(1.28k) [43] and are mainly achieved by elaborate case
distinctions. These algorithms consist of several branching rules;
for example, the degrees of the endpoints of an edge determine
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which of the branching rules is applied. However, for practical
applications it is always concrete implementation and testing that
has to decide whether the administrative overhead caused by dis-
tinguishing more and more cases pays off. A simpler algorithm with
slightly worse search tree size bounds may be preferable.

3.2.2 A Search Tree

Algorithm for Cluster

Editing

For VERTEX COVER, we have found a depth-bounded search tree by
observing that at least one endpoint of any given edge must be part
of the cover. A somewhat similar approach can be used to derive a
depth-bounded search tree for CLUSTER EDITING (Fig. 6).

Recall that the aim for CLUSTEREDITING is to modify a graph into
a cluster graph, that is, a vertex-disjoint union of cliques, by

. . .

initial k

k−1

k−2

. . . . . . . . .k−3

Fig. 5 Simple search tree for finding a vertex cover of size at most k in a given
graph. The size of the tree is O(2k)

u v w

2

Delete {u, v } Merge u and v

u v

2

w x w

2

Fig. 6 The merge branching for CLUSTER EDITING. In the example instance, all edges
and missing edges have unit weight, except {v, w} which has weight 2. In one
branch, the edge {u, v} is deleted and k is reduced by 1. In the other branch, u
and v are merged and the edge weights are adjusted. For example, edge {x, w}
obtains weight 1 since the missing edge {u, w} had weight 1. Accordingly, k is
decreased by 1. All missing edges between x and other vertices have weight 2
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modifying edges whose weight sums up to at most k. Similar to
VERTEX COVER, a search tree for CLUSTER EDITING can be obtained by
noting that the desired graph of vertex-disjoint cliques forbids a
certain structure: If two vertices in a cluster graph are adjacent, then
their neighborhoods must be the same. Hence, whenever we
encounter two vertices u and v in the input graph G that are
adjacent and where one vertex, say v, has a neighbor w that is not
adjacent to u, we are compelled to do one of three things: Either
remove the edge {u, v}, or add the edge {u, w}, or remove the
edge {v, w}. Note that each such modification incurs a cost of at
least one. Therefore, exhaustively branching into three cases, each
time decreasing k by one, we obtain a search tree of size O(3k) to
solve CLUSTER EDITING. Using computer-aided algorithm design,
this idea can be improved to obtain, for the unit-weight case, a
search tree of size O(1.92k) [66]. The current-best theoretical
running time is, however, achieved by exploiting the fact that
edge weights make it possible to consider the merging operation
in a search tree algorithm. The observation is that in the presence of
a conflict as described above, one may either delete the edge {u, v}
or, otherwise, u and v are in the same cluster of the final cluster
graph. Thus, one may merge u and v and adjust the edge weights
accordingly. The main trick is that when performing the merging,
this still causes some cost: The edge {v, w} must be deleted or the
edge {u, w} must be added.

After merging u and v into a new vertex x one may thus
“remember” that the new edge {x, w} will incur a cost irrespective
of whether this edge is deleted or kept by a solution. With a more
refined branching strategy, this idea leads to a search tree of size
O(1.82k) for the general case [23] and of size O(1. 62k) for the
unit-weight case [19].

3.2.3 The Closest String

Problem

The CLOSEST STRING problem is also known as CONSENSUS STRING.

CLOSEST STRING

Input: A set of k length-‘ strings s1, . . ., sk and a nonnegative integer d.
Task: Find a consensus string s that satisfies dH(s, si) � d for all i ¼ 1, . . ., k.

Here, dH(s, si) denotes the Hamming distance between two
strings s and si, that is, the number of positions where s and si differ.
Note that there are at least two immediately obvious parameteriza-
tions of this problem. The first is given by choosing the “distance
parameter” d and the second is given by the number of input
strings k. Both parameters are reasonably small in various applica-
tions; we refer to Gramm et al. [65] for more details. Here, we
focus on the parameter d.

CLOSEST STRING appears, for example, in primer design, where we
try to find a small DNA sequence called primer that binds to a set of
(longer) target DNA sequences as a starting point for replication of
these sequences. How well the primer binds to a sequence is mostly
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determined by the number of positions in that sequence that
hybridize to it. While often done by hand, Stojanovic et al. [124]
proposed a computational approach for finding a well-binding
primer of length ‘. First, the target sequences are aligned, that is,
as many matching positions within the sequences as possible are
grouped into columns. Then, a “sliding window” of length ‘ is
moved over this alignment, giving a CLOSEST STRING problem for
each window position. Figure 7 illustrates this (see [63] for details).

In the remainder of this case study, we sketch a fixed-parameter
search tree algorithm for CLOSEST STRING due to Gramm et al. [65],
the parameter being the distance d. Unlike for VERTEX COVER and
CLUSTER EDITING, the central challenge lies in even finding a depth-
bounded search tree, which is not obvious at a first glance. Once
found, however, the derivation of the upper bound for the search
tree size is straightforward. The underlying algorithm is very simple
to implement.

The main idea behind the algorithm is to maintain a candidate
string s* for the center string and compare it to the strings s1, . . ., sk.
If s* differs from some si in more than d positions, then we know
that s* needs to be modified in at least one of these positions to
match the character that si has there. Consider the following
observation:

Observation 1. Let d be a nonnegative integer. If two strings si
and sj have a Hamming distance greater than 2d, then there is no
string that has a Hamming distance of at most d to both of si and sj.

This means that si is allowed to differ from s* in at most 2d
positions. Hence, among any d + 1 of those positions where si
differs from s*, at least one must be modified to match si. This
can be used to obtain a search tree that solves CLOSEST STRING.

ATCTA AGAA T
ATCTACAG AA
ATCTACAGAA T
ATCTA AGA AT
ATCTA AGAA T

ATCTACAGAAAT

TAGATGTCTTTA

T G
T C

G
T G
T G

...GGTGAG

...GGTGGA

...GGCGAG

...GGCGAG

...GGCAAG

TGAATGC...
GGATTGT...
GGAATGC...
GGAATGC...
GGAATGC...

closest string:

primer candidate:

Fig. 7 Illustration to show how DNA primer design can be achieved by solving
CLOSEST STRING instances on length-‘ windows of aligned DNA sequences. The
primer candidate is not the computed consensus string but its nucleotide-wise
complement
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We start with a string from {s1, . . ., sk} as the candidate string s*,
knowing that a center string can differ from it in at most d posi-
tions. If s* already is a valid center string, we are done. Otherwise,
there exists a string si that differs from s* in more than d positions,
but less than 2d. Choosing any d + 1 of these positions, we branch
into (d + 1) subcases, each subcase modifying a position in s* to
match si. This position cannot be changed anymore further down in
the search tree (otherwise, it would not have made sense to make it
match si at that position). Hence, the depth of the search tree is
upper-bounded by d, for if we were to go deeper down into the
tree, then s* would differ in more than d positions from the original
string we started with. Thus, CLOSEST STRING can be solved by
exploring a search tree of size O((d + 1)d) [65]. Combining data
reduction with this search tree, we arrive at the following:

Theorem 1. CENTER STRING can be solved in O(k � ‘ + k � d � (d + 1)d)
time.

It might seem as if this result is purely of theoretical interest—
after all, the term (d + 1)d becomes prohibitively large already for
d ¼ 15. Two things, however, should be noted in this respect:
First, for one of the main applications of CLOSEST STRING, primer
design, d is very small (often less than 4). Second, empirical analysis
reveals that when the algorithm is applied to real-world and random
instances, it often beats the proven upper bound by far, solving
many real-world instances in less than a second. The algorithm is
also faster than a simple integer linear programming formulation of
CLOSEST STRING when the input consists of many strings and ‘ is
small [65].

Unfortunately, many variants of CLOSEST STRING—roughly
speaking, these deal with finding a matching substring and distin-
guish between strings to which the center is supposed to be close
and to which it should be distant—are known to be intractable for
many standard parameters [56, 68, 103].

3.3 Applications and

Implementations

In combination with data reduction, the use of depth-bounded
search trees has proven itself quite useful in practice, for example,
allowing to find vertex covers of more than ten thousand vertices in
some dense graphs of biological origin [2]. It should also be noted
that search trees trivially allow for a parallel implementation: when
branching into subcases, each process in a parallel setting can
further explore one of these branches with no additional commu-
nication required. Experimental results for VERTEX COVER show
linear speedups even for thousands of cores [3].

The merge-based search tree algorithm for CLUSTER EDITING can
solve many instances arising in the analysis of protein similarity
data [23]; it is part of a software package [132]. A fixed-parameter
search tree algorithm was also used to solve instances of the
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MINIMUM COMMON STRING PARTITION problem [34]. This NP-hard
problem is motivated by applications in comparative genomics; the
fixed-parameter algorithm was able to solve the problem on some
bacterial genomes. The parameters exploited by the algorithm are
the number of breakpoints and the maximum gene copy number in
the genomes. Fixed-parameter search tree algorithms have also
been applied for solving the MAXIMUM AGREEMENT FOREST problem
which arises in the comparison of phylogenetic trees [130]; the
fixed-parameter algorithm outperformed two previous approaches
for MAXIMUM AGREEMENT FOREST, one using a formulation as integer
linear program and another one using a formulation as satisfiability
problem. Another example is the search for k-plexes in graphs,
which can be used, for example, to model functional modules in
protein interaction networks. By combining search trees with data
reduction, it is often possible to outperform previously used
methods [107].

Besides in parameterized algorithmics, search tree algorithms
are studied extensively in the area of artificial intelligence and
heuristic state space search. There, the key to speedups are admissi-
ble heuristic evaluation functions which quickly give a lower bound
on the distance to the goal. The reason that admissible heuristics
are rarely considered by the parameterized algorithmics community
in their works (see [64] for a counterexample) is that they typically
cannot improve the asymptotic running time. Still, the speedups
obtained in practice can be quite pronounced, as demonstrated for
VERTEX COVER [57].

As with kernelizations, algorithmic developments outside the
fixed-parameter setting can make use of the insights that have been
gained in the development of depth-bounded search trees in a
fixed-parameter setting. One example for this is the MINIMUMQUAR-

TET INCONSISTENCY problem arising in the construction of evolution-
ary trees. Here, an algorithm that uses depth-bounded search trees
was developed by Gramm and Niedermeier [64]. Their insight was
used by Wu et al. [134] to develop a faster (non-parameterized)
algorithm for this problem.

In conclusion, depth-bounded search trees with clever branch-
ing rules are certainly one of the first approaches to try when
solving fixed-parameter tractable problems in practice.

4 Dynamic Programming

Dynamic programming is one of the most useful algorithm design
techniques in bioinformatics; it also plays an important role in
developing fixed-parameter algorithms. Since dynamic program-
ming is a classic algorithm design technique covered in many
standard textbooks [122], we keep the presentation of “fixed-
parameter dynamic programming” short.
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4.1 Basic Concepts The general idea is to recursively break down the problem into
possibly overlapping subproblems whose optimal solution allows
to find an overall optimal solution. The solutions to subproblems
are stored in a table, avoiding recalculation. A classic example is
sequence alignment of two strings, for instance, using the Needle-
man–Wunsch algorithm [18]. The dynamic programming tech-
nique, however, is not restricted to polynomial-time solvable
problems.

The running time of dynamic programming depends mainly on
the table size, so the main trick in obtaining fixed-parameter
dynamic programming algorithms is to bound the size of the
table by a function of the parameter times a polynomial in the
input size. Two generic methods for this are tree decompositions
and color-coding, described in Subheadings 5 and 6, respectively.
In many cases, however, the table size is obviously bounded in the
parameter and thus no additional techniques are necessary to
obtain a fixed-parameter algorithm.

4.2 Case Study One application of dynamic programming is in the interpretation of
mass spectrometry data, which contains mass peaks for a sample
molecule and for fragments thereof [22, 27]. The method builds a
graph where a vertex corresponds to a possible molecular formula
of a peak, and an edge corresponds to a hypothetical fragmentation
step. Edges are weighted by the likeliness of the corresponding
fragmentation step. The goal is then to calculate a maximum scor-
ing subtree of this graph. In this tree, we must use only one of the
molecular formulas of a peak. This is achieved by giving each vertex
a corresponding color and asking for a colorful subtree.

MAXIMUM COLORFUL SUBTREE

Input:A directed graphD ¼ (V, A) with a vertex coloring c: V ! C and arc
weights w : A ! ℚþ.
Task: Find a subtree of G that uses each color at most once and has
maximum total arc weight.

This NP-hard problem can be solved by dynamic program-
ming [22, 27, 120] by building a table W(v, S) for v 2 V and
S � C. An entry W(v, S) holds the maximum score of a subtree
with root v whose vertex set has exactly the colors of S. The table is
filled out with the following recurrence:

W ðv, SÞ ¼ max

maxu2V :cðuÞ2S∖fcðvÞgW ðu, S∖fcðvÞgÞ þ wðv,uÞ
max ðS1,S2Þ : S1 \ S2 ¼ fcðvÞg

S1 [ S2 ¼ S
W ðv, S1Þ þW ðv, S2Þ

8<
:

ð1Þ
with initial condition W(v, {c(v)}) ¼ 0 and the weight of nonexis-
tent arcs set to �1. The first line extends a tree by introducing v as
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new root and adding the arc (v, u), and the second line merges two
trees that have the same root but are otherwise disjoint.

The table W has n � 2k entries where k is the number of
different vertex colors, and filling it out can be done in O(3kkm)
time. Thus, MAXIMUMCOLORFUL SUBTREE is fixed-parameter tractable
with respect to the parameter k. In the application, the parameter is
the number of peaks in the spectrum which is usually small.

4.3 Applications and

Implementations

The algorithm described in Subheading 4.2 was found to be fast
and accurate in determining glycan structure [27]. There are several
further applications of dynamic programming over exponentially
sized tables. In phylogenetics, for example, the task of reconciling a
binary gene tree with a nonbinary species trees can be solved via a
dynamic programming algorithm whose table size is exponential
only in the maximum outdegree of the species tree [125]. The
implementation solves instances based on cyanobacterial gene
trees on average in less than 1 s. In these instances, the parameter
value ranges from 2 to 6.

Another application of dynamic programming is in a variant of
haplotyping (see also Subheading 7.2) which deals with the analysis
of genomic fragments. Using dynamic programming, solutions to
the weighted minimum error correction formulation can be found in
a running time of O(2k � m). Here, k is the maximum coverage of
any genome position by the input fragments and m is the number
of SNPs per sequencing read [116]. The algorithm scales up to
k � 20.

5 Tree Decompositions of Graphs

Many NP-hard graph problems become computationally feasible
when they are restricted to cycle-free graphs, that is, trees or collec-
tions of trees (forests). Trees, while potentially simplifying compu-
tation, form a very limited class of graphs that seldom suffices as a
model for real-life applications. Hence, as a compromise between
general graphs and trees, one might want to look at “tree-like”
graphs. This tree-likeness can be formalized by the concept of tree
decompositions. In this section, we survey some important aspects of
tree decompositions and their algorithmic use with respect to
computational biology and FPT. Surveys on this topic are given
by Berger et al. [11] and Bodlaender and Koster [29].

5.1 Basic Concepts There is a very helpful and intuitive characterization of tree decom-
positions in terms of a robber–cop game in a graph [28]: A robber
stands on a graph vertex and, at any time, he can run at arbitrary
speed to any other vertex of the graph as long as there is a path
connecting both. The only restriction is that he is not permitted to
run through a cop. There can be several cops and, at any time, each
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of them may either stand on a graph vertex or be in a helicopter
(that is, she is above the game board and can move anywhere
without being restricted by graph edges). The cops want to land a
helicopter on the vertex occupied by the robber. The robber can see
a helicopter approaching its landing vertex and he may run to a new
vertex before the helicopter actually lands. Thus, the cops want to
occupy all vertices adjacent to the robber’s vertex, making him
unable to move, and to then land one more remaining helicopter
on the robber’s vertex itself to catch him. The treewidth of the
graph is the minimum number of cops needed to catch a robber
minus one (observe that if the graph is a tree, two cops suffice and
trees hence have a treewidth of one) and a corresponding tree
decomposition is a tree structure that provides the cops with a
scheme to catch the robber. Intuitively, the tree decomposition
indicates “bottlenecks” (separators) in the graph and thus reveals
an underlying scaffold that can be exploited algorithmically.

Formally, tree decompositions and treewidth center around the
following somewhat technical definition; Fig. 8 shows a graph
together with an optimal tree decomposition of width two.

Definition 3. Let G ¼ (V, E) be an undirected graph. A tree
decomposition of G is a pair h{Xiji 2 I}, Ti where each Xi is a subset
of V, called a bag, and T is a tree with the elements of I as nodes. The
following three properties must hold:

1.
S
i2I

X i ¼ V ;

2. for every edge {u, v} 2 E, there is an i 2 I such that {u, v} � Xi;
and

3. for all i, j, k 2 I, if j lies on the path between i and k in T, then Xi \
Xk � Xj.

The width of h{Xiji 2 I}, Ti equals max{| Xi | ji 2 I} � 1. The
treewidth of G is the minimum k such that G has a tree decomposition
of width k.
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Fig. 8 A graph together with a tree decomposition of width 2. Observe that—as demanded by the consistency
property—each graph vertex induces a subtree in the decomposition tree
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The third condition of the definition is often called consistency
property. It is important in dynamic programming, the main algo-
rithmic tool when solving problems on graphs of bounded tree-
width. An equivalent formulation of this property is to demand that
for any graph vertex v, all bags containing v form a connected
subtree.

For trees, the bags of a corresponding tree decomposition are
simply the two-element vertex sets formed by the edges of the tree.
In the definition, the subtraction of 1 thus ensures that trees have a
treewidth of 1. In contrast, a clique of n vertices has treewidth n� 1.
The corresponding tree decomposition trivially consists of one bag
containing all graph vertices; in fact, no tree decomposition with
smaller width is attainable since it is known that every complete
subgraph of a graphG is completely “contained” in a bag ofG’s tree
decomposition.

Tree decompositions of graphs are connected to another cen-
tral concept in algorithmic graph theory: graph separators are
vertex sets whose removal from the graph separates the graph into
two or more connected components. Each bag of a tree decompo-
sition forms a separator of the corresponding graph.

Given a graph, determining its treewidth is an NP-hard prob-
lem itself. However, several tools and heuristics exist that construct
tree decompositions [29–31], and for some graphs that appear in
practice, computing a tree decomposition is easy. Here, we concen-
trate on the algorithmic use of tree decompositions, assuming that
they are provided to us.

5.2 Case Study Typically, tree decomposition-based algorithms have two stages:

1. Find a tree decomposition of bounded width for the input
graph.

2. Solve the problem by dynamic programming on the tree decom-
position, starting from the leaves.

Intuitively speaking, a decomposition tree provides us with a
scaffold-structure that allows for efficient and consistent processing
through the graph. By design, this scaffold leads to optimal solu-
tions even when the utilized tree decompositions are not optimal;
however, the algorithm will run slower and consume more memory
in that case.

To exemplify dynamic programming on tree decompositions,
we make use of our running example VERTEX COVER and sketch a
fixed-parameter dynamic programming algorithm for VERTEX COVER

with respect to the parameter treewidth.

Theorem 2. For a graph G with a given width-ω tree decomposition
h{Xiji2 I},Ti , anoptimal vertex cover canbecomputed inO(2ω �ω �|I|)
time.
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The basic idea of the algorithm is to examine for each bagXi all
of the at most 2jXi j possibilities to obtain a vertex cover for the
subgraph G[Xi]. This information is stored in tables Ai, i 2 I.
Adjacent tables are updated in a bottom-up process starting at the
leaves of the decomposition tree. Each bag of the tree decomposi-
tion thus has a table associated with it. During this updating process
it is guaranteed that the “local” solutions for each subgraph asso-
ciated with a bag of the tree decomposition are combined into a
“globally optimal” solution for the overall graph G. (We omit
several technical details here; these can be found in [109, Chap-
ter 10].) The following points of Definition 3 guarantee the validity
of this approach:

1. The first condition in Definition 3, that is, V ¼ S
i2I

X i, makes

sure that every graph vertex is taken into account during the

computation.

2. The second condition in Definition 3, that is,
8e 2 E ∃i 2 I : e 2 Xi, makes sure that all edges can be treated
and thus will be covered.

3. The third condition in Definition 3 guarantees the consistency
of the dynamic programming, since information concerning a
particular vertex v is only propagated between neighboring bags
that both contain v.

While the running time of the dynamic programming part can
often be improved over a naive approach, there is evidence that
known algorithms for some basic combinatorial problems are
essentially optimal [101].

One thing to keep in mind for a practical application is that
storing dynamic programming tables requires memory space that
grows exponentially in the treewidth. Hence, even for “small”
treewidths, say, between 10 and 20, the computer program may
run out of memory and break down. Some techniques for limiting
memory use have been proposed [12, 55, 70].

5.3 Applications and

Implementations

Tree decomposition-based algorithms are a valuable alternative
whenever the underlying graphs have small treewidth. As a rule of
thumb, the typical border of practical feasibility lies somewhere
below a treewidth of 20 for the underlying graph, although with
advantageous data and careful implementation higher values are
possible (e.g., [70]). Successful implementations for solving VERTEX

COVER with tree decomposition approaches have been
reported [4, 12].

A practical application of tree decompositions is found in pro-
tein structure prediction, namely the prediction of backbone struc-
tures and side-chain prediction. These two problems can be
modeled as a graph labeling problem, where the resulting graphs
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have a very small treewidth in practice, allowing the problems to be
solved efficiently [11].

Besides taking an input graph, computing a tree decomposition
for it, and hoping that the resulting tree decomposition has small
treewidth, there have also been cases where a problem is modeled as
a graph problem such that it can be proven that the resulting graphs
have a tree decomposition with small treewidth that can efficiently
be found. As an example, Song et al. [123] used a so-called confor-
mational graph to specify the consensus sequence-structure of an
RNA family. They proved that the treewidth of this graph is basi-
cally determined by the structural elements that appear in the RNA.
More precisely, they showed that if there is a bounded number of
crossing stems, say k, in a pseudoknot structure, then the resulting
graph has treewidth (2 + k). Since the number of crossing stems is
usually small, this yields a fast algorithm for searching RNA second-
ary structures (see also [135]).

Other biological applications include peptide sequencing and
spectral alignment [100], molecule bond multiplicity infer-
ence [26], charge group partitioning for biomolecular simula-
tions [38], and NMR interpretation [98]. The idea of exploiting
the treewidth of an auxiliary structure describing interdependencies
of the input also has attracted much attention in artificial intelli-
gence (AI) applications [62, 85].

Besides dynamic programming, a very powerful method to
obtain fixed-parameter results for the parameter treewidth is to
cast the problem as an expression in monadic second-order logic
(MSO) [97]. For example, for VERTEX COVER, the expression is

vcðU Þ :¼ 8x, y 2 V : Øðfx, yg 2 EÞ∨x 2 U∨y 2 U :

Since the worst-case running time obtained from this formulation
is extremely bad, this approach was thought to be impractical [109,
Chapter 10]. However, recently a solver was presented that indeed
just requires the user to provide the MSO expression [88, 96, 97].
If the problem at hand admits a formulation in MSO (as most
problems that are fixed-parameter tractable for treewidth do), this
provides a quick way to evaluate the feasibility of the treewidth
approach for the data at hand, with the option to get a quicker
algorithm by designing a customized dynamic programming.

Besides treewidth, a number of alternative concepts have been
developed to compare the structure of a graph to a tree, including
branch-width, rank-width, and hypertree-width [78, 97].

6 Color-Coding

The color-coding technique due to Alon et al. [5] is a general
method for finding small patterns in graphs. In its simplest form,
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color-coding can solve the MINIMUM-WEIGHT PATH problem, which
asks for the cheapest path of length k in a graph. This has been
successfully employed with protein–protein interaction networks to
find signaling pathways [82, 120] and to evaluate pathway similar-
ity queries [121].

6.1 Basic Concepts A naive approach to discover a small structure of k vertices within a
graph of n vertices would be to combinatorially try all of the
roughly nk possibilities of selecting k out of n vertices and then
testing the selection for the desired structural property. This
approach quickly leads to a combinatorial explosion, making it
infeasible even for rather small input graphs of a few hundred
vertices. The central idea of color-coding is to randomly color
each vertex of a graph with one of k colors and to hope that all
vertices in the subgraph searched for obtain different colors (that is,
the vertex set becomes colorful).

When the structure that is searched for becomes colorful, the
task of finding it can be solved by dynamic programming in a
running time where the exponential part solely depends on k, the
size of the substructure searched for. Of course, given the random-
ness of the initial coloring, most of the time the target structure will
actually not be colorful. Therefore, we have to repeat the process of
random coloring and searching (called a trial) many times until the
target structure is colorful at least once with sufficiently high prob-
ability. As we will show, the number of trials also depends only on k
(albeit exponentially). Consequently this algorithm has a fixed-
parameter running time. Thus it is much faster than the naive
approach which needs O(nk) time.

6.2 Case Study Formally stated, the problem we consider is the following:

MINIMUM-WEIGHT PATH

Input: An undirected graph G with edge weights w : E ! ℚþ and a
nonnegative integer k.
Task: Find a simple length-k path in G that minimizes the sum over its edge
weights.

This problem is well known to be NP-hard [61, ND29]. What
makes the problem hard is the requirement of simple paths, that is,
paths where no vertex may occur more than once (otherwise, it is
easily solved by traversing a minimum-weight edge k � 1 times).

Given a fixed coloring of vertices, finding a minimum-weight
path that is colorful can be accomplished by dynamic program-
ming: Assume that for some i < k we have computed a value W
(v, S) for every vertex v 2 V and every cardinality-i subset S of
vertex colors such that W(v, S) denotes the minimum weight of a
path that uses each color in S exactly once and ends in v. Clearly, the
resulting path is simple because no color is used more than once.
We can now use this to compute the values W(v, S) for all cardinal-
ity-(i + 1) subsets S and vertices v 2 V, because any colorful
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length-(i + 1) path that ends in a vertex v 2 Vmust be composed of
a colorful length-i path that does not use the color of v and ends in
a neighbor of v.

More precisely, we let

W ðv, SÞ ¼ min
e¼fu, vg2E

ðW ðu, S∖fcolorðvÞgÞ þ wðeÞÞ: ð2Þ

See Fig. 9 for an example.

It is straightforward to verify that on an m-edge graph the
dynamic programming takes O(2km) time. Whenever the
minimum-weight length-k path P in the input graph is colored
with k different colors (that is, its vertex set is colorful), then the
algorithm finds P. The problem, of course, is that the coloring of
the input graph is random and hence many coloring trials have to
be performed to ensure that the minimum-weight path is found
with a high probability. More precisely, the probability of any
length-k path (including the one with minimum weight) being
colorful in a single trial is

Pc ¼ k!

kk
>

ffiffiffiffiffiffiffiffi
2πk

p
e�k ð3Þ

because there are kk ways to arbitrarily color k vertices with k colors
and k! ways to color them such that no color is used more tha-
n once. Using t trials, a path of length k is found with probability
1 � (1 � Pc)

t. Therefore, to ensure that a colorful path is found
with a probability greater than 1 �ε (for any 0 < ε � 1), at least

tðεÞ ¼ lnε

lnð1� PcÞ
� �

¼ �lnε �OðekÞ ð4Þ

trials are needed.This bounds theoverall running timeby2O(k) � nO(1).
While the result is only correct with a certain probability, we
can specify any desired error probability, say 0.1 %, noting that
even very lowerror probabilities donot incur excessive extra running
time costs.
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Fig. 9 Example for solving MINIMUM-WEIGHT PATH using the color-coding technique. Here, using (2) a new table
entry (right) is calculated using two already known entries (left and middle)
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Note that the number of colors chosen poses a trade-off: While
using more than k colors increases the chance of a target structure
becoming colorful—and thus decreases the number of trials needed
to achieve a given error probability—it increases the running time
and memory requirements of the dynamic programming step. As a
theoretical analysis points out, using 1.3k colors instead of just k
improves the worst-case running time of the color-coding algo-
rithm. Moreover, in practice it is often beneficial to increase the
number of colors even further [82].

6.3 Applications

and Implementations

Protein interaction networks represent proteins by vertices and
mutual protein–protein interaction probabilities by weighted
edges. They are a valuable source of information for understanding
the functional organization of the proteome. Scott et al. [120]
demonstrated that high-scoring simple paths in the network consti-
tute plausible candidates for linear signal transduction pathways,
simple meaning that no vertex occurs more than once and high-
scoringmeaning that the product of edge weights is maximized. To
match the above definition of MINIMUM-WEIGHT PATH, one works
with the weight w(e): ¼ �logp(e) of an edge e with interaction
probability p(e) between e’s endpoints. Then minimizing the sum
of the weights is equivalent to maximizing the product of the
probabilities.

The currently most efficient implementation based on color-
coding [82] is capable of finding optimal paths of length up to 20 in
seconds within a yeast protein interaction network containing
about 4 500 vertices.

A particularly appealing aspect of color-coding is that it can be
easily adapted to many practically relevant variations of the problem
formulation:

l The set of vertices where a path can start and end can be
restricted (such as to force it to start in a membrane protein
and end in a transcription factor [120]).

l Not only the minimum-weight path can be computed but rather
a collection of low-weight paths (typically, one demands that
these paths must differ in a certain amount of vertices to ensure
that they are diverse and not small modifications of the global
minimum-weight path) [82].

l More generally, pathway queries to a network, that is, the task of
finding a pathway in a network that is as similar as possible to a
query pathway, can be handled with color-coding [121].

Several other works use color-coding for querying in protein
interaction networks. For example, the queries can be trees, allow-
ing for identification of non-exact (homeomorphic) matches [52].
Another application is counting non-induced occurrences of sub-
graph topologies in the form of trees and bounded treewidth
subgraphs [6].
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A further use of color-coding is to solve the GRAPH MOTIF

problem. In a biological application of GRAPH MOTIF, the query is a
set of proteins, and the task is to find a matching set of proteins that
are sequence-similar to the query proteins and span a connected
region of the network. Bruckner et al. [33] and Betzler et al. [13]
provided implementations based on color-coding; they differ in the
way insertions and deletions are handled, and are thus not directly
comparable.

Further, color-coding has also found applications in string
problems: for example, Bonizzoni et al. [32] used it to solve a
variant of LONGEST COMMON SUBSEQUENCE that is motivated by
a sequence comparison problem. However, to the best of our
knowledge no string algorithm using color-coding has been imple-
mented yet.

6.3.1 Related

Techniques

Wemention some techniques that use ideas similar to color-coding.
To the best of our knowledge, with one exception none of them has
been implemented so far.

Two variants use only two colors to separate the pattern from
surrounding vertices (random separation) [37] or to divide the
graph into two parts for recursion (divide-and-color) [87]. Random
separation can be used to find small subgraphs with desired proper-
ties in sparse graphs. For these problems enumerating connected
subgraphs and using color-coding [91] sometimes gives faster
algorithms. A further extension known as chromatic coding was
used to obtain (theoretically) fast algorithms for the DENSE TRIPLET

INCONSISTENCY problem motivated from phylogenetics [72].
Algebraic techniques [92, 93] can improve on the worst-case

running time of many color-coding approaches; for example, the
currently strongest worst-case bound for GRAPH MOTIF is obtained
this way [16]. This approach, however, is not as flexible as color-
coding, for example, with respect to the handling of large weights.
Experiments for the unweighted version of MINIMUM-WEIGHT PATH

on random graphs have shown that the approach is feasible for a
path length of 16 and 8000 vertices [17].

7 Iterative Compression

The main idea of iterative compression is induction: we construct a
slightly smaller instance, solve it recursively, and then make use of
the solution to solve the actual instance. While induction is a classic
algorithmic approach, iterative compression first appeared in a work
by Reed et al. in 2004 (see also a 2009 survey [75]). Although it is
perhaps not quite as generally applicable as data reduction or search
trees, it appears to be useful for solving a wide range of problems
and has led to significant breakthroughs in showing fixed-
parameter tractability results. Iterative compression is typically
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used for “minimum obstruction deletion” problems: given a set of
items, omit the minimum number of items such that the remaining
items exhibit some “nice” structure. Thus, it can sometimes model
parsimonious error correction. VERTEX COVER is one example fitting
this scheme, and it can be solved with iterative compression [117].

7.1 Basic Concepts The central concept of iterative compression is to employ a so-
called compression routine.

Definition 4. A compression routine is an algorithm that, given a
problem instance and a solution of size k, either calculates a smaller
solution or proves that the given solution is of minimum size.

With a compression routine, we can find an optimal solution
for an instance by recursively solving a smaller instance, using the
solution for the smaller instance to find a possibly suboptimal
solution for the actual instance, and then using the compression
routine to find an optimal solution. For “minimum obstruction
deletion” problems, the only nontrivial step is the compression
routine.

The main strength of iterative compression is that it allows us to
see a problem from a different angle, since the compression routine
does not only have the problem instance as input, but also a
solution, which carries valuable structural information on the
input. Also, the compression routine does not need to find an
optimal solution at once, but only any better solution. Therefore,
the design of a compression routine can often be simpler than
designing a complete algorithm.

Algorithmically, the compression routine is the “complex” step
in iterative compression in two regards: First, while the mode of use
of the compression routine is usually straightforward, finding the
compression routine itself often is not. Second, if the compression
routine is a fixed-parameter algorithm with respect to the parame-
ter k, then so is the whole algorithm.

7.2 Case Studies The showcase for iterative compression is the VERTEX BIPARTIZATION

problem, also known as ODD CYCLE COVER.

VERTEX BIPARTIZATION

Input: An undirected graph G ¼ (V, E) and a nonnegative integer k.
Task: Find a set D � V of at most k vertices such that G[V∖D] is bipartite.

This problem appears as MINIMUM FRAGMENT REMOVAL in the
context of SNP haplotyping [112]. When analyzing DNA frag-
ments obtained by shotgun sequencing, it is initially unknown
which of the two chromosome copies of a diploid organism a
fragment belongs to. We can, however, determine for some pairs
of fragments that they cannot belong to the same chromosome
copy since they contain conflicting information at some SNP locus.
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Using this information, it is straightforward to reconstruct the
chromosome assignment. We can model this as a graph problem,
where the fragments are the vertices and a conflict is represented as
an edge. The task is then to color the vertices with two colors such
that no vertices with the same color are adjacent. The problem gets
difficult in the presence of errors such as parasite DNA fragments
which randomly conflict with other fragments. In this scenario, we
ask for the least number of fragments to remove such that we can
get a consistent fragment assignment (see Fig. 10). Using the num-
ber of fragments k to be removed as a parameter is a natural
approach, since the result is only meaningful for small k anyway.

Iterative compression provided the first fixed-parameter algo-
rithm for VERTEX BIPARTIZATION with this parameter [118]. We
sketch how to apply this to finding an optimal solution (a removal
set) for a VERTEX BIPARTIZATION instance (G ¼ (V, E), k). Choose an
arbitrary vertex v and let G0 be G with v deleted. Recursively find
an optimal removal set R0 for G0 (this recursion terminates after
n ¼ | V | steps, where we can yield the empty removal set for the
empty graph). Clearly, R0 [{ v} is a removal set for G, although it
might not be optimal (it can be too large by one). Now using the
compression routine for G and R0 [{ v}, we can find an optimal
solution for G0.

The compression routine itself works by examining a number
of vertex cuts in an auxiliary graph (that is, a set of vertices whose
deletion makes the graph disconnected), a task which can be
accomplished in polynomial time by maximum flow techniques.
We refer to the literature for details [80, 95, 118]. The running
time of the complete algorithm is O(3k � mn) [80].

7.3 Applications

and Implementations

The iterative compression algorithm for VERTEX BIPARTIZATION has
been employed for a number of biological applications. An imple-
mentation, improved by heuristics, can solve all MINIMUM FRAGMENT

REMOVAL problems from a testbed based on human genome data
within minutes, whereas established methods are only able to solve
about half of the instances within reasonable time [80]. The UNOR-

DEREDMAXIMUM TREE ORIENTATION, which models inference of signal

B

B

A

A

B

A

Fig. 10 A VERTEX BIPARTIZATION instance (left), and an optimal solution (right): when
deleting two fragments (dashed), the remaining fragments can be allocated to
the two chromosome copies (A and B) such that no conflicting fragments get the
same assignment
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transmissions in protein–protein interaction networks based on
cause–effect pairs, can be reduced to GRAPH BIPARTIZATION [21].
Also, ordering and orienting contigs produced during genome
assembly can be reduced to GRAPH BIPARTIZATION, and this is imple-
mented in the SCARPA scaffolder [51]. Recently, an algorithm
with a better worst-case bound of 2.32k � nO(1) based on linear
programming was presented [102], which seems like a promising
alternative to iterative compression for VERTEX BIPARTIZATION.

EDGE BIPARTIZATION, the edge deletion version of VERTEX BIPARTI-

ZATION, can also be solved by iterative compression [74]. Enhanced
with data reduction rules and generalized to the SIGNED GRAPH BAL-

ANCING problem, this algorithm was used to analyze gene regu-
latory networks [83]. It can solve many networks to optimality, but
fails for the largest ones [83]. The TANGLEGRAM LAYOUT problem is
about drawing two phylogenetic trees on the same species set in
order to facilitate analysis; it can be reduced to EDGE BIPARTIZA-

TION [24]. The implementation by H€uffner et al. [83] can find
exact solutions for all practically relevant TANGLEGRAM LAYOUT

instances within seconds [24]. Finally, computing the minimum
number of recombination events for general pedigrees with
two sites for all members can also be reduced to EDGE

BIPARTIZATION [49].
Another prominent problem amenable to iterative compression

is FEEDBACK VERTEX SET, which also has applications for genetic
linkage analysis [10]. While initial algorithms based on iterative
compression [47, 74] had prohibitive worst-case running times,
the currently fastest known approach runs in 3.619k � nO(1) time for
finding a feedback vertex set of k vertices [89]. However, these
algorithms have not been implemented yet.

The DIRECTED FEEDBACK VERTEX SET problem was also shown to
be fixed-parameter tractable by iterative compression [42], solving
a long-standing open question. However, the worst-case running
time bound is much worse than for the previously mentioned
problems. Still, an experimental evaluation on random graphs [58],
employing also data reduction, showed encouraging results for very
small parameter values. DIRECTED FEEDBACK VERTEX SET has applica-
tions in pairwise genome alignment under the duplication-loss
model [50] and in the comparison of gene orders [71]. For an
application in reconstructing reticulation networks in particular,
the authors mention that the parameter could be expected to be
very small [99].

Finally, the CLUSTERVERTEXDELETION problem, the “vertex dele-
tion variant” of CLUSTER EDITING, aims to cluster objects by remov-
ing objects that do not fit in the cluster structure. It can also be
solved by a fixed-parameter algorithm with respect to the number
of removed vertices using iterative compression [84].
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8 A Roadmap Towards Efficient Implementations

Here we try to give some general recommendations on how to go
about applying parameterized algorithmics to NP-hard computa-
tional problems in practice.

8.1 Identification of

Parameters

The first task is to identify fruitful parameters. As detailed in Sub-
heading 1.2, it is useful to consider several “structural” parameters,
possibly also deduced from a data-driven analysis of the input
instances. The usefulness of the parameter clearly depends on
whether it is small in the input instances. For graph instances, a
tool such as Graphana (http://fpt.akt.tu-berlin.de/graphana/)
that calculates a wide range of graph parameters can be helpful. At
this point, it is also useful to determine whether the problem is
fixed-parameter tractable or W[1]-hard. While a hardness result
encourages to look for another parameter or combined parameters,
bear in mind that certain techniques such as data reduction can still
be effective in practice even without a performance guarantee.

8.2 Implementation

of Brute-Force Search

The next thing to do is to implement a brute-force search that is as
simple as possible. There are several reasons for this: First, it gives
some first impression on what solutions look like (for example, can
we use their size as parameter?). Second, a simple starting imple-
mentation is invaluable in shaking out bugs from later, more
sophisticated implementations, in particular if results for random
instances are systematically compared. Possibly the best way to get a
simple brute-force result is to use an integer linear program (ILP).
These sometimes need only a few lines when using a modeling
language, but are often surprisingly effective. The second method
of choice is a simple search tree (Subheading 3).

8.3 Implementation

of Data Reduction

Data reduction is valuable in combination with any other algorith-
mic technique such as approximation, heuristics, or fixed-parameter
algorithms. In some cases it can even completely solve instances
without further effort; it can be considered as essential for the
treatment of NP-hard problems. Thus it should always be the first
nontrivial technique to be developed and implemented. When
combined with even a naive brute-force approach, it can often
already solve instances of notable size. For large instances, an
efficient implementation of the data reduction rules is necessary.
A rule of thumb is to aim for linear running time for most of the
implemented data reduction rules and to apply linear-time data
reduction rules first [126].

8.4 Tuned Search

Trees

After this, the easiest speedups typically come from a more carefully
tuned search tree algorithm. Case distinction can help to improve
provable running time bounds, although it has often been reported
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that a too complicated branching actually leads to a slowdown.
Heuristic branching priorities can help, as well as admissible heuris-
tic evaluation functions [57]. Further, interleaving with data reduc-
tion can lead to a speedup [111].

8.5 Non-traditional

Techniques

When search trees are not applicable or too slow, less clear instruc-
tions can be given. The best thing to do is to look at other fixed-
parameter algorithms and techniques for inspiration: are we look-
ing for a small pattern in the input? Possibly color-coding (Sub-
heading 6) helps. Are we looking for minimum modifications to
obtain a nice combinatorial structure? Possibly iterative compres-
sion (Subheading 7) is applicable. In this way, using some of the less
common approaches of fixed-parameter algorithms, one might still
come up with a fixed-parameter algorithm.

Here, one should be wary of exponential-space algorithms as
these can often fill the memory within seconds and therefore
become unusable in practice. In contrast, one should not be too
afraid of bad upper bounds for fixed-parameter algorithms—the
analysis is worst-case and often much too pessimistic.

8.6 Heuristic

Speedups

Some of the largest speedups experienced in experiments come
from techniques that can be considered heuristic in the sense that
they do not improve worst-case time bounds or the kernel size. The
general idea of most heuristics is to recognize early that some
branches or subcases cannot lead to an optimal solution and to
skip those. Their potential effectiveness, even when no perfor-
mance guarantees can be given, should always be kept in mind
when implementing algorithms.

Furthermore, most algorithms will have numerous degrees of
freedom concerning their actual implementation, execution order,
and the value of some thresholds, for example, concerning the
fraction of search tree nodes to which data reduction should be
applied. There are tools for algorithm configuration that can exploit
this freedom and may yield magnitudes of speedup [79].

9 Conclusion

We surveyed several techniques for developing efficient fixed-
parameter algorithms for computationally hard (biological) pro-
blems. Since many of these problems appear to “carry small para-
meters,” we firmly believe that there will continue to be a strong
interaction between parameterized complexity analysis and algo-
rithmic bioinformatics. To make this as fruitful as possible, it is
necessary to analyze real-world data in search for “hidden struc-
ture” which can be captured by suitable parameterizations. A
subsequent parameterized complexity analysis can then determine
which of these parameterizations yield field-parameter algorithms.
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This data-driven line of algorithmic research is still underdeveloped
and should receive increased attention in future research. More-
over, in order to obtain the practically most useful algorithms, it
may often be good to combine fixed-parameter algorithms (partic-
ularly, data reduction and kernelization) with general-purpose tools
for solving computationally hard problems, including SAT solving
and integer linear programming. This certainly will need a lot of
experimentation going far beyond purely theoretical algorithm
design.

10 Notes

1. To show that a problem is unlikely to be fixed-parameter tracta-
ble, the concept of W[1]-hardness was developed. It is widely
assumed that a W[1]-hard problem cannot have a fixed-
parameter algorithm (W[t]-hardness, t � 2 has the same impli-
cation). For example, the CLIQUE problem to find a clique (com-
plete subgraph) in an undirected graph is W[1]-hard with
respect to the parameter “number of vertices in the clique.”
To show that a problem is W[1]-hard, a parameterized
reduction from a known W[1]-hard problem can be used (see,
e.g., [41, 54]).

2. There exist suitable data reduction rules when it is of interest to
enumerate allminimal vertex covers of a given graph. For exam-
ple, Damaschke [46] suggests the notion of a full kernel that
contains all minimal solutions in a compressed form and thereby
allows enumeration of them.

3. One technique to show that a polynomial kernel is unlikely is
called composition [53, 94]. A composition is an algorithm that
combines the inputs of many instances of a problem into one
“equivalent” instance. For 2-CLUB, the composition is to take the
disjoint union of the input graphs of the instances: Any solution
to such a combined instance has to live completely inside one of
its connected components, which are completely contained in
one of the original input instances. Thus, the combined instance
has a solution if and only if at least one of the input instances has
one. The existence of a composition and a polynomial kerneliza-
tion leads to an implausible complexity-theoretic collapse. Thus,
it is widely assumed that there is no polynomial problem kernel
for problems with a composition [53, 94].
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21. Böcker S, Damaschke P (2012) A note on the
parameterized complexity of unordered maxi-
mum tree orientation. Discret Appl Math 160
(10–11):1634–1638
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23. Böcker S, Briesemeister S, Bui QBA, Truß A
(2009) Going weighted: parameterized algo-
rithms for cluster editing. Theor Comput Sci
410(52):5467–5480
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design. Addison-Wesley, Reading, MA

87. Kneis J, Mölle D, Richter S, Rossmanith P
(2006) Divide-and-color. In: Proceedings of
the 32nd international workshop on graph-
theoretic concepts in computer science
(WG ’06). Lecture notes in computer science,
vol 4271. Springer, Berlin, pp 58–67

88. Kneis J, Langer A, Rossmanith P (2011)
Courcelle’s theorem—a game-theoretic
approach. Discret Optim 8(4):568–594

89. Kociumaka T, Pilipczuk M (2014) Faster
deterministic feedback vertex set. Inf Process
Lett 114(10):556–560

90. Komusiewicz C, Niedermeier R (2012) New
races in parameterized algorithmics. In: Pro-
ceedings of the 37th international symposium
onmathematical foundations of computer sci-
ence (MFCS ’12). Lecture notes in computer
science, vol 7464. Springer, Berlin, pp 19–30.

91. Komusiewicz C, Sorge M (2015) An algorith-
mic framework for fixed-cardinality optimiza-
tion in sparse graphs applied to dense
subgraph problems. Discret Appl Math
193:145–161

92. Koutis I (2008) Faster algebraic algorithms
for path and packing problems. In: Proceed-
ings of the 35th international colloquium on
automata, languages and programming
(ICALP ’08). Lecture notes in computer sci-
ence, vol 5125. Springer, Berlin, pp 575–586

93. Koutis I, Williams R (2009) Limits and appli-
cations of group algebras for parameterized
problems. In: Proceedings of the 36th inter-
national colloquium on automata, languages
and programming (ICALP ’09). Lecture
notes in computer science, vol 5555.
Springer, Berlin, pp 653–664

94. Kratsch S (2014) Recent developments in ker-
nelization: a survey. Bull EATCS 113:58–97

95. Krithika R, Narayanaswamy NS (2013)
Another disjoint compression algorithm for
odd cycle transversal. Inf Process Lett 113
(22–24):849–851

96. Langer A, Reidl F, Rossmanith P, Sikdar S
(2012) Evaluation of an MSO-solver. In: Pro-
ceedings of the 14th workshop on algorithm
engineering and experiments (ALENEX ’12).
SIAM, Philadelphia, PA, pp 55–63

97. Langer A, Reidl F, Rossmanith P, Sikdar S
(2014) Practical algorithms for MSO model-
checking on tree-decomposable graphs.
Comput Sci Rev 13–14:39–74

98. Liberti L, Lavor C, Mucherino A (2013) The
discretizable molecular distance geometry
problem seems easier on proteins. In: Dis-
tance geometry: theory, methods, and appli-
cations. Springer, Berlin, pp 47–60

99. Linz S, Semple C, Stadler T (2010) Analyzing
and reconstructing reticulation networks
under timing constraints. J Math Biol 61
(5):715–737

100. Liu C, Song Y, Yan B, Xu Y, Cai L (2006) Fast
de novo peptide sequencing and spectral
alignment via tree decomposition. In: Pro-
ceedings of the 11th Pacific symposium on
biocomputing (PSB ’06), pp 255–266

101. Lokshtanov D, Marx D, Saurabh S (2011)
Known algorithms on graphs on bounded
treewidth are probably optimal. In: Proceed-
ings of the 22nd annual ACM-SIAM sympo-
sium on discrete algorithms (SODA ’11).
SIAM, Philadelphia, PA, pp 777–789

102. Lokshtanov D, Narayanaswamy NS, Raman
V, Ramanujan MS, Saurabh S (2014) Faster
parameterized algorithms using linear pro-
gramming. ACM Trans Algorithm 11
(2):15:1–15:31

103. Marx D (2008) Closest substring problems
with small distances. SIAM J Comput 38
(4):1382–1410

400 Falk H€uffner et al.



104. Michalewicz Z, Fogel DB (2004) How to
solve it: modern heuristics, 2nd edn. Springer,
Berlin

105. Miranda M, Lynce I, Manquinho VM (2014)
Inferring phylogenetic trees using pseudo-
boolean optimization. AI Commun 27
(3):229–243

106. Moore C, Mertens S (2011) The nature of
computation. Oxford University Press,
Oxford

107. Moser H, Niedermeier R, Sorge M (2012)
Exact combinatorial algorithms and experi-
ments for finding maximum k-plexes. J
Comb Optim 24(3):347–373

108. Nemhauser GL, Trotter LE (1975) Vertex
packings: structural properties and algo-
rithms. Math Program 8(1):232–248

109. Niedermeier R (2006) Invitation to fixed-
parameter algorithms. Oxford University
Press, Oxford

110. Niedermeier R (2010) Reflections on multi-
variate algorithmics and problem parameteri-
zation. In: Proceedings of the 27th
international symposium on theoretical
aspects of computer science (STACS ’10).
Leibniz International Proceedings in Infor-
matics (LIPIcs), vol 5. Schloss Dagstuhl –
Leibniz-Zentrum f€ur Informatik, Wadern,
pp 17–32

111. Niedermeier R, Rossmanith P (2000) A gen-
eral method to speed up fixed-parameter-trac-
table algorithms. Inf Process Lett
73:125–129

112. Panconesi A, Sozio M (2004) Fast hare: a fast
heuristic for single individual SNP haplotype
reconstruction. In: Proceedings of the 4th
workshop on algorithms in bioinformatics
(WABI ’04). Lecture notes in computer sci-
ence, vol 3240. Springer, Berlin, pp 266–277

113. Papadimitriou CH (1994) Computational
complexity. Addison-Wesley, Reading, MA

114. Papadimitriou CH (1997) NP-completeness:
a retrospective. In: Proceedings of the 24th
international colloquium on automata, lan-
guages and programming (ICALP ’97). Lec-
ture notes in computer science, vol 1256.
Springer, Berlin, pp 2–6

115. Pasupuleti S (2008) Detection of protein
complexes in protein interaction networks
using n-Clubs. In: Proceedings of the 6th
European conference on evolutionary com-
putation, machine learning and data mining
in bioinformatics (EvoBIO ’06). Lecture
notes in computer science, vol 4973.
Springer, Berlin, pp 153–164

116. Patterson M, Marschall T, Pisanti N, van Ier-
sel L, Stougie L, Klau GW, Schönhuth A

(2015) WhatsHap: weighted haplotype
assembly for future-generation sequencing
reads. J Comput Biol 22(6):498–509

117. Peiselt T (2007) An iterative compression
algorithm for vertex cover. Studienarbeit,
Institut f€ur Informatik, Friedrich-Schiller-
Universit€at Jena

118. Reed B, Smith K, Vetta A (2004) Finding odd
cycle transversals. Oper Res Lett 32
(4):299–301

119. Sch€afer A, Komusiewicz C, Moser H, Nieder-
meier R (2012) Parameterized computational
complexity of finding small-diameter sub-
graphs. Optim Lett 6(5):883–891

120. Scott J, Ideker T, Karp RM, Sharan R (2006)
Efficient algorithms for detecting signaling
pathways in protein interaction networks. J
Comput Biol 13(2):133–144

121. Shlomi T, Segal D, Ruppin E, Sharan R
(2006) QPath: a method for querying path-
ways in a protein–protein interaction net-
work. BMC Bioinf 7:199

122. Skiena SS (2008) The algorithm design man-
ual, 2nd edn. Springer, Berlin

123. Song Y, Liu C, Malmberg RL, Pan F, Cai L
(2005) Tree decomposition based fast search
of RNA structures including pseudoknots in
genomes. In: Proceedings of the 4th interna-
tional IEEE computer society computational
systems bioinformatics conference (CSB
2005). IEEE Computer Society, Washington,
DC, pp 223–234

124. Stojanovic N, Florea L, Riemer C, Gumucio
D, Slightom J, Goodman M, Miller W, Hard-
ison R (1999) Comparison of five methods
for finding conserved sequences in multiple
alignments of gene regulatory regions.
Nucleic Acids Res 27(19):3899–3910

125. Stolzer M, Lai H, XuM, Sathaye D, Vernot B,
Durand D (2012) Inferring duplications,
losses, transfers and incomplete lineage sort-
ing with nonbinary species trees. Bioinfor-
matics 28(18):409–415

126. van Bevern R (2014) Fixed-parameter linear-
time algorithms for NP-hard graph and
hypergraph problems arising in industrial
applications. PhD thesis, TU Berlin

127. Vardi MY (2014) Boolean satisfiability: the-
ory and engineering. Commun ACM 57(3):5

128. Vazirani VV (2001) Approximation algo-
rithms. Springer, Berlin

129. West DB (2000) Introduction to graph
theory, 2 edn. Prentice-Hall, Englewood
Cliffs, NJ

130. Whidden C, Beiko RG, Zeh N (2016) Fixed-
parameter and approximation algorithms for

Parameterized Algorithmics for Finding Exact Solutions of NP-Hard Biological Problems 401



maximum agreement forests of multifurcating
trees. Algorithmica 74(3):1019–1054

131. Williamson DP, Shmoys DB (2011) The
design of approximation algorithms. Cam-
bridge University Press, Cambridge

132. Wittkop T, Emig D, Lange S, Rahmann S,
Albrecht M, Morris JH, Böcker S, Stoye J,
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Chapter 21

Information Visualization for Biological Data

Tobias Czauderna and Falk Schreiber

Abstract

Visualization is a powerful method to present and explore a large amount of data. It is increasingly
important in the life sciences and is used for analyzing different types of biological data, such as structural
information, high-throughput data, and biochemical networks. This chapter gives a brief introduction to
visualization methods for bioinformatics, presents two commonly used techniques in detail, and discusses a
graphical standard for biological networks and cellular processes.

Key words Visualization, Data exploration, Heat-maps, Force-based layout, Graph drawing, Systems
Biology Graphical Notation

1 Introduction

Visualization is the transformation of data, information or knowl-
edge into a visual form such as images and maps. It uses the human
ability to take in a large amount of data in a visual form and to
detect trends and patterns in pictures easily. Visualization is a
helpful method to analyze and explore data or to communicate
information; a fact expressed by the common proverb “A picture
speaks a thousand words.” The visual representation of data or
knowledge is not a particularly modern technique, but rather is as
old as human society. Rock engravings and cave images can be seen
as an early form of visual communication between humans. Molec-
ular biologica information has also been represented visually for a
long time. Well-known examples are illustrations in books, such as
molecular structures (e.g., DNA and other molecules) or biological
processes (e.g., cell cycle, metabolic pathways). Most of the other
chapters in this book use visualizations to illustrate concepts or
present information.

Nowadays visualization is an increasingly important method in
bioinformatics to present very diverse information. Structural
information of molecules can be shown in 2D (structural formulae
of substances) and 3D space [1–3]. Genome and sequence
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annotation is often displayed in linear or circular representations
with additional annotations [4–6]. Expression and metabolite pro-
files are high-dimensional data which can be visualized with tech-
niques such as bar-charts, line-graphs, scatter-plot matrices [7],
parallel coordinates [8], heat-maps [9], and tree-maps [10].
There are several methods to visualize hierarchical structures
(e.g., phylogenetic trees) [11–13] and biochemical networks
(e.g., metabolic pathways) [14–16]. Typical examples of visualiza-
tions in bioinformatics are shown in Fig. 1, overviews of visualiza-
tion methods are given, for example, in the “Points of view” series
in Nature Methods and for omics data in [20].

This chapter presents heat-maps and force-based network layout
in detail and introduces the Systems Biology Graphical Notation, a
graphical standard for biological networks and cellular processes.

Heat-maps are a standard method to visualize and analyze
large-scale data obtained by the high-throughput technologies dis-
cussed in previous chapters. These technologies lead to an ever-
increasing amount of molecular-biological data, deliver a snapshot
of the system under investigation, and allow the comparison of a
biological system under different conditions or in different devel-
opmental stages. Examples include gene expression data [21], pro-
tein data [22], and the quantification of metabolite concentrations
[23]. A typical visualization of such data using a heat-map is shown
in Fig. 2.

Force-based network layout is the main method used to visualize
biological networks. Biological networks are important in
bioinformatics; see also Section VI (Pathways and Networks).
Biological processes form complex networks such as metabolic
pathways, gene regulatory networks, and protein–protein interac-
tion networks. Furthermore, the data obtained by high-
throughput methods and biological networks are closely related.
There are two common ways to interpret experimental data: (1) as a
biological network and (2) in the context of an underlying
biological network. A typical example of the first interpretation is
the analysis of interactomics data, for example, data from two-
hybrid experiments [25]. The result of these experiments is infor-
mation as to whether proteins interact pairwise with each other or
not. Taking many different protein pairs into account, a protein–-
protein interaction network can be directly derived. An example of
the second interpretation is the analysis of metabolomics data, such
as data from mass spectrometry based metabolome analysis [23].
These experiments give, for example, time series data for different
metabolites, which can be mapped onto metabolic networks and
then analyzed within the network context. A visualization of a
network using force-based layout is shown in Fig. 3. There are
many extensions to force-based layout algorithms such as
extra forces [26, 27], animation [28], and the consideration of
mapped data.
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Systems Biology Graphical Notation (SBGN) [30] is a standard
for the graphical representation of biological networks and cellular
processes. It provides an unambiguous and uniform way to present

Fig. 1 Examples of visualizations in bioinformatics (from top to bottom): 3D structure of a molecule (produced
with Molw PDB Viewer [17]), scatter-plot matrix of metabolite profiling data of different lines of an organism
(produced with VANTED [18]), layout of a metabolic pathway (produced with BioPath [19]), and line-graph of
time series data of the concentration of a metabolite (produced with VANTED [18])
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Fig. 2 A heat-map showing the expression of genes under eight different
conditions (produced with R [24])
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Fig. 3 A picture of a protein–protein interaction network based on the force-based layout method (produced
with CentiBin [29])
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information, thereby reducing the risk of misinterpreting maps of
biological processes and supporting faster information exchange.
SBGN provides three corresponding views of a biological system
focusing on different aspects and levels of detail: Process Descrip-
tion maps describe elements and processes of biological systems
[31], Entity Relationship maps focus on interactions between
biological entities [32], and Activity Flow maps describe informa-
tion flow between biological activities [33]. Several databases pro-
vide information in SBGN, for example, Reactome [34],
PANTHER Pathways [35], BioModels Database including Path2-
Models [36, 37], MetaCrop [38], and RIMAS [39]. A SBGN map
is shown in Fig. 4.

2 Methods

2.1 Heat-maps High-throughput data is often represented by a two-dimensional
matrix M. Usually the rows represent the measured entities (e.g.,
expression of genes) and the columns represent the different sam-
ples (e.g., different time points, environmental conditions or genet-
ically modified lines of an organism). To show patterns in the data it
is often useful to rearrange the rows and/or columns of the matrix
so that similar rows (columns) are close to each other, for example,
to place genes with similar expression patterns close together.

A heat-map is a two-dimensional, colored grid of the same size
as the matrix M where the color of each place is determined by the
corresponding value of the matrix as shown in Fig. 5.

For a given matrixM, the algorithm to produce a heat-map is as
follows:

Fig. 4 A SBGN map showing the first steps of the metabolic pathway glycolysis with additional information.
The circles, rectangles, and rectangles with rounded corners represent simple chemicals (metabolites),
processes (reactions), and macromolecules (enzymes), respectively. Additional information given as diagrams
within simple chemicals and macromolecules represents metabolite measurements and activity of genes
related to enzymes (produced with SBGN-ED [40])
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1. (Optional) Rearrange the rows of thematrix as follows: Compute
a distance matrix containing the distance between each pair of
rows (consider each row as a vector). There are several possible
distance measures (e.g., Euclidean distance, Manhattan distance
and correlation coefficient). Based on the distance matrix, either
rearrange the rows directly such that neighboring rows have only
a small distance, or compute a hierarchical clustering (using one
of the various methods available, such as complete linkage or
single linkage). Rearrange the rows such that a crossing-free
drawing of the tree representing the hierarchical clustering is
obtained and similar rows are close together. Details of this
rearranging step and several variations can be found in Chapter
54 (Combinatorial optimization models for finding genetic sig-
natures from gene expression datasets) and in [7, 41, 42].

2. (Also optional) Rearrange the columns of the matrix similarly.

3. Use a color scheme such that the distances between the colors
represent the distances between the values of the elements of the
matrix M (see Note 1). Assign to each matrix element its color
and compute a grid visualization and (optional) dendrogram(s)
displaying the hierarchical clustering(s) for rows/columns as
shown in Fig. 5.

Free software to produce such visualizations is, for example, the
R programming package [24].

1 2 3 4 5 6 7 8 2 3 1 5 6 4 8 7

Fig. 5 (Left) A heat-map of the data set in the given order (x-axis: conditions, y-axis: genes). (Right)
Rearrangement of columns (conditions) and dendrogram showing a hierarchical clustering of the different
conditions (conditions with similarly expressed genes are close together, produced with R [24])
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2.2 Force-Based

Network Layout

Biological networks are commonly represented as graphs. A graph
G ¼ (V,E) consists of a set of vertices V ¼ {v1,. . .,vn}
representing the biological objects (e.g., proteins) and a set of
edges E � {(vi,vj) | vi,vj ∈ V} representing the interactions
between the biological objects (e.g., interactions between pro-
teins). To visualize a graph, a layout has to be computed, that is,
coordinates for the vertices and curves for the edges. In the follow-
ing we present the force-based graph layout approach usually
applied to biological networks.

A force-based layout method uses a physical analogy to draw
graphs by simulating a system of physical forces defined on the
graph. It produces a drawing, which represents a locally minimal
energy configuration of the physical system. Such layout methods
are popular as they are easy to understand and implement, and give
good visualization results. In general, force-based layout methods
consist of two parts: (1) a system of forces defined by the vertices
and edges, and (2) a method to find positions for the vertices
(representing the final layout of the graph) such that for each vertex
the total force is zero [43]. There are several frequently used
varieties of force-based methods [44–47].

Here we use a force model that interprets vertices as mutually
repulsive “particles” and edges as “springs” connecting the parti-
cles. This results in attractive forces between adjacent vertices and
repulsive forces between nonadjacent vertices. To find a locally
minimal energy configuration iterative numerical analysis is used.
In the final drawing, the vertices are connected by straight lines.

For a given graphG ¼ (V,E) the algorithm to compute a layout
l(G) is as follows (see also Fig. 6):

1. Place all vertices on random positions. This gives an initial layout
l0(G) (see Note 2).

2. Repeat the following steps (steps 3 and 4) until a stop criterion
(e.g., number of iterations or quality of current layout) is
reached.

3. For the current layout li(G) compute for each vertex v ∈ V the

force F vð Þ ¼
X

u;vð Þ∈E

f a u; vð Þþ
X

u;vð Þ∈V�V

f r u; vð Þ, which is the sum

of all attractive forces fa and all repulsive forces fr affecting v. For
2D or 3D drawings these force vectors consist of two (x,y) or
three (x,y,z) components, respectively. For example, for the x
component the forces fa and fr are defined as f a u; vð Þ ¼
c1* d u; vð Þ � lð Þ* x vð Þ�x uð Þ

d u;vð Þ and f r u; vð Þ ¼ c2
d u;vð Þ2 *

x vð Þ�x uð Þ
d u;vð Þ , respec-

tively, where l is the optimal distance between any pair of adja-
cent vertices, d(u,v) is the current distance between the vertices
u and v, x(u) is the x-coordinate of vertex u, x(v) is the
x-coordinate of vertex v, and c1, c2 are positive constants
(see Note 3). The other components are similarly defined.
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4. Move each vertex in the direction of F(v) to produce a new
layout li+1(G) (see Note 4).

Free software packages to produce such network layouts are,
for example, JUNG [48], Gravisto [49], and Vanted [50].

2.3 SBGN Depending on the type of biological information and the level of
detail, different SBGN languages are recommended (see Note 5).
Process Description (PD) maps are suitable to represent the transi-
tions of entities from one form or state to another with a high level
of detail. Such maps are unambiguous, mechanistic, and sequential.
The representation of multistate entities results in a combinatorial
explosion leading to large and complex maps. A typical example for
a PD map is a metabolic pathway as shown in Fig. 4. Entity
Relationship (ER) maps show the relations between entities and
the influence of entities upon the behavior of other entities. Such
maps are unambiguous, mechanistic, and non-sequential. A typical
example for an ER map is a protein interaction network. Activity
flow (AF) maps represent the activity flow from one entity to
another or within the same entity and provide an abstract view on
a biological system where detailed mechanistic information is either
not known or omitted. Such maps are ambiguous, conceptual, and
sequential. A typical example for an AF map is a signaling pathway.

SBGN defines a number of glyphs for the different entities and
how these glyphs can be combined to valid SBGN maps but it does
not outline how to embody biological knowledge. Therefore the
SBGN bricks [51] have been introduced as a means for the

Fig. 6 Visualization of a graph at different steps of the force-based layout (from
top left clockwise): initial layout, after 10, 25, and 100 iterations, respectively
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representation of biological knowledge in SBGN. SBGN bricks are
building blocks representing recurring biological patterns in all
three SBGN languages, which can be used for quick assembly
of SBGN maps. They enable users to draw SBGN maps
directly without the need to know all details from the SBGN
specifications. An initial set of SBGN bricks in a wiki style format
is available at http://sbgnbricks.sourceforge.net covering a number
of important biological processes, which can be extended on
demand.

Figure 7 shows the assembly of the SBGN map from Fig. 4
using SBGN bricks (without the additional information, see
Note 6). The necessary steps to assemble the SBGN map are as
follows:

1. Choose the SBGN bricks “Catalysis—Irreversible reaction with
2 substrates and 2 products” and “Catalysis - Irreversible reac-
tion with 1 substrate and 1 product” and place them on the
drawing area.

2. Merge “P1” from the brick on the left with “S1” from the brick
in the middle and merge “P1” from the brick in the middle with
“S1” from the brick on the right.

3. Change the labels of the three macromolecules to “hexokinase”,
“glucose-6P isomerase”, and “phospho fructokinase” (from left
to right).

4. Change the labels of the simple chemicals “S1” and “P1” to
“glucose”, “glucose 6P”, “fructose 6P”, and “fructose 1,6P”
(from left to right).

5. Change the label of the simple chemicals “S2” to “ATP” and
add clone markers to indicate they appear more than once on the
map. Change the label of the simple chemicals “P2” to “ADP”
and add clone markers to indicate they appear more than once
on the map.

6. Adapt the layout of the map.

Freely available software to produce visualizations in SBGN
from scratch or by using the SBGN bricks is, for example, SBGN-
ED [40] (see Note 7). A detailed step-by-step description for the
creation of visualizations in SBGN enriched by experimental data
similar to the SBGN map shown in Fig. 4 can be found in [52].

3 Notes

1. Do not use a red-green color scheme as quite a number of
people are red-green colorblind and therefore unable to inter-
pret the visualization.

2. The initial positions of the vertices should not be on a line.
An alternative to a random placement is to use a given initial
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layout, which then can be improved by the force-based layout
algorithm.

3. The parameters l, c1, and c2 greatly affect the final drawing. A
good way to find appropriate values for a specific graph is to

Fig. 7 Assembly of a SBGN map using SBGN bricks (see also Fig. 4). From top to bottom: SBGN bricks
“Catalysis—Irreversible reaction with 2 substrates and 2 products” and “Catalysis—Irreversible reaction with
1 substrate and 1 product” placed on drawing area; “P1” from the brick on the left merged with “S1” from the
brick in the middle and “P1” from the brick in the middle merged with “S1” from the brick on the right; labels
of macromolecules and simple chemicals changed, clone markers added; layout of the map adapted
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interactively change them during the run of the algorithm until
appropriate interim results are obtained.

4. It is possible to dampen the force F(v) with an increasing num-
ber of iterations to allow large movements of vertices in the
beginning and only small movements close to the end of the
algorithm. This can help to avoid “oscillation effects” where
vertices repeatedly jump between two positions.

5. The SBGN specifications [31–33] provide detailed descriptions
of any element of SBGN as well as layout rules. However, to start
with SBGN and represent simple information such as metabolic
or regulatory pathways, very few symbols are necessary.

6. In SBGNmaps, color does not have any meaning, and therefore,
color can be used to express user-specific information.

7. SBGNmaps can be produced on paper or with tools. Tools such
as SBGN-ED [40] support the creation of SBGN maps by
validation mechanisms.
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