Rotational Far Infrared Spectrum of ¹³CO¹

L. R. ZINK, P. DE NATALE, F. S. PAVONE, M. PREVEDELLI, K. M. EVENSON,² AND M. INGUSCIO

European Laboratory for Nonlinear Spectroscopy (LENS), Largo Enrico Fermi, 2, I-50125 Florence, Italy

The pure rotational spectrum of ¹³CO between 0.66 and 3.3 THz has been measured with a tunable far infrared spectrometer. Revised values for B_0 , D_0 , and H_0 have been obtained with a 1 σ standard deviation of 50 kHz. Additional measurements were performed with a Fourier transform spectrometer, and a 1 MHz (3.3×10^{-5} cm⁻¹) measurement accuracy is demonstrated with this device. The rotational spectrum from J'' = 0 to J'' = 30 is calculated and gives the frequencies with a 1 σ uncertainty of less than 120 kHz. © 1990 Academic Press, Inc.

INTRODUCTION

State-of-the-art Fourier transform spectrometers (FTS) can now achieve a resolution on the order of 10^{-3} cm⁻¹ with an accuracy of 10^{-4} cm⁻¹ (1, 2). Even higher resolution and accuracy can be achieved with two recently developed laser based techniques. The first of these is the generation of microwave sidebands on the strongest FIR laser lines in Schottky diodes (3-6); it produces tunable FIR radiation up to about 3 THz (100 cm⁻¹) with 5 kHz linewidths and roughly 500 kHz accuracy. The second method is the nonlinear mixing of CO₂ laser radiation in metal-insulator-metal diodes (7), producing tunable FIR radiation up to 6 THz (200 cm⁻¹) with 10 kHz linewidths and 35 kHz accuracy. This latter technique has provided accurate frequency markers for calibrating FTS spectra (8) and made it possible to obtain an accuracy with FTS devices of a few MHz (2).

We have used a tunable FIR spectrometer in combination with a high-resolution FTS to measure the pure rotational spectra of the carbon 13 isotope of carbon monoxide. The observations of ¹³CO FIR transitions play an important role in determining the physical and chemical properties of interstellar molecular clouds (9). The observation of both ¹³CO and ¹²CO will shed light on the ¹³C/¹²C abundance ratio and may also provide a better measurement of the cloud temperature than the ¹²CO FIR observations. Despite this, the only previous high resolution work on these spectra was the measurement of the J = 1-0 microwave transition (10); all other transitions were predicted from the isotopically scaled ¹²CO molecular constants. Moreover, the ¹³CO rotational spectra consist of single, well resolved transitions of reasonable intensity

¹ This research was supported in part by NASA Grant W-15, 047 and by INFM (Consorzio Nazionale di Fisica della Material).

² Permanent address: Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80303.

0022-2852/90 \$3.00 Copyright © 1990 by Academic Press, Inc. All rights of reproduction in any form reserved. 304

and hence can provide a good test of the accuracy achievable with our new FTS without the additional complications of poor signal-to-noise ratio or unresolved lines. The measurements with the tunable FIR system then serve as a direct check on the FTS accuracy.

EXPERIMENTAL DETAILS

1. Tunable FIR Measurements

Our newly constructed tunable FIR (TuFIR) spectrometer generates FIR radiation by the nonlinear mixing of three radiations (two from CO_2 lasers and one from a microwave source) in a third-order metal-insulator-metal (MIM) diode (7, 8). The MIM diode generates microwave sidebands on the CO_2 difference frequency; that is,

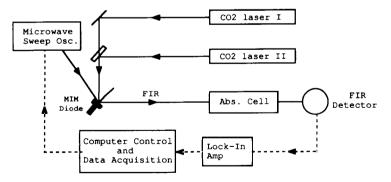
$$\nu_{\rm FIR} = (\nu_{\rm I} - \nu_{\rm II}) \pm \nu_{\mu \rm w},$$

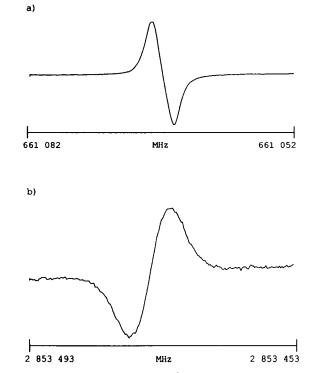
where v_{FIR} is the generated far infrared frequency, v_1 and v_{II} are the laser frequencies, and v_{uw} is the microwave frequency.

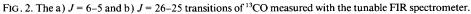
Figure 1 is a schematic of the third-order TuFIR spectrometer at LENS. The radiation from lasers I and II is combined on a beamsplitter and coupled onto the diode by a 25-mm focal length lens. The microwave radiation is coupled onto the diode by a bias tee connected to the diode junction. The generated FIR is radiated from the diode's whisker in a long wire antenna pattern (11). This FIR radiation is then collected and collimated by a 30-mm focal length off-axis section of a parabolic mirror. After passing through an absorption cell the FIR is detected on a liquid He-cooled Si bolometer. The FIR radiation is frequency modulated (by frequency modulation of the CO_2 lasers) and detected in a lock-in amplifier.

The far infrared frequency is tuned by scanning the microwave frequency. This is controlled by a personal computer, which also collects the data from the lock-in amplifier. Thus, we are able to average scans for increased sensitivity. This is essentially the same experimental arrangement as described in Ref. (8) but without the acousto-optic modulators isolating the lasers from the diode.

The frequency range of the spectrometer is 0.3 to 6 THz. The lower limit is set by our bolometer and the upper limit by the largest difference frequency between ${}^{12}C{}^{16}O_2$




FIG. 1. Schematic diagram of the tunable far-infrared spectrometer at LENS. The generated FIR frequency is $v_{\text{FIR}} = (v_{\text{I}} - v_{\text{II}}) + v_{\mu w}$, and is in the range of 0.3 to 6 THz.


lasers. Over 100 lines oscillate on each CO₂ laser; with ± 20 GHz tunability from the microwave sweeper, a 95% coverage of this region is obtained (the gaps occur only above 4.5 THz). Both CO₂ lasers are frequency stabilized to the 4.3 μ m saturated fluorescence signal from low-pressure CO₂ cells (12) (not shown in Fig. 1). These frequencies have been measured to an absolute frequency with an uncertainty less than 5 kHz (13, 14). Without using special locking techniques described in Refs. (13, 14), our measured stability is 25 kHz for each laser. The overall frequency uncertainty of our FIR radiation is thus $\sqrt{2} \times 25$ kHz or 35 kHz.

The spectrometer sensitivity is limited by the FIR power and the sensitivity of the detector. FIR powers of 10^{-8} to 10^{-7} W are generated with 150 mW from each laser and 6–10 dBm of microwave power applied to the MIM diode. For the best contacts, our minimum detectable absorption is 10^{-4} using a 1-sec integration time (for a meter-long cell the minimum detection coefficient is thus 10^{-6} cm⁻¹).

The MIM diode consists of an electrochemically sharpened tungsten whisker (25 μ m diameter and 3 to 7 mm long) contacting a metal base. The metal base has a naturally occurring thin oxide insulating layer. Both nickel and cobalt have been used as base materials, but cobalt is generally more consistent in the production of third-order FIR radiation.

For the present experiment the absorption cell consists of a 24-mm ID Pyrex tube, 0.5 m long with high density polyethylene windows. An enriched sample of 13 CO

306

(99% isotopically pure) was used at a pressure of 70 to 350 mTorr, depending on the strength of the transition. In Fig. 2 are recordings of the J = 6-5 and J = 26-25 transitions. In all, eight lines were measured, extending to the J = 30-29 transition at 3.3 THz; the observed frequencies are listed in Table I and the 1σ uncertainty of these values is given in parenthesis. This uncertainty is the quadrature sum of the 35-kHz FIR uncertainty with the uncertainty of determining the absorption line center (which depends on the linewidth and the signal-to-noise ratio).

2. Fourier Transform Spectrometer Measurements

The FTS was operated with the maximum optical path difference of 2.7 m and a corresponding unapodized resolution full width at half maximum of less than 1.5 $\times 10^{-3}$ cm⁻¹ (45 MHz). A silicon composite bolometer detector operating at 4.2 K was used. A cooled filter of crystal quartz coated on one side with Garnet powder limited the radiation on the bolometer to the region below 100 cm⁻¹. The spectra were obtained in a single run of 24 h.

The sample cell was a 20-cm-long Pyrex tube fitted with 0.8-mm-thick high-density polyethylene windows. It was filled with a 1:1 mixture of ¹³CO and ¹²CO to a total pressure of 500 Pa (3.7 Torr). Mixing the two isotopes allowed us to calibrate the

J'-J''	TuFIR (MHz) ^a	FTS (MHz) ^b	$FTS(cm^{-1})$
6-5	661 067.276 (50)		
7-6		771 182.4	25.723 87
8-7		881 274.1	29.396 143
9-8		991 328.7	33.067 16
10-9		1 101 347.4	36.736 99
11-10	1 211 329.636 (50)	1 211 329.5	40.405 603
12-11		1 321 265.8	44.072 68
13-12		1 431 152.7	47.738 11
14-13		1 540 988.2	51.401 83
15-14	1 650 767.344 (55)	1 650 767.8	55.063 68
16-15		1 760 485.8	58.723 48
17-16		1 870 139.6	62.381 142
18-17		1 979 726.5	66.036 56
19-18	2 089 240.033 (55)	2 089 240.0	69.689 54
20-19		2 198 676.8	73.339 96
21-20		2 308 035.5	76.987 77
22-21		2 417 308.7	80.632 73
23-22		2 526 491.6	84.274 68
24-23		2 635 584.0	87.913 62
25-24	2 744 579.059 (60)	2 744 578.8	91.549 293
26-25	2 853 474.444 (60)		
28-27	3 070 948.140 (70)		
30-29	3 287 972.525 (100)		

TABLE I

Measured Rotational Transition Frequencies of ¹³CO

^a The 1σ uncertainty of the experimental measurements is shown in parentheses.

^b The 1σ uncertainty of all FTS measurements set at 1 MHz.

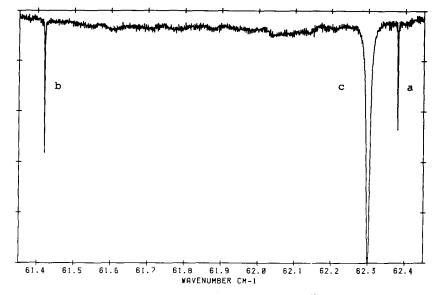


FIG. 3. Fourier transform spectrometer recordings: a) the $J = 17-16^{-13}$ CO transition, b) the $J = 16-15^{-12}$ CO transition used for calibration, and c) a residual water vapor transition.

¹³CO spectra with the accurately measured ¹²CO transitions (8). To calibrate the spectrometer the differences between ¹²CO frequencies of Ref. (8) and those measured by the FTS system were plotted against the line frequency. These data were fitted to a straight line passing through 0, 0 by a least-squares routine. The rms deviation of the fit was 700 kHz (1σ).

The complete list of the observed transition frequencies is presented in Table I. All of the transitions were well isolated from strong water lines (present as a contaminant in the spectrometer), and hence the determination of the line center is limited only by the signal-to-noise ratio. Figure 3 shows the $J = 17-16^{13}$ CO line together with the $J = 16-15^{12}$ CO calibration line and a water vapor transition. The signal-to-noise ratio (peak-to-peak noise) for this measurement and for other strong lines was about 20:1.

ANALYSIS

The 23 measured FIR transitions were combined with the previously measured microwave transition. These frequencies were fitted to the usual energy expression for the rotational levels of a ${}^{1}\Sigma$ diatomic molecule,

$$E(J) = B_0 J (J+1) - D_0 J^2 (J+1)^2 + H_0 J^3 (J+1)^3 + \cdots$$
 (1)

)

The best values for the parameters B_0 , D_0 , and H_0 were determined by a weighted linear least-squares routine in which the weights were proportional to the inverse of the experimental uncertainties. The uncertainty for the FTS measurements was set at 1 MHz³ (3.3×10^{-5} cm⁻¹). The derived parameters and their 1 σ uncertainties are

³ This 1-MHz uncertainty is slightly higher than the 700-kHz uncertainty of the calibration fit. When the molecular constants B_0 and D_0 are fit to the FTS data only, the 1σ rms deviation of the fit is 870 kHz. In the final fit, the rms of obs-calc for the FTS data only is 900 kHz.

TABLE II

Calculated ¹³CO Rotational Frequencies and Derived Molecular Constants (MHz)

J'-J''	WAVE	NUMBE	ERSa			MHza		OBS-CALC (MHz
1-0	3.675	9215	5 (3)		110	201.36	(1)	+0.01 ^b
2-1	7.351	7088	3 (3)		220	398.69	(1)	
3-2	11.027	2276	5 (3)		330	587.97	(1)	
4-3	14.702	3431	7 (7)		440	765.17	(2)	
5-4	18.376	9229	9 (7)		550	926.29	(2)	
6-5	22.050	8309	ə (7)		661	067.28	(2)	0.00 ^c
7-6	25.723	934	(1)		771	184.13	(3)	-1.73
8-7	29.396	097	(1)		881	272.81	(3)	+1.29
9-8	33.067	186	(1)		991	329.31	(3)	-0.61
10-9	36.737	068	(1)	1	101	349.60	(3)	-2.20
11-10	40.405	608	(1)	1	211	329.67	(3)	-0.03C
12-11	44.072	673	(1)	1	321	265.49	(3)	+0.31
13-12	47.738	127	(1)	1	431	153.04	(3)	-0.34
14-13	51.401	837	(1)	1	540	988.32	(3)	-0.12
15-14	55.063	670	(1)	1	650	767.31	(3)	+0.03C
16-15	58.723	492	(1)	1	760	485.99	(3)	-0.19
17-16	62.381				870	140.35	(3)	-0.75
18-17	66.036	564	(1)	1	979	726.39	(3)	+0.11
19-18	69.689	548	(1)	2	089	240.09	(3)	-0.06C
20-19	73.339	985	(1)	2	198	677.45	(3)	-0.65
21-20	76.987	743	(1)	2	308	034.47	(4)	+1.03
22-21	80.632					307.14		+1.56
23-22	84.274	684	(1)	2	526	491.46	(4)	+0.14
24-23	87.913	600	(1)	2	635	583.44	(4)	+0.56
25-24	91.549	303	(1)	2	744	579.08	(4)	-0.02°
26-25	95.181	661	(1)	2	853	474.40	(4)	+0.04C
27-26	98.810	537	(1)	2	962	265.40	(4)	
28-27	102.435	802	(2)	3	070	948.09	(5)	+0.05°
29-28	106.057	321	(2)	3	179	518.49	(6)	
30-29	109.674	961	(3)	3	287	972.62	(9)	-0.10°
31-30	113.288	591	(4)	3	396	306.51	(12)	
-	1.0128(23)			С		lation		
•	6860(50)				Mat	rix	0.8	
o = 1.505	(33)×10 ⁻⁷						0.77	0.97 1.0

^a Numbers in parentheses are 1σ uncertainties of the last digits. Wavenumbers are in cm⁻¹.

^b Observed value from Ref. (10).

^c Measured with the tunable FIR spectrometer; all other observed frequencies measured with the Fourier transform spectrometer.

presented in Table II along with a calculation of the 31 lowest rotational transition frequencies. The 1σ standard deviation of the final fit was 50 kHz; the 1σ uncertainties of the predicted frequencies range from 10 to 120 kHz.

The new constants in Table II are in agreement with the previous values (15) but are about one order of magnitude more accurately determined. This is the first direct measurement of D_0 and H_0 ; the previous value for D_0 was obtained by scaling the value for ¹²CO. The value determined here is 20 times more accurate. H_0 was required to fit the data within the measurement error, and the value from the fit is essentially the same as that obtained by scaling the ¹²CO H_0 value of Ref. (8) by the cube of the ratio of the reduced masses.

CONCLUSION

We have measured the pure rotational far infrared spectra of the ¹³CO isotopomer. These measurements are derived from a state-of-the-art Fourier transform spectrometer (16) and a tunable far-infrared spectrometer. The FTS measurements were simultaneously calibrated with ¹²CO transitions and achieved a measurement accuracy of 1 MHz (3.3×10^{-5} cm⁻¹). This accuracy is slightly better than that reported by Carli *et al.* in Ref. (1) and by Johns in Ref. (2), and demonstrates the high accuracy achievable with present-day Fourier transform spectrometers. However, the resolution and accuracy of the tunable spectrometer is still 10 to 50 times better, being limited, at present, by the Doppler width of the transitions.

ACKNOWLEDGMENTS

We thank Professors G. Di Lonardo and L. Fusina for fitting the data. We also thank R. Ballerini and M. Giuntini for their technical support.

RECEIVED: May 21, 1990

REFERENCES

- I. B. CARLI, M. CARLOTTI, F. MENCARAGLIA, AND E. ROSSI, Appl. Opt. 26, 3813-3822 (1987).
- 2. J. W. C. JOHNS, J. Opt. Soc. Amer. B 2, 1340-1354 (1985).
- 3. D. D. BICANIC, B. F. J. ZUIDBERG, AND A. DYMANUS, Appl. Phys. Lett. 32, 367-369 (1978).
- 4. W. A. M. BLUMBERG, H. R. FETTERMAN, D. D. PECK, AND P. F. GOLDSMITH, Appl. Phys. Lett. 35, 582-585 (1979).
- 5. J. FARHOOMAND, G. A. BLAKE, M. A. FRERKING, AND H. M. PICKETT, J. Appl. Phys. 57, 1763-1766 (1985).
- 6. G. PIAU, F. X. BROWN, D. DANGOISSE, AND P. GLORIEUX, *IEEE J. Quantum Electron.* QE-23, 1388-1391 (1987).
- 7. K. M. EVENSON, D. A. JENNINGS, AND F. R. PETERSEN, Appl. Phys. Lett. 44, 576-578 (1984).
- I. G. NOLT, J. V. RADOSTITZ, G. DILONARDO, K. M. EVENSON, D. A. JENNINGS, K. R. LEOPOLD, M. D. VANEK, L. R. ZINK, A. HINZ, AND K. V. CHANCE, J. Mol. Spectrosc. 125, 274–287 (1987).
- 9. R. GENZEL, A. POGLITSCH, AND G. J. STACEY, Astrophys. J. 333, L59-L63 (1988).
- 10. B. ROSENBLUM, A. H. NETHERCOT, JR., AND C. H. TOWNES, Phys. Rev. A 109, 400-412 (1958).
- 11. K. M. EVENSON, M. INGUSCIO, AND D. A. JENNINGS, J. Appl. Phys. 57, 956–960 (1985).
- 12. C. FREED AND A. JAVAN, Appl. Phys. Lett. 17, 53-56 (1970).
- 13. F. R. PETERSEN, E. C. BEATTY, AND C. R. POLLOCK, J. Mol. Spectrosc. 102, 112-122 (1983).
- 14. L. C. BRADLEY, K. L. SOOHOO, AND C. FREED, IEEE J. Quantum Electron. QE-22, 234-267 (1986).
- 15. F. J. LOVAS AND E. TIEMANN, J. Phys. Chem. Ref. Data 3, 609-769 (1974).
- 16. Bruker IFS 120 HR Fourier Transform Spectrometer.