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1 Patton (2004) finds that the knowledge of asymme
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setup, argue that the costs of ignoring the difference bet
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Common negative extreme variations in returns are prevalent in international equity markets. This has
been widely documented with statistical tools such as exceedance correlation, extreme value theory,
and Gaussian bivariate GARCH or regime-switching models. We point to limits of these tools to charac-
terize extreme dependence and propose an alternative regime-switching copula model that includes one
normal regime in which dependence is symmetric and a second regime characterized by asymmetric
dependence. We apply this model to international equity and bond markets, to allow for inter-market
movements. Empirically, we find that dependence between international assets of the same type is strong
in both regimes, especially in the asymmetric one, but weak between equities and bonds, even in the
same country.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction Previous studies relied on the concept of exceedance correla-
2 The exceedance correlation between two series of returns is defined as the
rrelation for a subsample in which the returns of both series are simultaneously
wer (or greater) than the corresponding thresholds h1 and h2. Formally, exceedance
There is ample evidence that negative returns are more depen-
dent than positive returns in international equity markets. This
phenomenon known as asymmetric dependence has been reported
by many previous studies including Erb et al. (1994), Longin and
Solnik (2001), Ang and Bekaert (2002), Ang and Chen (2002), Das
and Uppal (2004), Patton (2004), and references therein. This
asymmetric dependence has important implications for portfolio
allocation, but to appreciate its full actual effects on portfolio
diversification, stocks and bonds have to be considered together,
both at the domestic and international levels to allow for inter-
market movements.1 Models of extreme dependence in interna-
tional stock and bond markets are mainly missing in the literature.
This is due mainly to the fact that measuring and modeling asym-
metric dependence remains a challenge.
ll rights reserved.
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tion, correlation computed for returns above or below a certain
threshold, to investigate the dependence structure between finan-
cial returns.2 Boyer et al. (1999) and Forbes and Rigobon (2002) re-
mark that correlations estimated conditionally on high or low
returns or volatility suffer from some conditioning bias. Correlation
asymmetry may therefore appear spuriously if these biases are not
accounted for. To avoid these problems, Longin and Solnik (2001)
use extreme value theory (EVT) by focusing on the asymptotic value
of exceedance correlation.3 The benefit of EVT resides in the fact that
the asymptotic result holds regardless of the distribution of returns.
By the same token, as emphasized by Longin and Solnik (2001), EVT
rrelation of variables X and Y at thresholds h1 and h2 is expressed by

x corrðY ; X; h1; h2Þ ¼
corrðX;Y jX 6 h1; Y 6 h2Þ; for h1 6 0 and h2 6 0
corrðX;Y jX P h1; Y P h2Þ; for h1 P 0 and h2 P 0

�
. Longin and

olnik (2001) use h1 = h2 = h, while Ang and Chen (2002) use h1 ¼ ð1þ hÞX and
¼ ð1þ hÞY , where X and Y are the means of Y and X respectively.

3 Extreme value theory (EVT) is used to characterize the distribution of a variable
nditionally to the fact that its values are beyond a certain threshold, and the

symptotic distribution is obtained when this threshold tends to infinity. Hartmann
t al. (2004) also use extreme-value analysis to capture the dependence structure
etween stock and bond returns for pairs of the G5 countries.
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6 Some related research focus on the dependence structure of bond and equity in
European markets (see Kim et al., 2006; Cappiello et al., 2006; Abad et al., 2010)
Panchenko and Wu (2009) investigate stock and bond return time-varying comov-
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cannot help to determine if a given return-generating process is able
to reproduce the extreme asymmetric exceedance correlation ob-
served in the data.

To overcome this shortcoming, we propose a model based on
copulas that allows for tail dependence in lower returns and keeps
tail independence for upper returns as suggested by the findings of
Longin and Solnik (2001). Copulas are functions that build multi-
variate distribution functions from their unidimensional marginal
distributions.4 The tail dependence coefficient can be seen as the
probability of the worst event occurring in one market given that
the worst event occurs in another market. Contrary to exceedance
correlation, the estimation of the tail dependence coefficient is not
subject to the problem of choosing an appropriate threshold and
the use of extreme value distributions such as the Pareto distribu-
tion. Another difference is that tail dependence is completely
defined by the dependence structure and is not affected by varia-
tions in marginal distributions.

The disentangling between marginal distributions and depen-
dence helps overcoming the curse of dimensionality associated
with the estimation of models with several variables. For example,
in multivariate GARCH models, the estimation becomes intractable
when the number of series being modeled is high. The CCC of
Bollerslev (1990), the DCC of Engle (2002), and the RSDC of Pelle-
tier (2006) deal with this problem by separating the variance–
covariance matrix in two parts, one part for the univariate vari-
ances of the different marginal distributions, another part for the
correlation coefficients. This separation allows them to estimate
the model in two steps, first the marginal parameters on each indi-
vidual series then the correlation parameters. Copulas offer a tool
to generalize this separation while extending the linear concept
of correlation to nonlinear dependence.

Thanks to the tail dependence formulation of asymptotic depen-
dence, we show analytically that the multivariate GARCH or regime
switching (RS) models with Gaussian innovations that have been
used to address asymmetric dependence issues (see Ang and Beka-
ert, 2002; Ang and Chen, 2002) cannot in fact reproduce extreme
asymmetric dependence. The key point is that these classes of mod-
els can be seen as mixtures of symmetric distributions and cannot
produce asymptotically asymmetric dependence. The asymmetry
produced by these models at finite distance disappears asymptoti-
cally. When we go far in the tails, we obtain a similar dependence
for the upper and lower tails. Moreover, the asymmetry in RS models
comes from the asymmetry created in the marginal distributions
with regime switching in the mean. Hence it is not separable from
the marginal asymmetry or skewness.5 This is a fundamental issue
that also affects the statistical extreme-value analysis that have been
conducted to study extreme dependence.

We use our regime-switching copula model to investigate the
dependence structure between international equity and bond mar-
kets. The model allows for a switching between a normal state
where markets will be linearly and symmetrically correlated and
an asymmetric dependence state to capture common crashes. In
a normal regime it is difficult to make a difference between the le-
vel of dependence for joint positive moves and joint negative
moves. When the economy is in the asymmetric regime, even with
a stable correlation, a downside move in one market will increase
the probability of a similar event in another market. The rise in the
level of dependence during market downturns is characterized by
4 The theory of this useful tool dates back to Sklar (1959) and a clear presentation
can be found in Nelsen (1999). Well designed to analyze nonlinear dependence
copulas were initially used by statisticians for nonparametric estimation and measure
of dependence of random variables (see Genest and Rivest, 1993 and references
therein).

5 Ang and Chen (2002) conclude that even if regime-switching models perform bes
in explaining the amount of correlation asymmetry reflected in the data, these models
still leave a significant amount of correlation asymmetry in the data unexplained.

ement in emerging markets, while Markwat et al. (2009) and Kumar and Okimoto
(2011) analyze international integration in a global perspective.

7 They define a test statistic H ¼
PN

i¼1
1
N ðqð#iÞ � q̂ð#iÞÞ2

h i1=2
which is the distance

between exceedance correlations obtained from the normal distribution
(q(01), . . . , q(0N)) and exceedance correlations estimated from the data
ðq̂ð#1Þ; . . . ; q̂ð#NÞÞ for a set of N selected thresholds {01, . . . ,0N}. In the same way they
define H� and H+ by considering negative points for H� and nonnegative points for H+

such that H2 = (H�)2 + (H+)2. They can therefore conclude to asymmetry if H� differs
from H+.
,

t

asymmetry in the dependence structure. This regime can be inter-
preted as contagion since bad news spread quickly between mar-
kets. This crash dependence can coexist with low correlation and
implies a reduction of an apparent diversification benefit.

We separately analyze dependence between the two leading
markets in North-America (US and Canada) and two major markets
of the Euro zone (France and Germany). Our empirical analysis shows
that dependence between international assets of the same type is
strong in both the symmetric and the asymmetric regimes, while
dependence between equities and bonds is low even in the same
country. Another finding is that the presence of a regime with ex-
treme asymmetric dependence makes the correlation in the normal
regime differ from the unconditional correlation. We also provide
some evidence that exchange rate volatility seems to contribute to
asymmetric dependence. With the introduction of a fixed exchange
rate the dependence between France and Germany becomes less
asymmetric and more normal than before. High exchange rate vola-
tility is associated with a high level of asymmetry. These results are
consistent with those of Cappiello et al. (2006) who find an increase
in correlation after the introduction of the Euro currency.6

The rest of this paper is organized as follows. Section 2 reformu-
lates the empirical facts about exceedance correlation in terms of
tail dependence and shows how classical GARCH or regime-switch-
ing models fail to capture these facts. In Section 3 we develop a
model with two regimes that clearly disentangles dependence
from marginal distributional features and allows asymmetry in
extreme dependence. As a result, we obtain a model with four vari-
ables that features asymmetry and a flexible dependence structure.
Empirical evidence on the dependence structure is examined in
Section 4, while conclusions are drawn in Section 5.

2. Extreme asymmetric dependence and modeling issues

In this section we present empirical facts about exceedance cor-
relation in international equity market returns put forward by Lon-
gin and Solnik (2001) and the related literature. We next argue that
these facts can be equivalently reformulated in terms of tail depen-
dence. The latter formulation will allow us to explain why classical
return-generating processes such as GARCH and regime-switching
models based on a multivariate normal distribution fail to repro-
duce these empirical facts.

2.1. Empirical facts

Longin and Solnik (2001) investigate the structure of correlation
between various equity markets in extreme situations by testing
the equality of exceedance correlations, one obtained under a joint
normality assumption and the other one computed using EVT. For
the latter distribution, they model the marginal distributions of
equity index returns with a generalized Pareto distribution (GPD)
and capture dependence through a logistic function. Ang and Chen
(2002) develop a test statistic based on the difference between
exceedance correlations computed from the data and those
obtained from GARCH or RS models.7
.
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Fig. 1. Calculates correlations from US–Canada equity returns data for different
values of the threshold h, which is normalized. For h less than 50% the correlation is
calculated for the left tail and for h greater than 50%, the correlation is calculated for
the right tail. h = 80% means that we calculate the correlation conditional on the 20%
greatest observations for both US and Canadian equity returns, and h = 10% means
that we calculate the correlation conditional on the 10% lowest observations for
both US and Canadian equity returns. The solid line with squares represents the
exceedance correlations calculated directly from the data. For the Rotated Gumbel
Copula with Gaussian Margins (Rotated Gumbel), the Normal Regime Switching
Distribution (RS Normal), the Normal Distribution (Unconditional Normal), and the
mixture of rotated Gumbel and Normal Copula (Gumbel–Normal) used in this
paper, we first estimate the model and use the estimates to generate 50,000 Monte
Carlo simulations to compute correlations. Longin and Solnik exceedance correla-
tions are obtained by Longin and Solnik (2001) estimation method.

8 In the literature (see Rodriguez, 2007 and references therein), only the limit of
is function is considered. Here, we define the TDF for every a 2 (0,1/2] to make a
mparison with conditional correlation, which is also a function of a threshold. The
il dependence measure is also related to the concept of lower (upper) orthant

ependence concept (see Denuit and Scaillet, 2004).
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These two studies conclude that there exists asymmetry in
exceedance correlation, that is large negative returns are more cor-
related than large positive returns. However, their results rely on
choosing a set of thresholds for computing exceedance correlation
and can only account for asymmetry at finite distance. Crashes are
more in the nature of extreme events and involve measuring
dependence for thresholds very far in the tail. Longin and Solnik
(2001) confirm with an asymptotic test that exceedance correla-
tion is positive and statistically different from zero for very large
negative returns and not different from zero for very large positive
returns. However they do not provide a model that is able to repro-
duce this fact. Ang and Chen (2002) as well as Ang and Bekaert
(2002) find that regime-switching models can reproduce the
asymmetry in exceedance correlation, but this result does not hold
for extreme events as we will show later and the measured asym-
metry amalgamates skewness in the marginal distributions and
asymmetric dependence.

We illustrate these facts and the capacity of models to repro-
duce them in Fig. 1 with US and Canadian returns. We specify
thresholds in term of quantiles: h1 ¼ F�1

X ðaÞ and h2 ¼ F�1
Y ðaÞ where

FX and FY are the cumulative distribution functions of Y and X
respectively. Following Longin and Solnik (2001) and Ang and Chen
(2002) exceedance correlations are symmetric if Ex_corr(Y,X;
h1,h2) = Ex_corr(Y,X; 1 � h1,1 � h2);a 2 (0,1). Correlations of return
exceedances exhibit the typical shape put forward in Longin and
Solnik (2001) for the US equity market with various European
equity markets. For the models, we chose to retain the multivariate
normal, as a benchmark case to show that correlations go to zero as
we move further in the tails, as well as a normal regime-switching
model, as in Ang and Chen (2002). The latter model produces some
asymmetry in correlations for positive and negative returns but not
nearly as much as in the data. We also exhibit the exceedance cor-
relations estimated with the procedure used by Longin and Solnik
(2001). It is evidently much closer to the data. Finally, we also re-
port the correlations obtained from a rotated Gumbel copula for
the dependence function (see Appendix A for a definition), with
Gaussian marginal distributions. The graph is very close to the Lon-
gin and Solnik (2001) one.

Since asymptotic exceedance correlation is zero for both sides
of a bivariate normal distribution, Longin and Solnik (2001) inter-
preted these findings as rejection of normality for large negative
returns and non-rejection for large positive returns. In the conclu-
sion of their article, Longin and Solnik stress that their approach
has the disadvantage of not explicitly specifying the class of re-
turn-generating processes that fail to reproduce these two facts.
The difficulty in telling which model can reproduce these facts is
the lack of analytical expressions for the asymptotic exceedance
correlation and its intractability even for classical models such as
Gaussian GARCH or regime-switching models. In order to investi-
gate this issue, we introduce the concept of tail dependence. This
will help us show analytically that some classes of models previ-
ously used in the literature cannot reproduce these asymmetries
in extreme dependence and then propose a model that succeeds
in doing so.

2.2. Tail dependence

To measure the dependence between an extreme event on one
market and a similar event on another market, we define two depen-
dence functions one for the lower tail and one for the upper tail, with
their corresponding asymptotic tail dependence coefficients. For
two random variables X and Y with cumulative distribution func-
tions FX and FY respectively, we call the lower tail dependence func-
tion (TDF) the conditional probability sLðaÞ � Pr½X 6 F�1

X ðaÞjY 6
F�1

Y ðaÞ� for a 2 (0,1/2] and similarly, the upper tail dependence func-
tion is sUðaÞ � Pr½X P F�1

X ð1� aÞjY P F�1
Y ð1� aÞ�.8 The tail depen-

dence coefficient (TDC) is simply the limit (when it exists) of this
function when a tends to zero. More precisely lower TDC is sL = li-
ma?0sL (a) and upper TDC is sU = lima?0 sU(a). As in the case of joint
normality, we have lower tail independence when sL = 0 and upper tail
independence for sU = 0.

Compared to exceedance correlation used by Longin and Solnik
(2001), Ang and Chen (2002), Ang and Bekaert (2002), and Patton
(2004), a key advantage of TDF and corresponding TDCs is their
invariance to modifications of marginal distributions that do not
affect the dependence structure. Fig. 2 gives an illustration of this
invariance. We simulate a bivariate Gaussian distribution N(0, Iq),
where Iq is the bi-dimensional matrix with standard deviations
equal to one on the diagonal and a correlation coefficient q equal
to 0.5. Both exceedance correlation and tail dependence measures
show a symmetric behavior of dependence in extreme returns.
However, when we replace one of the marginal distributions
N(0,1) by a mixture of normals, a N(0,1) and a N(4,4) with equal
weights, and let the other marginal distribution and the depen-
dence structure unchanged, the TDF remains the same while the
exceedance correlation is affected. In fact, the correlation coeffi-
cient and the exceedance correlation are a function of the depen-
dence structure and of the marginal distributions while the tail
dependence is a sole function of the dependence structure,
regardless of the marginal distributions. Another problem with
asymptotic exceedance correlation estimation using extreme value
is the sample bias since fewer data points are available when we
th
co
ta
d



Fig. 2. Effect of marginal distribution asymmetry on the tail dependence function (TDF) and on exceedance correlation: first, we simulate a standard bivariate Gaussian
distribution with correlation 0.5 and compute the TDF and exceedance correlation. Second, we create asymmetry in one marginal distribution by replacing the N(0,1) by a
mixture of N(0,1) and N(4,4) with equal weight.
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move further into the tails of the distribution.9 With tail depen-
dence, the estimation can be done using all data points in the sample
and the estimators of the tail coefficients are unbiased.10

By observing that for the logistic function used by Longin and
Solnik (2001), the zero value for the asymptotic correlation
coefficient is exactly equivalent to tail independence, we can
reformulate their asymptotic result as follows: lower extreme
returns are tail-dependent, while upper extreme returns are
tail-independent.11

This reformulation presents at least two main advantages.
Compared to exceedance correlation, the tail dependence coeffi-
cient is generally easier to compute and analytical expressions
can be obtained for almost all distributions. This is not the case
for exceedance correlation even for usual distributions. Moreover,
we can easily derive the tail dependence of a mixture from the tail
dependence of the different components of the mixture. The last
property will be used below to investigate which model can or can-
not reproduce the results of Longin and Solnik (2001).
2.3. Why classical multivariate GARCH and RS model cannot reproduce
asymptotic asymmetries

Ang and Chen (2002) and Ang and Bekaert (2002) try to repro-
duce asymmetric correlations facts with classical models such as
GARCH and RS based on a multivariate normal distribution. After
examining a number of models, they found that GARCH with con-
stant correlation and fairly asymmetric GARCH cannot reproduce
the asymmetric correlations documented by Longin and Solnik.
However, they found that a RS model with Gaussian innovations
is better at reproducing asymmetries in exceedance correlation.
They clearly reproduce asymmetric correlations at finite distance.
However, their finite-distance asymmetric correlation comes from
the asymmetries produced in the marginal distributions with a re-
gime switching in means, as suggested by the simulation in the
9 Longin and Solnik (2001) determine by simulation an optimal threshold and use
the subsample beyond this threshold to estimate the asymptotic exceedance
correlation. However, this shortcoming does not compromise the results of Longin
and Solnik (2001) since they choose different levels of threshold and still obtain the
same result.

10 When tail dependence is estimated non-parametrically as in Caillault and Guegan
(2005), the same problem of limited extreme data points occurs.

11 For the logistic function with parameter a, the correlation coefficient of extremes
is 1 � a2 (see Longin and Solnik, 2001). We find that the upper tail dependence
coefficient is 2 � 2a. Then, both coefficients are zero when a equals 1 and differen
from zero when a is different from 1.

12 Ang and Bekaert (2002) note that the ability of a RS model (compared to a GARCH
model) to reproduce asymmetries comes from the fact that it accounts for the
persistence in both first and second moments. The GARCH model accounts for this
persistence only in second moments. We provide analytical arguments to support this
intuition.

13 The BEKK proposed by Engle and Kroner (1995) is a straightforward generaliza-
tion of the GARCH model to a multivariate case which guarantees positive
definiteness of the conditional variance–covariance matrix. In the CCC mode
proposed by Bollerslev (1990) the correlation matrix is assumed to be constant
while in the DCC of Engle (2002) this matrix is dynamic.
t

previous section.12 Therefore it becomes difficult to distinguish
asymmetries in dependence from asymmetry in marginal distribu-
tions. This is a problem of practical relevance since most return ser-
ies exhibit asymmetry in volatility.

By reinterpreting Longin and Solnik (2001) results in term of
TDC instead of asymptotic exceedance correlation, we show ana-
lytically that all these models cannot reproduce asymptotic asym-
metry even if some can reproduce finite-distance asymmetry.
These results are extended to the rejection of more general classes
of return-generating processes. The key point of this result is the
fact that many classes of models including Gaussian (or Student)
GARCH and RS can be seen as mixtures of symmetric distributions.
We establish the following result.

Proposition 2.1

(i) Any GARCH model with constant mean and symmetric condi-
tional distribution has a symmetric unconditional distribution
and hence a symmetric TDC.

(ii) If the conditional distribution of a RS model has a zero TDC, then
the unconditional distribution also has a zero TDC.

(iii) From a multivariate distribution with symmetric TDC, it is
impossible to construct an asymmetric TDC with a mixture pro-
cedure (as GARCH, RS or any other) by keeping all marginal dis-
tributions unchanged across mixture components.
Proof. See Appendix A.

This proposition allows us to argue that the classical GARCH or
RS models cannot reproduce asymmetries in asymptotic tail depen-
dence. Therefore, the classical GARCH models (BEKK, CCC or DCC)
with constant mean can be seen as a mixture of symmetric distribu-
tions with the same first moments and therefore exhibit a symmet-
ric tail dependence function as well as a symmetric TDC.13 When
the mean becomes time-varying as in the GARCH-M model the
l
,



15 The tail dependence coefficients are easily defined through a copula as
sL ¼ lima!0

Cða;aÞ
a and sU ¼ lima!0

2a�1þCð1�a;1�aÞ
a .

16 The models proposed by Rodriguez (2007) in his analysis of contagion can
reproduce asymmetric dependence but it cannot distinguish between skewness and
asymmetry in the dependence structure. In fact, a change in regime produces both
skewness and asymmetric dependence, two different features that must be charac-
terized separately. The analysis is limited to pairs of stock markets in Asia and Latin
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unconditional distribution can allow asymmetry in correlation (Ang
and Chen, 2002), but this asymmetry comes from the mixture of
the marginal distributions. The resulting skewness cannot be com-
pletely disentangled from the asymmetric correlation, since correla-
tions are affected by marginal changes. Similarly, the classical RS
model with Gaussian innovations is a discrete mixture of normal dis-
tributions which has a TDC equal to zero on both sides. Therefore, by
(ii) we argue that both its TDCs are zero. However, at finite distance,
when the mean changes with regimes, the exceedance correlation is
not symmetric. This asymmetry is found by Ang and Chen (2002) and
Ang and Bekaert (2002) in their RS model, but it disappears asymp-
totically and it comes from the asymmetry created in the marginal
distributions by regime switching in means. Hence, the asymmetries
in correlation are not separable from the marginal asymmetry, ex-
actly like in the GARCH-M case. The part (iii) of Proposition 2.1 ex-
tends this intuition in terms of more general multivariate mixture
models based on symmetric innovations. Actually when the marginal
distributions are the same across all symmetric TDC components of a
mixture, it is impossible to create asymmetry in TDCs.

Two relevant issues arise from the above discussion. First, how
can we separate the marginal asymmetries from the asymmetry in
dependence? Second, how can we account not only for asymme-
tries at finite distance but also for asymptotic dependence? In
the next section, we propose a flexible model based on copulas that
addresses these two issues.

3. A copula model for asymmetric dependence

Our model aims at capturing the type of asymmetric depen-
dence found in international equity markets. Our discussion in
the last section showed that it is important to disentangle the mar-
ginal distributions from the dependence structure. Therefore, we
need to allow for asymmetry in tail dependence, regardless of the
possible marginal asymmetry or skewness. Copulas, also known
as dependence functions, are an adequate tool to achieve this aim.

3.1. Disentangling the marginal distributions from dependence with
copulas

Estimation of multivariate models is difficult because of the large
number of parameters involved. Multivariate GARCH models are a
good example since the estimation becomes intractable when the
number of series being modeled is high. The CCC of Bollerslev
(1990), the DCC of Engle (2002), and the RSDC of Pelletier (2006) deal
with this problem by separating the variance–covariance matrix
into two parts, one for the univariate variances of the different mar-
ginal distributions, the other for the correlation coefficients. This
separation allows them to estimate the model in two steps. In the
first step, they estimate the marginal parameters and use them in
the estimation of the correlation parameters in a second step. Copu-
las offer a tool to generalize this separation while extending the lin-
ear concept of correlation to nonlinear dependence.

Copulas are functions that build multivariate distribution func-
tions from their unidimensional margins. Let X � (X1 , . . . ,Xn) be a
vector of n univariate variables. Denoting F the joint n-dimensional
distribution function and F1 , . . . ,Fn the respective margins of
X1, . . . ,Xn. Then the Sklar theorem states that there exists a function
C called copula which joins F to F1, . . . ,Fn as follows14:

Fðx1; . . . ; xnÞ ¼ C F1ðx1Þ; . . . ; FnðxnÞð Þ ð3:1Þ

This relation can be expressed in term of densities by differentiating
with respect to all arguments. We can therefore write (3.1) equiva-
lently as
14 See Nelsen (1999) for a general presentation. Note that if Fi is continuous for any
i = 1, . . . , n then the copula C is unique.
f ðx1; . . . ; xnÞ ¼ c F1ðx1Þ; . . . ; FnðxnÞð Þ �
Yn

i¼1

fiðxiÞ ð3:2Þ
where f represents the joint density function of the n-dimensional
variable X and fi the density function of the variable Xi for
i = 1, . . . ,n. The copula density function is naturally defined by
cðu1; . . . ;unÞ � @n

@u1 ;...;@un
Cðu1; . . . ;unÞ. Writing the joint distribution

density in the above form, we understand why it can be said that
a copula contains all information about the dependence structure.15

We now suppose that our joint distribution function is para-
metric and we separate the marginal parameters from the copula
parameters. So the relation (3.2) can be expressed as:

f ðx1; . . . ; xn; d; hÞ ¼ cðu1; . . . ;un; hÞ �
Yn

i¼1

fiðxi; diÞ; ð3:3Þ

ui ¼ Fiðxi; diÞ for i ¼ 1; . . . ;n

where d = (d1, . . . ,dn) are the parameters of the different margins and
h denotes the vector of all parameters that describe dependence
through the copula. Therefore, copulas offer a way to separate mar-
gins from the dependence structure and to build more flexible mul-
tivariate distributions.

More recent works allow some dynamics in dependence. In a
bivariate context, Rodriguez (2007) introduces regime switching
in both the parameters of marginal distributions and the copula
function.16 Jondeau and Rockinger (2006) capture the time-varying
volatilities of the individual equity index return series by a GARCH
model and introduce Markov-switching Student-t copulas for pairs
of countries. Recently, Chollete et al. (2009) propose a model of mul-
tivariate regime-switching copulas to capture asymmetric depen-
dence in international financial returns. Ang and Bekaert (2002,
2004) allow all parameters of the multivariate normal distribution
to change with the regime. The extension of these models to a large
number of series faces the above-mentioned curse of dimensionality.
Since the switching variable is present in both the margins and the
dependence function, separation of the likelihood function into
two parts is not possible and the two-step estimation cannot be per-
formed. Pelletier (2006) uses the same separation as in the CCC or
DCC and introduces the regime switching variable only in the corre-
lation coefficients. By doing so, he can proceed with the two-step
procedure to estimate the model while limiting the number of
parameters to be estimated.17 We carry out a similar idea but for
nonlinear dependence.

Therefore, we separate the modeling of marginal distributions
from the modeling of dependence by using univariate GARCH mod-
els for the marginal distributions and introducing changes in re-
gime in the copula dependence structure. The pattern of the
model with four variables (two countries, two markets in our fol-
lowing application) is illustrated in Fig. 3. The four marginal distri-
butions are linked through a dependence function with two
regimes, one symmetric, the other asymmetric.
America.
17 Since Pelletier (2006) uses the normal distribution with constant mean, the

resulting unconditional distribution is symmetric and cannot reproduce asymmetric
dependence.
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Fig. 3. Model structure: disentangling marginal distributions from the dependence structure with a two-regime copula, with one symmetric regime and one asymmetric
regime. The marginal distributions are regime-free.
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3.2. Specification of the marginal distributions

For marginal distributions, we use a M-GARCH (1,1) model sim-
ilar to Heston and Nandi (2000):

xi;t ¼ li þ kir2
i;t þ ri;tzi;t; zi;t � N 0;1ð Þ; i ¼ 1; . . . ;4 ð3:4Þ

r2
i;t ¼ xi þ bir2

i;t�1 þ ai zi;t�1 � ciri;t�1
� �2 ð3:5Þ

The variables x1,t and x2,t represent the log returns of equities and
bonds respectively for the first country while x3,t and x4,t are the
corresponding series for the second country; r2

i;t denotes the condi-
tional variance of xi,t, ki can be interpreted as the price of risk and ci

captures potential asymmetries in the volatility effect.18 In the Hes-
ton and Nandi (2000) interpretation, li represents the interest rate.19

The parameters of the marginal distributions are grouped into one
vector d � (d1, . . . ,d4), with di = (li,ki,xi,bi,ai,ci).

3.3. Specification of the dependence structure

Our dependence model is characterized by two regimes, one
Gaussian regime in which dependence is symmetric (CN) and a sec-
ond regime that can capture the asymmetry in extreme depen-
dence (CA). The conditional copula is given by:

Cðu1;t ; . . . ;u4;t ;qN;qAjstÞ ¼ stCNðu1;t; . . . ;u4;t; qNÞ
þ ð1� stÞCAðu1;t; . . . ; u4;t;qAÞ ð3:6Þ

where ui,t = Fit(xi,t;di), with Fit denoting the conditional cumulative
distribution function of xi,t given the past observations. The variable
st follows a Markov chain with a constant transitional probability
matrix.

M ¼
P 1� P

1� Q Q

� �
; P ¼ Pr st ¼ 1jst�1 ¼ 1ð Þ and

Q ¼ Pr st ¼ 0jst�1 ¼ 0ð Þ ð3:7Þ

The normal regime (st = 1) corresponds to the symmetric regime
where the conditional joint normality can be supported and the
asymmetric regime (st = 0) corresponds to the asymmetric regime
in which markets are strongly more dependent for large negative
returns than for large positive returns.

The Gaussian copula CN is defined straightforwardly by (3.1)
where the joint distribution F ¼ UqN is the four-dimensional normal
cumulative distribution function with all diagonal elements of the
covariance matrix equal to one, i.e. CNðu1; . . . ;u4;qNÞ ¼ UqN
18 The condition bi þ aic2
i < 1 is sufficient to have the stationarity of the process xi,t

with finite unconditional mean and variance (see Heston and Nandi, 2000).
19 Here we keep li as a free parameter to give more flexibility to our model.
ðU�1ðu1Þ; . . . ;U�1ðu4ÞÞ, where U is the univariate standard normal
cumulative distribution function.

The asymmetric components of the copula are illustrated in
Fig. 4. The first one is characterized by independence between
the two countries, but possibly extreme dependence between
equities and bonds for each country. The second one is character-
ized by independence between equity and bond markets but al-
lows for extreme dependence between equity returns and bond
returns separately. The third one allows for possible extreme
dependence between bonds in one country and equities in another
country but supposes independence for the rest.

Formally, the asymmetric copula is the mixture of these three
components and is expressed as follows:

CAðu1; . . . ;u4;qAÞ � p1CGSðu1;u2; sL
1Þ � CGSðu3;u4; sL

2Þ
þ p2CGSðu1;u3; sL

3Þ � CGSðu2;u4; sL
4Þ

þ ð1� p1 � p2ÞCGSðu1;u4; sL
5Þ � CGSðu2;u3; sL

6Þ
ð3:8Þ

with qA ¼ ðp1; p2; sL
1; sL

2; sL
3; sL

4; sL
5; sL

6Þ, and the bivariate com-
ponent is the Gumbel survival copula given by

CGSðu;v;sLÞ¼uþv�1

þexp � ð�logð1�uÞÞhðs
LÞ þ �logð1�vÞð Þhðs

LÞ
� �1=hðsLÞ

	 

ð3:9Þ

where hðsLÞ ¼ logð2Þ
logð2�sLÞ ; sL 2 ½0;1Þ is the lower TDC and the upper

TDC is zero. As illustrated by Fig. 1, the choice of this particular cop-
ula is justified by its ability to replicate the pattern of dependence
observed in the data. The shape of the exceedance correlation for
the rotated Gumbel copula is more similar to the asymmetric shape
observed in the data, while as expected Gaussian or RS with Gauss-
ian distributions fail to replicate this shape.20

One can notice that our asymmetric copula specification implies
some restrictions in the dependence structure. For three different
couples from different components of this copula, the sum of their
TDC is lower than one. Without any restrictions this sum may
reach 3. For example, the TDC between bonds and equities in the
first country is p1sL

1, between equities of two countries p2sL
3, and

between equities in the first country and bonds in the second
country ð1� p1 � p2ÞsL

5. Therefore, the sum is p1sL
1 þ p2sL

3þ
ð1� p1 � p2ÞsL

5 6 1, since sL
1 6 1; sL

3 6 1, and sL
5 6 1. We explore

the empirical implications of these restrictions in Section 4.4. A
major problem in building multivariate distributions is how to
20 The Longin and Solnik (2001) result implies that lower tails are dependent while
upper tails are independent. Hence, the rotated Gumbel copula is designed to model
this feature since it has this tail dependence structure.
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Fig. 4. Illustration of the three components of asymmetric copula. Each component is the product of the two bivariate copulas representing the corresponding encircled
couple of returns.
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construct multivariate copulas with specific bivariate marginal dis-
tributions.21 A theorem by Genest et al. (1995) states that it is not
always possible to construct multivariate copulas with given bivari-
ate margins. Therefore, even if in the bivariate case we can have a
nice asymmetric copula with lower tail dependence and upper tail
independence as Longin and Solnik (2001) suggest, some problems
remain when we contemplate more than two series. Most existing
asymmetric tail-dependent copulas are in the family of Archimedean
copulas and the usual straightforward generalization in multivariate
copulas constrains all bivariate marginal copulas to be the same. This
is clearly not admissible in the context of our analysis. In the above
model, we allow each of the six couples of interest to have different
levels of lower TDC. As CA is constructed, it is easy to check that it is a
copula since each component of the mixture is a copula and the mix-
ture of copulas is a copula.22

It is important to notice that, in this model, the labeling of each
regime is defined ex-ante. The normal regime (st = 1) corresponds
to the symmetric regime where the conditional joint normality can
be supported and the asymmetric regime (st = 0) corresponds to
the asymmetric regime in which markets are strongly more depen-
dent for large negative returns than for large positive returns.

3.4. An adapted parsimonious model

Given our application, we impose an additional constraint:
p1 + p2 = 1. This means that we neglect the asymmetric cross-
dependence between equities in one country and bonds in another
country. However, it should be stressed that we maintain cross-
country dependence through the normal regime. In Section 4.4,
we investigate the effect of this constraint on the overall the level
of dependence measured by the Spearman rho, a nonparametric
measure of dependence.23 The mixed copula becomes:

CAðu1; . . . ;u4;qAÞ � pCGSðu1;u2; sL
1Þ � CGSðu3; u4; sL

2Þ
þ ð1� pÞCGSðu1; u3; sL

3Þ � CGSðu2;u4; sL
4Þ ð3:10Þ
21 Nelsen (1999, p. 86) mentions that it may be the most important open question
concerning copulas. Aas et al. (2007) propose an approach to build multiple
dependence based on pair-copula decomposition. Their approach proceeds by a
hierarchical incorporation of more variables in the conditioning sets. This procedure
provides a nice way to build flexible multivariate copula. In practice it is important to
make a good choice of couples that should be used in the first level of the hierarchy
since a limitation of the procedure is that the couples after the first level of the
hierarchy are based on conditional copulas.

22 A copula can be seen as the cdf of a multidimensional variable with uniform [0,1]
margins. If we consider two bivariate independent variables with uniform margins
the copula linking the four variables is simply the product of the corresponding
bivariate copulas. Hence, such a product is always a copula.

23 A related study by Hartmann et al. (2004) using extreme value theory tends to
support this restriction. Analyzing stock and bond returns for G-5 countries, they find
that extreme dependence between stocks and bonds is much lower that extreme
dependence between stock markets or bond markets. This is especially the case for
cross-country dependence between stocks in one country and bonds in another
country.
Therefore, the asymmetric copula is now characterized by just five
parameters qA ¼ p; sL

1; sL
2; sL

3; sL
4

� �
.

3.5. Estimation

As already mentioned, our structure allows for a two-step esti-
mation procedure. The likelihood function must be evaluated
unconditionally to the unobservable regime variable st and decom-
posed in two parts. Let us denote the sample of observed data by
XT = {X1, . . . ,XT} where Xt � {x1,t, . . . ,x4,t}. The log likelihood function
is given by:

L d; h; XTð Þ ¼
XT

t¼1

log f Xt ; d; hjXt�1ð Þ ð3:11Þ

where Xt�1 = {X1, . . . ,Xt�1} and h is a vector including the parameters
of the copula and the transition matrix. Hamilton (1989) describes a
procedure to perform this type of evaluation24. With nt = (st,1 � st)0

and denoting

gt ¼
f Xt; d; hjXt�1; st ¼ 1ð Þ
f Xt; d; hjXt�1; st ¼ 0ð Þ

	 

ð3:12Þ

the density function conditionally to the regime variable st and the
past returns can be written as:

f Xt ; d; hjXt�1; stð Þ ¼ n0tgt ð3:13Þ

Since st (or nt) is unobservable, we integrate on st and obtain the
unconditional density function:

f Xt ; d; hjXt�1ð Þ ¼ Pr st ¼ 1jXt�1; d; h½ � � f Xt; d; hjXt�1; st ¼ 1ð Þ
þ Pr st ¼ 0jXt�1; d; h½ � � f Xt ; d; hjXt�1; st ¼ 0ð Þ

ð3:14Þ

The conditional probabilities of being in different regimes at
time t conditional on observations up to time t � 1, denoted by
n̂tjt�1 � ðPr½st ¼ 1jXt�1; d; h�; Pr½st ¼ 0jXt�1; d; h�Þ0, are computed
through the Hamilton filter. Starting with the initial value n̂1j0,
the optimal inference and forecast for each date in the sample is
given by the iterative equations:

n̂t=t ¼ n̂0tjt�1gt

h i�1
n̂tjt�1 � gt

� �
ð3:15Þ

n̂tþ1=t ¼ M0 � n̂tjt ð3:16Þ

where � denotes element-by-element multiplication. Finally, the
unconditional density can be evaluated with the observed data as
f ðXt ; d; hjXt�1Þ ¼ n̂0tjt�1gt and the log likelihood becomes:

Lðd; h; XTÞ ¼
XT

t¼1

log n̂0tjt�1gt

� �
ð3:17Þ
4 A general presentation can be found in Hamilton (1994, chapter 22).
2
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To perform the two-step procedure, we decompose the log likeli-
hood function into two parts: the first part includes the likelihood
functions of all margins, while the second part represents the like-
lihood function of the copula.

Proposition 3.2 (Decomposition of the log likelihood function). The
log likelihood function can be decomposed into two parts including the
margins and the copula

L d; h; XTð Þ ¼
X4

i¼1

Li di; Xi;T
� �

þ LC d; h; XTð Þ ð3:18Þ

where

Xi;t ¼ fxi;1; . . . ; xi;tg

Liðdi; Xi;TÞ ¼
XT

t¼1

log fiðxi;t ; dijXi;t�1Þ

LCðd; h; XÞ ¼
XT

t¼1

log n̂0tjt�1gct

� �
with

gct ¼
c u1;tðd1Þ; . . . ;un;tðdnÞ; hjst ¼ 1ð Þ
c u1;tðd1Þ; . . . ;un;tðdnÞ; hjst ¼ 0ð Þ

	 

; ui;tðdiÞ ¼ Fi xi;t ; dijXi;t�1

� �
and n̂0tjt�1 filtered from gct as

n̂t=t ¼ n̂0tjt�1gct

h i�1
ðn̂tjt�1 � gctÞ

n̂tþ1=t ¼ M0 � n̂tjt
25 Hansen (1996) describes the asymptotic distributions of standard test statistics in
the context of regression models with additive nonlinearity. Garcia (1998) and
Hansen (1992) provide the asymptotic null distribution of the likelihood ratio test.
Andrews and Ploberger (1994) address the first problem in a general context and
derive an optimal test. The above procedures solve the problem of unidentified
nuisance parameters under the null and the identically zero scores. However, there is
an additional problem of testing parameter on the boundary. Andrews (2001) deals
with this boundary problem but in the absence of the first two problems.
Proof. See Appendix A.

Several options are available for the estimation of the initial
value n̂1j0. One approach is to set it equal to the vector of uncondi-
tional probabilities, which is the stationary transitional probability
of the Markov chain. Another simple option is to set n̂1j0 ¼ N�11N .
Alternatively it could be considered as another parameter, which
will be estimated subject to the constraint that 10N n̂1j0 ¼ 1. We will
use the first option here.

Through the above decomposition, we notice that each
marginal log likelihood function is separable from the others.
Therefore, even if the estimation of all margins is performed in a
first step, we can estimate each set of marginal parameters sepa-
rately into this step. The first step is then equivalent to n single
estimations of univariate distributions. The two-step estimation
is formally written as follows:

d̂ ¼ argmax
d¼ðd1 ;...;d4Þ2D

X4

i¼1

Li di; Xi;:
� �

; ð3:19Þ

ĥ ¼ argmax
h2H

LCðd̂; h; XÞ: ð3:20Þ

The estimator for the parameters of the marginal distributions is
then d̂ ¼ ðd̂1; . . . ; d̂4Þ, with d̂i ¼ ðl̂i; k̂i; x̂i; b̂i; âi; ĉiÞ0; and ĥ ¼
ðq̂N; q̂A; bP ; bQ Þ includes all estimators of the parameters involved in
the dependence structure. D and H represent the sets of all possible
values of d and h respectively.

3.6. Tests of dependence structure

We perform three different tests for dependence structure. The
first one is the Longin and Solnik (2001) test for exceedence corre-
lation. For this test, we focus on the lower tail dependence to com-
pare exceedence correlation of return data, the simulated return
from two RS with Gaussian distributions, and the simulated return
from a Gumbel copula model.
We also test the asymmetry in dependence. While the proposed
copula model has the potential to capture asymmetry in depen-
dence, we need to test formally for the presence of such asymmetric
dependence. The natural way to evaluate whether dependence is
asymmetric is to test the null hypothesis of one normal copula re-
gime (H0: (P = 1 and Q = 0), where P and Q are the parameters of
the transition probability matrix), against the alternative hypothesis
of two-copula regimes including the normal one and the asymmetric
one. This test faces the general problems found in testing in RS mod-
els. In particular, under the null hypothesis, nuisance parameters are
unidentified and the scores are identically zero.25

Maximized Monte Carlo (MMC) tests of Dufour (2006), which
are a generalization of classical Monte Carlo (MC) tests of Dwass
(1957) and Barnard (1963), are adapted for tests facing these prob-
lems. The MC tests of Dwass (1957) and Barnard (1963) are per-
formed by doing many replications (with the same sample size
as the data sample) under the null hypothesis, and compute the
test statistic for each replication. The distribution of the test statis-
tic is therefore approximated by the distribution of the obtained
values. One can therefore compute the value of the test statistic
with the data and deduce from the MC distribution the p-value
of the test. The classical MC test does not deal with the presence
of nuisance parameters under the null hypothesis. The MMC of Du-
four (2006) addresses the problem of nuisance parameters under
the null. When the test statistic involves the nuisance parameters
as in the case of the likelihood ratio test under the alternative,
the values of these parameters are needed to compute the test sta-
tistic on simulated data.

The MMC technique is the maximization of the p-values given
all the possible values of the nuisance parameters. This test is com-
putationally very demanding. However, Dufour (2006) proposes a
simplified version that focuses on the estimated values of the nui-
sance parameters and shows that it works under the assumptions
of uniform continuity, and convergence over the nuisance param-
eter space. Our model satisfies these assumptions of uniform con-
tinuity and convergence. Therefore, we can apply this simpler
version also known as parametric bootstrap test.

Finally, we compare the goodness-of-fit of this model with two
different structures. Chen and Fan (2005) propose a test to com-
pare non-nested copula models. We apply this test to compare
our model with a regime switching model where both regimes
display Gaussian copulas. We also compare our model with a
model with just one regime (of Gumbel copula) which displays
an asymmetric dependence behavior to make sure that it is
necessary to use in addition, a symmetric regime (of Gaussian
copula).

4. Dependence structure in international bond and equity
markets: an empirical investigation

4.1. Data

We will consider the same model for two pairs of two countries.
First, we model the equity and bond markets in the United States
and Canada. The US equity returns are based on the SP 500 index,
while the Canadian equity returns are computed with the Data-
stream index. The bond series are indices of 5-year government
bonds computed by Datastream. These bond indices are available



Table 1
Summary statistics of weekly bond and equity index returns for the four countries. All returns are in US dollars, from January 01, 1985 to December 21, 2004, which corresponds
to a sample of 1044 observations. Sharpe ratio represents the ratio of the mean over the standard deviation of return.

Meana Stda Kurtosis Skewness Mina Maxa Sharpe ratio

US equity 13.67 17.51 17.00 �1.55 �680.36 311.10 0.78
US bond 7.57 4.69 0.67 �0.06 �66.91 58.81 1.61
CA equity 11.24 16.72 13.62 �1.67 �610.87 225.15 0.67
CA bond 8.81 8.15 1.13 �0.24 �130.55 118.07 1.08
FR equity 14.72 23.43 7.18 �0.09 �582.12 512.16 0.63
FR bond 11.52 11.16 0.92 0.04 �142.02 166.68 1.03
DE equity 12.57 24.97 8.01 �0.46 �574.96 463.08 0.50
DE bond 10.44 11.56 0.82 �0.01 �142.54 171.39 0.90

a Annualized percent.

Table 2
Unconditional correlations between bonds and equity for US, Canada (CA), France (FR), and Germany (DE).

US equity US bond CA equity CA bond FR equity FR bond DE equity

US bond 0.0576
CA equity 0.7182 0.0116
CA bond 0.1783 0.4706 0.4392
FR equity 0.1957 �0.0182 0.1974 0.1065
FR bond �0.0499 0.3386 �0.0080 0.2433 0.3066
DE equity 0.2089 �0.0536 0.1995 0.1009 0.8099 0.2625
DE bond �0.0832 0.3081 �0.0234 0.2143 0.3084 0.9403 0.2847

1962 R. Garcia, G. Tsafack / Journal of Banking & Finance 35 (2011) 1954–1970
daily and are chain-linked allowing the addition and removal of
bonds without affecting the value of the index.

We also consider France and Germany as a pair of countries. An
additional interest here will be to see how the introduction of the
European common currency changed the dependence structure be-
tween the asset markets in these two countries. The bond indices
are the Datastream 5-year government bond indices, while the
equity indices are the MSCI series.

All returns are total returns and are expressed in US dollars on a
weekly basis from January 01, 1985 to December 21, 2004, which
corresponds to a sample of 1044 observations. Descriptive statis-
tics are reported in Table 1.

Sharpe ratios appear to be of the same magnitude for both equi-
ties and bonds, around 0.6 on average for the first and slightly
above 1 for the second. The United States exhibits the highest ra-
tios among the four countries. All return series present negative
skewness except for the French bond index. Both mean returns
and return volatility are higher in France and Germany than in
the US and Canada. The volatility of returns in France and Germany
is more than 23%, while it is only 18% in the US and Canada.

Unconditional correlations are reported in Table 2. The US and
Canadian markets exhibit relatively high correlations, 0.72 for
equities and 0.5 for bonds. The same is true for the France–
Germany pair, although the bond markets are tightly linked, with
a correlation of 0.94. The North-American equity markets are less
correlated with European equity markets (around 0.2) than their
bond counterparts (around 0.32). The cross-correlations between
equity and bond markets vary from country to country. On average
the two markets seem to move independently in the United States,
while they are more closely related in Canada (0.44) and in Europe
(around 0.3 for both France and Germany). Cross-correlations be-
tween equities and bonds in two different countries are not very
high for US and Canada, and of the same order of magnitude than
within-country cross-correlations (0.3) for France and Germany.
4.2. Marginal distributions

The estimates of the marginal parameters are reported in
Table 3. The large values for the bi parameters (around 90%)
capture the high persistence in volatility. The high degree of signif-
icance for the parameter k indicates that asset returns are skewed.

One important assumption for these GARCH models is that the
error terms are i.i.d. Therefore, to verify if the assumption is ful-
filled, we perform some tests of independence and normality on
the residuals. The test results in Table 4 suggest that the indepen-
dence assumption of residuals cannot be rejected for all series with
a good degree of confidence.
4.3. Dependence structure in bond and equity markets

Three main conclusions emerge from the empirical results.
First, there appears to be a large extreme cross-country depen-
dence for both the equity and bond markets, while there is little
dependence between equities and bonds in the same country. Sec-
ond, the dependence structure exhibits a strong nonlinearity.
Third, there seems to be a link between exchange rate volatility
and asymmetry of dependence.
4.3.1. US–Canada dependence structure
In Table 5, we report the results of estimating the dependence

model described in Section 3.4. The cross-country extreme depen-
dence is large in both equity and bond markets, but the depen-
dence across the two markets is relatively low in both countries.
In the asymmetric regime, the TDCs are larger than 54% in both
bond–bond and equity–equity markets, while both equity–bond
TDCs in US and Canada are lower than 2%. This observation has
an important implication for international diversification. The fact
that extreme dependence in international equity and bond markets
is larger than national bond–equity dependence can have a nega-
tive effect on the gain of international diversification and encour-
age the switching from equity to the domestic bond or risk-free
asset in case of bear markets.

The average absolute value of correlation in the normal regime is
larger than 39% for cross-country dependence and lower than 41%
for equity–bond dependence. In the last case the correlation
between bonds and equities in Canada is unusually high. The results
underline the differences between unconditional correlation and the
correlation in the normal regime. In fact, the presence of extreme



Table 3
Estimates of M-GARCH (1,1) parameters for all bond and equity returns of four countries. The figures between brackets represent standard deviations of the parameters. L is the
value of the log likelihood function.

US CA FR DE

Equity Bond Equity Bond Equity Bond Equity Bond

b 7.94e�1 7.82e�1 8.09e�1 9.07e�1 9.68e�1 9.36e�1 9.24e�1 9.56e�1
(3.49e�1) (1.62e�1) (4.06e�1) (1.79e�1) (3.61e�1) (4.21e�1) (1.54e�1) (2.45e�1)

a 5.46e�5 2.63e�6 6.40e�5 7.30e�6 2.28e�5 1.51e�5 2.22e�5 1.08e�5
(4.04e�5) (6.36e�5) (8.16e�5) (2.94e�5) (9.35e�6) (2.17e�5) (2.14e�4) (1.88e�5)

c 4.45e+1 3.84e+1 2.73e+1 3.28e+1 1.91e+1 6.53e+0 1.19e+1 3.26e+0
(1.70e�2) (6.11e�3) (1.14e�2) (1.22e�2) (1.61e�2) (1.85e�1) (8.07e�2) (2.45e�2)

k 1.72e+0 1.37e+1 3.13e+0 1.01e+1 1.61e+0 5.61e+0 1.78e+0 6.13e+0
(1.39e�2) (1.05e�2) (2.09e�2) (7.59e�3) (7.22e�3) (1.96e�1) (6.33e�2) (7.86e�3)

x 7.57e�6 6.49e�6 1.21e�5 3.49e�6 1.99e�6 1.51e�7 6.46e�5 4.79e�7
(9.64e�5) (1.90e�5) (1.74e�5) (2.52e�5) (6.53e�5) (4.33e�5) (1.92e�4) (3.25e�5)

l 1.07e�3 7.18e�4 1.32e�3 4.73e�4 1.48e�3 5.37e�4 6.51e�4 1.35e�4
(1.29e�4) (6.74e�5) (3.76e�5) (5.26e�5) (5.00e�4) (1.45e�4) (1.32e�4) (3.38e�5)

L 2.49e+3 3.77e+3 2.50e+3 3.20e+3 2.10e+3 2.88e+3 2.04e+3 2.84e+3

Table 4
Test for iid normal assumption of residuals of the M-GARCH models for the marginal distributions. The panel A provides the Box–Pierce and the Ljung–Box statistics for tests of
independence of residuals of the M-GARCH models for the marginal distributions. For each series, the statistic is computed for different numbers of lags (1, 4, 6, and 12). The panel
B presents the Kolmogorov–Smirnov (KS) and the Anderson–Darling (AD) statistics estimates with their p-values. A p-value greater than a given level (1, 5, or 10%) means that the
normality assumption cannot be rejected at that level.

US CA FR DE

Equity Bond Equity Bond Equity Bond Equity Bond

Panel A: Test for serial independence
Box–Pierce
12 lags 23.26⁄ 18.57⁄⁄ 14.42⁄⁄ 9.27⁄⁄ 10.93⁄⁄ 9.88⁄⁄ 8.64⁄⁄ 12.19⁄⁄

6 lags 14.85⁄ 12.19⁄⁄ 10.26⁄⁄ 7.17⁄⁄ 10.70⁄⁄ 5.06⁄⁄ 4.55⁄⁄ 8.85⁄⁄

4 lags 8.73⁄⁄ 10.49⁄ 9.02⁄⁄ 6.34⁄⁄ 7.00⁄⁄ 3.7099⁄⁄ 3.39⁄⁄ 6.36⁄⁄

1 lag 5.36⁄ 0.01⁄⁄ 3.71⁄⁄ 0.45⁄⁄ 6.11⁄ 1.33⁄⁄ 3.18⁄⁄ 2.78⁄⁄

Ljung–Box
12 lags 23.43⁄ 18.71⁄⁄ 14.51⁄⁄ 9.32⁄⁄ 10.98⁄⁄ 9.97⁄⁄ 8.71⁄⁄ 12.28⁄⁄

6 lags 14.93⁄ 12.25⁄⁄ 10.31⁄⁄ 7.20⁄⁄ 10.74⁄⁄ 5.09⁄⁄ 4.57⁄⁄ 8.90⁄⁄

4 lags 8.76⁄⁄ 10.55⁄ 9.05⁄⁄ 6.37⁄⁄ 7.02⁄⁄ 3.7248⁄⁄ 3.40⁄⁄ 6.38⁄⁄

1 lag 5.37⁄ 0.01⁄⁄ 3.72⁄⁄ 0.45⁄⁄ 6.13⁄ 1.33⁄⁄ 3.19⁄⁄ 2.79⁄⁄

Panel B: Normality test
KS
Statistics 0.0238 0.0196 0.0295 0.0241 0.0230 0.0252 0.0180 0.0203
p-Value 0.5926 0.8146 0.3204 0.5738 0.6334 0.5174 0.8855 0.7772
AD
Statistics 0.6197 0.6536 1.3762 1.1604 0.7035 0.7075 0.6007 0.7707
p-Value 0.6295 0.5988 0.2090 0.2831 0.5559 0.5526 0.6473 0.5026

⁄ We cannot reject independence at the 1% level.
⁄⁄ We cannot reject independence at the 5% level.
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dependence in the negative returns explains this difference since the
multivariate Gaussian distribution has independence in the tails of
returns regardless of the level of correlation.

The separation of the distribution into two parts, including the
normal regime and the asymmetric regime, allows to capture the
strong nonlinear pattern in the dependence structure. Moreover,
it is interesting to see that for a high unconditional correlated
couple such as the US and Canada equity markets, this separation
gives not only an extreme dependence for the asymmetric regime,
but also a high correlation in the normal regime (87%) that appears
larger than the unconditional correlation (72%). This result may
seem counter-intuitive if we take the unconditional correlation
as a ‘‘mean’’ of the correlations in the two regimes. Of course,
one must realize that the asymmetric regime can be characterized
by a low correlation but by a large TDC. This demonstrates the
importance of distinguishing between correlation and extreme
dependence. The mixture model is better able to capture this dis-
tinction in fitting the data. A normal distribution may be a good
approximation for measuring finite distance dependence, but an
appropriate copula structure is necessary for characterizing ex-
treme dependence.

4.3.2. France–Germany dependence structure
The estimation results are shown in Table 6. Due to a high cross-

country unconditional correlation in both markets, the results for
France and Germany are more eloquent. The dependence between
equities and bonds is low, while the dependence between assets of
the same type is large in both regimes. For France and Germany,
equity–equity correlation and bond–bond correlation are larger
than 90% while bond–equity correlations are lower than 21% in
the same country as well as between the two countries. In the
asymmetric regime, the TDC are larger than 67% between assets



Table 5
Dependence structure between the United States and Canada in equity and bond
markets. Correlation coefficients are reported for the normal regime, while tail
dependence coefficients describe the asymmetric regime. The tail dependence
coefficient is obtained as the product of parameter s and the respective weight p
for cross-asset dependence and 1 � p for cross-country dependence. Standard
deviations are reported between parentheses for all parameters estimated directly
from the model. The last raw reports the diagonal elements of the transition
probability matrix.

Cross-country (US–CA) dependence

Normal regime Asymmetric regime
Correlation coefficient Tail dependence coefficient

s TDC ((1 � p)s)

US equity–CA equity 0.8739 0.9100 0.7917
(0.1560) (0.0185)

US bond–CA bond 0.3870 0.6234 0.5424
(0.0831) (0.0124)

1 � p 0.6897

Cross-asset (equity–bond) dependence

Normal regime Asymmetric regime
Correlation coefficient Tail dependence coefficient

US bond CA bond s TDC (ps)

US equity �0.1101 0.1234 US equity–US bond 0.1300 0.0169
(0.0416) (0.0312) (0.041)

CA equity �0.0812 0.4085 CA equity–CA bond 0.1385 0.0180
(0.0207) (0.0103) (0.0145)

p 0.3102
(0.0207)

Parameters of transitional probability matrix

P 0.9020 Q 0.9586
(0.0207) (0.0206)

Table 6
Dependence structure between France and Germany in equity and bond markets.
Correlation coefficients are reported for the normal regime, while tail dependence
coefficients describe the asymmetric regime. The tail dependence coefficient is
obtained as the product of parameter s and the respective weight p for cross-asset
dependence and 1 � p for cross-country dependence. Standard deviations are
reported between parentheses for all parameters estimated directly from the model.
The last raw reports the diagonal elements of the transition probability matrix.

Cross-country (FR–DE) dependence

Normal regime Asymmetric regime
Correlation coefficient Tail dependence coefficient

s TDC ((1 � p)s)

FR equity–DE equity 0.9083 0.9554 0.7787
(0.0267) (0.0603)

FR bond–DE bond 0.9901 0.8261 0.6733
(0.058) (0.027)

1 � p 0.8151

Cross-asset (equity–bond) dependence

Normal regime Asymmetric regime
Correlation coefficient Tail dependence coefficient

FR Bond DE Bond s TDC (ps)

FR equity 0.1893 0.2023 FR equity–FR bond 0.0923 0.0171
(0.0170) (0.0129) (0.028)

DE equity 0.1175 0.1294 DE equity–DE bond 0.0969 0.0179
(0.0214) (0.030) (0.029)

p 0.1849
(0.0294)

Parameters of transitional probability matrix

P 0.8381 Q 0.9373
(0.0270) (0.0373)
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of the same type and lower than 2% between bond and equities in
both France and Germany.26

To analyze the effect of the Euro on the dependence structure,
we split the observation period in two subperiods, before and after
the introduction of the currency. Tables 7 and 8 contain the results
for the respective subperiods. We find that the introduction of the
Euro increases the correlation in the normal regime between the
French and German markets. Before the introduction of the Euro,
in the normal regime, the cross-country correlation between assets
of the same type is on average 80%, against more than 96% after the
introduction. The cross-asset correlations exhibit a similar pattern
since all correlations increase after the introduction of the Euro.
This result is consistent with those of Cappiello et al. (2006) who
find that the introduction of a fixed exchange rate leads to a struc-
tural break characterized by a high correlation.27 For the asymmet-
ric regime, the results are more surprising since the extreme
dependence between the French and German equity markets drasti-
cally decreases from 87% to 26%. All the other extreme dependence
coefficients increase, but only the TDC of the FR bond–DE bond pair
increases significantly. Since this change in the level of dependence
suggests a relationship between the dependence structure and the
exchange rate, we investigate it further in the next section for both
pairs of countries.

These results for the two pairs of countries that we analyzed
suggest that an asymmetric regime cannot be readily associated
26 We also estimated a version of the model where we allowed dependence between
equities and bonds across Germany and France but not within each country. We
found TDCs even lower than 2%, which tends to support our initial assumption to
ignore such cross-country dependence across markets.

27 The goal of Cappiello et al. (2006) was to investigate the asymmetric effect of past
news on the correlation. Since it is well documented that the negative shocks have a
larger effect on volatility than the positive shocks of the same magnitude, they try to
see if the result is similar for correlation.
with market situations such as bull and bear markets or calm
and volatile markets used in the previous literature on contagion.
Das and Uppal (2004) relate high volatility and downturn markets
to a large conditional correlation,28 while Forbes and Rigobon
(2002) define contagion as a change in correlation during more vol-
atile market times. In an asymmetric regime of dependence, ex-
treme negative shocks are more likely to be transmitted to other
markets than positive shocks, irrespective of the market situation.
In the normal dependence regime good and bad shocks are trans-
mitted with the same probability.

4.3.3. Dependence structure tests
Empirical results for the Longin–Solnik tests (see Table 9) show

that the RS model with one symmetric regime and one asymmetric
regime displays significant exceedence correlations for the lower
tail present in the data, while the classical RS model with Gaussian
distributions fails to do so. The MMC of Dufour (2006) test con-
firms the presence of asymmetry in the dependence structure. Fi-
nally when using the Chen and Fan (2005) test to compare the
RS with one Gaussian regime and one rotated Gumbel regime,
the RS with two Gaussian copulas, and the model just with rotated
Gumbel copula, we find that the RS model with one Gaussian cop-
ula and one rotated Gumbel copula outperforms the two other
models.
4.3.4. Link between asymmetric dependence and the exchange rate
The filtered probabilities to be in asymmetric regime are ob-

tained as a by-product of estimation. They provide at each time
period t a probabilistic assessment of being in the asymmetric re-
gime conditional on the information available at time t (Fig. 5). For
8 Boyer et al. (1999) and Forbes and Rigobon (2002) show that there is a theoretical
ias when comparing correlations in different market situations.
2
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Table 7
Subperiod I (period before the introduction of the Euro currency: from January 01,
1985 to December 29, 1998 for a sample of 731 observations). Dependence structure
between France and Germany in equity and bond markets. Correlation coefficients are
reported for the normal regime, while tail dependence coefficients describe the
asymmetric regime. The tail dependence coefficient is obtained as the product of
parameter s and the respective weight p for cross-asset dependence and 1 � p for
cross-country dependence. Standard deviations are reported between parentheses for
all parameters estimated directly from the model. The last raw reports the diagonal
elements of the transition probability matrix.

Cross-country (FR–DE) dependence

Normal regime Asymmetric regime
Correlation coefficient Tail dependence coefficient

s TDC ((1 � p)s)

FR equity–DE equity 0.6924 0.9554 0.8663
(0.0760) (0.035)

FR bond–DE bond 0.9082 0.8388 0.7606
(0.038) (0.061)

1 � p 0.9067

Cross-asset (equity–bond) dependence

Normal regime Asymmetric regime
Correlation coefficient Tail dependence coefficient

FR bond DE bond s TDC (ps)

FR equity 0.2091 0.1641 FR equity–FR bond 0.1130 0.0105
(0.0123) (0.0151) (0.021)

DE equity 0.1205 0.1519 DE equity–DE bond 0.0067 0.0006
(0.0106) (0.049) (0.072)

p 0.0933
(0.010)

Parameters of transitional probability matrix

P 0.0651 Q 0.9438
(0.0103) (0.0102)

Table 8
Subperiod II (period after the introduction of the Euro currency: from January 05,
1999 to December 21, 2004 for a sample of 313 observations). Dependence structure
between France and Germany in equity and bond markets. Correlation coefficients are
reported for the normal regime, while tail dependence coefficients describe the
asymmetric regime. The tail dependence coefficient is obtained as the product of
parameter s and the respective weight p for cross-asset dependence and 1 � p for
cross-country dependence. Standard deviations are reported between parentheses for
all parameters estimated directly from the model. The last raw reports the diagonal
elements of the transition probability matrix.

Cross-country (FR–DE) dependence

Normal regime Asymmetric regime
Correlation coefficient Tail dependence coefficient

s TDC ((1 � p)s)

FR equity–DE equity 0.9426 0.2598 0.2582
(0.0950) (0.0106)

FR bond–DE Bond 0.9937 0.8946 0.8892
(0.0382) (0.071)

1 � p 0.9940

Cross-asset (equity–bond) dependence

Normal regime Asymmetric regime
Correlation coefficient Tail dependence coefficient

FR bond DE bond s TDC (ps)

FR equity 0.2272 0.2350 FR equity–FR bond 0.2249 0.0013
(0.0241) (0.0177) (0.024)

DE equity 0.1516 0.1573 DE equity–DE bond 0.9760 0.0059
(0.0118) (0.059) (0.082)

p 0.0060
(0.012)

Parameters of transitional probability matrix

P 0.9212 Q 0.2274
(0.0118) (0.0117)
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France and Germany, these probabilities show a clear break after
the introduction of the Euro. Before its introduction, the depen-
dence is more likely asymmetric and becomes more Gaussian after
the event. To investigate this relationship further, we perform a
logistic regression of the conditional probabilities to be in the
asymmetric regime on the volatility of the exchange rate.29

For France and Germany, we have:

bPt ¼ a
�1:26eþ 0
ð6:81e� 2Þ

þ b
5:06eþ 2
ð2:29eþ 1Þ

� Volt þ et

The dependent variable is bPt ¼ logðPt=ð1� PtÞÞ, where Pt is the con-
ditional probability to be in the asymmetric regime given the time-t
available information, and Volt is the exchange rate volatility be-
tween the two countries obtained by a M-GARCH (1,1) filter. Stan-
dard deviations are reported between parentheses. The coefficient
is positive and highly significant (the R2 of the regression is 0.86)
suggesting a strong relationship between exchange rate volatility
and asymmetric dependence.

One may be concerned that the relation between the probability
of the asymmetric regime and exchange rate volatility is due to the
correlation of the latter with the volatility of the equity market or
the bond market of the respective countries. To address this issue,
we perform an orthogonalization. We regress the exchange rate on
all equity and bond return volatilities in a first step and keep resid-
uals. Then we regress the probability of asymmetric regime on
these residuals in a second step. The relation remains significant.
29 Since the probability Pt to be in a regime is between 0 and 1, the logistic
regression allows us to keep this constraint by proceeding as follows Pt = exp(a +
Volt + et)/(1 + exp(a + Volt + et)) or equivalently log (Pt/(1 � Pt)) = a + bVolt + et and we
can perform the usual regression.
We run the same regression for US and Canada to investigate if
the relation holds when no structural change occurs. The results
are similar to the European results.

bPt ¼ a
�7:71e� 1
ð1:76e� 1Þ

þ b
9:30eþ 1
ð2:36eþ 1Þ

� Volt þ et

The R-square of the regression remains high at 0.75.
The fact that high exchange rate volatility is associated with

asymmetric dependence appears to be consistent with the results
in the literature, since asymmetric dependence was mainly found
to be present in international equity markets (see Longin and Sol-
nik, 2001). Our own results suggest the presence of asymmetric
dependence in international bond markets as well.

Intuitively, the persistence of each dependence regime depends
on the persistence of exchange rate volatility. A high exchange rate
volatility increases extreme comovements. When bad news in a
country combine with a very active currency market, transmission
through the latter makes downside joint movements more likely
than in a fixed exchange rate regime. This may provide an insight
about the strong change in the persistence of different regimes
after the introduction of the Euro. Before, the exchange rate be-
tween the French Franc and the German Deutsch Mark was espe-
cially volatile and this may explain a strong persistence in the
asymmetric regime when the model is estimated over this subpe-
riod. After the introduction of the Euro, the volatility is reduced to
zero and the normal regime becomes the only persistent regime.
By putting the two subperiods together, both regimes appear per-
sistent, which is consistent with our explanation.

These results are consistent with Cappiello et al. (2006) who find
a structural break in the dependence structure of European markets
after the introduction of the Euro. They find an increase to a near



Table 9
Dependence structure tests. Panel A gives results for Dufour (2006) MMC tests of
asymmetric dependence. LR is the likelihood ratio statistic computed from the data.
The p-value is obtained from 1000 Monte Carlo repetitions with size 1043 (equal to
the sample size) each. Panel B presents Chen and Fan (2005) pseudo-likelihood ratio
tests for comparing results from competing multivariate copula models. We compare
three models: (i) our regime-switching model with one Gaussian copula regime and
one mixture of rotated Gumbel copula regime (N-G RS), (ii) the regime switching with
two Gaussian regimes (Norm RS), and (iii) our four-variable mixture of rotated
Gumbel copula (Gumbel). For each pair of models the best model at 1% level is
indicated in the corresponding cell.

US–CA FR–DE

Panel A: Dufour (2006) MMC test
LR 0.0731 0.7889
p-value 0.0090 0.0000

N-G RS Norm RS
(Decision at 1% level) AIC

Panel B: Chen and Fan (2005) test
US–Canada
N-G RS �1.3445
Norm RS N-G RS �1.3022
Gumbel N-G RS Norm RS �0.9229

France–Germany
N-G RS �4.7217
Norm RS N-G RS �3.2309
Gumbel N-G RS Gumbel �4.1763
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perfect correlation. However, due to the fact that the dynamic con-
ditional correlation model they use is based on the normal distribu-
tion the correlation before the introduction of Euro is misleading
since as we find, the dependence between European countries
was more asymmetric and therefore the dependence was more in
the tail and cannot be completely captured by correlation.

4.4. Empirical implications of the mixture copula constraints

Our mixture copula model aims at capturing extreme depen-
dence, which is of course very useful if an investor wants to man-
age extreme risks.30 In Fig. 1, we show that the high exceedance
correlation present in the data for the Canada–US pair of equity re-
turns is rather well captured by the model. However, in building
the asymmetric copula model to capture tail dependence, we impose
some restrictions, either by construction or for parsimony reasons,
that may affect the overall level of dependence between pairs of
variables. These restrictions are explained in Section 3.3. Chollete
et al. (2009) translate these restrictions in terms of Spearman corre-
lation in comparing their canonical vine copulas to our mixture
copulas.31

4.4.1. Spearman correlation
For two variables X and Y, the Spearman’s rho is based on

concordance and discordance and is given by the formula

qSðX;YÞ ¼ 3 Pr ðX1 � X2ÞðY1 � Y2Þ > 0½ � � Pr ðX1 � X2ÞðY1 � Y2Þ < 0½ �ð Þ

where (X1 � Y1), (X2 � Y2), and (X3 � Y3) are three independent ran-
dom vectors with the same joint distribution like (X,Y), which is de-
fined by the copula C and corresponding marginal distributions. The
Spearman rho is related to the copula by the formula32
30 See Tsafack (2009) for the importance of capturing extreme dependence while
managing extreme risk.

31 Chollete et al. (2009) show that the restrictions become increasingly binding
when the number of variables increases for mixture copulas. The canonical vine
specification generalizes better to higher dimensions but not all applications lend
themselves to finding a natural candidate for the first series on which everything is
made conditional.

32 See Nelsen (1999) for more detail about this formulation.
qSðX;YÞ ¼ qSðCÞ ¼ 12
Z Z

I2
Cðu;vÞdudv � 3

For the Normal copula, the analytical expression is given by:

qS CNðqÞð Þ ¼ ð6=pÞ arcsinðq=2Þ;

where q is the correlation coefficient of a Normal distribution with
copula component CN(q). For the Gumbel copula, there is no analyt-
ical expression, so we use numerical integration to compute the
Spearman rho.

4.4.2. Parametric and nonparametric estimates of the Spearman
correlation

Table 10 reports the estimates of the Spearman correlation ob-
tained directly from the data (nonparametric estimate) as well as
the estimates obtained from our model with a mixture copula with
and without imposing a cross-country constraint of zero depen-
dence between the bond and the equity markets (parametric
estimates).33

One can say that for the two pairs of countries, Canada–US and
France–Germany, the model estimates for the Spearman correla-
tion between the equity markets and between the bond markets
are roughly similar to what is observed in the data. For example,
for France and Germany, the correlation between the equity mar-
kets is 0.84 in the data and 0.83 in the models with and without
the constraint. For the correlation between the bond markets, the
data estimate is 0.93 but 0.84 and 0.83 with and without the con-
straint respectively, that is a bit lower. However, where we see a
big difference, is in the correlation between the equity and the
bond markets, even in the same country. In France it is estimated
at 0.49 with the data and at best at 0.10 with the model. This is
quite a discrepancy that is due to our model construction. The ef-
fect is still present but less damaging in the Canada–US case, where
such cross-market correlations are less important, except for the
Canadian bond and equity markets. It is estimated at 0.46 in the
data and at best at 0.22 in the model. The release of the cross-coun-
try constraint helps in getting a bit closer to the data estimates but
it does not solve the major problem of underestimating the same
country, cross-market correlation. One can conclude that capturing
extreme dependence entails some costs and we find that this is
specially the case of pairs with lower overall dependence. These
costs have to be weighted with the gains of estimating rather well
the dependence within markets across countries.

5. Conclusion

We propose a copula-based model of extreme dependence
asymmetry that can rationalize the stylized facts put forward by
Longin and Solnik. We apply it to the characterization of the ex-
treme dependence in the equity and bond markets of two pairs
of countries, the United States and Canada and France and Ger-
many respectively. We capture the well-known strong asymmetric
behavior across equity markets, but we also put forward a similar
pattern in bond markets. The proposed model allows us to discover
a relationship between the filtered probabilities to be in the asym-
metric regime and the volatility of exchange rates. This is not pos-
sible with the extreme value approach of Longin and Solnik (2001)
since only the tails of the distributions are modeled. While useful
for extreme risk management, our model has limits for capturing
dependence across markets, where the dependence is less strong.
3 For the results without the constraint, we had to estimate the model again by
laxing the zero dependence between the bond markets and the equity markets in

ifferent countries. For space considerations, we do not report the parameter
stimates of this larger model. Estimation results are available from the authors upon
quest.
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Fig. 5. The upper graph represents the probability to be in the asymmetric regime conditional on available information. The lower graph shows the exchange rate conditional
volatility filtered with the M-GARCH (1,1) model.

Table 10
Unconditional Spearman rho between bonds and equity for US, Canada (CA), France (FR), and Germany (DE). Spearman rho from data is the non-parametric estimates using data,
while the Spearman rho from models are estimated using ergodic probabilities from the Markov chain combined with the Spearman rho from each regime. The cross-country
constraint assumes the independence between equity in one country and bond in the other for asymmetric regime.

US equity US bond CA equity CA bond FR equity FR bond DE equity

Panel A: Spearman rho from data
US bond 0.1554
CA equity 0.6631 0.0775
CA bond 0.2002 0.4482 0.4590
FR equity
FR bond 0.4888
DE equity 0.8370 0.4515
DE bond 0.5017 0.9324 0.4879

Panel B: Spearman rho from the model without cross-country constraint
US bond 0.0286
CA equity 0.7307 0.0215
CA bond 0.0982 0.4611 0.2207
FR bond 0.1025
DE equity 0.8292 0.0832
DE bond 0.1280 0.8440 0.0951

Panel C: Spearman rho from the model with cross-country constraint
US bond �0.0094
CA equity 0.7382 �0.0230
CA bond 0.0350 0.5673 0.1407
FR bond 0.0640
DE equity 0.8349 0.0314
DE bond 0.0540 0.8297 0.0492
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Since the exchange rate volatility may be a factor behind the
asymmetric behavior of international equity and bond market
dependence, it will be interesting to extend the model to incorpo-
rate the exchange rate in order to study the portfolio of an interna-
tional investor. Moreover, the asymmetry put forward between
positive and negative extreme returns suggests to investigate the
behavior of an investor endowed with disappointment aversion
preferences as in Ang et al. (2006).
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Appendix A. Proofs

A.1. Proof of Proposition 2.1

To prove this proposition, we need the two following lemmas:

Lemma 1. (a) Let ff ðsÞgn
s¼1 be a family of symmetric multivariate

density functions of n(61) variables with same mean. The mixture
f ¼

Pn
s¼1psf ðsÞ, where

Pn
s¼1ps ¼ 1, and ps P 0 for any s, is a

symmetric multivariate density function. (b) Moreover for a contin-
uum of symmetric multivariate density function ff ðrÞgr2A # R with
same mean, the mixture f ¼

R
A prf ðrÞdr; where

R
A prdr ¼ 1; is a

symmetric multivariate density function.
Proof. Let l be the mean of all f(s) (and all f(r))

f ðl� xÞ ¼
Xn

s¼1

psf ðsÞðl� xÞ

by symmetry of all f(s), we have,
Pn

s¼1psf ðsÞðl� xÞ ¼Pn
s¼1psf ðsÞðlþ xÞ ¼ f ðlþ xÞ i.e. f(l � x) = f(l + x) and the part (a)

follows. Similarly for mixture of continuum, f ðl� xÞ ¼
R

A prf ðrÞ

ðl� xÞdr ¼
R

A prf ðrÞðlþ xÞdr ¼ f ðlþ xÞ and we have (b). h
Lemma 2. Let fFðsÞgn
s¼1 be a family of bivariate cdf with zero lower

(upper) TDC. The mixture F ¼
Pn

s¼1psF
ðsÞ; where

Pn
s¼1ps ¼ 1; and

ps P 0, for any s, is a bivariate density function with lower (upper)
TDC.
Proof. we do the proof for lower tail since by ‘‘rotation’’ we have
the same result for upper tail.

Let sF
L be the lower TDC of F, we have

sF
L ¼ lim

a!0
Pr X 6 F�1

x ðaÞjY 6 F�1
y ðaÞ

h i

¼ lim
a!0

Pr X 6 F�1
x ðaÞ;Y 6 F�1

y ðaÞ
h i

Pr Y 6 F�1
y ðaÞ

h i

¼ lim
a!0

FðF�1
x ðaÞ; F

�1
y ðaÞÞ

FyðF�1
y ðaÞÞ
and since F ¼
Pn

s¼1psF
ðsÞ, we have

sF
L ¼ lim

a!0

Pn
s¼1psF

ðsÞðF�1
x ðaÞ; F

�1
y ðaÞÞ

a

¼ lim
a!0

Xn

s¼1

ps
FðsÞðF�1

x ðaÞ; F
�1
y ðaÞÞ

a

¼
Xn

s¼1

ps lim
a!0

FðsÞðF�1
x ðaÞ; F

�1
y ðaÞÞ

a

by definition FðsÞ F�1
x ðaÞ; F

�1
y ðaÞ

� �
¼ CðsÞ FðsÞx F�1

x ðaÞ
� �

; FðsÞy F�1
y

��
ðaÞÞÞ

where C(s) is the copula and FðsÞx ; FðsÞy the marginal cdf corresponding
to F(s), we have

a ¼ Fx F�1
x ðaÞ

� �
¼
Xn

s¼1

psF
ðsÞ
x F�1

x ðaÞ
� �

so
FðsÞx ðF

�1
x ðaÞÞ 6 a=ps for all s and similarly FðsÞy ðF

�1
y ðaÞÞ 6 a=ps,

hence

lim
a!0

FðsÞ F�1
x ðaÞ;F

�1
y ðaÞ

� �
a

¼ lim
a!0

CðsÞ FðsÞx F�1
x ðaÞ

� �
;FðsÞy F�1

y ðaÞ
� �� �

a

6 lim
a!0

CðsÞða=ps;a=psÞ
a

; since copula is increasing function

¼1=ps lim
a0!0

CðsÞða0;a0Þ
a0

by setting a0 ¼a=ps

¼0; since FðsÞ and hence CðsÞ is zero lower TDC

we therefore have sF
L ¼ 0.

The part (i) and (ii) of the proposition is the straightforward
application of above lemma

	 For GARCH with constant mean and symmetric conditional
distribution
Xt ¼ lþ R1=2
t�1et

ðþany GARCH dynamic equation of Rt�1Þ

where et is stationary with symmetric distribution such that
E(et) = 0. The unconditional distribution of Xt is a mixture of dis-
tribution of symmetric variable with same mean l but possibly
different variance covariance matrix. By applying the Lemma 1,
we conclude that the unconditional distribution of Xt is symmet-
ric and (i) follows:
	 For RS model with zero TDC
Xt ¼ lst
þ R1=2

st
et

where st takes a discrete value. Without loss of generality assume
that Xt is bivariate and that st = s, l + R1/2et is zero TDC such as in
the normal case, therefore the unconditional distribution of Xt is a
mixture of distribution with zero TDC. By applying Lemma 2, we
conclude that the unconditional distribution of Xt has zero TDC
and (ii) follows.

For (iii), with the same notations as Lemma 1, keeping marginal
distribution unchanged across mixture components means that.
For discrete case
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f ðsÞðx1; . . . ; xn; d;qÞ ¼ cðsÞðu1; . . . ;un; hÞ �
Qn

i¼1fiðxi; diÞ, with ui =
Fi(xi; di), hence

f ðx1; . . . ; xn; d;qÞ ¼
Xn

s¼1

psf ðsÞðx1; . . . ; xn; d;qÞ

¼
Xn

s¼1

pscðsÞðu1; . . . ;un; hÞ �
Yn

i¼1

fiðxi; diÞ

¼ cðu1; . . . ;un; hÞ �
Yn

i¼1

fiðxi; diÞ

with cðu1; . . . ;un; hÞ ¼
Pn

s¼1pscðsÞðu1; . . . ;un; hÞ is the copula of f and
we can see that c is a mixture of copula with symmetric TDC and
hence is a copula with symmetric TDC. For the continuum case

f ðx1; . . . ; xn; d;qÞ ¼
Z

A
prf ðrÞðx1; . . . ; xn; d;qÞdr

¼
Z

A
prcðrÞðu1; . . . ; un; hÞdr�

Yn

i¼1

fiðxi; diÞ

¼ cðu1; . . . ;un; hÞ �
Yn

i¼1

fiðxi; diÞ

with cðu1; . . . ; un; hÞ ¼
R

A prcðrÞðu1; . . . ; un; hÞdr which is a copula
with symmetric TDC for same the reasons mentioned above. h

A.2. Proof of Proposition 3.2

By definition of a copula, we have

gt ¼
f Xt ; d; hjXt�1; st ¼ 1ð Þ
f Xt ; d; hjXt�1; st ¼ 0ð Þ

	 


¼
cðu1;tðd1Þ; . . . ;u4;tðd4Þ; hjst ¼ 1Þ �

Q4
i¼1

fiðxi;t ; diÞ

cðu1;tðd1Þ; . . . ;u4;tðd4Þ; hjst ¼ 0Þ �
Q4
i¼1

fiðxi;t; diÞ

26664
37775

with ui,t(di) = Fi(xi,t;di). By denoting n̂tjt�1 ¼ ðn̂ð1Þtjt�1; n̂
ð0Þ
tjt�1Þ

0, the likeli-
hood can be rewritten

Lðd;h;XTÞXT

t¼1

log n̂0tjt�1gt

� �
¼
XT

t¼1

log
X1

k¼0

n̂ðkÞtjt�1c u1;tðd1Þ; . . . ;u4;tðd4Þ;hjst¼kð Þ�
Y4

i¼1

fiðxi;t ;diÞ
 !

¼
XT

t¼1

X4

i¼1

logðfiðxi;t ;diÞÞÞþ log
X1

k¼0

n̂ðkÞtjt�1c u1;tðd1Þ; . . . ;u4;tðd4Þ;hjst¼kð Þ
 !" #

it follows that

Lðd; h; XTÞ ¼
X4

i¼1

Liðdi; XTÞ þ LCðd; h; XTÞ

where

Liðdi; Xi;TÞ ¼
XT

t¼1

log fi xi;t ; dijXi;t�1
� �

LCðd; h; XÞ ¼
XT

t¼1

log n̂0tjt�1gct

� �
with

gct ¼
c u1;tðd1Þ; . . . ;un;tðdnÞ; hjst ¼ 1ð Þ
c u1;tðd1Þ; . . . ;un;tðdnÞ; hjst ¼ 0ð Þ

	 

by noticing that gt ¼ gct �

Q4
i¼1fiðxi;t; diÞ we have that

n̂t=t ¼ n̂0tjt�1gt

h i�1
n̂tjt�1 � gt

� �
¼ n̂0tjt�1gct

h i�1
n̂tjt�1 � gct

� �
�

Appendix B. Analytical expressions for various copulas

B.1. Normal copula

CNðu1; . . . ;un; qÞ ¼ Uq U�1ðu1Þ; . . . ;U�1ðunÞ
� �

CNðu1; . . . ;un; qÞ ¼
Z U�1ðu1Þ

�1
� � �
Z U�1ðunÞ

�1
ð2pÞn detðqÞ
� ��1

2�

exp �1
2
ðz0q�1zÞ

	 

dz1; . . . ;dzn

where z ¼ ðz1; . . . ; znÞ0; q ¼ ðqijÞ
n
i;j¼1, with —qij— 6 1, qii = 1 and q

positive defined matrix

cNðu1; . . . ;un;qÞ ¼ detðqÞ exp½x0q�1x� x0x�
� ��1=2

with x = (U�1(u1), . . . ,U�1(un))0,
U is cdf of standard normal distribution and Uq is cdf of multi-

variate normal distribution with correlation matrix q.
Tail dependence coefficients are

sL ¼ sU ¼ 0
B.2. Bivariate Gumbel copula

CGðu; v; hÞ ¼ exp � ð� logðuÞÞh þ ð� logðvÞÞh
� �1=h

	 

cGðu; v; hÞ ¼ CGðu;v ; hÞ logðuÞ: logðvÞð Þh�1

uv ð� logðuÞÞh þ ð� logðvÞÞh
� �2�1=h

� ð� logðuÞÞh þ ð� logðvÞÞh
� �1=h

þ h� 1
� �
B.3. Bivariate rotated Gumbel (survival) copula

CGSðu;v ; hÞ ¼ uþ v � 1þ CGð1� u;1� v; hÞ
cGSðu; v; hÞ ¼ cGð1� u;1� v ; hÞ

The tail dependence coefficients of CGS are

sL ¼ 2� 2
1
h and sU ¼ 0

so h ¼ hðsLÞ ¼ logð2Þ
logð2�sLÞ and we can re-parameterize the Copula

CGS(u,v;h) with sL as CGS(u, v; sL) = CGS(u, v; h(sL)).
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