
Journal of Biomedical Informatics 46 (2013) 1108–1115

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier .com/locate /y jb in
An innovative portal for rare genetic diseases research: The semantic
Diseasecard
1532-0464/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jbi.2013.08.006

⇑ Corresponding author. Address: IEETA, Campus Universitario de Santiago, 3810-
193 Aveiro, Portugal.

E-mail address: pedrolopes@ua.pt (P. Lopes).
Pedro Lopes ⇑, José Luís Oliveira
DETI/IEETA, Universidade de Aveiro, Portugal

a r t i c l e i n f o
Article history:
Received 5 April 2013
Accepted 13 August 2013
Available online 21 August 2013

Keywords:
Rare diseases
Biomedical semantics
Data integration
Interoperability
Semantic web
a b s t r a c t

Advances in ‘‘omics’’ hardware and software technologies are bringing rare diseases research back from
the sidelines. Whereas in the past these disorders were seldom considered relevant, in the era of whole
genome sequencing the direct connections between rare phenotypes and a reduced set of genes are of
vital relevance.

This increased interest in rare genetic diseases research is pushing forward investment and effort
towards the creation of software in the field, and leveraging the wealth of available life sciences data.
Alas, most of these tools target one or more rare diseases, are focused solely on a single type of user,
or are limited to the most relevant scientific breakthroughs for a specific niche. Furthermore, despite
some high quality efforts, the ever-growing number of resources, databases, services and applications
is still a burden to this area. Hence, there is a clear interest in new strategies to deliver a holistic perspec-
tive over the entire rare genetic diseases research domain.

This is Diseasecard’s reasoning, to build a true lightweight knowledge base covering rare genetic dis-
eases. Developed with the latest semantic web technologies, this portal delivers unified access to a com-
prehensive network for researchers, clinicians, patients and bioinformatics developers. With in-context
access covering over 20 distinct heterogeneous resources, Diseasecard’s workspace provides access to
the most relevant scientific knowledge regarding a given disorder, whether through direct common iden-
tifiers or through full-text search over all connected resources. In addition to its user-oriented features,
Diseasecard’s semantic knowledge base is also available for direct querying, enabling everyone to include
rare genetic diseases knowledge in new or existing information systems. Diseasecard is publicly available
at http://bioinformatics.ua.pt/diseasecard/.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Rare genetic diseases research is at the forefront of the most
modern personalized medicine endeavors. The rare term broadly
defines disorders that affect at most 1 in 2000 patients [1] and
the European Organization for Rare Diseases (EURORDIS) estimates
that there are approximately 6000–8000 rare diseases, affecting
about 6–8% of the population [2]. Within these, about 80% are
caused by genetic changes, further strengthening the relations be-
tween genotypes and phenotypes associated with these particular
conditions [3,4]. Some of these chronic diseases hinder the pa-
tients’ quality of life and cause serious damage or social disability
[5]. Moreover, the low patient number severely obstructs the cre-
ation of adequate research cohorts, making it very difficult to coor-
dinate studies capable of generating results in a scientifically-
relevant scale [6,7].
In addition to long-term patient care improvements, under-
standing gene-disease associations is a fundamental goal for bioin-
formatics research, especially at the rare disease level, where
genotype-phenotype connections are typically limited to one or a
few more genes. This moves rare diseases research from a rela-
tively minor concern to a major player in a new era of ‘‘omics’’ re-
search [8,9]. Genomics, metabolomics, proteomics or
pharmacogenomics, among others, benefit from the focused ap-
proach enabled by rare genetic diseases research. A direct conse-
quence of this growing importance is the renewed interest from
pharmaceutical companies in this area, which are supporting mul-
tiple worldwide initiatives towards improved rare diseases re-
search. On a broader scope, the International Rare Diseases
Consortium (IRDiRC) (http://www.irdirc.org/) is leveraging several
projects on the field. RD-Connect (http://rd-connect.eu/), RareCon-
nect (https://www.rareconnect.org/), EuRenOmics (http://eure-
nomics.eu/) and NeurOmics (http://rd-neuromics.eu/) are some
of the highlights from IRDiRC sponsorships. On the European level,
GEN2PHEN (http://www.gen2phen.org/), EU-ADR [10] (http://eu-
adr-project.org/), or EMIF (http://www.imi.europa.eu/content/
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emif/) projects are actively investing in setting up state of the art
research activities for rare diseases stakeholders. A key feature of
these projects is their multidisciplinary approach, leveraging on
the natural connections between clinicians, researchers, bioinfor-
maticians and patients, who, for once, are active elements of the
proposed strategies.

With these miscellaneous initiatives, players and requirements,
there is an overwhelming challenge to tackle the wealth of data
being made available by next-generation sequencing hardware,
omics databases, patient registries, and pharmacovigilance or elec-
tronic health records. Multiple new rare diseases research tools are
emerging, focusing only a set of particular conditions. Niche dat-
abases for the domains of neurological disorders [11] or muscular
problems [12], for example, tackle small specific sub-groups. While
they provide high quality information and resources, their disease
coverage is small and inadequate.

Likewise, platforms such as the Online Mendelian Inheritance in
Man database (OMIM) [13,14], the National Organization for Rare
Disorders (NORD) website (http://www.rarediseases.org/) or
Orphanet, among others, collect and filter available information,
with a particular set of users in mind. Where OMIM is more fo-
cused on aggregating content for bioinformatics researchers,
Orphanet has decade-long pedigree and content far beyond simple
research data. It is geared towards clinicians, medical researchers
and patients, boasting a large collection of curated clinical informa-
tion such as patient registries, biobanks and specialized clinician
contacts, among others, in multiple languages.

Despite these high quality efforts, entropy is a recurring prob-
lem in this field with the ever-growing number of resources, dat-
abases, services and applications. Therefore, a new approach is
desired, one where everyone is able to quickly access the available
knowledge regarding a given set of rare disorders.

Diseasecard addresses these needs by delivering a lightweight
holistic perspective over the rare genetic diseases research field.
Stemming from a legacy portal [15,16], a crawler-based system
that kick-started a new strategy for in-context research, the new
semantic Diseasecard version focuses on three fundamental
elements:

� The rapid and lightweight access to a comprehensive semantic
network of scientifically relevant resources for a given disease,
covering multiple domains from proteomics to clinical studies
up to medical ontologies.
� The innovative in-context browsing allowing for the eased nav-

igation amongst the multitude of connected resources without
leaving the initial research focus.
� The open interoperability layer, making the semantic knowl-

edge base available for everyone to query and access, and
enabling the integration of rich rare diseases data in new or
existing information systems.

In addition, Diseasecard comprises a rich semantic layer, pro-
viding future-proof technologies for inference and reasoning over
the created knowledge base. Diseasecard is publicly available on-
line at http://bioinformatics.ua.pt/diseasecard/.
2. Methods

Semantic data integration is, in itself, a complex data engineer-
ing issue [17], and the life sciences field further increases this com-
plexity [18]. To support Diseasecard’s ambitious integration and
interoperability features we rely on the COEUS framework [19].
Exploring COEUS flexible integration engine enabled us to simplify
the overall platform architecture through the creation of a compre-
hensive dependency-based resource integration network.
Diseasecard’s integration pipeline, including COEUS’ use and
the internal resource organization, are described in detail next.

2.1. Architecture

To overcome the challenges behind the amount of scattered
data for rare diseases, Diseasecard’s underlying objective is to col-
lect, connect and deliver access to a network of the most relevant
rare diseases scientific resources. To attain this, Diseasecard’s
knowledge base is constructed from an integration network start-
ing with OMIM’s morbid map and spanning through multiple re-
sources, including proteomics data from UniProt [20], InterPro
[21], Prosite [22] and Protein Data Bank (PDB) [23] up to ontology
data from Medical Subject Headings (MeSH) [24] and International
Classification of Diseases (ICD version 10), among many others.
These data are obtained from multiple mapping studies [25–27]
and genomic name servers, such as GeNS [28] and Bio2RDF [29].
This broad scope results in an extremely rich dataset, where
OMIM’s rare disorder list is expanded to more than 2 million
triples.

To improve its semantic data integration and interoperability
features, Diseasecard is built with the COEUS semantic web appli-
cation framework [30], which heavily influences Diseasecard’s
architectural design. COEUS delivers a ‘‘Semantic Web in a box’’ ap-
proach, enabling the rapid development of new knowledge man-
agement systems adopting semantic web technologies [31,32].

By default, the COEUS framework already includes the neces-
sary components to build and launch a new semantic information
system from scratch. The platform comprises the tools to acquire
and translate knowledge from miscellaneous data sources, and to
deliver access to the constructed knowledge base through various
interoperable formats. One of COEUS’ key caveats is the lack of ad-
vanced update methods. Despite this, the trade-off between its
semantic integration and interoperability capabilities, and the lack
of update features drawback is a positive one, especially consider-
ing COEUS’ build engine performance.

To complete Diseasecard’s architecture we created a dedicated
client-side application, to support the agile web workspace; added
an indexing engine to improve the efficiency behind the full-text
search infrastructure; and added an object-oriented database, to
cache data for each rare genetic disease network, to improve work-
space access performance. The entire architecture is described in
detail in Fig. 1.

2.2. From OMIM’s maps to 2 million triples

Diseasecard adopts a targeted warehousing data integration
strategy [33,34]. Accordingly, the data import and translation pro-
cess gathers all data from external resources in a single centralized
knowledge base, in opposition to real-time data gathering strate-
gies [35]. Curating a niche warehouse focused on rare genetic dis-
eases knowledge enables Diseasecard’s future endeavors on
advanced inference and reasoning algorithms. Since we were look-
ing at managing semantic information from the start, Diseasecard’s
integration process not only collects data per se, but it translates
external data into a semantic knowledge base. Creating this new
semantic layer leverages a major challenge on how to translate
large heterogeneous datasets into a new semantic environment.
This problem can be divided in two areas, focusing on the techno-
logical challenge and on the logical data modelling challenge.

From the technological perspective, Diseasecard relies on the
COEUS framework to perform the data abstractions, triplifying data
from the miscellaneous external resources into a unified Disease-
card knowledge environment.

On the integration modelling side, Diseasecard has a custom
ontology to integrate OMIM’s data (http://bioinformatics.ua.pt/dis-
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Fig. 1. Diseasecard architecture overview. (A) External resources are identified and configured for integration in Diseasecard’s rare genetic diseases semantic network. (B)
Diseasecard architecture, highlighting COEUS, with the data integration connectors, the knowledge base, and the interoperability API; the Tomcat server, for web application
delivery; the Solr indexing engine, for improved search performance; and the Redis cache engine, for faster disease network access. (C) Any external system can query
Diseasecard’s knowledge base and use its data without limitations.

Table 1
List of resources integrated in Diseasecard’s knowledge base, comprising the entity
(for the tree-based navigation interface), the resource name, the origin of the
integration mapping and the original resource URL.

Entity Resource Origin Resource URL

Disease OMIM Morbid map http://www.omim.org/
Orphanet OrphaData http://www.orpha.net/

Drug PharmGKB GeNS http://www.pharmgkb.org/

Literature Pubmed Morbid map http://www.ncbi.nlm.nih.gov/
pubmed/

Locus Ensembl Ensembl http://www.ensembl.org/
Entrez Entrez http://www.ncbi.nlm.nih.gov/

gene/
GeneCards UniProt http://www.genecards.org/
HGNC Gene map http://www.genenames.org/

Ontology Gene
Ontology

UniProt http://
amigo.geneontology.org/

ICD10 OrphaData http://www.who.int/
classifications/icd/en/

MeSH UniProt2MeSH http://www.nlm.nih.gov/
mesh/

Pathways KEGG UniProt http://www.genome.jp/
Enzyme UniProt http://enzyme.expasy.org/

Protein InterPro UniProt http://www.ebi.ac.uk/
interpro/

PDB UniProt http://www.pdb.org/
PROSITE UniProt http://prosite.expasy.org/
STRING UniProt http://string-db.org/
UniProt UniProt http://www.uniprot.org/

Study Clinical Trials Clinical Trials http://www.clinicaltrials.gov/
GWASCentral GWASCentral https://www.gwascentral.org
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easecard/diseasecard.owl). This simple ontology is used to enhance
the translation from OMIM’s morbid map into a semantic environ-
ment. Additionally, following Semantic Web’s ‘‘reuse instead of re-
write’’ motto, Diseasecard’s data model reuses existing schemas
internally. Using COEUS’ instance configuration and taking advan-
tage of existing ontologies and models for internal use is enough to
organize collected data.

Diseasecard’s lightweight integration approach means that, for
each individual, such as a UniProt protein or an OMIM entry, we
only need to store its identifier. Hence, we can reuse the identifier
term from the Dublin Core ontology [36]. As such, each individual
has a dc:identifier data property, matching a string with the exter-
nal identifier. Another example is the rdfs:label property, obtained
from the Resource Description Format (RDF) schema ontology that
is used to label each individual [37]. External LinkedData refer-
ences are also included, establishing direct connections to external
individuals. For instance, UniProt published interfaces are linked
through the rdfs:seeAlso property. Despite this over-simplifica-
tion, new relationships amongst integrated data are autonomously
generated. Whereas in a CSV file we have a set of columns with
text, with the move to a semantic environment all data are inter-
connected, generating a richer dataset. The same is true for SQL
databases where foreign key relationships and table/column
names are mapped to new properties, resulting in more metadata
and more relationships.

Starting with OMIM’s morbid map, which has around 6300 en-
tries related to a gene map with about 14,200 entries, Diseasecard’s
engine expands the integration network, generating new knowl-
edge, and collecting pointers for the resources mentioned in Ta-
ble 1, as detailed in the following section.
Variome LSDB GEN2PHEN http://gen2phen.org/
WAVe HGNC http://

www.bioinformatics.ua.pt/
WAVe/
2.3. Semantic integration network

Diseasecard’s knowledge base covers miscellaneous resources
within the rare genetic diseases research domain. The knowledge
base is obtained from a dependency graph, the semantic integra-
tion network, where the acquisition of data from external sources
is defined. Starting with OMIM’s morbid map, Diseasecard loads
information about rare disorders and HUGO Gene Nomenclature
Committee (HGNC) gene symbols. The integration engine then
proceeds to expand the list of integrated individuals into new
sources. For instance, using the OMIM accession number, Disease-
card obtains the associated UniProt and Orphanet identifiers.
Likewise, from the integrated HGNC symbols, Diseasecard obtains
identifiers for GWAS Central, Clinical Trials and Ensembl
databases.
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Fig. 2 displays a visual overview over Diseasecard’s complete
semantic integration network, highlighting the multiple
connections amongst resources and how each is extended to gen-
erate more data inputs into the knowledge base.

A sample example for semantic integration is the translation of
UniProt and PDB identifiers into Diseasecard’s knowledge base.
With UniProt becoming a major source for data mappings, it is
used in Diseasecard to establish connections among diseases, pro-
teins and external entities. This integration branch starts with the
aggregation of UniProt entries associated with each particular
OMIM code (using COEUS’ CSV connector to translate UniProt
search results). Next, Diseasecard uses COEUS’ XML connector to
load XPath query results and generate new triples. For instance,
to create new PDB individuals and their respective connections,
the ‘‘//entry/dbReference[@type = ‘‘PDB’’]’’ XPath query is per-
formed on each UniProt entry XML.

When Diseasecard retrieves the semantic network for each dis-
ease, the association graph between OMIM, UniProt and PDB en-
tries is traversed.
2.4. Implementation

Using COEUS imposes some restrictions on the technologies
used in the Diseasecard platform. As the framework provides a so-
lid Java-based backend solution, we opted to deploy the Disease-
card client-side web environment also within an Apache Tomcat
server (http://tomcat.apache.org/).

Diseasecard’s indexing engine is built on top of Solr (http://lu-
cene.apache.org/solr/). This Lucene-based search engine enables
indexing the resources connected in Diseasecard’s knowledge base
and searching them with a notable performance.

Initial tests unravelled a slow response time for the disease net-
work generation tasks. The complexity behind the SPARQL queries
retrieving all identifiers associated with a given rare genetic dis-
ease reduces the web application usability. Hence, Diseasecard
uses an object-oriented database, Redis (http://redis.io/), to store
a cached version of the knowledge network for each disease entry.
With this, the performance increased ten-fold from an average
page loading time of 4.5 s to an almost instant 300 ms for the rare
diseases workspaces.

For Diseasecard’s web interface, a combination of JavaScript
algorithms with modern CSS and HMTL5 technologies was used.
The main JavaScript library used is jQuery (http://jquery.com/),
with several plugins for cookie management and tree displays.
The JavaScript InfoVis Toolkit (http://philogb.github.io/jit/) is
used to display the central workspace hypertree. The outcome
of these technological implementation choices is a responsive
and agile web application, further improving the final user
experience.
Fig. 2. Diseasecard’s integration network overview. (A) The integration process starts wi
be used to expand other resources. (B) On a second level, the Orphanet’s OrphaData is use
ClinicalTrials, GWASCentral, WAVe, LSDBs and Ensembl mappings are obtained from th
loads: (1) PharmGKB entries from GeNS for each UniProt entry; (2) MeSH terms are loade
Enzyme, Gene Ontology and STRING entries from direct UniProt queries; and (4) ICD10
3. Results

Diseasecard’s knowledge base contains around 2 million triples,
built from OMIM’s maps and the expanded rare genetic diseases
network. These triples establish about 500 thousand connections
to more than 100 thousand unique resources, which are entirely
indexed by Diseasecard’s engine. From these numbers we can infer
that, on average, each unique resource is present in 5 single disease
networks.

Additionally, each rare disorder has, on average, around 24 con-
nections to external resources. As expected, disease resources from
OMIM represent the biggest slice of individuals with around 18
thousand entries for more than 11 thousand HGNC entries. An-
other interesting result stems from Ontology mappings, as MeSH
and ICD terms are the least represented concepts in Diseasecard’s
knowledge base.

The entirety of these data are stored in Diseasecard’s semantic
knowledge base, made available for end-users through an innova-
tive in-context web workspace and to developers through an ad-
vanced semantic interoperability layer, which are detailed next.

3.1. Semantic knowledge base

One of the main premises behind the creation of a new Disease-
card version lied in the need to better explore the powerful tech-
nologies pushed forward by the Semantic Web paradigm. With
these, Diseasecard is able to construct a rich and comprehensive
semantic knowledge base for rare genetic diseases. Its knowledge
infrastructure extends the capabilities of the majority research
platforms by making the collected knowledge interoperable and
future-proof.

With this knowledge network the door is open for inferring new
relationships amongst connected resources and for reasoning over
gathered data in search for previously uncovered connections. In
the future, these methods can be used to enrich Diseasecard’s
knowledge base with new annotations, and to federate knowledge
discovery through multiple databases with the publicly available
SPARQL endpoints.

It is equally important to note that the lightweight integrative
approach adopted in Diseasecard re-uses existing ontologies to de-
scribe data. Consequently, data from the knowledge base is easier
to integrate by third parties and to connect using LinkedData
technologies.

3.2. In-context research

Diseasecard is a unique alternative for exploring biomedical
rare diseases information in a centralised web-based workspace.
Along with direct access to diseases’ workspaces through any of
the integrated resources identifiers, full-text searching enables
th OMIM’s morbid map and constructs the OMIM and HGNC individuals, which will
d to load Orphanet mappings; UniProt is used for disease-gene-protein associations;
eir respective APIs using HGNC and OMIM identifiers. (C) The third and final level
d from the results of previous research; (3) GeneCards, InterPro, Prosite, PDB, KEGG,
mappings to Orphanet entries from OrphaData.
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querying all the web pages for all the resources integrated in Dis-
easecard’s knowledge base.

3.2.1. Search
For a more comprehensive access, Diseasecard has a powerful

search feature comprising three components: browsing, identifier
search and full-text search.

With Diseasecard’s browsing feature, users can browse all en-
tries by their starting letter – http://bioinformatics.ua.pt/disease-
card/browse. This displays the OMIM accession number, the
disease name and the number of available connections in the gen-
erated network.

The identifier search, selected by default, searches through the
extended identifier network. This network includes accession
numbers for resources listed in Table 1. In addition to search boxes,
using the query string to perform searches is also available. For in-
stance, http://bioinformatics.ua.pt/diseasecard/search/id/HTT will
retrieve all entries where the HTT string identifier is present.

At last, full-text search is the most powerful search mechanism.
This method, selectable in the home page search button, searches
web pages for the connected resources. This results in detailed ac-
cess to a restricted set of locations, where users filter more specific
queries such as author names, publication titles, protein sequences
or more complex disease descriptions.

3.2.2. Web workspace
As mentioned, Diseasecard’s semantic integration network

starts with OMIM’s morbid map. Consequently, disorders can be
directly accessed using their unique OMIM identifier. For instance,
OMIM’s ‘‘Huntington Disease’’ entry (OMIM #143100) can be ex-
plored in Diseasecard at http://bioinformatics.ua.pt/diseasecard/
entry/143100. The displayed web workspace has two key features:
the navigation tree and map – Fig. 3(A), and the LiveView browsing
– Fig. 3(B).

The navigation tree and map are two complementary
alternatives for exploring each network. The left sidebar displays
Fig. 3. Diseasecard’s workspace for Huntington’s disease. (A) Initial display for Diseasecar
hypertree provide direct access to the collected disease network. These tree-based na
configuration and result in a familiar interaction metaphor for the application users. (
location in the workspace, empowering in-context research. LiveView highlights Diseas
they are linked. Furthermore, this strategy overcomes traditional drawbacks for origina
the disease navigation tree to quickly access all links with a famil-
iar metaphor. The central area displays a circular navigation map,
pointing to all individual identifiers. Both the navigation tree and
map trigger the Live View feature. This opens the external resource
application within Diseasecard, allowing users to browse the mul-
tiple collected connections without leaving the initial context.

3.3. Semantic interoperability

With Diseasecard’s knowledge base built, several interoperabil-
ity services are enabled by default. Hence, Diseasecard’s access API
includes two main data access alternatives: a SPARQL endpoint
[38] and a LinkedData interface [39]. These two options allow flex-
ible output formats, thus facilitating the data integration from Dis-
easecard’s platform in external applications.

SPARQL is the most advanced query language available and en-
ables distributed reasoning and inference, as well as combining
Diseasecard’s data with other federated SPARQL endpoints.

The LinkedData interfaces provide quick access to all data for a
given resource and the use of these resources, through their URIs,
in any external context. The URI for accessing Huntington’s disease
data in Diseasecard’s knowledge base is http://bioinformat-
ics.ua.pt/diseasecard/resource/omim_143100.

In the discussion section we highlight how these methods can
be used to enrich an existing system with Diseasecard’s rare genet-
ic diseases knowledge.

4. Discussion

The concept behind Diseasecard is a unique approach towards
comprehensive access to rare genetic diseases research knowledge.
To demonstrate Diseasecard’s innovative features, we detail in the
following sections a couple real-world scenarios regarding Hun-
tington disease.

Starting with an end-user oriented scenario, we highlight the
variety of relevant questions that can be answered with
d’s workspace for Huntington’s disease. Both the left navigation tree and the central
vigation strategies reflect the Entity-Concept-Item structure behind Diseasecard’s
B) Loading external resources in Diseasecard using LiveView opens the associated
ecard’s connectedness features, as external resources are not hidden or replicated,
l resource creators, maintaining content accreditation and ownership.

http://www.bioinformatics.ua.pt/diseasecard/browse
http://www.bioinformatics.ua.pt/diseasecard/browse
http://www.bioinformatics.ua.pt/diseasecard/search/id/HTT
http://www.bioinformatics.ua.pt/diseasecard/entry/143100
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Diseasecard for clinicians, researchers and patients. In comparison
with the aforementioned systems, such as Orphanet, NORD or
OMIM, none offers such a broad scope of directly accessible
knowledge.

On top of end-user features, Diseasecard also provides an inter-
operability layer. Henceforth, we emphasize how its knowledge
can be integrated in external systems through simple methods.

4.1. Exploring Huntington’s disease knowledge

Huntington disease is an ‘‘autosomal dominant neurodegenera-
tive disorder with midlife onset characterized by psychiatric, cog-
nitive, and motor symptoms’’ [40]. Once a patient is diagnosed
with Huntington’s disease, he has an average 12–15 years until
death [41]. Along with its genetic profile, Huntington’s disease af-
fects about 5–10 people in 100 thousand [42]. To fully demonstrate
Diseasecard’s capabilities we setup three use cases, targeting users
with distinct needs, in the context of Huntington’s disease.

This study starts when a patient is seeking for diagnostic and
starts being monitored by his general practitioner, who is tradi-
tionally not familiarized with Huntington’s disease, but suspects
this is the patient condition. Consequently, the clinician wants to
learn about this disorder, searching for answers for the following
questions:

1. What are Huntington’s disease main features?
2. Are there any ICD terms for this disease?
3. What laboratories perform genetic tests for this disease?
4. What are the most relevant Huntington’s disease publications?

Once the clinician has a better understanding concerning Hun-
tington’s disease, he proposes his patient for genetic analysis in a
nearby institute. However, researchers working with this patient
may also be unaware of the deep genotype characteristics of this
disorder. To further understand the genomic and proteomic scope
of this disease, the researcher starts by exploring answers to multi-
ple questions. Some of these are:

5. What are the underlying genes associated with Huntington’s
disease?
a. What are the gene names?
b. What are known gene mutations?

6. What are the proteins coded by these genes?
a. What is the 3D structure of these proteins?

7. In what pathways are the genes for this disease involved?

At last we need to consider the patient perspective, of someone
who was recently diagnosed with an unknown disease, and that is
looking into understanding what is happening in his organism. The
patient searches for answers for the following questions to learn
more about Huntington’s disease:

8. Where can I get a description of this disease?
9. Are there any clinical trials open for this disease?

a. What are the results of previous clinical trials?
10. Are there any patient registries or biobanks for Huntington’s

disease?

Finding the answers for these questions is not a straightforward
process. Without a tool like Diseasecard, clinicians, researchers and
patients will loose precious hours browsing Google, Wikipedia,
OMIM, Orphanet or UniProt. This is a rather inefficient and ineffec-
tive endeavors. Diseasecard’s streamlines this workflow. Starting
by typing ‘‘Huntington’’ in Diseasecard’s homepage search box,
the entry for Huntington’s disease appears almost immediately
on the top results (http://bioinformatics.ua.pt/diseasecard/entry/
143100). From there, the disorder workspace provides quick access
to multiple web resources where users can find the answers to
their questions:

1. Huntington’s disease clinical features aptly start with the
mention of classic signs of progressive chorea, rigidity and
dementia. Clicking the disease name on Huntington’s dis-
ease entry loads the disorder OMIM page in LiveView, where
this information is highlighted.

2. On Diseasecard’s navigation map and tree (Ontology node),
the ICD10 node shows one link to the ICD version 10
‘‘G10’’ term, entitled ‘‘Huntington disease’’.

3. Orphanet is the best resource to find genetic testing labora-
tories and is also linked in Diseasecard (Disease node).
Orphanet lists around 180 diagnostic testing laboratories
covering almost the entire Europe, from Portugal to Finland.

4. Pubmed is the key resource for relevant scientific publica-
tions. Diseasecard links directly to Pubmed’s search engine
(Literature node), where this publication list can be
retrieved.

5. HGNC genes are loaded from OMIM’s morbid map, thus
playing a key role in Diseasecard’s integration network.
From the disease workspace, we can access HTT HGNC page
(Locus node), Huntington’s disease approved gene.

a. From the previous page, we learn that HTT gene is denom-
inated ‘‘huntingtin’’.

b. WAVe is a gene-centric web portal collecting links for mul-
tiple locus specific databases [43]. WAVe access is pro-
vided in Diseasecard (Variation node) and it lists two
locus-specific databases for the HTT gene, where we can
find the variants in an LOVD [44] instance curated by Weil-
leke van Roon-Mom.

6. Huntington’s disease proteins can be inferred from underly-
ing genes of this disease. In Diseasecard’s navigation inter-
face, we learn that UniProt entry P42858 (HD_HUMAN) is
associated with Huntington’s disease (Protein node).

a. Like UniProt, PDB is available in Diseasecard and this
resource includes multiple 2D and 3D models portraying
this protein.

7. Using KEGG (Pathway node), Diseasecard delivers easy
access to the Huntington’s disease pathway.

8. Like the clinical features, a disorder description is available
in Huntington’s disease OMIM entry (Disease node).

9. Clinical Trials detail studies and analysis over a variety of
cohorts. The Study node lists two open Clinical Trials (as of
early 2013), NCT01597128 at the University of Kentucky,
USA; and NCT01065220 at the Medical University of Vienna,
Austria.

a. The Clinical Trial NCT00491842 has already finished and
the collected data is also available in Diseasecard.

10. The previously mentioned Orphanet database also lists
available patient registries and biobanks for Huntington’s
disease, easing the tasks of accessing and contacting these
sites spread throughout Europe.

Diseasecard’s focused environment provides a broad amount of
connections where the answers to critical clinical and research
questions can be answered. In comparison to using multiple appli-
cations, Diseasecard’s always in-context browsing environment
dynamically improves the end users data exploration workflow.

4.2. Integrating Diseasecard’s data

The European Huntington disease network is a large-scale pa-
tient registry, with multiple centres spread throughout Europe fo-
cused on creating a wide patients community [45]. Taking in

http://www.bioinformatics.ua.pt/diseasecard/entry/143100
http://www.bioinformatics.ua.pt/diseasecard/entry/143100
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account the amount and variety of knowledge that is offered to pa-
tients, clinicians and researchers of this database, and, additionally,
the scope of knowledge that could be available, the inclusion of
external data provided by Diseasecard is a welcome addition.

Despite being a closed system, we can assert from the various
documentation available that this patient registry could be im-
proved with the introduction of further clinical-oriented informa-
tion. This information can be in the form of related ICD terms or
links to Orphanet database entries, both containing relevant infor-
mation for clinical practice. For instance, ICD classifications are al-
ready widely used in multiple hospital information systems [46–
48].

The following SPARQL query can be sent to Diseasecard’s end-
point, at http://bioinformatics.ua.pt/diseasecard/sparql, retrieving
a unified list of ICD and MeSH terms, for the OMIM entries regard-
ing Huntington’s disease (#143100) and the ‘‘huntingtin’’ gene
(�613004).
PREFIX coeus: <http://bioinformatics.ua.pt/coeus/>

PREFIX diseasecard: <http://bioinformatics.ua.pt/

diseasecard/resource/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT DISTINCT ?icd {

?item dc:title ?icd.

?item coeus:hasConcept

diseasecard:concept_ICD10.

?item coeus:isAssociatedTo ?orpha.

?orpha coeus:isAssociatedTo ?omim.

?omim coeus:hasConcept

diseasecard:concept_OMIM.

{ ?omim diseasecard:omim ‘‘143100’’ }

UNION

{ ?omim diseasecard:omim ‘‘613004’’ }

}

ORDER BY ASC(?icd)
The results list the ICD10 identifier ‘‘G10’’ as the term matching
Huntington’s disease. The query can be tested at http://bioinfor-
matics.ua.pt/diseasecard/api/sparqler/. While SPARQL may have a
steep learning curve, its advanced features make it the most com-
plete query language for accessing any semantic knowledge base.
Furthermore, results can be obtained in CSV, XML or JSON, making
the use of these data in any programming language very
straightforward.

While these mappings are also provided through several other
services, Diseasecard’s interoperability API offers a bigger variety
of identifiers than most common systems. Querying UniProt or
PDB identifiers is a similar process to querying the detailed ICD
and Orphanet entries.

4.3. Future perspectives

Diseasecard can be seen as an initial step towards a comprehen-
sive integrative ‘‘omics’’ suite. This will make it a key player in fu-
ture large-scale research projects, acting as a channel for delivering
a rich set of connections to rare genetic diseases knowledge.

A vital enhancement for future Diseasecard developments re-
gards the inclusion of deeper semantic relationships amongst
aggregated data. Whereas all individuals are connected through
similar predicates in the current version, future iterations will
comprise new rich connections between particular individuals, ob-
tained from data mining workflows [49] and new scientific discov-
eries [50,51]. New metadata will improve Diseasecard’s genomics
perspective, with annotations for relationships regarding diseases,
genes and proteins interactions [52]; and the clinical perspective,
with annotations mined from electronic medical records [53] and
specialized patient registries [54].

5. Conclusions

We presented Diseasecard, a portal for rare diseases research-
ers, clinicians and patients. Diseasecard features a rich semantic
knowledge base to deliver a lightweight holistic perspective over
the wealth of genetic diseases information stemming from the
growing number of ‘‘omics’’ research projects.

Diseasecard’s results are significant in at least three major re-
spects. (1) The use of semantic web technologies to collect connec-
tions to the most relevant resources regarding rare diseases is a
pivotal step in the future of data integration and interoperability.
(2) The available in-context research features – full text search
and LiveView augmented browsing – enable full access to external
resources within each disease workspace. (3) At last, making all
data available for further inclusion in other systems, whether
through LinkedData or the SPARQL endpoint, empowers other
developers to enrich their systems with a myriad of connections
to the most relevant rare diseases resources.

The new Diseasecard represents a milestone towards semantic
interoperable rare diseases knowledge, and is publicly available
online at http://bioinformatics.ua.pt/diseasecard/.
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