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An overlapping mesh methodology that is spectrally accurate in space and up to 
third-order accurate in time is developed for solution of unsteady incompressible flow 
equations in three-dimensional domains. The ability to decompose a global domain into 
separate, but overlapping, subdomains eases mesh generation procedures and increases 
flexibility of modeling flows with complex geometries. The methodology employs implicit 
spectral element discretization of equations in each subdomain and explicit treatment of 
subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate 
temporal extrapolation, and requires few, if any, iterations, yet maintains the global 
accuracy and stability of the underlying flow solver. The overlapping mesh methodology is 
thoroughly validated using two-dimensional and three-dimensional benchmark problems 
in laminar and turbulent flows. The spatial and temporal convergence is documented 
and is in agreement with the nominal order of accuracy of the solver. The influence 
of long integration times, as well as inflow–outflow global boundary conditions on the 
performance of the overlapping grid solver is assessed. In a turbulent benchmark of 
fully-developed turbulent pipe flow, the turbulent statistics with the overlapping grids is 
validated against published available experimental and other computation data. Scaling 
tests are presented that show near linear strong scaling, even for moderately large 
processor counts.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Finding numerical solutions to partial differential equations (PDEs) by decomposing the computational domain into 
smaller subdomains is an idea that has been around for well over a century. Domain decomposition methods have been uti-
lized for several different purposes, including straightforward parallelization [1–4], simplified mesh generation for complex 
geometries [5–8], and the ability to use different parameters or methods in different subdomains [9–12]. These techniques 
exist in many forms, and each has its strengths. Some decompose the global domain into overlapping subdomains [13–18], 
while others employ non-overlapping subdomains [19,9,7,20–22]. Some use explicit interpolation techniques for values at 
interface boundaries [9,23,20,24], and others carry out implicit interpolation [25,26,22,27,13,14,28–30]. Domain decomposi-
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tion techniques have been developed for use with several numerical methods including finite difference [14,5,9,23], finite 
element [25], finite volume [17,31], and spectral methods [21,22].

The earliest known research in domain decomposition methods was performed by H.A. Schwarz whose work was 
published in 1870 [13]. The original Schwarz Alternating Method, initially proposed for analytical calculations [32], was 
developed for the global solution of boundary value problems for harmonic functions [15] decomposed into overlapping 
subdomains, � = �1 ∪ �2. The solution in the first subdomain (�1 with boundaries ∂�1 ∩ ∂� and �1 = ∂�1 \ ∂�) is found 
using the global boundary conditions on ∂�1 ∩ ∂� and corresponding values from �2 at the previous iteration on �1. The 
solution of �2 is then found by using values from the solution in �1 on �2. These two steps are iterated until sufficient 
convergence is reached (see [33,32,34]).

In the 1960’s, Volkov generalized the original Schwarz Alternating Method into a numerical domain decomposition tech-
nique, in a form of the Composite Mesh Difference Method (CMDM) [14]. CMDM used finite difference methods to solve the 
2-dimensional Poisson equation numerically on overlapping grids. His research laid the foundation for subsequent tech-
niques that extended the use of CMDM to other elliptical and hyperbolic PDEs, and boundary value and initial value 
problems, with the ability to use curvilinear meshes (see [35–38,6]). Overlapping domain decomposition methods have 
also been developed to model complex equations and handle various difficulties in solving practical problems. The Chimera 
Grid Scheme, introduced in [39], employs overset (overlapping) grids for modeling flows in complex geometries. Shortly 
after initial development it was enhanced for use with three dimensional flows modeled by the Euler equations [40] and 
later with the addition of the thin-layer Navier–Stokes equations. More recently, Chimera Grid techniques have been used to 
model a variety of problems with complex geometries [41,42]. Subsequently, Henshaw and Schwendeman [17,4] developed 
a method for using overlapping mesh techniques in modeling high-speed reactive flows, in two and three dimensions.

In addition, techniques that employ non-overlapping grids (sometimes called patched grids) were developed. Examples 
include a zonal approach that uses a flux-vector splitting technique for the determination of interface values in Euler equa-
tions [43–46], Lions method [19] that uses an iterative technique to arrive at the correct values to be passed between 
non-overlapping subdomains in solving Laplace’s equation and more general second-order elliptic problems, Dawson’s ap-
proach [9] that solves the heat equation using an explicit finite difference formula to determine the interface values and 
allows for different time stepping to be used in different subdomains. Non-overlapping grid techniques have also been ex-
tended and employed in solving the advection–diffusion equation [20] and the Navier–Stokes equations [45,22]. Some of 
the more recently developed non-overlapping domain decomposition methods achieve high finite global accuracy [47] and 
some spectral accuracy [21,7,48,22].

While non-overlapping mesh methods allow some flexibility in mesh generation, the constraints in these techniques 
inhibit additional flexibility that is seen in overlapping mesh methods. By allowing variable overlap size, a broad range of 
potential mesh configurations are supported with overlapping methods, thus allowing for more simplified mesh generation. 
Additionally, overlapping methods provide a convenient framework for further extension towards moving domain methods, 
allowing for general and unconstrained motion of rigid body parts through the background stationary meshes [49–52].

So far, existing overlapping grid methods for the time-dependent PDE coupling have been traditionally relying on low-
order, finite-difference or finite-volume schemes. Although some of the methods have been extended to achieve higher-order 
spatial convergence, using extended stencil finite-difference or compact schemes, the upper bound of the global accuracy 
has been usually limited to four [23,24,53], and at most six [54–56,27,57]. Recently, Brazell, Sitaraman and Mavriplis devel-
oped a high-order overlapping Discontinuous Galerkin solver for compressible equations, that uses Lagrangian interpolation 
at interface boundaries, and documented a polynomial convergence up to fourth order [58]. In the current paper, we in-
troduce a spectrally-accurate overlapping mesh method for incompressible equations, that is based on a spectral-element 
method. The Spectral Element Method, which can be perceived as a high-order extension of the Finite Element Method, 
divides a domain into several conforming and adjacent elements [59,3,60]. The volume within each element is discretized 
using Nth-order tensor-product Lagrange interpolating polynomials on Gauss–Lobatto–Legendre nodal points. Approxima-
tions in all elements are coupled at the boundaries to form a global solution [60], which achieves spectral convergence with 
p- (polynomial order) refinement. In this work, we combine a Spectral Element Method solver with the overlapping grid 
approach, to arrive at a globally spectrally-accurate method for solution of the incompressible Navier–Stokes equations on 
overlapping domains.

One of the inherent challenges with overlapping grid methods is to minimize the errors that are introduced due to the 
coupling of the individual subdomain solutions into the global solution. The coupling errors consist of spatial errors and 
temporal errors, and have to be treated separately. Spatial errors are introduced by the spatial interpolation stencil em-
ployed to obtain a function value at the interface points of one domain from the gridpoint values in the adjacent domains 
at the same time level. Some overlapping mesh methods circumvent the spatial error by requiring that the gridpoints in 
overlapping domains exactly coincide [61,62], thus fully conserving communicated information, with the drawback of de-
creased flexibility in mesh generation. Other methods that do not require the exact match of the gridpoints and thus are 
more flexible, use finite order interpolation schemes to determine values from adjacent subdomains. Although simple linear 
interpolation techniques have been popular [6,9,63,29,64], it was shown by Chesshire and Henshaw [6] that an interpo-
lation scheme should be consistent with the accuracy of the underlying solver and higher-order interpolation is required 
to maintain the accuracy of the coupled solution with high-order methods, generally, of the order of one higher than the 
underlying solver accuracy if the overlap width scales with the grid resolution, and the same if it stays constant during 
grid refinement. Thus, in fourth- and sixth-order methods [58,23,27,24], a generalized Lagrangian interpolation method 
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Fig. 1. Domain decomposition using two domains.

of the corresponding order was employed. In the present work, we use Nth-order Lagrangian interpolation approach, on 
non-uniform Gauss–Lobatto–Legendre grids, to arrive at a spectrally-accurate interpolation scheme (with p-refinement) that 
allows us to maintain the global spectral accuracy of the coupled solution.

To avoid temporal errors due to coupling, the subdomain coupling methods have often been formulated implicitly, when 
either the interpolation dependencies are written into the global matrix [6,26,27], or independent subdomain solutions are 
coupled through the use of Schwarz-like iterations [13] to ensure interface value convergence [28–31]. Global convergence of 
the variables in adjacent subdomains often requires many, sometimes hundreds [29], or even thousands [31] iterations, the 
number generally being dependent upon the PDE, the overlap size, and timestep [65,66]. Although Henshaw [67] showed 
that the convergence rates when solving elliptic PDEs on overlapping subdomains can be reduced by using a multigrid 
solver with a smoothing algorithm near interface boundaries, this approach is difficult to implement and requires some 
global interventions to the solver. However, if the coupling scheme, even without iterations, does not introduce temporal 
errors larger than those of the global timestepping scheme, the global temporal accuracy will be preserved [68], particularly 
the interface values need not strictly match, but must merely be “consistent”. The notion of consistency has been previ-
ously used when constructing and analyzing interpolation and iteration schemes for the overlapping grid methods [30], 
where consistency was interpreted in a spatial sense. In [68], we have proposed an explicit temporal interface extrapolation 
algorithm for the overlapping grid methods that preserves the overall temporal accuracy, and analyzed its stability. The pro-
posed coupling scheme is essentially “temporally consistent” (the differences between the interface values due to temporal 
coupling converge with the same rate as the temporal errors of the underlying flow solver).

In the present work, we implement this temporally consistent coupling scheme for coupling the solutions of incompress-
ible Navier–Stokes equations on overlapping grids discretized with the SEM method. This novel scheme achieves a specified 
order of accuracy with a small number of iterations. It ensures that the temporal error between the values in the subdo-
mains at the interfaces is equal to the temporal accuracy of the underlying SEM solver. Assuming that this holds true, the 
interface values need not be an exact match, while still maintaining the global accuracy of the solution. While the accuracy 
of the extrapolation scheme is maintained in the absence of iterations, the stability of the formulation can generally be 
improved by implementing a low number of Schwarz-like iterations [68].

The current paper introduces an original method for coupling Navier–Stokes equations on the overlapping domains that 
is spectrally accurate in space and high-order accurate in time up to a specified order. Although an overlapping Schwarz 
method has been previously employed as a preconditioner for the solution of the Poisson equation in a spectral element 
formulation of Navier–Stokes equations on a single domain [3,69], a spectrally-accurate approach that achieves a full un-
steady coupling of independent solutions to Navier–Stokes equations on overlapping grids appears to be novel. In addition, 
our method achieves a specified temporal accuracy with the minimum number of iterations (usually two to three) while 
maintaining stability of the formulation. We demonstrate the spectral spatial and high-order temporal convergence of the 
developed solver, as well as the overall consistency of the coupled solution, on a number of two and three-dimensional 
examples with incompressible Navier–Stokes equations, including laminar and turbulent test cases.

The remainder of the paper is organized in the following manner: section 2 describes the computational methodology; 
section 3 discusses the techniques used to parallelize the overlapping grid solver; section 4 presents the results for verifi-
cation and validation; and section 5 shows the scalability tests. In section 6 some final conclusions are drawn, including a 
brief discussion of future extensions and applications of this work.

2. Methodology

2.1. Mathematical formulation

In the present formulation, a two or three dimensional global solution domain is decomposed into two overlapping 
subdomains, � = �1 ∪ �2, an example of which is seen in Fig. 1. Values at interface boundaries, �12 and �21 are equal 
to contiguous values in the adjacent subdomain, and the solution in each subdomain is governed by the incompressible 
Navier–Stokes equations which are represented in non-dimensional form in space Rd , as shown below

�1

⎧⎪⎨⎪⎩
∂ u[1]

∂ t
+ u[1] · ∇ u[1] = −∇ p[1] + 1

Re
∇2u[1]

∇ · u[1] = 0

(1)
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and

�2

⎧⎪⎨⎪⎩
∂ u[2]

∂ t
+ u[2] · ∇ u[2] = −∇ p[2] + 1

Re
∇2u[2]

∇ · u[2] = 0

(2)

where u is the velocity vector, p is the pressure, and Re = U L/ν is the Reynolds number based on a characteristic velocity, 
length scale and kinematic viscosity. The bracketed superscript denotes the corresponding subdomain. Generalized initial 
and boundary conditions for each subdomain are presented below

u[1],[2](x,0) = u0(x), x ∈ �1,2

u[1],[2](x, t) = ud(x, t), x ∈ ∂�D

∇u[1],[2](x, t) · n = 0, x ∈ ∂�N

u[1](x, t) = u[2](x, t) x ∈ �12 ∪ �21 (3)

where ∂�D corresponds to Dirichlet portions of the global boundary, ∂�N represents the Neumann portions of the global 
boundary (with n the unit outward pointing surface normal), and �i j denotes an interface boundary, or the local boundary 
of a subdomain, ∂�i , that is not also part of the global boundary: �i j ≡ ∂�i \ ∂�.

A global solution is formed by weakly coupling subdomain solutions. The weak coupling occurs at subdomain interfaces, 
�i j , where values from � j are spatially and temporally interpolated to approximate solutions at interface boundaries of �i

at time t

u[1](x, t) = u[2]
int (x, t) x ∈ �12

u[2](x, t) = u[1]
int (x, t) x ∈ �21 (4)

where the int subscript denotes interpolated values from the corresponding subdomain.

2.2. Numerical formulation

Aside from exchanging velocity values at interfaces, the solutions within each subdomain are computed independently 
of each other, and the numerical formulation within each subdomain is identical. The subdomain superscripts are thus 
withheld from sections in following discussion (�i → � and u[i] → u), except where needed for clarity.

2.2.1. Temporal discretization
The temporal discretization in the developed methodology uses a characteristics time-stepping scheme that exploits a 

property of the flow that allows for calculating the solution along characteristic paths. This method allows for much larger 
timesteps by rewriting the time derivative and convective terms in (1) and (2) using the material derivative

D u

D t
= −∇ p + 1

Re
∇2u

∇ · u = 0 (5)

with

u(x,0) = u0(x), x ∈ �

u(x, t) = ud(x, t), x ∈ ∂�D

∇u(x, t) · n = 0, x ∈ ∂�N

u[i](x, t) = u[ j]
int(x, t), x ∈ �i j (6)

where the material derivative

Du

Dt
≡ ∂u

∂t
+ u · ∇u (7)

describes the time evolution of u attached to material points, or points that are convecting along characteristic lines given by 
the velocity field u. Using this representation, the material derivatives in (5) are discretized using backward differentiation 
of order k (BDFk)

Du

Dt
→ 1

�t

⎛⎝β0kun +
k∑

q=1

βqk ũn−q

⎞⎠ (8)
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Table 1
Coefficients for the BDFk scheme, k = 1, 2, 3 [68].

βq1 βq2 βq3

q = 0 1 3/2 11/6
q = 1 −1 −2 −3
q = 2 1/2 3/2
q = 3 −1/3

where the βqk terms are the backwards differentiation coefficients given in Table 1 for up to third-order [60,68], and ũn−q

represents the value of u at time tn−q and at the location, Xn−q , from which it originated prior to being convected by the 
velocity field:

ũn−q = u
(
Xn−q(x), tn−q) . (9)

Backward differentiation of (5), after some rearranging, then gives

1

�t
β0kun − 1

Re
∇2un + ∇pn = 1

�t

k∑
q=1

βqkũn−q in �

∇ · un = 0 in �, (10)

with initial and boundary conditions given by the temporal discretization of (6).
The main difficulty with this technique is determining the values of u at the foot of the characteristic for each gridpoint. 

Marching backward in time along the characteristic line and evaluating u at that time and location assumes interpola-
tion since the new location will not be incident with a grid point. The velocity field u must also be interpolated at each 
point along the characteristic to determine the correct path along which to march backward, all of which greatly increases 
computational cost.

The need to know Xn−q is bypassed by using the operator-integration factor splitting (OIFS) method developed by Maday, 
Patera, and Rønquist [70]. The OIFS shows that ũn−q can be found by solving the initial-boundary value (IBV) convection 
problem

∂ũ

∂s
+ u · ∇ũ = 0, s ∈ [tn−q, tn] (11)

with initial and boundary conditions

ũ
(
x, tn−q)= u

(
x, tn−q)

ũ (x, t) = u (x, t) ∀ x ∈ ∂�c, (12)

where ∂�c is the subset of ∂� where u · n < 0, or the portion of ∂� that contains inflow characteristics. Note that, as 
opposed to semi-Lagrangian backwards-characteristic-tracing algorithms, the OIFS approach, by casting the problem as an 
IBV problem, avoids interpolation along characteristics, thus eliminating the problem of tracing along characteristics into an 
adjacent subdomain.

Since the terms on the right-hand side of (10) are computed separately from the global problem, they will be expressed 
as a forcing function to the global Stokes problem

fn = 1

�t

k∑
q=1

βqkũn−q (13)

which allows (10) to be expressed as

β0k

�t
un − 1

Re
∇2un + ∇pn = fn in �

∇ · un = 0 in � (14)

with

un=0(x) = u0(x), x ∈ �

un(x) = un
d(x), x ∈ ∂�D

∇un(x) · n = 0, x ∈ ∂�N

u[i],n(x) = g
(

u[ j],n
int (x),u[ j],n−1

int (x), . . . ,u[ j],n−p
int (x)

)
, x ∈ �i j (15)

where interface conditions at timestep tn in the last equation are a function g () of interpolated values from the adja-
cent subdomain, from the previous timesteps, as discussed in the next section. Further details regarding the characteristics 
time-stepping method including the OIFS method for handling inhomogeneous terms are found in [60,70].
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Table 2
IEXTm schemes, m = 1, 2, 3 [68].

γp1 γp2 γp3

p = 1 1 2 3
p = 2 −1 −3
p = 3 1

2.2.2. Temporal interface extrapolation
Here, we utilize a novel explicit temporal interface extrapolation scheme to obtain interface conditions at a current 

timestep, using the known solutions from the previous timesteps, with an arbitrary order of accuracy (IEXTm, where m
stands for the order of accuracy) [68]. For instance, if velocity values are to be collected for use at an interface point x on 
�i j at time tn , then u[i],n(x) is found using interpolated values in � j taken at p previous timesteps, u[ j],n−p

int . The IEXTm

scheme finds u[i],n(x) with mth-order accuracy

u[i],n (x) =
m∑

p=1

γpmu[ j],n−p
int (x) , x ∈ �i j (16)

where γpm are the extrapolation weights for the IEXTm scheme, which, for up to 3rd-order schemes, can be found in 
Table 2 [68]. Thus, boundary conditions in (15) become

un(x) = un
d(x), x ∈ ∂�D

∇un(x) · n = 0, x ∈ ∂�N

u[i],n(x) =
m∑

p=1

γpmu[ j],n−p
int (x). x ∈ �i j (17)

Performing temporal interface extrapolation with order of accuracy equal to the accuracy of the global temporal scheme, 
maintains the temporal accuracy of the global scheme. The current IEXTm scheme therefore allows to maintain the global 
accuracy of the solution without the penalties associated with implicit methods, such as expensive matrix inversion proce-
dures, or excessive amount of iterations.

Iterative scheme The proposed explicit temporal interface extrapolation scheme changes the stability properties of the cou-
pled solver. The IEXTm subdomain coupling scheme was theoretically analyzed in [68] on the example of one-dimensional 
heat equation discretized in time with BDF scheme, which is implicit and, in the absence of interface coupling, uncondi-
tionally stable. While the first-order accurate interface extrapolation (IEXT1) was proven to retain the unconditional stability 
of the global scheme (at least with first- or second-order BDF time integration), the stability of the higher-order IEXTm
schemes depended on the size of overlap and the number of iterations, with a small number of iterations generally leading 
to a significant increase in the stability threshold [68].

To allow for stabilizing effect of Schwarz-like iterations for higher-order extrapolation schemes, the method is modified 
as follows

β0k

�t
ul,n − 1

Re
∇2ul,n + ∇pl,n = fn in �

∇ · ul,n = 0 in � (18)

with

ul=1,n=0(x) = u0(x), x ∈ �

ul,n(x) = un
d(x), x ∈ ∂�D

∇ul,n(x) · n = 0, x ∈ ∂�N (19)

where l is the iteration index, and interface conditions are defined

u[i],l=1,n(x) =
m∑

p=1

γpmu[ j],lmax,n−p
int (x)

u[i],l>1,n(x) = u[ j],l−1,n
int (x)

⎫⎪⎪⎬⎪⎪⎭ x ∈ �i j (20)

where the initial iteration uses IEXTm at subdomain interface points, while subsequent iterations use values interpolated 
from the most recent solution in the neighboring subdomain.
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Reference [68] showed analytically that a low number of iterations (usually less than five) can sufficiently stabilize the 
solution of the unsteady one-dimensional parabolic problem even for large timesteps and small overlap sizes (down to 5% 
of total gridpoints in the overlap region). It was also shown that larger overlap sizes require smaller number of iterations 
for stability. Although extension of this formal stability analysis to multidimensional problems and Navier–Stokes equations 
will be performed in the future, the current methodology seems to exhibit similar trends: larger overlap sizes do exhibit 
better stability and require smaller number of iterations. In the current methodology, and based on preliminary results from 
the stability analysis [68], we would target to have a few elements in the region of overlap, which generally required two 
to four iterations for stability.

Although a low number of iterations is sometimes needed for stability, we stress that this is very different from fully 
implicit methods without IEXT scheme, where hundreds of iterations are needed to maintain the global accuracy.

Note that upon problem initialization at t = 0, the solver must use reduced order temporal schemes (for example, 
BDF1/IEXT1 for the first time step etc.) since previous solutions do not yet exist, a typical issue for higher-order explicit 
or backward-differencing temporal schemes. At restart, this can be circumvented by saving and using the corresponding 
number of previous solutions; at initialization, one can either use analytical solution (if available), or very small �t for the 
first several timesteps, or rely on a natural “flush out” of initial start-up errors during long simulation runs.

2.2.3. Global variational form
The Stokes problem (18), with time n, iteration l, and accuracy k indices excluded for readability, is cast into variational 

form by multiplying the equations by a test function, v ∈ H1
0(�), followed by integration, producing the variational form of 

the problem: Find u ∈H1
b(�), p ∈L2(�) such that

β0

�t
(u,v) − 1

Re
(∇2u,v) + (∇p,v) = (f,v) ∀v ∈ H1

0(�)

−(q,∇ · u) = 0 ∀q ∈ L2(�), (21)

where the inner product of two scalar functions a and b is defined

(a,b) =
∫
�

a(x)b(x)d x, ∀ a,b ∈ L2(�), (22)

and where L2(�) is the space of square-integrable functions, and H1(�) is the space of square-integrable functions whose 
first derivatives are also square-integrable. H1

0(�) denotes the subspace of H1(�) with v = 0 on Dirichlet, ∂�D , and inter-

face, �i j , boundaries, while H1
b(�) denotes the subspace of H1(�) with v = vd on ∂�D , or v[i] = g

(
v[ j]

int

)
on �i j .

Using integration by parts,(
∇2u,v

)
→
∫
∂�

v ∇u · n̂ dA −
∫
�

∇u : ∇v dV , (23)

where “:” denotes a Frobenius inner product, on the terms − 1
Re (∇2u, v) and (∇p, v) yields the weak form of (21). Since 

the first integral in the right-hand side vanishes due to boundary conditions and a choice of test functions v, the weak 
variational form of the global Navier–Stokes equations becomes

β0

�t
(u,v) + 1

Re
(∇u,∇v) − (p,∇ · v) = (f,v) ∀v ∈ H1

0(�)

−(q,∇ · u) = 0 ∀q ∈ L2(�), (24)

2.2.4. Spatial discretization
In the present spectral element formulation, each computational subdomain, �, is decomposed into a set of E non-

overlapping adjacent elements,

� =
E∑

k=1

�k, (25)

with global inner products

(a,b)|� =
E∑

k=1

(ak,bk)|�k
. (26)

Spatial discretization of (24) within each element is achieved by projecting search spaces H1(�) and L2(�) onto the 
corresponding finite-dimensional subspaces X N ⊂H1(�) and Y N ⊂L2(�) defined as



B.E. Merrill et al. / Journal of Computational Physics 307 (2016) 60–93 67
X N = H1(�) ∩ P
d
N

Y N = L2(�) ∩ P
d
N−2, (27)

where PN is the space of all polynomials of degree less than or equal to N , and Pd
N is the corresponding tensor-product 

in d spatial dimensions. Each arbitrary element �k has a distinct mapping function to a d-dimensional reference element 
�̂ = [−1, +1]d:

xk(r) ∈ �k �→ r ∈ �̂, (28)

with a well-defined inverse

rk(x) ∈ �̂ �→ x ∈ �k. (29)

The present spectral element method is a nodal scheme, where collocation points in the velocity space of the reference 
element, ξ j ∈ [−1, +1], are specified using Gauss–Lobatto Legendre (GL) quadrature, while for the pressure space, collocation 
points, η j ∈ ]−1, +1[, are specified with Gauss Legendre (G) quadrature. The basis functions used to span the polynomial 
space, PN for velocity and PN−2 for pressure, are the Lagrange interpolating polynomials, φi(r), satisfying

φi(ξ j) = δi j, (30)

with δi j a Kronecker delta. Note that the quadrature in the velocity space contains points that lie on the element boundaries, 
thus maintaining basis continuity across element boundaries, while basis continuity is not enforced in the pressure space 
because of the Gauss Legendre quadrature.

Gaussian quadratures allow for accurate numerical integration of high order polynomials. Integration of a polynomial, 
f (r), in a 1D reference domain, −1 ≤ r ≤ 1, takes the form (for GL quadrature)

1∫
−1

f (r)dr =
N∑

l=0

ωl f (ξl), (31)

where ξl are the collocation points in GL quadrature, and ωl are their associated weights. A polynomial of up to order 2N −1
will be integrated exactly when using N + 1 collocation points represented by Gauss–Lobatto Legendre quadrature [60].

Each scalar field in �k , represented by fk(x), in the space Pd
N (�k) is discretized, for example, in two-dimensions

f (x(r))
∣∣
�k =

N∑
i=0

N∑
j=0

fk,i jφi (r1)φ j (r2) , r1, r2 ∈ [−1,1]2 , (32)

where the Lagrange polynomials satisfy (30) and x maps the local coordinates to the reference geometry (28).
Restating the problem (24) in terms of quadrature and in finite-dimensional subspaces: Find u ∈ X N

b , p ∈ Y N such that

β0

�t
(u,v)GL + 1

Re
(∇u,∇v)GL − (p,∇ · v)G = (f,v)GL ∀v ∈ X N

0 (33)

−(q,∇ · u)G = 0 ∀q ∈ Y N (34)

where the global inner products are determined as in equation (26).

2.2.5. One-dimensional operators
For simplicity, matrix discretizations will first be derived for one dimensional variables (unbolded) on the reference 

length, [−1, 1]. The inner products are performed on a local basis, with local variables represented using the element 
index, k. The inner product in the first term on the left side of equation (33) is discretized as

(u, v)k,GL =
∫
�̂

uk vkdr

=
∫
�̂

(
N∑

i=0

uk,iφi(r)

)⎛⎝ N∑
j=0

vk, jφ j(r)

⎞⎠dr

=
N∑

j=0

vk, j

N∑
i=0

uk,i

∫
�̂

φi(r)φ j(r)dr

= v T
k B̂uk (35)
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where a hat over an unbolded variable denotes a one dimensional matrix operator for the reference length, and an underline 
denotes a vector of coefficients, v = (v0, v1, . . . , v N). The mass matrix, B̂ , can be computed using GL quadrature weights

B̂i j =
∫
�̂

φi(r)φ j(r)dr

≈
N∑

l=0

ωlφi(ξl)φ j(ξl). (36)

Numerical integration of the mass matrix as represented above is not exact since N + 1 points are being used to evaluate 
a polynomial of order 2N , although the error is consistent with the overall approximation error, and accuracy increases 
spectrally as higher order polynomials are used. Due to the Lagrangian basis function property in (30), the mass matrix 
simplifies to an (N + 1) × (N + 1) diagonal matrix with the quadrature weights along the main diagonal, B̂ = diag(ωl).

The inner product for the forcing term is also expressed using the mass matrix

( f , v)k,GL = vT
k B̂ f k. (37)

In a similar manner, the inner product in the second term on the left side of equation (33) is discretized(
du

dr
,

dv

dr

)
k,GL

= v T
k Âuk (38)

where the stiffness matrix, Â , in terms of GL quadrature becomes

Âi j =
∫
�̂

φ′
i (r)φ′

j (r)dr

=
N∑

l=0

ωlφ
′
i (ξl)φ′

j (ξl) . (39)

In terms of the spectral differentiation matrix

D̂i j ≡ dφ j

dr

∣∣∣∣
r=ξi

(40)

and using GL quadrature, the stiffness matrix (39) can be written

Âi j =
N∑

l=0

ωl D̂li D̂lj. (41)

Numerical integration with GL quadrature of the stiffness operator is exact since a polynomial of order 2N − 2 is being eval-
uated with N + 1 collocation points [60]. Note that since the basis polynomials are known, the mass and stiffness operators 
could be precomputed exactly, although the resulting matrices would be full, leading to much greater computational cost, 
especially when extended to higher dimensional operators.

The pressure term in equation (33) is represented in weak form using G quadrature. However, ∇ · v values are defined at 
GL points, and therefore, the pressure values are interpolated to GL quadrature for compatibility. Thus the pressure term is 
discretized(

p,
dv

dr

)
k,G

= vT
k

ˆ̃DT
pk (42)

where ˆ̃D is a local Derivative matrix defined using a weighted interpolation operator and the weighted one-dimensional 
derivative matrix. The inner product in the continuity equation (34) in one dimension is discretized in a similar manner(

q,
du

dr

)
G

= qT
k

ˆ̃Duk. (43)

See [60] for additional details regarding the discretization of the pressure and continuity terms, including the local derivative 
operator.
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2.2.6. Higher dimensions and deformed geometries

Extensions of the above operators, B̂, Â, Ĉ, and ˆ̃D , must be made for use with elements of higher dimensions and 
deformed geometries. Extension to higher dimensions is generally a straightforward task by applying tensor products of 
operators. The most trivial extension is seen in the derivation of the mass matrix for a multi-dimensional reference element. 
For example, in three dimensions, we write

B̂ = B̂ ⊗ B̂ ⊗ B̂, (44)

where the higher dimension operator is represented with the underline, and its dimensions are (N + 1)d × (N + 1)d . The 
inner product, (35), for scalar variables in higher dimension reference elements is expressed as

(u, v)k,GL = v T
k B̂ uk, (45)

where uk and vk now represent coefficients of multidimensional scalar functions, u(x).
The operators are additionally modified for use with deformed geometries. As discussed above, a mapping function 

exists to map coordinates in a physical element to a reference element, (28), with an inverse mapping function to perform 
the opposite mapping, (29). The transformation Jacobian Jk(r) for element k is derived for an element by calculating the 
determinant of a matrix constructed using the chain rule for mapping the derivatives of one space to the other, and is used 
in integration to ensure operator matrices are derived for the proper space. The term derived in (35), for example, can be 
derived for a two-dimensional physical element, �k:

(u (x) , v (x))k,GL = vT
k Bkuk, (46)

where the mass matrix hat has been dropped, and an element index, k, has been added since the operator is now extended 
for use beyond reference element geometry to a configuration that is specific to element k. The mass matrix is now defined 
using the Jacobian with GL quadrature

Bk,iı̂ jĵ =
∫
�̂

φiφı̂φ jφĵ Jk(r1, r2) dr

≈
N∑

l=0

N∑
m=0

ωlωmφi(ξl)φı̂(ξl)φ j(ξm)φĵ (ξm) Jk(ξl, ξm). (47)

Using the Lagrangian basis function property in (30), the local mass matrix again simplifies to a diagonal matrix expressed 
as tensor product of one dimensional mass matrices multiplied by a Jacobian matrix

Bk = J k

(
B̂ ⊗ B̂

)
. (48)

Mass matrices for deformed geometries remain of size (N + 1)d × (N + 1)d . Other matrix operators are extended for use 
with higher dimension elements with deformed geometries in a similar manner [60].

2.2.7. Element coupling
All derivations thus far have been towards the development of operators on a local element-wise basis. Local inner 

products for all elements are added together to express unassembled operators for the global subdomain, as shown below 
for the mass matrix

(u, v)GL =
E∑

k=1

vT
k Bkuk = vT

L BLuL (49)

where the subscript “L” denotes a global unassembled array, with the block diagonal mass matrix B L ≡ diag
(

Bk
)
. Summation 

of the other matrix operators is likewise performed to create unassembled operators in the global subdomain which are 
also block diagonal, AL ≡ diag(Ak) and D L,i ≡ diag(Dk,i). The subscript i in the interpolating derivative operator arises since 
a slightly different matrix is used for each dimension of the problem due to direction dependence in multidimensional 
vector lexicographical ordering. Notice that in unassembled arrays, which contain E · (N + 1)d values, continuity at element 
boundaries is not enforced, since adjacent elements need not contain identical values at their shared boundaries. Continuity 
is thus imposed by mapping an unassembled array (uL ) into an assembled array (u), in which adjacent elements reference 
the same values at shared boundaries. This process is performed with a connectivity operator, Q , that maps unassembled 
arrays to assembled arrays, and vice versa, through gather

u = Q T uL (50)

and scatter

uL = Q u (51)
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operations. The absence of a subscript denotes a global assembled array, in which inter-element continuity is enforced 
by shared values at adjacent element boundaries. Assembled arrays thus contain fewer than E · (N + 1)d values, since 
no duplicate entries exist for values that lie on boundaries of adjacent elements. The operator, Q , is given by a matrix 
composed of “ones” and “zeros” which are arranged so that when Q is multiplied with an assembled array, values located 
at an element boundary are assigned to every element that includes the boundary in the global unassembled array. Likewise, 
the transpose of Q maps an unassembled array to a more condensed assembled array. The connectivity operator can act 
on both coefficient arrays and other operators [60]. The combined gather–scatter operations are used to perform global 
operations containing both assembled and unassembled arrays. By way of example, unassembled velocity coefficient arrays, 
as in (49), can be expressed, and determined, in global arrays

(u, v)GL = v T
L BLuL → vT Q T BL Q u. (52)

Similar gather–scatter operations are performed for the other terms in (33) and (34).

2.2.8. Vector-valued functions
Extension from scalar to vector space is accomplished by summing scalar arrays to represent the multidimensional 

problem

(u,v) =
d∑

i=1

(ui, vi)

⇒ (u,v)GL =
d∑

i=1

vi,LBLui,L

⇒ (u,v)GL = vLBLuL . (53)

The vector-valued arrays u are defined by appending the scalar-valued arrays (u1, u2, u3)
T , and the matrix operator BL for 

the vector-valued arrays is the block-diagonal matrix containing the corresponding operators B L for the scalar arrays.

2.2.9. Boundary conditions
Neumann boundaries Homogeneous Neumann boundary conditions, on ∂�N , are satisfied in the weak form of the govern-
ing equations (24) due to integration-by-parts performed on the inner product, (∇2u, v), which is presented in (23). The 
resulting integral over the domain boundary, ∂�, contains the term ∇u · n̂, and thus vanishes due to the homogeneous 
Neumann boundary conditions, ∇u(x, t) · n = 0, x ∈ ∂�N .

Dirichlet and interface boundaries Satisfying boundary conditions at Dirichlet and interface boundaries need an additional 
constraint. Homogeneous Dirichlet boundary conditions are enforced using an unassembled Mask matrix, M L , that, when 
multiplied with a coefficient array, sets coefficient values corresponding with points on ∂�D to zero, while keeping all 
other values the same. To carry out this operation, the Mask matrix is essentially constructed as an Identity matrix, but 
with “zeros” replacing the “ones” in positions that correspond to points on ∂�D . This will enforce the boundary condition, 
u = 0 on ∂�D . For example, the mask matrix enforces homogeneous Dirichlet boundary conditions on (52) by

v T Q T BL Q u → v T Q T ML BL ML Q u, (54)

and the corresponding expression for the vector fields is

(u,v)GL = vT QT MLBLMLQ u. (55)

The same procedure is used for masking out the interface points, that is the corresponding mask matrix {M L}k,lm will be 
zero for all the Dirichlet points on ∂�D , and the interface points on �i j , for a given subdomain, and one for all the other 
diagonal points. Note that an assembled mask matrix, M , that acts on assembled arrays, may also be used, although the 
order of the matrix multiplications will change [60].

Inhomogeneous boundary conditions To set up inhomogeneous boundary conditions for the Dirichlet and interface bound-
aries, the semi-discrete boundary conditions given by Eqs. (19), (20), need to be spatially discretized. Although the operation 
is quite straightforward for global Dirichlet boundaries, a spatial discretization of interface conditions needs to be derived.

Spatial interface interpolation To maintain spectral accuracy of the global solution during the subdomain coupling, we pro-
pose to use a Lagrangian interpolation of Nth order, consistent with the SEM spatial discretization (32). Thus, the following 
interpolation formula can be used in the domain � j to find the interpolated value of velocity u[ j]

int(x[i]) that corresponds to 
the interface point x[i] ∈ �i j of the domain �i

u[ j]
int(x[i]) =

N∑
l=0

N∑
m=0

u[ j]
k,lmφl

(
r[ j]

1

)
φm

(
r[ j]

2

)
, x[i] ∈ �i j . (56)
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Fig. 2. Find coordinates of ξ i , which is coincident with �
j
k , in the space of the reference element, �̂.

According to the SEM discretization, the velocity values u[ j]
k,lm at the GL points are known, and the interpolation weights 

equal to the values of Lagrange interpolating polynomials φl(r[ j]) can be found if the reference coordinates r[ j] in the domain 
� j corresponding to the interface point x[i] ∈ �i j of the domain �i are known. The difficulty is that these coordinates are 
not easily available, since the mapping function (28) is defined only locally in a subdomain. The main goal of interpolation 
becomes one of determining the coordinates of a GL point, x[i] ∈ �i j in terms of its position and reference coordinates 
within the adjacent subdomain, � j , i.e. the global mapping x[i] ∈ �i j → r[ j] ∈ �̂.

Before the reference coordinates are found, the element in the subdomain � j that encapsulates the physical coordinates 
of x[i] ∈ �i j must be determined. This is done by testing the coordinates, x[i] , against the bounding lines (or faces) of each 
element. Once the coincident element, � j

k , is found, the physical coordinates of the point x[i] are mapped to corresponding 
reference coordinates, r[ j] ∈ [−1, 1]d , in � j

k , as shown in Fig. 2. The reference coordinates, r[ j] , within � j
k are found by 

treating the search as an optimization problem

min
r∈[−1,1]d

h(r), (57)

where h(r) = ∣∣x[i] − x[ j](r)
∣∣2, and x[ j](r) is the result of function (29) that maps the coordinates in the reference element, 

r, to physical coordinates, x[ j] , in the deformed element � j
k . The optimization problem is completed using the iterative 

Newton–Raphson method

rp+1 = rp − J
(
rp)−1 h

(
rp) , (58)

where p is the iteration index, and J (r) = ∂h/∂r. Note that while precise analytical coordinate mappings can be calculated 
for simple mesh structures (as in most of the test problems presented here), the method is designed to handle complex 
quadrilateral/hexahedral mesh configurations, such as elements composed of both curved and straight faces. Once reference 
coordinates r[ j] are found, the interpolated value u[ j]

int is evaluated using the equation (56) and communicated to the adjacent 
domain, where it is utilized as a boundary condition (20). The developed interpolation procedure is thus as accurate as the 
original solution approximation and maintains the spectral accuracy with the polynomial refinement.

Enforcing inhomogeneous boundary conditions Once the inhomogeneous boundary conditions have been spatially discretized, 
their enforcement is carried out by decomposing the solution, u, into a homogeneous (u0) and inhomogeneous (ub) terms: 
u = u0 + ub . The homogeneous term u0 that is a solution to the discretized SEM equations satisfies homogeneous boundary 
conditions on Dirichlet and interface boundaries. The inhomogeneous term ub is given by a continuous function that satisfies 
the Dirichlet conditions ud on ∂ �D and interface conditions uint on �i j , that modifies the right-hand side of the discretized 
equations as shown below. Any inexpensive projection step can be employed to construct the function ub that is continuous 
on a subdomain [60].

2.2.10. Discretized equations
Thus, the fully discretized equations on overlapping domains take the form

In �1 :
(

H −D̃
T

−D̃ 0

)(
u[1]

0

p[1]
L

)
=
(

F[1](u[2])
F [1]

p (u[2])

)
, (59)

In �2 :
(

H −D̃
T

−D̃ 0

)(
u[2]

0

p[2]
L

)
=
(

F[2](u[1])
F [2]

p (u[1])

)
. (60)

As it can be seen, the coupling occurs explicitly through the interpolated terms in the right-hand sides in the equations. 
Here, the following operators have been defined:

A = QT MLALMLQ, (61)

B = QT MLBLMLQ, (62)

D̃ = D̃LMLQ, (63)



72 B.E. Merrill et al. / Journal of Computational Physics 307 (2016) 60–93
HL =
(

β0

�t
BL + 1

Re
AL

)
, (64)

H =
(

β0

�t
B + 1

Re
A
)

, (65)

with the vectors

F[i](u[ j]) = QT ML

(
BLf[i]L − HLu[i]

b,L(u[ j])
)

(66)

F [i]
p (u[ j]) = D̃L u[i]

b,L(u[ j]), (67)

where dependence on the adjacent domain solution comes from the dependence of the interpolated interface values in 
the inhomogeneous term ub,L . After the coupling term in the right-hand side is updated globally at the beginning of each 
iteration, the two Stokes problems are solved independently on the overlapping subdomains, as described next. Note that all 
the operators shown in bold for the vector-valued arrays are block-diagonal extension of the scalar-valued operators, while 
the derivative operator D̃ is defined as D̃ = [D̃1 D̃2 D̃3

]
, so that D̃T

acts on a scalar-valued pressure array pL .

Recall that f[i]L is defined in equation (13) where OIFS is used for explicit treatment of the nonlinear convective term. 
Spatial discretization of the OIFS problem for approximation of ũ is performed using similar integration procedures to those 
discussed in Section 2.2, and gives

BL
d

ds
ũ(s) = −CL ũ(s), tn−q ≤ s ≤ tn, (68)

where C is the convective operator, the derivation of which is found in [60]. Equation (68) is temporally discretized using 
an explicit fourth-order Runge–Kutta (RK4) scheme with �s ≤ �t (typically �s = �t/5 for stability). Note that, although 
spatial interpolation is not required in the OIFS technique, as discussed in Section 2.2.1, since u is only known at discrete 
times tn−q , it will need to be temporally interpolated at the intermediate RK stages tn−q + �s, tn−q + 2�s etc., with the 
help of, for example, Fornberg’s interpolation.

2.2.11. Stokes solver
The discretized Stokes problem(

H −D̃
T

−D̃ 0

)(
ul,n

0 )

pl,n

)
=
(

Fl,n

F l,n
p

)
(69)

is solved by decoupling the pressure from the velocity field calculations. Here we omit all the indices related to the subdo-
main description, as well as drop the subscript “L” for unassembled arrays; but we add the superscripts n and l denoting 
the current timestep and the iteration.

Solving for the solution at timestep n and iteration l, a matrix, W, is introduced to the problem along with the pressure 
solution from the previous timestep(

H −H W D̃T

−D̃ 0

)(
ul,n

0

pl,n − pn−1

)
=
(

Fl,n + D̃T pn−1

F l,n
p

)
+
(

rl,n

0

)
. (70)

The pressure pn−1 from the previous timestep is defined from the final iteration, i.e. pn−1 = plmax,n−1, and we omit the 
iteration index for clarity. The value rl,n is the residual, or error due to splitting, taking care of the difference between the 
original Stokes problem (69) and (70). For this approach

rl,n = (H W − I
)

D̃
T
(

pl,n − pn−1
)

(71)

If W = H−1 we arrive at the Uzawa algorithm which gives rl,n = 0, but is costly to compute. The choice

W = �t

β0
B−1 −

(
�t

β0

)2

B−1A B−1 (72)

is inexpensive to compute, does not introduce any additional steady-state temporal errors, and preserves the correct bound-
ary conditions [60]. This choice of W gives splitting error

rl,n =
(

�t

β0

)2 1

Re

(
A B−1

)2
D̃

T
(

pl,n − pn−1
)

, (73)

where it is shown in [71] that the time splitting, 
(

pl,n − pn−1
)

, is O  (�t) resulting in residual, rl,n , of O  
(
�t3
)
. Since the 

velocity in (70) is multiplied by a factor of 1 , neglecting the residual gives fourth-order local truncation error. Dropping the 

�t
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Fig. 3. Schematic illustrating the dual-session communication framework for parallelization, including intracommunicators and the intercommunicator.

residual term and performing block Gaussian elimination the Stokes system of equations (70) yields a decoupled discretized 
Stokes problem(

H −H W D̃T

0 D̃ W D̃
T

)(
ul,n

0

pl,n − pn−1

)
=
(

Fl,n + D̃
T

pn−1

φl,n

)
(74)

where φl,n represents the inhomogeneous terms resulting from the algebraic manipulation. The Helmoltz system is itera-
tively solved with a Jacobi preconditioned conjugate gradient method, while the Poisson equation for pressure projection is 
solved iteratively with a multilevel GMRES solver and a Spectral-Element multigrid solver at the coarse-grid level, which, 
upon determination, is used to compute the correct velocity field (see [60] for greater details regarding the Stokes problem). 
We see that (74) allows for decoupled pressure solutions which can, in turn, be utilized for velocity solutions [60]. The 
homogeneous velocity solution u0 is corrected at the end of the iteration by adding inhomogeneous term ub , as discussed 
in Section 2.2.9.

3. Parallelization

Communication among separate subdomains is currently accomplished through a dual-session communication frame-
work, which allows for two sessions to perform computations separately while enabling real-time communication with 
each other in a single computational platform. Each session runs its own independent instance of the SEM solver for its 
subdomain where MPI intracommunicators are established for communication among the local processors. An intercom-
municator is established for global communications between sessions, see Fig. 3. A session uses the intercommunicator to 
receive interpolated values for use at its interface points and/or send interpolated values for use at the adjacent subdomain’s 
interface points.

Upon initialization, each processor in each session searches for interface points among the elements for which it is 
responsible. When an interface point is found, it is marked with a flag and boundary conditions at that point are changed 
to standard Dirichlet. Each processor divides the interface points it found equally between the processors of the neighboring 
session and communicates the partitioned interface points’ coordinates and identities to the corresponding processors in 
the neighboring session, via the intercommunicator, for efficient load balancing of the intercommunications. Also during 
initialization, a geometric hash table is created for each subdomain which allows for efficient determination of a point’s 
location within a given subdomain. Once the interface points are collected, processors within the local session compare 
coordinates of the received flagged boundary points with the boundaries of its subdomain. If a flagged point lies outside 
of the subdomain, the point is unflagged and sent back to its original session, where it is treated with generic Dirichlet 
boundary conditions. A search procedure is then performed, comparing the coordinates of each flagged point with element 
boundaries to determine which processor should be responsible for interpolation procedures for each interface point. In 
the chance that a point lies exactly on an element boundary the element chosen may be decided by floating point error, 
though the specific element chosen will not matter so long as the interpolated field is continuous at element boundaries. 
The interface point information is then redistributed locally within the session to the processors which handle the needed 
elements. Rapid communication is established locally through a procedure based on the Crystal Router algorithm [72], which 
uses all-to-all communications for fast data transfer among the session processors, and is built into the SEM solver [73].

The dual-session communication framework, as used in the present method, requires only one global communication 
per iteration, while the codes can run locally in all the remaining operations, leading to natural parallelization and load 
balancing. The most expensive procedure in the multidomain communication is the original initialization and the search 
step which requires solving Newton–Raphson optimization problem, Eqs. (57), (58), for each flagged interface point, in 
order to identify its local reference coordinates and interpolation weights. This procedure is only needed to be performed 
once for the whole computation, before the time advancement begins. The interpolation procedure itself, Eq. (56), after the 
interpolation weights have been found, is based on standard matrix–vector product operations which cost is equivalent to 
the other basic operations in the SEM [18] thus not effecting the scalability of the solver. Parallel performance is optimized 
with the Crystal Router Algorithm [73], leading to good scalability and parallel performance of the current method, as 
documented in the section 5. Our current formulation uses this framework to couple two instances of the same solver, 
although potential extension to three and more domains and to different codes is possible.
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Fig. 4. Two-mesh domains for convecting eddy simulations, with element boundaries shown.

4. Results

In this section, we demonstrate performance of the developed overlapping grid method, on two- and three-dimensional 
laminar and turbulent problems, with the focus on spatial and temporal orders of convergence, accuracy in the presence of 
outflow disturbances and long integration times, and the ability of the method to reproduce correct turbulence characteris-
tics on overlapping domains.

4.1. Convecting Walsh’s eddies

A simulation of convecting eddies in a two-dimensional periodic global domain was used to assess the spatial and 
temporal accuracy of the overlapping mesh method since an exact solution to the problem is readily available [74]. Walsh’s 
discussion of non-convecting eddy solutions to the Navier–Stokes Equations states that if the initial conditions are set as 
ũ = a where a satisfies �a = λa, ∇ · a = 0 in �, then ũ = eνλt a, ν is kinematic viscosity, is a solution with the pressure 
defined as ∇ p̃ = −ũ · ∇ũ. Here by tilde we denote the values corresponding to a frame of reference where the locations 
of the eddies do not change with time (or convective frame of reference if the eddies convect). The eigenvalues λ can 
be expressed in terms of n and m, arbitrary non-negative integers, λ = −(n2 + m2), with corresponding eigenfunctions 
formed by the product of sin[nx̃] or cos[nx̃] with sin[mỹ] or cos[mỹ]. Linear combinations of the eigenfunctions form 
stream functions satisfying the Navier–Stokes Equations, from which velocity and pressure solutions can be found. For the 
eddies, convecting with the constant velocity (u0, v0), the Walsh’s solutions need to be transformed into a stationary frame 
of reference by using the coordinate transformation: x = x̃ + u0t, y = ỹ + v0t . For our test case, the following exact solutions 
were used,

u(x, y, t) = e−25tν(− cos[5(y − v0t)] + cos[4(y − v0t)] sin[3(x − x0t)]) + u0,

v(x, y, t) = e−25tν(− sin[5(x − x0t)] − 3

4
cos[3(x − x0t)] sin[4(y − v0t)]) + v0, (75)

where ν = 0.05, (u0, v0) = (1, 0.3). The corresponding solution for pressure (not presented in the original paper by 
Walsh [74]) is documented in Appendix A, together with the further discussion of the derivation. Since pressure in the 
current PN −PN−2 formulation is not prescribed as a boundary condition, it is defined up to an arbitrary constant, thus we 
compute the pressure with the zero mean, both in numerical and exact solution.

4.1.1. Mesh configuration
The overlapping mesh configuration used for the present simulation consists of an exterior mesh with a vacancy in the 

middle and an interior mesh, either circular or square, that covers the vacancy (Fig. 4). Note that the grid points (including 
on the interface boundaries) are not coincident with grid points in the adjacent subdomain. This is done in order to test for 
correct interpolation of values between the two meshes. Single mesh simulations, which were performed for comparison 
with two-mesh simulations, used the same mesh as the exterior mesh shown in Fig. 4, but with the vacancy filled.
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Fig. 5. Pressure contours taken after the 600th timestep using the 7th order polynomial approximation and third order temporal scheme with �t = 1 ·10−4. 
IEXT3 was performed using two iterations. The darkest lines represent a pressure of 0.8078 while the faintest lines represent a pressure of −2.710.

Fig. 5 presents the pressure contours for the overlapping simulations with circular and square interior meshes. The 
snapshots contain two sets of contour lines in sections where the subdomains overlap, although the continuity between the 
values in the two meshes make their differences almost indistinguishable.

4.1.2. Accuracy

In this section, we investigate spatial and temporal convergence of the grid overlapping method. We calculate the L2

velocity error in each subdomain as

L2 error (u[i]) =
√∫

�i (u[i]
ex − u[i]

comp)2dV

2 V [i] , (76)

where V [i] is the volume of the subdomain �i (the factor of two in denominator arises from the fact that two volume 
integrals are summed together, one for u velocity and one for v velocity, thus dividing by two results in the average), and 
the L2 pressure error as

L2 error (p[i]) =

√√√√∫�i

(
p[i]

ex − p[i]
comp

)2
dV

V [i] , (77)

where u[i]
ex, p[i]

ex are the exact values and u[i]
comp, p[i]

comp are the computational approximations.
The spatial accuracy plots (Fig. 6) show clear spectral convergence with p-refinement with respect to L2-errors in velocity 

and pressure. Notice also that a comparison of the plots for the circular and square interior meshes yields very similar 
results; the spatial errors for the simulation with a circular interior mesh being slightly larger than those for the square 
interior mesh case. This effect is due to a slightly slower (albeit still exponential) convergence of the SEM method with 
curvilinear meshes attributed to additional errors introduced when the mapping Jacobian is used in the derivation of the 
operators [75,60,76], and not due to the overlapping procedure. We also recognize that the spatial errors reported for single 
mesh simulations are slightly lower that their double mesh counter-parts. This is attributed to the lower h-resolution of the 
interior mesh (see Fig. 4), which also affects the accuracy of values used at interface boundaries of the exterior mesh. The 
ratio of element sizes in single/exterior/interior meshes is about 1/1/1.44.

The temporal accuracy plots (Figs. 7 and 8) contain the results of simulations performed with IEXTk (k = 1–3) and third 
order time stepping compared with �t, (�t)2 , (�t)3 plots. The temporal convergence analysis was performed with 17th 
order polynomials to make certain that the problem was fully converged spatially to ensure more accurate determination of 
temporal convergence rates. However, since full spatial convergence is achieved in the current test problems for polynomial 
orders greater than 12, subsequent temporal convergence tests as discussed below use lower order polynomials. As expected, 
the order of interface extrapolation is the limiting factor for the temporal accuracy, even though the third order temporal 
scheme was used in all cases. The results of the simulations generally meet the expected order of temporal convergence.
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Fig. 6. Spatial accuracy for simulations using the third order time stepping scheme, with IEXT3 using three iterations. The I, E, and S in the key refer to the 
interior mesh in the two mesh simulation, the exterior mesh in the two mesh simulation, and the single mesh (square) simulation, respectively. The errors 
were collected after 1000 timesteps for simulations with �t = 1 · 10−4.

Fig. 7. Temporal accuracy of the velocity for the square interior mesh simulation. The solid line represents the results for IEXT1, the dashed line represents 
IEXT2, and the dotted line represents IEXT3. In each case, the IEXTk scheme used three iterations. The lines to the right of the break are plots of �t , (�t)2, 
(�t)3 for comparison with the simulation results. These results were collected for the 17th polynomial order of approximation, at time 1 · 10−1.

Fig. 8. Temporal accuracy of the pressure for the square interior mesh simulation. The solid line represents the results for IEXT1, the dashed line represents 
IEXT2, and the dotted line represents IEXT3. In each case, the interface extrapolation used three iterations. The lines to the right of the break are plots of 
�t , (�t)2, (�t)3 for comparison with the simulation results. These results were collected for the 17th polynomial order of approximation, at time 1 · 10−1.
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Fig. 9. Spatial accuracy for square interior mesh tests with global Dirichlet boundary conditions using the third order time stepping scheme, with IEXT3 
using three iterations. The I, E, and S in the key refer to the interior mesh in the two mesh simulation, the exterior mesh in the two mesh simulation, and 
the single mesh (square) simulation, respectively. The errors were collected after 1000 timesteps for simulations with �t = 1 · 10−4.

Fig. 10. Temporal accuracy for square interior mesh simulations with global Dirichlet boundary conditions using the third order time stepping scheme, with 
IEXT3 using three iterations. The labeled line shows the expected order of temporal convergence, while the lines for velocities and pressures are displayed 
according to the legends in Fig. 9 (single mesh data is not included here). These results were collected for the 13th polynomial order of approximation, at 
time 1 · 10−1.

Figs. 9 and 10 illustrate the errors given by the same eddy simulation with Dirichlet boundary conditions prescribing the 
exact velocity at the global domain boundary as a more stringent test for convergence. Both L2 and L∞ errors are plotted 
for spatial and temporal convergence. Looking at the L∞ norm of the error, defined by

L∞ error (u[i]) =
max
(∣∣∣u[i]

ex − u[i]
comp

∣∣∣)
max
(∣∣∣u[i]

ex

∣∣∣) , (78)

shows that with this error norm the solution within the global domain also achieves spectral spatial convergence and 3rd 
order temporal convergence for both velocity and pressure.

Fig. 11 shows the absolute errors of velocity magnitude in the interior and exterior subdomains. Since Dirichlet conditions 
are used on the global boundaries, it is expected that the largest errors in the exterior subdomain should be near the 
interface boundaries, as is the case. Interestingly, the largest errors within the interior subdomain do not lie near interface 
boundaries, but correspond to areas of largest fluid velocity magnitude. While there are distinct concentrated areas of larger 
error, all errors throughout the global domain are of the same order of magnitude.

Investigation of the convergence rates (of the L∞ norm of error) with respect to refinement of the average element size 
is illustrated in Figs. 12 and 13 for square and circular interior mesh simulations with solutions approximated by 5th and 
7th order polynomials. We see that the h-refinement convergence tests generally show rates for velocity error of order hN

with square meshes, and convergence rates for pressure error of order hN−1 since pressure solutions are approximated on G 
rather than GL quadrature. Circular interior mesh simulations give velocity error convergence rates that are of order hN−1, 
while pressure error generally maintains convergence rates of order hN−1, as seen previously. Errors in circular mesh cases 
cease to decline at coarser resolutions than when square meshes are used. The lower order h-refinement convergence rate 
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Fig. 11. Contour plot of the absolute error in the interior and exterior subdomains for a simulation with global Dirichlet boundary conditions, using 7th 
order polynomials, third order timestepping, and IEXT3 using three iterations. The snapshot is taken at time 1 · 10−1. The darkest contour lines correspond 
to a value of 2.5 · 10−4 and lightest contour lines 1.0 · 10−4. The exterior subdomain has a maximum error of 2.799 · 10−4 and the interior subdomain has 
a maximum error of 3.48 · 10−4.

of the circular mesh is likely the leading cause of the slower, though still exponential, p-refinement convergence rate of the 
circular mesh illustrated in Fig. 6 and can be explained by the same mechanisms of loss of accuracy in numerical quadrature 
in the presence of Jacobian matrices [75,60,76].

The velocity and pressure profile plots for the overlapping mesh simulation are presented in Fig. 14. As illustrated by the 
profile plots, good continuity exists in the transitions between the two meshes.

4.2. Convecting Taylor vortex

We have performed a computation of a two-dimensional convecting vortex traveling through a long, narrow domain 
composed of two overlapping subdomains with inflow–outflow global boundary conditions to test: 1) error behavior over 
long integration times; 2) influence of inexact outflow conditions on the overlapping grid solution. For that, we have con-
structed two overlapping meshes to be long and narrow, with an overlapping region in the center of the global domain 
(see Fig. 15). Single mesh tests were performed on a grid with the same global dimensions which has the same spatial 
resolution as the left mesh. The vortex enters the left boundary of the global domain, traveling with a constant prescribed 
convecting velocity U∞ , ultimately exiting the right boundary. The top, bottom, and left boundaries of the global domain 
are assigned Dirichlet boundary conditions for velocity, and the right boundary is assigned outflow conditions, which, in 
the current PN − PN−2 formulation where the pressure at the boundary is not prescribed, reduces to the homogeneous 
Neumann conditions on velocity, ∇u · n = 0 on ∂�O , where ∂�O is the outflow boundary, and n is the vector normal to 
the outflow boundary.

The tangential velocity of a single incompressible Taylor vortex [77,12,78] in a convective frame of reference is prescribed 
by the equation

ũθ = Mr

16πν2t2
exp

(−r̃2

4νt

)
, (79)

where M is an invariant of the flow. As in the previous section, the variables with a tilde correspond to a convective frame 
of reference. The parameters t, ν , and M are altered to obtain the desired vortex radius r̃d , which is defined as the distance 
from the center of the vortex to the location of the maximum tangential velocity, and the desired maximum tangential 
velocity, ũθ max . A relationship for the vortex radius is found by solving dũθ (r)

dr̃ = 0, giving

r̃d =√2νt0 (80)

from which ν and an arbitrarily chosen time, t0, can be manipulated to give the desired radius. Using this relationship, an 
equation is derived for M that gives a vortex with the desired radius and maximum tangential velocity

M = 16π · ũθ max · ν2 · t2
0√ e1/2. (81)
2νt0
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Fig. 12. L∞ error with respect to element size (�x) for square interior mesh simulations. Simulations were performed with �t = 1 × 10−4 with the third 
order temporal scheme and IEXT3 using three iterations. Bold solid lines are the convergence rate reference lines, and are labeled with the corresponding 
convergence rate.

Since only a tangential velocity component exists, the momentum equation in the radial direction reduces to

ũ2
θ

r̃
= − 1

ρ̃

∂ p̃

∂ r̃
. (82)

Thus, solving for the pressure of a non-convecting Taylor vortex gives

p̃ = − M2ρ̃

256π2ν3t3
exp

(−r̃2

2νt

)
, (83)

where M is defined in equation (81).
Solution of the convecting vortex in a stationary frame of reference is then obtained by transforming polar coordinates of 

a convective frame into Cartesian coordinates of a stationary frame and adding (U∞, 0) to the corresponding (ũ, ̃v) velocity, 
while pressure is obtained from (83) with the account for coordinate transformation, as in Appendix A. As in the previous 
section, pressure with the zero mean is taken in both exact and numerical solutions.

In the present simulations, the maximum tangential velocity is given as a percentage of the convecting velocity, namely 
ũθ max/U∞ = 100%, which represents a very strong disturbance and a demanding test for the numerical method. Simulations 
were performed at a Reynolds number (Re = U∞r̃d/ν) of 140.

4.2.1. Accuracy
As the vortex travels through the domain the errors remain fairly constant (Fig. 16). Note that in Fig. 16 we do not include 

the errors as the vortex leaves the global domain through the outflow boundary to concentrate our attention on the errors as 
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Fig. 13. L∞ error with respect to average element size (�x) for circular interior mesh simulations. See caption of Fig. 12 for runtime parameters.

Fig. 14. Cross-section profiles of the square interior mesh case through the center of the domain: The solid line illustrates the interior mesh data and 
the dotted line illustrates the exterior mesh data. These profiles were taken after 1000 timesteps from a third order simulation with IEXT3 using three 
iterations. The 7th order polynomial approximation was used with �t = 1 · 10−4.
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Fig. 15. Single vortex mesh configuration showing element boundaries.

Fig. 16. L2-errors as the vortex travels through the domain, where 9th order polynomials are used for spatial approximations and third order time-stepping 
was used with �t = 1 ×10−4. IEXT3 with four iterations was used for interface values. The solid line represents the errors of the single mesh configuration, 
the dashed line represents the errors in the left mesh of the two-mesh case, and the dotted line represents the errors in the right mesh. The velocity errors 
have been normalized by the corresponding value of the maximum velocity at each time.

Fig. 17. Pressure errors (
∣∣pexact − pcomp

∣∣) throughout the domain as the vortex enters (b) and leaves (a) the overlapping region. The overlapping region 
within each subdomain is outlined with dashed lines. 9th order polynomials are used for spatial approximations and third order time-stepping was used 
with �t = 1 × 10−4. IEXT3 with four iterations was used for interface values. The darkest contour lines represent an error value of 1.4 × 10−6 and the 
lightest contours represent an error value of 2.3 × 10−7.

the vortex travels into and out of the overlapping region. The errors as the vortex leaves through the outflow boundary are 
several orders of magnitude larger (on the order of 10−3 for velocity and pressure) due to the outflow boundary prescribing 
boundary conditions that do not correspond to the exact solution. It is known that approximate outflow boundary conditions 
are detrimental for outgoing disturbances. The errors due to the outflow conditions are however localized in time and space 
and correspond to the moment when the vortex leaves the global domain and are confined to the outflow boundary region, 
see Fig. 18. The contours are given on a log-scale so that the faintest line represents a pressure error value of 5 × 10−6

while the darkest lines, representing a pressure error value of 1 × 10−3, are localized at the outflow boundary. The large 
errors experienced as the vortex crosses the global outflow boundary occur in both single mesh and two mesh problems. 
The initial conditions prescribed in this problem place the vortex to the left of the global domain, giving nearly uniform 
unidirectional flow throughout the computational domain, thus initial computational errors are very low. As the vortex 
convects into the computational domain we see that the error values increase, as expected, for both single mesh and 
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Fig. 18. A snapshot of the pressure error contours at t = 20.5 when the errors due to the vortex leaving the global domain reach a maximum; right 
subdomain is shown. The overlapping region is outlined with dashed lines. The contour lines are given in logscale with the darkest lines representing a 
value of 1 × 10−3 and the lightest lines representing 5 × 10−6.

Fig. 19. L∞ errors with respect to polynomial order and �t refinement for the left (L) and right (R) meshes in two mesh simulations and for single mesh 
(S) simulations. In the temporal convergence plots, the line types correspond to those used in the spatial convergence plots, and the bold solid line is the 
�t3 reference. Spatial convergence plots used timestep �t = 1 × 10−3, and temporal convergence plots were performed with 14th-order polynomials. In 
all cases, the BDF3/IEXT3 schemes were used with four iterations per timestep.

two mesh problems, after which the error gradually decreases. As the vortex enters and leaves the overlapping region the 
pressure errors spike since pressure is not interpolated at interface boundaries, although the errors are localized and do not 
significantly propagate into the domain (see Fig. 17). The velocity errors remain largely unaffected by the vortex movement 
across the interfaces. Convergence tests, illustrated in Fig. 19, show spectral convergence with respect to polynomial-order 
refinement, and the expected third-order temporal convergence. Errors were recorded when the vortex was centered in the 
overlapping region.
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Fig. 20. Profile plots through the center of the vortex when the vortex resides in the overlapping region: The left mesh data is illustrated by a solid line 
while the right mesh data is illustrated by a dotted line. 9th order polynomials and a third order temporal scheme with �t = 1 × 10−4 were used for 
solution approximations. Four iterations were used each timestep with the IEXT3 scheme.

Fig. 21. Cross section views of the inside and outside meshes for turbulent pipe flow (only the element boundaries are shown and not the GL points).

The profile plots in Fig. 20 are taken through the center of the vortex when the vortex resides in the overlapping region. 
The values in the overlapping region show strong agreement between results in the two subdomains.

4.3. Turbulent pipe flow

In this section, we perform a simulation of fully-developed turbulent pipe flow to assess the applicability of the devel-
oped overlapping grid method to three-dimensional turbulent flow cases. A direct numerical simulation (DNS) of the flow 
was performed with a bulk Reynolds number Reb = Ub D

ν = 5300 to correlate with experiments performed in [79]. Sinu-
soidal perturbations in the θ and z directions were given in the initial flow conditions to enable more rapid transition to a 
turbulent state. The results were compared with the experimental and numerical data widely available from [79].

4.3.1. Mesh configuration
A cross-sectional view of the inside and outside meshes is illustrated in Fig. 21, the length of the global pipe domain L =

6 D , where D is the pipe diameter. The inside mesh contains a total of 1716 elements while the outside mesh contains 6000 
elements, giving ∼0.6M and ∼2.1M gridpoints in the inside and outside meshes respectively using 6th-order polynomial 
approximations. Periodic boundary conditions are assigned at the ends of the global pipe domain. Single mesh simulations 
were performed using the rescaled version of the inside mesh of Fig. 21, though with 7th-order polynomial approximations.

The overlapping grid methodology allows for efficient placement of refined elements in the locations where it is most 
needed. Thus, our outside mesh has much finer resolution in all radial, azimuthal and streamwise directions, enabling 
accurate representation of the boundary layer structures, while the inside mesh can be significantly coarser, minimizing 
the total number of elements and improving aspect ratios of the cells compared to a single domain. Since Gauss–Lobatto 
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Fig. 22. An axisymmetric cross section view of the inside and outside subdomains. Shaded areas denote regions where inside and outside subdomains 
overlap. Different regions are represented by different superscripts, namely, ‘o’ denotes an overlapping region, and ‘non’ a non-overlapping region, while 
subdomain reference numbers are also included.

quadrature is used to determine the positions of the nodes between element boundaries, the spacing is not constant. 
Given this grid structure, the largest spacing among the nodes in elements near the center of the pipe (given in Cartesian 
coordinates) are �x+ = �y+ ≈ 8.121 (�x = �y ≈ (2.250 × 10−2)D) and �z+ ≈ 39.044 (�z ≈ (1.082 × 10−1)D). (Wall 
units, or plus units, are given by x+ = uτ x/ν and so forth for the other coordinate directions, where uτ = √

τw/ρ is the 
friction velocity.) The smallest spacing among nodes in the center-most elements are �x+ = �y+ ≈ 2.941 (�x = �y ≈
(8.150 × 10−3)D) and �z+ ≈ 14.138 (�z ≈ (3.918 × 10−2)D). The largest spacings among nodes in the outermost element 
of the outside mesh are �r+ ≈ 0.7311 (�r ≈ (2.026 × 10−3)D), (�rθ)+ ≈ 4.4 (�rθ ≈ (1.219 × 10−2)D), �z+ ≈ 25.4 (�z ≈
(7.039 × 10−2)D), while the smallest spacings (including nearest the wall) are �r+ ≈ 0.2648 (�r ≈ (7.338 × 10−4)D), 
(�rθ)+ ≈ 1.6 (�rθ ≈ (4.434 × 10−3)D), �z+ ≈ 9.2 (�z ≈ (2.550 × 10−2)D). We note that the width of the outermost 
element near the wall is � r+

el = 3.1 (� rel = (8.590 × 10−3)D) which means that this entire element lies well within the 
viscous sublayer which has a thickness of about 5 wall units. Comparatively, the point nearest the wall given in [79] is 
�r+ = 0.94. The global domain size in wall units, for a reference, is D+ ≈ 360.9 and L+ ≈ 2165.

4.3.2. Forcing
In the absence of a prescribed pressure gradient, the flow rate in a periodic pipe will eventually tend to zero due to 

viscous dissipation. Thus, a mechanism for sustaining the flow rate must be implemented in the simulations. In this work, 
we utilize a flow control scheme based upon incremental adjustment of the pressure gradient for maintenance of the bulk 
flow rate, Ub . The adjusted pressure gradient is determined using the current and previous values of the bulk flow rate, 
Un

b and Un−1
b , and the target bulk flow rate, Ub:(

∂ p

∂z

)n

= α

(
1 + Ub/Un

b

2

)(
∂ p

∂z

)n−1

, (84)

where

α = 1 − D

U b�t

(
Un

b − Un−1
b

U b

)
. (85)

In single domain simulations the determination of the current bulk flow rate is a straightforward task using fluid velocity 
and the domain volume

Un
b = 1

V

∫
�

undV. (86)

However, in overlapping mesh simulations, a simple summation of the flow rates within each subdomain accounts for the 
value in the overlapping region twice,

Un
b �= 1

V [1]

∫
�1

u[1],n dV + 1

V [2]

∫
�2

u[2],n dV. (87)

Thus, a modified determination of the global bulk flow rate must be devised to circumvent the repeated values. For that, 
the modified flow rates at individual subdomains are defined by

U [i],n
b = 1

V [i]

∫
�i

γ u[i],n dV, (88)

where

γ =
⎧⎨⎩

1 in �i,non, i = 1,2

1

2
in �o

(89)
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Fig. 23. Average velocity profile of turbulent pipe flow normalized by the centerline velocity: The symbols represent the data presented in [79] (DNS(E): 
direct numerical simulation performed by Eggels and Nieuwstadt, DNS(U): direct numerical simulation performed by Unger and Friedrich, HWA: hot-wire 
anemometry, LDA: laser Doppler anemometry, PIV: particle image velocimetry) while the lines represent the data found using the simulation discussed 
here. Lines for the inside and outside meshes are both displayed on the plot, though the same line style is used to improve readability. The present 
simulation data was found using 6th-order polynomials and second order temporal scheme with �t = 1 × 10−3. IEXT2 was performed at interfaces with 
two iterations for multimesh simulations.

Fig. 24. u+
rms profile of turbulent pipe flow. The symbols represent the data presented in [79] while the lines represent the data obtained from the simulation 

discussed here. The T and S subscripts refer to the present two-mesh and the single mesh simulations, respectively. Refer to the caption of Fig. 23 for 
parameter specifications and details regarding abbreviations.

and domain superscripts correspond to those illustrated in Fig. 22. The sum of the modified flow rates gives the correct 
value for the global flow rate:

Un
b = U [1],n

b + U [2],n
b . (90)

In general, the overlap region does not coincide with the element boundaries, thus the weights γ for the integration in 
Eq. (88) are assigned on a GL pointwise basis. Note that if an element partially lies within the overlap region, a non-smooth 
function γ across an element would result in a reduced order of accuracy for the GL quadrature integration. While decreased 
accuracy in the calculation of Ub for a small portion of the domain will affect the value given for the global bulk flow rate, 
its effect will be small since the lower-order integration is localized only to affected elements along the interface.

The global bulk flow rate (90) of the decomposed domain is used to adjust the global pressure gradient (84), thereby 
maintaining a prescribed value of Ub . Pressure gradient (84) is subsequently used to calculate the wall shear stress τw =
− D

4
∂ p
∂z and friction velocity uτ = √

τw/ρ for the normalization of turbulent statistics.

4.3.3. Accuracy
The present DNS simulations were performed using second order time-stepping with �t = 1 × 10−3, while IEXT2 was 

employed with two iterations for interface values. Second order temporal schemes, rather than third as in other tests, 
were used in this case to achieve an increase in computational speed, to allow for turbulent statistics to be collected over 
longer time periods. Most of the DNS reported in the literature for the turbulent pipe flows were done with second order 
schemes as well [79–81]. The flow was allowed to develop until the non-dimensional time tUb/D = 1350 was reached, 
after which turbulent statistics was collected for another 500 time units. Figs. 23 and 24 show the results of the present 
simulation compared to the numerical and experimental results found in [79] for the mean normalized velocity and the root 
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Fig. 25. Contours of fluid velocity fluctuations in a length-wise cross section of the pipe at non-dimensional time of 3000. Solid and dashed contours 
represent positive and negative velocity fluctuations, respectively. The darkest contour lines in the radial (a) and azimuthal (b) velocity fluctuation plots 
represent values of 0.2 and −0.2 for solid and dashed, with step size of 0.02 between contours. The darkest contour lines in axial velocity fluctuation plot 
(c) represent values of 0.45 and −0.45 for solid and dashed, with step size of 0.045 between contours. Both inner and outer domains are shown.

Fig. 26. Contours of axial fluid velocity fluctuations in a cylindrical cross section of the pipe. Both inner and outer domains are shown. Refer to the caption 
of Fig. 25 for details regarding axial velocity fluctuation contours.

mean squared velocity. The present results give turbulent statistics that correlate well with the published data from several 
simulations and experiments. The present simulation gives a centerline Reynold’s Number Rec = Uc D

ν = 6815 compared to 
Rec = 6950 in the DNS results [79], and Reτ Reynolds number Reτ = uτ D

ν = 360.9 compared to the value of 360 reported 
in [79].

The velocity fluctuation contours shown in Figs. 25 and 26 display good continuity between the two subdomains. The 
figures show that, in general, the velocity fluctuations near the pipe wall are larger than the fluctuations near the center. 
Evidence of the ejection of lower speed fluid (dashed contour lines) from the boundary layer and the sweeping motion of 
higher speed fluid (solid contour lines) toward the pipe wall is seen in the mushroom shaped contour lines displayed in 
Fig. 26, in accordance with the corresponding literature [79,80].
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Fig. 27. Mesh geometry for simulation of steady flow around a solid sphere [not scaled relative to each other]. The subdomains displayed have sections 
removed for visualization of the solid sphere and vacancy for the inner and outer meshes respectively.

Table 3
Aerodynamic force coefficients and Strouhal Numbers for Re = 250 & 300.

Re C D CL St

Present data 250 0.709 0.063
300 0.665 0.070 0.136

Johnson and Patel [82] 250 0.062
300 0.656 0.069 0.137

Constantinescu and Squires [83] 250 0.700 0.062
300 0.665 0.065 0.136

Kim and Choi [84] 250 0.702 0.060
300 0.657 0.067 0.134

Giacobello et al. [85] 250 0.702 0.061
300 0.658 0.067 0.134

Fig. 28. Iso-surface of λ2-criterion at λ2 = −8 · 10−4. The top illustration in each subfigure is presented as published in [85]. Snapshot (a) was taken at 
t∗ = t D

U∞ = 200.0, and snapshot (b) at t∗ = 152.5.

4.4. Flow past a sphere

Here we describe the simulation of another 3D problem, namely, the flow around a stationary sphere. This problem 
further demonstrates the ability of our overlapping mesh methodology to handle more complex geometries with mixed 
rectangular and curved elements. A spherical interior mesh is constructed around a solid-walled sphere while the cuboid 
exterior mesh contains a vacancy wherein the sphere resides (Fig. 27). The interior mesh was created so that the boundary 
layer contains a minimum of nine grid points normal to the sphere wall for all simulations. Uniform inflow velocity u = U∞
is prescribed at one end of the exterior mesh and outflow boundary conditions ∇u · n = 0, are prescribed at the other. 
Symmetric boundary conditions (u · n = 0) are enforced on the other domain boundaries.

Problems were simulated for diameter based Reynolds numbers of 250 and 300, corresponding to flow in the non-
symmetric regime and unsteady vortex-shedding regime, respectively, for the flow around a stationary sphere as described 
by Johnson and Patel [82]. Simulations were performed with 5th-order polynomial approximations using second order tem-
poral and extrapolation schemes with two iterations and �t = 5 · 10−3. Table 3 shows the aerodynamic forces and Strouhal 
numbers (St = f D/U∞) determined using the present overlapping mesh methodology in comparison with other published 
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Fig. 29. Computational time vs number of CPUs for simulations performed on the SDSC Gordon cluster with different polynomial orders of approxima-
tion (N). Grids used for double mesh simulations contain a total of 51.2k elements (12.8k in inside mesh, 38.4k in outside mesh), giving ∼17.6M, 26.2M, 
and 37.3M total gridpoints for 6th, 7th, and 8th order polynomial approximations respectively. The single mesh simulation consists of ∼41k elements giv-
ing ∼21.0M gridpoints for 7th order polynomial approximations. The ‘E’ denotes that the simulations were performed with an equal number of processors 
allocated to each mesh, while ‘P’ designates simulations where processors were assigned to each mesh proportional to the number of elements it contains. 
The single mesh simulation is signified by an ‘S’.

Fig. 30. Computational scaling data for simulations performed on the TACC Stampede cluster with different polynomial orders of approximation (N), using 
second order temporal schemes with two iterations. Grids used for double mesh simulations contain a total of 51.2k elements (12.8k in inside mesh, 38.4k 
in outside mesh), with single mesh simulations (S) also containing a total of 51.2k elements, giving ∼17.6M, 26.2M, and 37.3M total gridpoints for 6th, 7th, 
and 8th order polynomial approximations respectively. Double mesh simulations used proportional (P) CPU allocation.

data. The results are in good comparison with other published data. Fig. 28 presents iso-surfaces of the λ2-criterion (de-
scribed in [86]) at λ2 = −8 · 10−4 for present data and the results published in [85]. A comparison of the two sets of data 
shows the same major flow structures. Considering all presented data, good correlation exists between data resulting from 
the present overlapping grid methodology and published data.

5. Scalability

In this section, we perform the scalability tests for the developed overlapping grid method. We utilize the previous test 
case of the turbulent pipe flow simulations as a platform for the scalability studies. However, the refined computational 
meshes were constructed, with higher element counts than in the DNS simulations described above (see label to Figs. 29
and 30) in order to enable testing on high processors counts (up to 1024). The refined outside mesh consisted of three times 
the number of elements and collocation points as the inside mesh. This discrepancy in the number of elements allowed us 
to test two methods for processor allocations: equal allocation (same number of processors for each domain, irrespective 
of the relative mesh sizes), and proportional allocation (processors allocated proportionally to the number of elements the 
mesh contains, namely, the outside domain was assigned three times as many processors as the inside domain). The results 
of the scalability tests, performed on the SDSC Gordon and TACC Stampede clusters, are shown in Figs. 29 and 30 with 
a refined single mesh pipe simulation for comparison. Fig. 29 shows the total CPU time for each simulation, divided by the 
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Fig. 31. Overlapping mesh timing data for simulations performed on the TACC Stampede cluster. All tests were performed with 8th order polynomials, using 
second order temporal schemes with two iterations using a proportional allocation of CPUs. The solid lines with filled circles denote the total computational 
time per timestep. Open diamonds represent the time spent in overlapping mesh initialization (performed only once, before the first timestep), open squares 
represent the time/timestep used for interpolation in the first iteration, open circles represent the time/timestep used for interpolation in the second 
iteration, open upright triangles represent the time/timestep for temporal extrapolation, and open inverted triangles represent the total overlapping mesh 
communication time spent per timestep. Plots (a) and (c) present the timing data, while plots (b) and (d) present the overlapping mesh communication 
time as a percentage of the total time per timestep.

number of timesteps and the total number of elements contained in the simulation, versus the total number of allocated 
CPUs, and Fig. 30 contains two plots, the second of which shows a comparison of timing data. Fig. 31 breaks down the 
time spent per timestep in different aspects of the overlapping mesh coupling procedures. It is seen that the scaling of our 
overlapping mesh methodology nearly reaches ideal scaling in each presented case. Line sections that appear to achieve 
better than ideal scaling are a result of inconsistent communication speeds among the nodes assigned to the jobs, for 
example, slower communication speeds among nodes assigned to a 128 core test compared with a 256 core test with faster 
communication speeds among the assigned nodes will appear to have better than ideal scaling. Several simulations were 
performed for each case, and averages of the timing data is presented. As expected, scaling for proportional CPU allocations 
yielded a speedup over equal allocations in each of the tested cases, due to more consistent load balancing. However, while 
the number of elements assigned per core is a good indicator of the work load, there is more to consider when seeking to 
attain optimal speeds. For instance, the external mesh contains 4800 element faces requiring interpolation from values in 
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Fig. 32. Percent change in time per timestep between single mesh and overlapping mesh tests. The solid and dashed lines represent percent change in 
inside and outside meshes, respectively. For mesh characteristics see the caption to Fig. 30, and for runtime parameters refer to Fig. 31 caption.

the other subdomain, while the interior mesh contains only 1600 such faces. In the proportional scaling tests, the outside 
mesh is assigned three times the number of cores that are assigned to the inside mesh, though during the interpolation 
step the inside mesh must determine values for three times as many interface points. The fewer processors assigned to the 
inside mesh have a much larger work load during the overlapping mesh procedures, as is illustrated in the plots of Fig. 31
by the greater amount of time the inside mesh spends for overlapping mesh procedures. While a proportional allocation 
is a good starting point for a speed-up of the problem, further work on optimization of parallel procedures is required to 
ensure a more robust load balancing methodology. Fig. 32 illustrates the percent change in the time per timestep when 
going from single mesh to overlapping mesh simulations with the same total element count. We see that overlapping mesh 
tests, with proportional CPU allocation, spend 40% more time per timestep at low processor counts than single mesh tests 
due to additional interpolation and communication procedures, however the efficiency increases as the CPU count grows, 
with only 20% more time per timestep at 1024 CPUs, promising even higher benefits at larger processor counts.

6. Conclusions

We have developed an overlapping grid methodology for two and three dimensional applications in a Spectral Element 
Method incompressible flow solver. Spectral accuracy is maintained for spatial discretization due to a spectral interpolation 
at interface boundaries using solution approximations in an Nth-order polynomial space on GL points. The global high-order 
(up to a third) temporal accuracy of the flow solver is also maintained with few, or no, iterations using solutions at previous 
timesteps to form explicit extrapolation approximation at interfaces.

Our overlapping grid methodology has been validated with several two- and three-dimensional simulations, comparing 
results to exact solutions and experimental data. Results from simulations of two dimensional convecting eddies were 
compared with exact solutions. As the polynomial order for solution approximations is increased, spectral convergence of the 
global solution on overlapping grids is observed. As the size of timestep is decreased, keeping the polynomial order constant, 
the temporal accuracy of the global scheme is maintained, as long as the interface extrapolation order is consistent with 
the global temporal accuracy. In addition, the order of interface extrapolation proved to be a limiting factor in the global 
temporal accuracy, thus, a simulation with third order global time-stepping scheme with first order interface extrapolation 
gives results with global first order temporal accuracy. We note that addition of subdomain iterations can improve the 
temporal accuracy, but at the expense of the computational cost.

Simulations of an incompressible Taylor vortex convecting through a long two-dimensional global domain helped form 
a more complete understanding of errors as flow features cross subdomain boundaries, and where disturbances are present 
downstream. It was observed that as the vortex crossed a subdomain boundary, overall errors remained small in the pres-
ence of outflow disturbances.

Our three dimensional fully-developed turbulent pipe flow simulation on two overlapping meshes showed good agree-
ment with other physical and computational experiments. Turbulent statistics closely matched those published in [79], 
including Rec , Reτ , mean velocity profile, and u+

rms profile data. We have also performed scalability tests and demonstrated 
near linear computational scaling of the developed overlapping grid solver for large processor counts, up to 1024 processors.

Our future research will seek to extend the present methodology to moving overlapping grids in an effort to develop a 
spectrally accurate mechanism for modeling flows around rotating and moving objects. This extension will enable high-order 
accurate computations of problems that are very hard, or impossible, to model with conventional methods.
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Appendix A

A.1. Pressure solution for Walsh’s eddies

Convecting frame of reference Eddy solutions in a convecting frame of reference can be found using the technique proposed 
by Walsh [74] and discussed in section 4.1. For the present test case, we find these solutions from the initial conditions 
given by the stream function

ψ̃(x̃, ỹ) = −1

5
cos[5x̃] + 1

4
sin[3x̃] sin[4 ỹ] − 1

5
sin[5 ỹ], (91)

leading to the following exact solution for u in a convecting frame of reference:

ũ(x̃, ỹ, t) = e−25tν(− cos[5 ỹ] + cos[4 ỹ] sin[3x̃]),
ṽ(x̃, ỹ, t) = e−25tν(− sin[5x̃] − 3

4
cos[3x̃] sin[4 ỹ]). (92)

As in section 4.1, by tilde we denote the variables in a convecting frame of reference.
The solution for pressure is found from the relation ∇ p̃ = −ũ · ∇ũ, which, in the present case, leads to two partial 

differential equations for pressure:

∂ p̃

∂ x̃
= −ũ

∂ ũ

∂ x̃
− ṽ

∂ ũ

∂ ỹ
(93)

∂ p̃

∂ ỹ
= −ũ

∂ ṽ

∂ x̃
− ṽ

∂ ṽ

∂ ỹ
(94)

Solving this set of equations by integration gives the solution for the pressure of non-convecting eddies

p̃(x̃, ỹ, t) = 1

64
e−50tν(−16 + 16 cos[6x̃] + 8 cos[8x̃ − 4 ỹ]

− 32 cos[2(x̃ − 2 ỹ)] + 9 cos[8 ỹ] − 8 cos[4(2x̃ + ỹ)]
+ 32 cos[2(x̃ + 2 ỹ)] − 4 sin[3(x̃ − 3 ỹ)] + 32 sin[5(x̃ − ỹ)]
+ 36 sin[3x̃ − ỹ] − 32 sin[5(x̃ + ỹ)] + 36 sin[3x̃ + ỹ]
− 4 sin[3(x̃ + 3 ỹ)]) (95)

Stationary frame of reference To convert the above solutions to the stationary frame of reference, we need to use the coor-
dinate transformation

x = x̃ + u0t

y = ỹ + v0t, (96)

where (u0, v0) is the constant velocity of convection. That leads to the following solution for velocity

u(x, y, t) = e−25tν(− cos[5(y − v0t)] + cos[4(y − v0t)] sin[3(x − u0t)]) + u0,

v(x, y, t) = e−25tν(− sin[5(x − u0t)] − 3

4
cos[3(x − u0t)] sin[4(y − v0t)]) + v0, (97)

while solution for pressure is obtained analogously as

p(x, y, t) = p̃(x − u0t, y − v0t, t) (98)

and not spelled out here due to a rather cumbersome final expression.
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