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1. Introduction

In the present paper we are dealing with 2-D Navier–Stokes equations with periodic 
boundary conditions, perturbed by a small additive noise. These boundary conditions are 
usually realized by considering the problem on a two-dimensional torus T2, see Section 2
for more details. To fix readers attention, let us write down these equations in a functional 
form, as

du(t) + Au(t) dt + B(u(t), u(t)) dt =
√
ε dw(t), u(0) = u0, (1.1)

for 0 < ε << 1.
Full definitions of the symbols involved can be found later in Section 2, but, for 

the time being, let us recall that A is the Stokes operator, equal, roughly speaking, 
to the Laplace operator (acting on vector fields) composed with the Leray–Helmholtz
projection P , defined on the space of zero mean and square integrable vector fields with 
values in the subspace H of divergence free vector fields, the convection B(u, u) is equal 
to P (u∇u), w(t) is a K-cylindrical Wiener process, for K = D(Aα

2 ) with α > 1, and 
u0 ∈ H. Of course, because P nullifies the gradients, the gradient of the pressure term 
∇p disappears in such a formulation. Basic questions about such a problem are now well 
understood, and we simply refer to the papers [15] and [6] and to the chapter 15 of the 
monograph [11].

It is know that, for every fixed ε > 0, the Markov process on H generated by equa-
tion (1.1) has an invariant measure με (see [15]), which is also unique and ergodic (see 
[13] and also [17]). The objective of our paper is study of the validity of a large deviation 
principle (LDP) for the family of invariant measures {με}ε>0. To be more precise, our 
purpose is to show that the family of probability measure 

{
με

}
ε>0 satisfies a LDP, as 

ε ↓ 0, with rate ε and action functional equal to the quasi-potential U associated to the 
controlled deterministic NSE, also known as the skeleton equation,

u′(t) + Au(t) + B(u(t), u(t)) = f(t), u(0) = u0, (1.2)

where f ∈ L2(0, ∞; D(Aα
2 )). The quasi-potential U(v), for v ∈ H, can be defined as the 

infimum, over all T > 0, of the energy of the control f , with respect to the norm of the 
reproducing kernel Hilbert space K of the law L(W (1)), i.e.

1
2

T∫
|Aα

2 f(t)|2H,

0
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such that the solution u to the skeleton equation (1.2), with initial data u(0) = 0, reaches 
the state v at time T , i.e. u(T ) = v. To this purpose, we refer to equation (4.12) for 
a version of the definition of U using both positive and negative times and (4.13) for a 
representation of U using the skeleton equation over the negative half-line (−∞, 0].

The quasi-potential U was an important object in our recent study [3] with M. Freidlin 
and in some sense our current paper is a natural continuation of that work. The two 
other works on which we depend a lot in our investigation is the paper [9] by the second 
named author and M. Röckner and [22] in which a similar question was investigated for 
reaction diffusion equation with polynomially bounded, resp. bounded, reaction term.

Let us make an important comment about the assumption α > 1. In fact, the Markov 
process on H, generated by problem (1.1), for both periodic and Dirichlet boundary 
conditions, has a unique invariant measure με for α > 0, (to this purpose, see [6, Corol-
lary 9.1 and Remark 4.1 (c)]). However, an essential tool in proving the LDP is given 
by the exponential estimates for the invariant measures and we have been able to prove 
them only in the case of periodic boundary conditions and α > 1 (see Theorem 5.1). As 
a matter of fact, we do not know if, even in the case of periodic boundary conditions, 
such exponential estimates are true without assuming that the covariance of the noise 
is a trace-class operator. This is the reason why, already from the very beginning, we 
assume that our problem is posed on a 2-D torus and that α > 1.

The subject of this paper is closely related to recent research activity in mathematics 
and physics related to the so called rare events, see for instance [1,12,27].

Let us conclude this introduction by briefly describing the content of our paper. Sec-
tion 2 is devoted to presenting basic notation and preliminaries. We try to explain the 
differences and similarities between the NSES with periodic and Dirichlet boundary 
conditions which lead us to consider only the latter case. In particular, we prove some 
estimates concerning the nonlinearity B with respect to norm in different fractional 
domains of the Stokes operator A, see Propositions 2.3 and 2.4.

In Section 3 we discuss the skeleton equation and, in addition to recalling some fun-
damental and useful results (also from our previous work [3]), we also discuss their 
generalizations to the general case α > 0, valid however only for the case of NSEs on a 
2-D torus.

In Section 4 we introduce the action functional, for the large deviation principle in 
C([0, T ]; H) associated with the family of solutions {uε}ε>0 of equation (1.1), and the 
corresponding quasi-potential. We formulate generalizations of the corresponding results 
from [3] to the general case α > 0, again, valid only for the case of NSEs on a 2-D torus. 
Moreover, we state our main result, i.e. Theorem 4.5, about the LDP for the family of 
invariant measures {με}ε>0 for the stochastic NSEs on a 2-D torus. The remainder of 
the paper is devoted to the proof of that result.

So, in Section 5 we formulate and prove Theorem 5.1 about exponential estimates 
for the family of probability measures 

{
με

}
ε>0. This result is based on the unique-

ness and ergodicity of each invariant measure με. The basic ingredient in this proof 
is also Lemma 5.3, about uniform exponential estimates for the solutions uε of equa-
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tion (1.1). Our proof is a simplification (and clarification) of a proof of a more general 
result from [16]. However, we should note that another proof of such a result is pos-
sible, which is based on an earlier paper [8] by the first named author and Peszat, 
see [2]. We believe that it is possible to obtain results similar to ours for stochastic 
NSEs with multiplicative noise. However, such a study is postponed till another publi-
cation.

Let us continue with the description of the content of our paper. In Section 6 we 
continue with the proof of Theorem 4.5 and show that the invariant measures με satisfy 
an appropriate lower bounds, see Theorem 6.1. In inequality (6.1) we already see the 
relationship between the invariant measures με and the quasi-potential U.

Sections 7 and 8 are devoted to the formulation and proof of appropriate lower bounds 
satisfied by the invariant measures με, see Theorem 7.1.

The paper is concluded with an appendix. It is devoted to a proof of precise behavior 
for large negative time of solutions to the skeleton equation (1.2) on the negative half-line 
(−∞, 0]. Such results should be of independent interest.

Acknowledgments

The first named author would like to thanks Department of Mathematics, University 
of Maryland for it’s hospitality during his visit in September 2013 during which this 
project was initiated. Research of the second named author was partly supported by 
NSF grant DMS-1407615. Talks on preliminary versions of the results from this paper 
were given by the first named author at workshops at Lyon, Kraków, Loughborough and 
Warwick (all in 2015). After, one of them we were informed by A. Shirkyan about a 
paper [20] by D. Martirosyan who studies LDP for invariant measure for stochastic wave 
equations.

2. Notation and preliminaries

Our main results are formulated for the stochastic Navier–Stokes equations with pe-
riodic boundary conditions. Hence we begin with a brief introduction to the relevant 
notation in this case; all the mathematical background can be found in the small book 
[23] by Temam. Here we will not recall the notation in the case of the Dirichlet boundary 
conditions but only refer the reader to our earlier paper [3]. Some of our results are true 
also in this case. Proper generalization to this case, as well to the case of multiplicative 
noise, will be a subject of a forthcoming publication.

We denote here by T2 the two dimensional torus of fixed dimensions L ×L. The space 
H is equal to

H = {u ∈ L2
0(T2,R2) : div(u) = 0 and γν(u)|Γj+2 = −γν(u)|Γj

, j = 1, 2},
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where L2
0(T2, R2) is the Hilbert space consisting of those u ∈ L2(T2, R2) which satisfy 

the condition
∫
T2

u(x) dx = 0, (2.1)

γν is the bounded linear map defined on divergence free vectors in L2(T2, R2) with values 
in the dual space of H 1

2 (∂T2) (the image in L2(∂T2) of the trace operator H1(T2) →
L2(∂T2)), such that γν(u) coincides with the restriction of u · ν to ∂T2, if u ∈ D(T2), 
and Γj , j = 1, · · · , 4 are the four (not disjoint) parts of the boundary of ∂(T2) defined 
by, for j = 1, 2,

Γj = {x = (x1, x2) ∈ [0, L]2 : xj = 0}, Γj+2 = {x = (x1, x2) ∈ [0, L]2 : xj = L}.

We also define the vorticity space V by setting

V =
{
u ∈ H : Dju ∈ L2(T2,R2), u|Γj+2 ◦ τj = u|Γj

, j = 1, 2
}
, (2.2)

where Dj , j = 1, 2, are the 1st order weak derivatives in the interior of the torus.
Because of condition (2.1), the norm on the space V induced by the norm from the 

Sobolev spaces H1,2 is equivalent to the following one

(
u, v
)
V =

2∑
i,j=1

∫
O

∂uj

∂xi

∂vj
∂xi

dx, u, v ∈ V.

The Stokes operator A can be defined in a natural way as

{
D(A) = V ∩H2,2(T2,R2)
Au = −PΔ, u ∈ D(A),

(2.3)

where

P : L2(O) → H

is the orthogonal projection, called usually the Leray–Helmholtz projection.
It is well known that A is a self-adjoint positive operator in H. In fact, its eigenvectors 

and eigenvalue can be explicitly found. In particular, A has bounded imaginary powers 
and thus by [26, Remark 2 in 1.15.2], the domains of the fractional powers of A are equal 
(with equivalent norms) to the complex interpolation spaces between D(A) and H, i.e.

D(Aθ) = [H, D(A)]θ, θ ∈ (0, 1). (2.4)
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This means that

D(Aθ) = H ∩H2θ,2(T2,R2). (2.5)

Moreover, it is well known, see for instance [24, p. 57], that V = D(A1/2).
It follows from the above that, contrary to the Dirichlet boundary conditions case, 

compare with [3, Proposition 2.1], the Leray–Helmholtz projection

P : Hα,2(T2,R2) → D(Aα) (2.6)

is a bounded linear map for every α ≥ 0. To this purpose, in the bounded domain case.
The Stokes operator A satisfies all the properties known in the bounded domain case, 

inclusive the strict positivity property, with λ1 = 4π2

L2 ,

〈Au, u〉H ≥ λ1|u2|H, u ∈ D(A). (2.7)

Now, consider the trilinear form b on V × V × V given by

b(u, v, w) =
2∑

i,j=1

∫
O

ui
∂vj
∂xi

wj dx, u, v, w ∈ V.

It is known that b is a continuous trilinear form such that

b(u, v, w) = −b(u,w, v), u ∈ V, v, w ∈ H
1
0(O), (2.8)

and, for some constant c > 0 (see for instance [25, Lemma 1.3, p. 163] and [24]),

|b(u, v, w)| ≤ c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|u|1/2H |∇u|1/2H |∇v|1/2H |Av|1/2H |w|H u ∈ V, v ∈ D(A), w ∈ H

|u|1/2H |Au|1/2H |∇v|H|w|H u ∈ D(A), v ∈ V, w ∈ H

|u|H|∇v|H|w|1/2H |Aw|1/2H u ∈ H, v ∈ V, w ∈ D(A)

|u|1/2H |∇u|1/2H |∇v|H|w|1/2H |∇w|1/2H u, v, w ∈ V.

(2.9)

Next, define the bilinear map B : V × V → V′, by setting

〈B(u, v), w〉 = b(u, v, w), u, v, w ∈ V,

and the homogeneous polynomial of second degree B : V → V′ by

B(u) = B(u, u), u ∈ V.

From the first inequality in (2.9), we have that if v ∈ D(A), then B(u, v) ∈ H and the 
following inequality follows directly

|B(u, v)|2H ≤ C|u|H|∇u|H|∇v|H|Av|H, u ∈ V, v ∈ D(A). (2.10)
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Moreover, the following identity is a direct consequence of (2.8).

〈B(u, v), v〉 = 0, u, v ∈ V. (2.11)

Furthermore, we have the following property involving the nonlinear term B and the 
Stokes operator A

〈Au,B(u, u)〉H = 0, u ∈ D(A), (2.12)

see [23, Lemma 3.1] for a proof.
Let us also recall the following facts (see [6, Lemma 4.2] and [25]).

Lemma 2.1. The trilinear map b : V × V × V → R has a unique extension to a bounded 
trilinear map from L4(O) × (L4(O) ∩ H) × V and from L4(O) × V × L

4(O) into R. 
Moreover, B maps L4(O) ∩ H (and so V) into V′ and

|B(u)|V′ ≤ C1|u|2L4(O) ≤ 21/2C1|u|H|∇u|L2(O) ≤ C2|u|H|u|V ≤ C3|u|2V, u ∈ V. (2.13)

Lemma 2.2. For any T ∈ (0, ∞] and for any u ∈ L2(0, T ; D(A)) with u′ ∈ L2(0, T ; H), 
we have

T∫
0

|B(u(t), u(t))|2H dt < ∞.

The restriction of the map B to the space D(A) ×D(A) has also the following repre-
sentation

B(u, v) = P (u∇v) = P (
2∑

j=1
ujDjv), u, v ∈ D(A). (2.14)

In view of (2.6), the above representation allows us to prove the following property of the 
map B (compare with a weaker result in [3, Proposition 2.5] for the Dirichlet boundary 
case).

Proposition 2.3. Assume that α ∈ (0, 1]. Then for any s ∈ (1, 2] there exists a constant 
c > 0 such that

|B(u, v)|
D(A

α
2 ) ≤ c|u|

D(A
s
2 )|v|D(A

α+1
2 )

, u, v ∈ D(A). (2.15)

Proof. In view of equality (2.14), since by (2.6) the Leray–Helmholtz projection P is a 
well defined and continuous map from Hα(O) into D(Aα

2 ) and since the norms in the 
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spaces D(A s
2 ) are equivalent to norms in Hs(O), it is enough to show that

|u∇v|Hα ≤ c|u|Hs |v|Hα+1 , u, v ∈ H
2(O).

Thus, it is sufficient to prove for scalar valued functions

|fg|Hα ≤ c|f |Hs |g|Hα , f, g ∈ H2. (2.16)

First we consider the case α = 0. In this case it is sufficient to assume that s ∈ (1, 2)
and we have

|fg|L2 ≤ |f |L∞ |g|L2 ≤ |f |Hs |g|L2

by the Gagliado–Nirenberg inequality, which implies that Hs ↪→ L∞ continuously.
Secondly, we consider the case α = 1. Also in this case it is sufficient to assume that 

s ∈ (1, 2). Then, by the Sobolev Gagliado–Nirenberg inequalities, we have

|∇(fg)|L2 ≤ |g∇f |L2 + |f∇g|L2

≤ |∇f |Lp |g|Lq + |f |L∞ |∇g|L2

≤ |∇f |Lp |g|H1 + |f |Hs |∇g|L2

≤ |f |Hs |g|H1 + |f |Hs |∇g|L2

where p, q ∈ (2, ∞) are such that 1
p + 1

q = 1
2 and 1

2 = 1
p + s−1

2 , i.e. 1
p = 1 − s

2 . From the 
above two inequalities we trivially deduce that

|fg|H1 ≤
√

6|f |Hs |g|H1

what proves inequality (2.16) for α = 1.
Finally, let us consider the case α ∈ (0, 1). By a complex interpolation argument and 

the Marcinkiewicz Interpolation Theorem, we infer that for any α ∈ (0, 1)

|fg|Hα ≤ 6α
2 |f |Hs |g|Hα ,

so that the proof of Proposition 2.3 is complete. �
Since the Sobolev space Hα is an algebra for α > 1, we have the following result.

Proposition 2.4. Assume that α ∈ (1, ∞). Then there exists a constant c > 0 such that

|B(u, v)|
D(A

α
2 ) ≤ c|u|

D(A
α
2 )|v|D(A

α+1
2 )

, u ∈ D(Aα
2 ), v ∈ D(A

1+α
2 ). (2.17)
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Proof. Let us fix α ∈ (1, ∞). In view of equality (2.14), as in the proof of Proposition 2.3
it is enough to show that

|u∇v|Hα ≤ c|u|Hα |v|Hα+1 , u ∈ H
α(O), v ∈ H

α+1(O).

Since the Sobolev space Hα is an algebra and |∇v|Hα ≤ c|v|Hα+1 , the result follows. �
Remark 2.5. One consequence of Propositions 2.3 and 2.4 is that the 2-D NSEs with 
periodic boundary conditions are locally well posed in the space D(Aβ

2 ), for every β ≥ 0. 
To be precise for every u0 ∈ D(A β

2 ) and every f ∈ L2
loc([0, ∞); D(A β

2 − 1
2 ) there exists 

T > 0 and a strong solution u defined on [0, T ]. This local existence result is well 
known for β ∈ {0, 1} for 2-D NSEs with either Dirichlet or periodic boundary conditions. 
Moreover, it is rather a folk result for β ∈ (0, 1). However, in [3] we proved it to be true 
also for β ∈ (1, 32 ). The difference between the NSEs with general boundary conditions 
and NSEs on a torus stems from the fact that, while Propositions 2.3 and 2.4 hold in 
the latter case for any α > 0, we have been able to establish a corresponding result in 
the former case for only α ∈ [0, 12 ). And the root for this difference lies in the properties 
of the Leray–Helmholtz projection P . Actually, while in the latter case, it is a bounded 
linear map from Hα,2(T2, R2) into D(Aα), in the former case we have been able to prove 
an analogous result only for α ∈ (0, 12 ). As in [3], by using the global well-posedness in H, 
local well-posedness in D(A β

2 ) implies also global well-posedness. See Proposition 3.3 for 
precise formulations of these results.

Remark 2.6. Similar inequalities to those in Propositions 2.3 and 2.4 have also been 
studied in [4].

3. The skeleton equation

We consider here the following Navier–Stokes equation
{

u′(t) + Au(t) + B(u(t), u(t)) = f(t), t ∈ (a, b),

u(a) = u0,
(3.1)

where −∞ < a < b < ∞.

Definition 3.1. Given any f ∈ L2(a, b; V′) and u0 ∈ H, a solution to problem (3.1) is a 
function u ∈ L2(a, b; V) such that u′ ∈ L2(a, b; V′), u(a) = u0

2 and (3.1) is satisfied.

As shown in [25, Theorems III.3.1/2], for every f ∈ L2(a, b; V′) and u0 ∈ H there 
exists exactly one solution u to problem (3.1).

2 It is known (see for instance [25, Lemma III.1.2]) that these two properties of u imply that u is almost 
everywhere equal to a function ū ∈ C([a, b], H). Thus, when we later write u(a) we mean ū(0).
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Lemma 3.2. For any r > 0 there exists cr > 0 such that, if T ∈ R and u ∈ C([T, +∞); H)
satisfies f := u′ + Au + B(u, u) ∈ L2(T, +∞; H), then

|f |L2(T,+∞;H) ≤ r =⇒ |u|C([T,+∞);H) ≤ cr + |u(T )|H. (3.2)

More precisely, the following inequality holds:

|u(t)|H ≤ e−λ1(t−T )|u(T )|H + 1
λ1

|f |2L2(T,+∞;H), t ≥ T. (3.3)

Proof. By [25, Lemma III.1.2] and inequality (2.7) we have

1
2
d

dt
|u(t)|2H + |u(t)|2V ≤ 1

2 |u(t)|2V + 1
2λ1

|f(t)|2H. (3.4)

This implies that for all b > a ≥ T ,

|u|2C([a,b);H) + |u|2L2(a,b;V) ≤ |u(a)|2H + 1
λ1

|f |2L2(a,b;H), (3.5)

what yields (3.2). Moreover, from (3.4) in view of inequality (2.7) we have

d

dt
|u(t)|2H + λ1 |u(t)|2H ≤ 1

λ1
|f(t)|2H, t ≥ T.

Hence, by the Gronwall lemma, for any T ≤ a ≤ t < +∞ we have

|u(t)|2H ≤ |u(a)|2He−λ1(t−a) + 1
λ1

t∫
a

e−λ1(t−s)|f(s)|2H ds,

what implies (3.3). �
In [25, Theorem III.3.10] it is proven that, if f ∈ L2(a, b; H), the solution u of equa-

tion (3.1) has the following properties
√

(· − a)u ∈ L2(a, b;D(A)) ∩ L∞(a, b; V),
√

(· − a)u′ ∈ L2(a, b; H).

Moreover, there exists c > 0 such that for all a < b

|
√

(· − a)u|2L∞(a,b;V) + |
√

(· − a)u|2L2(a,b;D(A))

≤ c exp
[
c
(
|u0|4H + |f |4L2(a,b;V′)

)] (
|u0|2H + |f |2L2(a,b;V′) + |b− a||f |2L2(a,b;H)

)
.

(3.6)

In [3, Proposition 3.3] we have also proved the following result for α ∈ (0, 12 ) for 2-D 
NSEs with both Dirichlet and periodic boundary conditions. It turns out that in the 
latter case it is true for any α ≥ 0.
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Proposition 3.3. Suppose that α ≥ 0. If f ∈ L2(a, b; D(Aα
2 ) and u0 ∈ D(Aα+1

2 ), for some 
α ≥ 0, then the unique solution u to the problem (3.1) satisfies

u ∈ L2(a, b;D(A1+α
2 ) ∩ C([a, b];D(A

α+1
2 )), u′(·) ∈ L2(a, b;D(Aα

2 )). (3.7)

Proof. As discussed in Remark 2.5, the above result follows from Propositions 2.3
and 2.4. The proof of the above result can be accomplished by following line by line 
the proof of [3, Proposition 3.3], which worked for both types of boundary conditions 
but only for α ∈ (0, 12 ). �

Now, for any −∞ ≤ a < b ≤ ∞ and for any two reflexive Banach spaces X and Y , such 
that X ↪→ Y continuously, we denote by W 1,2(a, b; X, Y ) the space of all u ∈ L2(a, b; X)
which are weakly differentiable as Y -valued functions and their weak derivative belongs 
to L2(a, b; Y ). The space W 1,2(a, b; X, Y ) is a separable Banach space (and Hilbert if 
both X and Y are Hilbert spaces), endowed with the natural norm

|u|2W 1,2(a,b;X,Y ) = |u|2L2(a,b;X) + |u′|2L2(a,b;Y ), u ∈ W 1,2(a, b;X,Y ).

Later on, when no ambiguity is possible, we will use the shortcut notation

W 1,2(a, b) = W 1,2(a, b;D(A),H).

The following definition has first appeared in the paper [19] by Lions and Masmoudi 
as a natural tool in the investigation of the uniqueness questions for Navier–Stokes 
Equations in the Lebesgue spaces Ld.

Definition 3.4. Assume that −∞ ≤ a < b ≤ ∞ and f ∈ L2
loc(a, b; H). A function u ∈

C((a, b); H) is called a very weak solution to the Navier–Stokes equations (3.1) on the 
interval (a, b) if for all φ ∈ C∞((a, b) ×D), such that divφ = 0 on (a, b) ×D,

∫
D

u(t1, ξ)φ(t1, ξ)dξ =
∫
D

u(t0, ξ)φ(t0, ξ)dξ

+
∫

[t0,t1]×D

u(s, ξ)(∂sφ(s, ξ) + Δφ(s, ξ)) dsdξ

+
t1∫

t0

b(u(s), u(s), φ(s)) ds +
∫

[t0,t1]×D

f(s, ξ) · φ(s, ξ) dsdξ,

(3.8)

for all a < t0 < t1 < b.

One can observe that a solution to the Navier–Stokes equations (3.1) on the interval 
(a, b) is also a very weak solution to (3.1) on the interval (a, b). We need a notion of a very 
weak solution because a basic object in our study of large deviations is the space X , see 
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definition in equality (4.10), which consists only of H-valued continuous functions. It has 
been used in Proposition 3.6 which consequently was used in the proofs of Lemmata 3.8 
and 3.9 in our previous paper [3].

By adapting some of the results from [19] to the 2-dimensional case, it is possible to 
prove the following result.

Proposition 3.5. Assume that −∞ ≤ a < b ≤ ∞ and f ∈ L2
loc((a, b); H). Suppose that 

the functions u, v ∈ C((a, b); H) are very weak solutions to the Navier–Stokes equations 
(3.1) on the interval (a, b), with u(t0) = v(t0), for some t0 ∈ (a, b). Then u(t) = v(t) for 
all t ≥ t0.

Definition 3.6. Assume that −∞ ≤ a < b ≤ ∞. Given a function u ∈ C((a, b); H) we say 
that

u′ + Au + B(u, u) ∈ L2(a, b; H), (resp. ∈ L2
loc((a, b); H))

if there exists f ∈ L2(a, b; H), (resp. f ∈ L2
loc((a, b); H)) such that u is a very weak 

solution of the Navier–Stokes equations (3.1) on the interval (a, b).
Obviously, the corresponding function f is unique and we will denote it by H(u), i.e.

[H(u)](t) := u′(t) + Au(t) + B(u(t), u(t)), t ∈ (a, b). (3.9)

In [3, Proposition 10.2] we have proved the following result.

Lemma 3.7. Assume that α ∈ (0, 12 ). Assume that u ∈ C((−∞, 0]; H) is such that H(u) :=
u′ + Au + B(u, u) ∈ L2(−∞, 0; D(Aα

2 )) and there exists {tn} ↓ −∞, such that

lim
n→∞

|u(tn)|H = 0.

Then u ∈ W 1,2(−∞, 0; D(A1+α
2 ), D(Aα

2 )), u(0) ∈ D(Aα+1
2 ) and

lim
t→−∞

|u(t)|
D(A

α
2 + 1

2 )
= 0.

In Appendix A, we generalize the above result, again only in the case of NSEs on a 
torus, to the case of any α > 0.

4. LDP for stochastic NSEs on a 2-D torus

For any fixed ε ∈ (0, 1] and x ∈ H, we consider the problem

du(t) + Au(t) + B(u(t), u(t)) =
√
ε dw(t), u(0) = x. (4.1)

Here w =
{
w(t)

}
t≥0 is an H-valued Wiener process with reproducing kernel Hilbert 

space denoted by K. In particular K ⊂ H and the natural embedding i : K ↪→ H is a 
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Hilbert–Schmidt operator. Let us fix an orthonormal basis {fk}k∈ N of K and a sequence {
βk

}∞
k=1 of independent Brownian motions defined on some filtered probability space (

Ω, F , F, P
)
, where F =

{
Ft

}
t≥0, such that the Wiener process w has the following 

representation

w(t) =
∞∑
k=1

βk(t)fk, t ≥ 0. (4.2)

With the Wiener process w, one can associate a covariance operator C ∈ L(H) (usually 
denoted by Q), defined by

〈Ch1, h2〉 = E
[
〈h1, w(1)〉H 〈w(1), h2〉H

]
, h1, h2 ∈ H.

It is well known, see e.g. [10, Proposition 2.15], that C is a non-negative self-adjoint and 
trace class operator in H. Moreover, see for instance [5], C = ii∗ and K = R(C 1

2 ). In this 
paper we assume that for some α > 1, the operator Q := C

1
2 is an isomorphism of H

onto D(Aα
2 ), i.e. when K = D(Aα

2 ).
Note that

∞∑
k=1

|ifk|2H = tr [C] < ∞.

It is now well known, see e.g. in [15], that for all ε ∈ (0, 1] and x ∈ H, equation (4.1)
has a unique solution ux such that ux

ε ∈ Lp(Ω; C([0, T ]; H)), for all T > 0 and p ≥ 1. 
Moreover, there exists an invariant measure νε for the Markov process generated by this 
equation, i.e. a Borel probability measure on H such that for every ϕ ∈ Bb(H), and every 
t ≥ 0, ∫

H

Eϕ(ux
ε (t)) νε(dx) =

∫
H

ϕ(x) νε(dx), (4.3)

where Bb(H) denotes the set of bounded and continuous functions ϕ : H → R. It is 
also known, see [13], that under our assumption, this invariant measure νε is unique and 
ergodic. Thus is particular, for any bounded Borel measurable function ϕ : H → R,

∫
H

ϕ(x) νε(dx) = lim
T→∞

1
T

T∫
0

Eϕ(u0
ε(t)) dt. (4.4)

For a function3 u ∈ C([a, b]; H), where −∞ ≤ a < b ≤ +∞, such that

H(u) := u′ + Au + B(u, u) ∈ L2
loc((a, b);D(Aα

2 )),

3 If for instance a = −∞), we assume that u ∈ C((a, b]; H).
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we define the action functionals by

St0,t1(u) := 1
2

t1∫
t0

|Q−1H(u)(t)|2H dt, a ≤ t0 < t1 ≤ b. (4.5)

Note that since Q is a bounded operator in H, we have the following useful inequality

t1∫
t0

|H(u)(t)|2H dt ≤ 2‖Q‖2
L(H,H)St0,t1(u). (4.6)

If H(u) /∈ L2((t0, t1); D(Aα
2 )), we put St0,t1(u) = +∞. Moreover, we denote

S−T := S−T,0, ST := S0,T , for every T > 0.

In particular, when a = −∞ and b = 0, we set

S−∞(u) := 1
2

0∫
−∞

|Q−1H(u)(t)|2H dt. (4.7)

An obvious sufficient condition for the finiteness of St0,t1(u) is that u′, Au and B(u, u)
all belong to L2(t0, t1; D(Aα

2 ). In fact, as we proved in [3, Lemma 3.9], in the case of 2-D 
NSEs with both Dirichlet and periodic boundary conditions, when α ∈ (0, 12 ), this is not 
so far from being a necessary condition. As earlier for Proposition 3.3, it turns out that 
in the latter case, [3, Lemma 3.9] holds true for any α ≥ 0.

Lemma 4.1. Suppose that α ≥ 0 and −∞ < a < b < ∞.
If a function u ∈ C([a, b]; H) satisfies

u′ + Au + B(u, u) ∈ L2(a, b;D(Aα
2 )),

then u(b) ∈ D(Aα+1
2 ) and u ∈ W 1,2(t0, b; D(Aα

2 +1), D(Aα
2 )
)
, for any t0 ∈ (a, b).

Moreover, if u(a) ∈ D(Aα+1
2 ), then u ∈ W 1,2(a, b; D(Aα

2 +1), D(Aα
2 )
)
.

Proof. As discussed in Remark 2.5, the above result follows from Propositions 2.3
and 2.4. The proof of the above result can be accomplished by following the line of 
proof of [3, Lemma 3.9] which worked for both types of boundary conditions but only 
for α ∈ (0, 12 ). �

As a consequence of the contraction principle and of certain continuity properties 
of the solution of equation (4.1) proven in [6], we infer the following result, see [3, 
Theorem 5.3].
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Theorem 4.2. For any x ∈ H, the family {L(ux
ε )}ε∈ (0,1] satisfies the large deviation 

principle in C([0, T ]; H), with speed ε and action functional ST , uniformly with respect 
to x in bounded subsets of H.

We recall here (see e.g. [14]) that a family of probability measures {με}ε>0 on 
some complete metric space E satisfies a large deviation principle, with speed {βε}ε>0
such that limε↘0 β(ε) = 0, and action functional I, iff I : E → [0, ∞] is a lower-
semicontinuous4 map such that

(1) For each r > 0, the level set

Ir := {x ∈ E : I(x) ≤ r} ,

is compact in E.
(2) Lower bounds: For every x̄ ∈ E and for all δ, γ > 0 there exists ε0 > 0 such that5

με (BE(x̄, δ)) ≥ exp
(
−I(x̄) + γ

βε

)
, ε ≤ ε0. (4.8)

Here BE(x̄, δ) = {x ∈ E : |x − x̄|E < δ}.
(3) Upper bounds: For every s, δ and γ ∈ (0, s) there exists ε0 > 0 such that

με ({x ∈ E : distE (x, Is) > δ}) ≤ e−
s−γ
βε , ε ≤ ε0. (4.9)

Next, for any x, y ∈ H and a, b ∈ R, we introduce the following functional spaces

X =
{
u ∈ C((−∞, 0]; H) : lim

t→−∞
|u(t)|H = 0

}
,

Xx =
{
u ∈ X : u(0) = x

}
,

Cx,y([a, b],H) = {u ∈ C([a, b]; H) : u(a) = x, u(b) = y}.

(4.10)

We endow the space X with the topology of uniform convergence on compact intervals, 
i.e. the topology induced by the metric ρ defined by

ρ(u, v) :=
∞∑

n=1
2−n

(
sup

s∈[−n,0]
|u(s) − v(s)|H ∧ 1

)
, u, v ∈ X .

The set Xx is a closed in X and we endow it with the trace topology induced by X .
In [3, Propositions 5.4 and 5.5], we proved that the functional

S−∞ : X → [0,+∞], (4.11)

4 This condition is redundant if we also assume condition (1) below.
5 Inequality (4.8) is trivially satisfied when I(x̄) = ∞.
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is lower-semicontinuous and has compact level sets. This result obviously holds for both 
types of boundary conditions, but only for α ∈ [0, 12 ). Its proof relied on [3, Propo-
sitions 10.1 and 10.2] which we generalize in Appendix A. Let us state it for the 
completeness sake.

Proposition 4.3. Assume that α ≥ 0. Then the functional S−∞ defined by (4.7), is lower-
semicontinuous on X . Moreover, its level sets are compact in X

Next, we define the quasi-potential U associated with equation (4.1), by setting

U(x) := inf
{
ST (u) : T > 0, u ∈ C0,x([0, T ]; H)

}
= inf

{
S−T (u) : T > 0, u ∈ C0,x([−T, 0]; H)

}
, x ∈ H.

(4.12)

In our previous paper [3], we thoroughly studied the functional U for the 2-D NSEs, for 
both Dirichelt and periodic boundary conditions, and we have shown that it satisfies the 
properties described below for α ∈ (0, 12 ). The following result generalizes [3, Theorem 6.2 
and Propositions 6.1, 6.5 and 6.6] to α ≥ 0 but only, as all our generalizations, for the 
case of the 2-D NSEs on a torus.

Theorem 4.4. Assume that α ≥ 0 and x ∈ H. Then the following hold true.

(1) U(x) < ∞ ⇐⇒ x ∈ D(Aα+1
2 ) and

U(x) := inf
{
S−∞(u) : u ∈ Xx

}
. (4.13)

The restriction of the map U to the set D(Aα+1
2 ), i.e. the map

U : D(A
1+α

2 ) → R

is continuous.
(2) For any r > 0, the level set

Kr = {x ∈ H : U(x) ≤ r} (4.14)

is compact in H.
In particular, the function U : H → [0, ∞] is lower semi-continuous.

Proof. The proofs of the above results follow the proofs of [3, Theorem 6.2 and Propo-
sitions 6.1, 6.5 and 6.6], while taking into account Propositions 2.3 and 2.4. �

As mentioned in the introduction, in the present paper we want to prove the following 
theorem.
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Theorem 4.5. The family {νε}ε>0 of the invariant measures for equation (4.1) satisfies 
a large deviation principle in H, with speed βε = ε and action functional U (defined in 
formula (4.12)).

In Theorem 4.4, we have seen that U has compact level sets. Thus, in order to prove 
Theorem 4.5, in what follows we have only to prove the validity of the lower and upper 
bounds.

5. Exponential estimates

In the proof of lower bounds for the large deviation principle we need to prove that 
there exists some R̄ > 0 such that

lim
ε→0

νε
(
Bc

H(0, R̄)
)

= 0. (5.1)

On the other hand, in the proof of upper bounds we need something stronger. Actually 
we need that the convergence to zero in (5.1) is exponential.

Theorem 5.1. For any s > 0, there exist εs > 0 and Rs > 0 such that

νε
(
Bc

H(0, Rs)
)
≤ exp

(
−s

ε

)
, ε ≤ εs. (5.2)

This fundamental result will be used in the proof of Theorem 7.1. Let us note that 
the proof uses the ergodicity of the invariant measure.

Remark 5.2. An essential part of the proof of the above result is given by the following 
exponential estimates. Their proof can in fact be traced to the paper [8], but we present 
here an independent one based on the use of a suitable Lyapunov function. This proof 
goes back to the paper [16], but that paper tried to treat so many cases simultaneously 
that we decided to write down an independent statement and proof.

Lemma 5.3. In the framework of Theorem 5.1, for any arbitrary ε > 0 there exists γ > 0
such that

E e
γ
ε |u

x
ε (t)|2H ≤ e−

λ1
2 te

γ
ε |x|

2
H + 2, t > 0.

Remark 5.4. The result from Theorem 5.1 is also true for the stochastic Navier–Stokes 
equations with multiplicative noise

du(t) + Au(t) + B(u(t), u(t)) =
√
εg(u) dw(t), u(0) = u0, (5.3)

where w(t) is a cylindrical Wiener process on some separable Hilbert space K, provided 
the map g : H → R(K, H) is a continuous and bounded and there exists unique ergodic 
invariant measure νε of the corresponding Markov process.
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The result from Lemma 5.3 is also true for the stochastic Navier–Stokes equations with 
multiplicative noise (5.3) provided w is a cylindrical Wiener process on some separable 
Hilbert space K and a continuous and bounded map g : H → R(K, H).

Proof of Lemma 5.3. Let us fix the initial data x ∈ H. Take arbitrary ε, λ, γ > 0, that 
will be specified later on. Let us denote the solution ux

ε by u. Let us recall the Itô’s 
formula due to Pardoux [21] applied to a C1,2-class function ϕ : R+ × H → R and the 
process u:

dϕ(t, u(t)) = ∂ϕ(t, u(t))
∂t

dt + 〈∂ϕ(t, u(t))
∂u

, du(t)〉 + ε

2
∑
k

〈∂
2ϕ(t, u(t))

∂u2 (ifk), ifk〉.

We apply this formula to the following function

ϕ : R+ × H � (t, u) �→ eλt e
γ
ε |u|

2
H ∈ R.

Since ∂ϕ(t,u)
∂t = λϕ(t, u), ∂ϕ(t,u)

∂u = 2γ
ε ϕ(t, u)u ∈ H and, for y, z ∈ H, 〈∂

2ϕ(t,u)
∂u2 y, z〉 =

ϕ(t, u)
[ 4γ2

ε2 〈u, y〉〈u, z〉 + 2γ
ε 〈y, z〉

]
, by (2.11) and (2.7), we infer that

〈∂ϕ(t, u(t))
∂u

, du(t)〉 = 2γ
ε
ϕ(t, u)

[
〈u,−Au〉 + 〈u,B(u, u) + 〈u

√
ε dw(t)〉

]
≤ ϕ(t, u)

[
−λ1

2γ
ε
|u|2 + 2γ√

ε
〈u, dw(t)〉

]
,

ε

2
∑
k

〈∂
2ϕ(t, u(t))

∂u2 (ifk), ifk〉 = ε

2ϕ(t, u)
[4γ2

ε2

∑
k

〈u, ifk〉〈u, ifk〉 + 2γ
ε

∑
k

〈ifk, ifk〉
]

= ϕ(t, u)
[2γ2

ε
|i∗u|2K + γ tr(C)

]
≤ ϕ(t, u)

[2γ2

ε
|i∗|2L(H,K)|u|2 + γ tr(C)

]
.

Therefore, we infer that

dϕ(t, u(t)) ≤ ϕ(t, u)
[
−2γ

ε

(
λ1 − γ|i∗|2L(H,K)

)
|u(t)|2 + λ + γ tr(C)

]
+ ϕ(t, u) 2γ√

ε
〈u, dw(t)〉.

Now, if we put λ = λ1/2 and choose (small enough) γ > 0 such that

λ1 − γ |i∗|2L(H,K) ≥
λ1

2 , γ tr(C) ≤ λ1

2 ,

we get

dϕ(t, u(t)) ≤ ϕ(t, u)
[
−γ

λ1|u(t)|2 + λ1

]
+ ϕ(t, u) 2γ√ 〈u, dw(t)〉.
ε ε
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By taking expectation (and considering stopping times as for instance in [7]) we infer 
that

E

[
e

λ1
2 t e

γ
ε |u(t)|2

]
≤ e

γ̄
ε |x|

2
+ λ1 E

t∫
0

e
λ1
2 s e

γ
ε |u(s)|2

[
−γ

ε
|u(s)|2H + 1

]
ds.

Since er(−r + 1) ≤ 1, for any r ≥ 0, and λ1
∫ t

0 e
λ1
2 s ds = 2

(
e

λ1
2 t − 1

)
this yields

Ee
γ
ε |u(t)|2H ≤ e−

λ1
2 te

γ
ε |x|

2
H + 2.

The proof is now complete. �
Now, we continue with the proof of the main result in this section.

Proof of Theorem 5.1. We use the notation introduced in the proof of Lemma 5.3. Let 
us fix R > 0 and t > 0. By the previous lemma and Chebyshev’s inequality, we have

P
(
ux
ε (t) ∈ Bc

H(0, R)
)

= P (|ux
ε (t)|H > R) = P

(
e

γ
ε |u

x
ε (t)|2H > e

R2γ
ε

)
≤ e−

R2γ
ε E

(
e

γ
ε |u

x
ε (t)|2H

)
≤ e−

R2γ
ε

[
e−

λ1
2 te

γ
ε |x|

2
H + 2

]
.

Now, due to the ergocity of the invariant measure νε, for any function ϕ : H → R, Borel 
and bounded,

∫
H

ϕ(x) νε(dx) = lim
T→∞

1
T

T∫
0

Eϕ(u0
ε(s)) ds.

This implies that for any R > 0

νε
(
Bc

H(0, R)
)

= lim
T→∞

1
T

T∫
0

P
(
u0
ε(s) ∈ Bc

H(0, R)
))

ds

≤ e−
R2γ
ε lim sup

T→∞

1
T

T∫
0

(
e−

λ1
2 s + 2

)
ds = 2 e−

R2γ
ε .

Hence, if we fix s > 0 and put

Rs :=
√

2s
γ
, εs := R2

sγ

2 log 2 ,

we have that

νε
(
Bc

H(0, Rs)
)
≤ e−

R2
sγ

2ε = e− s
ε , ε ≤ εs,

and this concludes proof of Theorem 5.1. �
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6. Lower bounds

Our purpose here is proving the following upper bound.

Theorem 6.1. For any δ, γ > 0 and x̄ ∈ H, there exists ε0 > 0 such that

νε
(
BH(x̄, δ)

)
≥ e−

U(x̄)+γ
ε , ε ≤ ε0. (6.1)

Let us point out that in the proof of the result we will use that fact that νε is an 
invariant measure of the Markov process corresponding to the stochastic Navier–Stokes

Before proceeding with the proof of Theorem 6.1, we need to prove a preliminary 
result.

Lemma 6.2. Suppose that γ, T̄ > 0, x̄ ∈ H and ϕ̄ ∈ L2(0, T̄ ; H) satisfy

1
2 |ϕ̄|

2
L2(0,T̄ ;H) ≤ U(x̄) + γ

4 . (6.2)

Moreover, assume there exists a solution z̄ ∈ C([0, T̄ ]; H) to the problem

z̄ ′(t) + Az̄(t) + B(z̄(t), z̄(t)) = Qϕ̄(t), z̄(0) = 0, z̄(T̄ ) = x̄. (6.3)

Then, for all δ and R > 0 there exists T0 > 0 and ϕ0 ∈ L2(0, T0 + T̄ ; H) such that

1
2 |ϕ0|2L2(0,T0+T̄ ;H) ≤ U(x̄) + γ

4 (6.4)

and

sup
|x|H≤R

∣∣zx(ϕ0)(T0 + T̄ ) − x̄
∣∣
H ≤ δ

2 , (6.5)

where zx(ϕ0) ∈ C([0, T0 + T̄ ]; H) is the (unique) solution of the control problem

z′(t) + Az(t) + B(z(t), z(t)) = Qϕ0(t), t ∈ [0, T0 + T̄ ], z(0) = x. (6.6)

Proof. Let us assume that γ, T̄ > 0, x̄ ∈ H, ϕ̄ ∈ L2(0, T̄ ; H) and z̄ ∈ C([0, T̄ ]; H) satisfy 
the assumptions of our Lemma. Let us fix δ > 0 and R > 0.

Since, as it is well known,6 the solution of problem (6.3) depends continuously on the 
initial condition in C([0, T̄ ]; H), we infer there exists ρ > 0 such that

|y0|H ≤ ρ =⇒ |yy0(ϕ̄)(T̄ ) − x̄|H ≤ δ

2 , (6.7)

6 For a proof, see e.g. [6, Theorem 4.6].



Z. Brzeźniak, S. Cerrai / Journal of Functional Analysis 273 (2017) 1891–1930 1911
where yy0(ϕ̄) ∈ C([0, T̄ ]; H) is the solution of the problem

y′(t) + Ay(t) + B(y(t), y(t)) = Qϕ̄(t), t ∈ [0, T̄ ], y(0) = y0.

Now, let us consider a solution ux ∈ C([0, T0]; H) of the homogeneous Navier–Stokes 
equation

u′(t) + Au(t) + B(u(t), u(t)) = 0, u(0) = x. (6.8)

According to (3.3), we have

|ux(t)|H ≤ e−λ1t|x|H, t ≥ 0.

Hence, if we choose T0 > 0 such that Re−λ1T0 ≤ ρ, we have

sup
|x|H≤R

|ux(T0)|H ≤ ρ. (6.9)

Next, let us define a control ϕ0 ∈ L2(0, T0 + T̄ ; H) by setting

ϕ0(t) =
{

0, t ∈ [0, T0],
ϕ̄(t− T0), t ∈ [T0, T0 + T̄ ],

and next let us fix x ∈ H such that |x|H ≤ R. Then, the function z ∈ C([0, T0 + T̄ ]; H)
defined by

z(t) =
{
ux(t), t ∈ [0, T0],
yux(T0)(ϕ̄)(t− T0), t ∈ [T0, T0 + T̄ ],

is the unique solution to problem

z′(t) + Az(t) + B(z(t), z(t)) = Qϕ0(t), t ∈ [0, T0 + T̄ ], z(0) = x.

In particular we infer that z = zx(ϕ0).
Since moreover zx(ϕ0)(T0 + T̄ ) = yux(T0)(ϕ̄)(T̄ ) and |x|H ≤ R, due to (6.9) and (6.7), 

we infer that

|zx(ϕ0)(T0 + T̄ ) − x̄|H ≤ δ

2 .

This proves condition (6.5). It remains to prove that ϕ0 satisfies (6.4). This however 
follows directly from the definition of ϕ0 and assumption (6.2). �

Now, we are ready to prove Theorem 6.1. As we have proved Lemma 6.2, its proof is 
analogous to the proof of [22, C.2] and [9, Theorem 6.1].
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Proof of Theorem 6.1. Let us fix δ, γ > 0 and x̄ ∈ H. Without loss of generality, we 
may assume that U(x̄) < ∞. Note, that in view of Theorem 4.4, this implies that 
x̄ ∈ D(A 1+β

2 ). Moreover, by the definitions (4.12) for the quasi-potential U and (4.5) for 
the energy, we infer that there exists T̄ > 0, a control ϕ̄ ∈ L2(0, T̄ ; H) and a function 
z̄ ∈ C([0, T̄ ; H) such that

1
2 |ϕ̄|

2
L2(0,T̄ ;H) ≤ U(x̄) + γ

4

and z̄ is a solution to the problem

z′(t) + Az(t) + B(z(t), z(t)) = Qϕ(t), z(0) = 0, z(T ) = x̄.

By (5.1) we can find R̄ > 0, sufficiently large, and ε1 > 0 such that

νε(BH(0, R̄) ≥ 1 − (1 − e−
γ
2 ) = e−

γ
2 , ε ∈ (0, ε1]. (6.10)

Note that trivially, the above implies that

νε(BH(0, R̄) ≥ e−
γ
2ε , ε ∈ (0, 1 ∧ ε1]. (6.11)

With all the data given and constructed, we can apply Lemma 6.2 and we can find 
T0 > 0 and ϕ0 ∈ L2(0, T0 + T̄ ; H) such that

1
2 |ϕ0|2L2(0,T0+T̄ ;H) ≤ U(x̄) + γ

4

and

sup
|x|H≤R

∣∣zx(ϕ0)(T0 + T̄ ) − x̄
∣∣
H ≤ δ

2 ,

where zx(ϕ0) ∈ C([0, T0+ T̄ ]; H) is the solution of the control problem (6.6). Let us recall 
that for x ∈ H and ε > 0, the unique solution to the stochastic problem (4.1) is denoted 
by ux

ε .
Now, since by Theorem 4.2, the family {ux

ε}ε>0 satisfies the uniform large deviation 
principle in C([0, T0+T̄ ]; H), there exists ε2 > 0 such that for |x|H ≤ R̄ and all ε ∈ (0, ε2],

P

(
|ux

ε − zx(ϕ0)|C([0,T0+T̄ ];H) <
δ

2

)
≥ e−

|ϕ0|2
L2(0,T0+T̄ ;H)+

γ
2

2ε ≥ e−
U(x̄)+ γ

2
ε . (6.12)

Let us fix x ∈ H such that |x|H ≤ R̄. Then by inequality (6.5) we have

|ux
ε (T0 + T̄ ) − x̄|H ≤ |ux

ε (T0 + T̄ ) − zx(ϕ0)(T0 + T̄ )|H + |zx(ϕ0)(T0 + T̄ ) − x̄|H

≤ |ux
ε (T0 + T̄ ) − zx(ϕ0)(T0 + T̄ )|H + δ

.
2



Z. Brzeźniak, S. Cerrai / Journal of Functional Analysis 273 (2017) 1891–1930 1913
This implies that

|ux
ε (T0 + T̄ ) − zx(ϕ0)(T0 + T̄ )|H <

δ

2 =⇒ |ux
ε (T0 + T̄ ) − x̄|H < δ.

Therefore, since νε is an invariant measure for the Markov process uε
x, we infer that

νε
(
BH(x̄, δ)

)
= νε (|x− x̄|H < δ) =

∫
H

P
(
|ux

ε (T0 + T̄ ) − x̄|H < δ
)
νε(dx)

≥
∫
H

P

(
|ux

ε (T0 + T̄ ) − zx(ϕ0)(T0 + T̄ )|H <
δ

2

)
νε(dx)

≥
∫
H

P

(
|ux

ε − zx(ϕ0)|C([0,T0+T̄ ];H) <
δ

2

)
νε(dx)

≥
∫

BH(0,R̄)

P

(
|ux

ε − zx(ϕ0)|C([0,T0+T̄ ];H) <
δ

2

)
νε(dx).

Applying (6.12) we infer that for ε ∈ (0, ε2],

νε
(
BH(x̄, δ)

)
≥ νε(BH

(
0, R̄)

)
e−

U(x̄)+ γ
2

ε .

To conclude the proof, let us take ε0 := min{1, ε1, ε2}. Then, by (6.11), we infer that for 
ε ∈ (0, ε0],

νε
(
BH(x̄, δ)

)
≥ e−

γ
2ε e−

U(x̄)+ γ
2

ε = e−
U(x̄)+γ

ε .

This completes the proof of Theorem 6.1. �
7. Upper bounds

Let us recall here that Ks is the level set of the quasipotential U, as defined in (4.14), 
that is

Ks := {x ∈ H : U(x) ≤ s}.

Theorem 7.1. For all δ, γ > 0 and s ≥ 0, there exists ε0 > 0 such that

νε ({x ∈ H : distH(x,Ks) ≥ δ}) ≤ e−
s−γ
ε , ε ≤ ε0. (7.1)

Before proceeding with the proof of Theorem 7.1, we state two auxiliary results, whose 
proofs are postponed till next section.
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Lemma 7.2. For all δ > 0 and s > 0, there exist λ = λ(δ, s) > 0 and T̄ = T̄ (δ, s) > 0
such that for every t ≥ T̄ and z ∈ C([−t, 0]; H)

|z(−t)|H < λ, S−t(z) ≤ s =⇒ distH(z(0),Ks) < δ. (7.2)

Lemma 7.3. For all s, δ, r > 0, there exists n̄ ∈ N such that

βn̄ := inf {Sn̄(u) : u ∈ Hr,s,δ(n̄)} > s,

where for each n ∈ N, s > 0, δ > 0 and r > 0, the set Hr,s,δ(n) is defined by

Hr,s,δ(n) := {u ∈ C([0, n]; H), |u(0)|H ≤ r, |u(j)|H ≥ λ, j = 1, . . . , n} , (7.3)

and λ is the constant depending on s and δ, obtained in Lemma 7.2.

Assuming Lemmata 7.2 and 7.3, the proof of Theorem 7.1 follows the same line of the 
proofs of [22, C.3] and [9, Theorem 7.3]. We give here the proof, with some additional 
details, for the reader’s convenience.

Proof of Theorem 7.1. Let us fix δ > 0, γ > 0 and s ≥ 0 and let us choose positive 
constants Rs and εs, as in Theorem 5.1.

Because νε is an invariant measure for the Markov process generated by equation (4.1)
and the set 

{
x ∈ H : dist(x, Ks) ≥ δ} is closed and hence a Borel subset of H, we infer 

that

νε
({

x ∈ H : dist(x,Ks) ≥ δ}
)

=
∫
H

P (dist (uy
ε(t),Ks) ≥ δ) νε(dy) (7.4)

=
∫

Bc
H(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ) νε(dy)

+
∫

BH(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ) νε(dy).

Thanks to Theorem 5.1, for any ε ≤ εs we have

∫
Bc

H(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ) νε(dy) ≤ e− s

ε . (7.5)

Now, in view of Lemma 7.3, we can pick n̄ ∈ N such that

u ∈ HRs,s,δ(n̄) =⇒ Sn̄(u) ≥ s.
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Since the set HRs,s,δ(n̄) is closed in C([0, n]; H), and since by Theorem 4.2 the family 
{uy

ε}ε>0 satisfies the large deviation principle in C([0, n]; H) uniformly with respect to 
y ∈ BH(0, Rs), we infer that there exists ε1 > 0 such that

sup
y∈BH(0,Rs)

P (uy
ε ∈ HRs,s,δ(n̄)) ≤ e−

s−γ/2
ε , ε ≤ ε1. (7.6)

This implies that for ε ∈ (0, ε1),∫
BH(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ, uy

ε ∈ HRs,s,δ(n̄)) νε(dy) ≤ e−
s−γ/2

ε .

Thus, for ε ∈ (0, ε1),∫
BH(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ) ≤ e−

s−γ/2
ε (7.7)

+
∫

BH(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ, uy

ε /∈ HRs,s,δ(n̄)) νε(dy).

Thus we only have to deal with the second integral on the RHS of (7.7).
Let now fix t ≥ n̄, ε ∈ (0, εs ∧ ε1) and y ∈ BH(0, Rs). In view of the definition of 

Hr,s,δ(n̄), we have that

{u ∈ C([0, n]; H), |u(0)|H ≤ r} \Hr,s,δ(n) =
n⋃

j=1
{u ∈ C([0, n]; H), |u(j)|H < λ} . (7.8)

Therefore, because |uy
ε(0)|H = |y|H ≤ Rs, we infer that

{
ω ∈ Ω : dist

(
uy
ε(t),Ks

)
≥ δ, uy

ε /∈ HRs,s,δ(n̄)
}

=
n⋃

j=1

{
ω ∈ Ω : dist

(
uy
ε(t),Ks

)
≥ δ, |uy

ε(j)|H < λ
}
.

Moreover, by the Markov property of the process uy
ε , we infer that if P (τ, t, dz), 

0 ≤ τ ≤ t, is the transition probability function corresponding to the Markov process 
uy
ε(t), t ≥ 0 and y ∈ H, then

P

(
dist
(
uy
ε(t),Ks

)
≥ δ, |uy

ε(j)|H < λ
)

=
∫

{|uy
ε (j)|H<λ}

P (j, y, dz)P
(
dist(uz

ε(t− j),Ks) ≥ δ
)

(7.9)

≤ sup P
(
dist(uz

ε(t− j),Ks) ≥ δ
)
. (7.10)
|z|H<λ
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Therefore,

∫
{|y|H≤Rs}

P (dist (uy
ε(t),Ks) ≥ δ, uy

ε /∈ HRs,s,δ(n̄)) νε(dy)

≤
n̄∑

j=1
sup

z∈BH(0,λ)
P (dist (uz

ε(t− j),Ks) ≥ δ) .
(7.11)

Next, in order to estimate the RHS of the last equality, we fix z ∈ BH(0, λ) and define 
two auxiliary sets Ks(λ, t) and K̃s(z, t) by

Ks(λ, t) := {u ∈ C([0, t]; H) : St(u) ≤ s, |u(0)|H ≤ λ} ,

and

K̃s(z, t) := {u ∈ C([0, t]; H) : St(u) ≤ s, u(0) = z} .

Since, |z|H ≤ λ, we observe that

K̃s(z, t) ⊂ Ks(λ, t).

Moreover, according to Lemma 7.2, there exists T̄ > 0 such that for any T ≥ T̄

ϕ ∈ Ks(λ, T ) =⇒ dist(ϕ(T ),Ks) ≤
δ

2 .

In what follows we fix t ≥ max{T̄ , ̄n}, and we prove that for any u ∈ C([0, t]; H) such 
that

distC([0,t];H)(u,Ks(λ, t)) <
δ

2 , (7.12)

we have

dist(u(t),Ks) < δ.

Indeed, if (7.12) holds, then there exists ϕ ∈ Ks(λ, t) such that

distC([0,t];H)(u, ϕ) < δ

2 ,

so that |u(t) − ϕ(t)|H < δ
2 . Hence, by the triangle inequality, we infer that

dist(u(t),Ks) ≤ |u(t) − ϕ(t)|H + dist(u(t),Ks) <
δ + δ = δ.
2 2
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Since, K̃s(z, t) ⊂ Ks(λ, t) we deduce that

P (dist (uz
ε(t),Ks) ≥ δ) ≤ P

(
distC([0,t];H) (uy

ε ,Ks(λ, t)) >
δ

2

)

≤ P

(
distC([0,t];H)

(
uz
ε, K̃s(z, t)

)
>

δ

2

)
.

Next, as the set
{
u ∈ C([0, t]; H) : distC([0,t];H) (uε,Ks(y, t)) ≥

δ

2

}
is closed in C([0, t]; H), and, by Theorem 4.2, the family {uz

ε}ε>0 satisfies the large 
deviation principle in C([0, t]; H) uniformly with respect to z ∈ BH(0, λ), we infer that 
there exists ε2(t) > 0 such that

sup
z∈BH(0,λ)

P

(
distC([0,t];H) (uz

ε,Ks(y, t)) >
δ

2

)
≤ e−

s−γ/2
ε , ε ≤ ε(t).

Therefore, if we define

ε3 := min{ε2(t− 1), . . . , ε2(t− n̄), εs, ε1},

due to (7.4), (7.5), (7.7) and (7.11), we deduce that for ε ≤ ε3,

νε (x ∈ H : dist(x,K(s)) ≥ δ)

≤ e− s
ε + (1 + n̄)e−

s−γ/2
ε = e− s

ε

(
1 + (1 + n̄)e−

γ/2
ε

)
.

This clearly implies (7.1), if we take ε0 sufficiently small. �
8. Proof of Lemmata 7.2 and 7.3

Proof of Lemma 7.2. Suppose that there exist δ > 0 and s > 0 such that for every n ∈ N

there exists a function zn ∈ C([−n, 0]; H) with

S−n(zn) ≤ s, distH(zn(0),Ks) ≥ δ, (8.1)

and

βn := |zn(−n)|2H ↘ 0, as n → ∞. (8.2)

We will show that this leads to a contradiction.
Note that for every n ∈ N, the function zn satisfies the following a priori inequality

sup
s∈[−n,0]

|zn(s)|2H +
0∫
|zn(s)|2V ds ≤ |zn(−n)|2H +

0∫
|fn(s)|2V ′ ds, (8.3)
−n −n



1918 Z. Brzeźniak, S. Cerrai / Journal of Functional Analysis 273 (2017) 1891–1930
where

fn(s) := H(zn)(s) = z′n(s) + Azn(s) + B(zn(s), zn(s)), s ∈ (−n, 0).

Therefore, in view of inequality (4.6), by conditions (8.1) and (8.2), we infer that there 
exists c > 0 such that

sup
s∈[−n,0]

|zn(s)|2H +
0∫

−n

|zn(s)|2V ds ≤ βn + c s.

Moreover, by inequality (3.6), there exists a constant c > 0 such that

|
√
· + n zn(·)|2L∞(−n,0;V) + |

√
· + n zn(·)|2L2(−n,0;D(A))

≤ c exp
[
c
(
|zn(−n)|4H + |fn|4L2(−n,0;V′)

)]
×
(
|zn(−n)|2H + |fn|2L2(−n,0;V′) + n|fn|2L2(−n,0;H)

)
.

(8.4)

If s ∈ [−n
2 , 0], we have s + n ≥ n

2 and therefore, from (8.4), we get

n

2

(
|zn|2L∞(−n

2 ,0;V) + | zn|2L2(−n
2 ,0;D(A))

)

≤ c exp
[
c
(
|zn(−n)|4H + |fn|4L2(−n,0;V′)

)]
×
(
|zn(−n)|2H + |fn|2L2(−n,0;V′) + n|fn|2L2(−n,0;H)

)
.

This implies that there exists a constant c2 = c2(s, |z1(−1)|2H) such that

|zn|L∞(−n
2 ,0;V) + | zn|L2(−n

2 ,0;D(A)) ≤ c2, n ∈ N. (8.5)

Moreover, this implies that there exists a constant c3 > 0 such that

|z′n(·)|L2(−n
2 ,0;H) ≤ c3. (8.6)

Indeed, since for n ∈ N,

z′n(t) = fn(t) − Azn(t) −B(zn(t), zn(t)), t ∈ (−n

2 , 0),

we infer that

|z′n|L2(−n
2 ,0;H)

≤ |fn|L2(−n
2 ,0;H) + |Azn|L2(−n

2 ,0;H) + |B(zn, zn)|L2(−n
2 ,0;H)

≤ c fn|2 2 n + c |zn|2 2 n + |B(zn, zn)| 2 n + 1.

(8.7)
L (− 2 ,0;H) L (− 2 ,0;D(A)) L (− 2 ,0;H)
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Next, from inequality (2.10), we deduce that

|B(zn, zn)|2L2(−n
2 ,0;H) ≤ |zn|L∞(−n

2 ,0;H)|zn|L∞(−n
2 ,0;V)|zn|L2(−n

2 ,0;V)|zn|L2(a,b;D(A)).

Thanks to (8.3) and (8.5), this implies that for some constant c > 0

|B(zn, zn)|L2(−n
2 ,0;H) ≤ c, n ∈ N.

Hence inequality (8.6) follows, due to (8.7) and (8.5).
Now, let us fix k ∈ N. Notice that if n ≥ 2k then [−k, 0] ⊂ [−n

2 , 0]. We can consider 
the sequence {zn}∞n=2k, or more precisely, the sequence of restrictions of that sequence 
to the time interval [−k, 0]. According to (8.3), (8.5) and (8.6), this sequence satisfies

sup
r∈[−k,0]

|zn(r)|2H +
0∫

−k

|zn(r)|2V dr ≤ βn + c s

and

|zn|2L∞(−k,0;V) + | zn|2L2(−k,0;D(A)) + |z′n|L2(−k,0;H) ≤ c.

Moreover, as S−n(zn) ≤ s, for any n ∈ N we have

|fn|L2(−k,0;D(A
α
2 )) ≤

√
2s.

Hence, by a standard compactness argument, (compare with the first method of proof 
of Theorem 6.1 in [18, page 71 onwards] and the proof of Theorem III.3.10 from [25]), 
for each fixed k ∈ N there exist two subsequences

{zknj
}∞j=1 ⊆ {zn}∞n=2k and {fk

nj
}∞j=1 ⊆ {fn}∞n=2k,

and two functions fk ∈ L2(−k, 0, H) and uk ∈ C([−k, 0]; V) ∩ L2(−k, 0; D(A)), with 
Dtu

k ∈ L2(−k, 0; H), such that, as j → ∞,

zknj
→ uk, weakly in L2(−k, 0;D(A)) and strongly in L2(−k, 0; V) ∩ C([−k, 0]; H),

and

fk
nj

→ fk, weakly in L2(−k, 0;D(Aα
2 )),

uk satisfies

Dtu
k + Auk + B(uk, uk) = fk on (−k, 0),
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and

|uk|2C([−k,0];H) ≤ c s, |fk|2
L2(−k,0;D(A

α
2 ))

≤ 2s.

Moreover, by an inductive argument, the sequences {zknj
}∞j=1 and {fk

nj
}∞j=1 can be chosen 

in such a way that, for any k ∈ N, the restrictions of uk+1 and fk+1 to (−k, 0) are equal 
to uk and fk, respectively.

This allows us to define two functions u and f on the interval (−∞, 0) such that for 
every k, the restrictions of u and f to (−k, 0) are equal to uk and fk, respectively. These 
functions u and f satisfy, for every k ∈ N,

Dtu + Au + B(u, u) = f on (−k, 0),

and

|u|2C([−k,0];H) ≤ c s, |f |2
L2(−k,0;D(A

α
2 ))

≤ 2s.

The last of these properties implies that f ∈ L2(−∞, 0; D(A β
2 )) and

|f |2
L2(−∞,0;D(A

β
2 ))

≤ 2s.

Moreover

Dtu + Au + B(u, u) = f on (−∞, 0),

so that S−∞(u) ≤ s. Finally, due to (8.2), there exists a sequence {tn} ↓ −∞ such that

lim
n→∞

|u(tn)|H = 0.

Therefore, by Lemma 3.7 we infer that u ∈ X . Thus, thanks to the characterization of 
U given in equality (4.13) in Theorem 4.4, we can conclude that U(u(0)) ≤ s, so that 
u(0) ∈ Ks.

On the other hand,

lim
j→∞

z1
nj

= u, in C([−1, 0]; H),

and, by our assumptions, distH(zn(0), Ks) ≥ δ. Hence

distH(u(0),Ks) ≥ δ

which contradicts the fact that u(0) ∈ Ks. �
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Proof of Lemma 7.3. Let us assume that there exist s > 0, δ > 0 and r > 0 such that 
for every n ∈ N there exists un ∈ Hr,s,δ(n) such that

Sn(un) ≤ s + 1.

In particular, due to (3.2), we have

|un|C([0,n];H) ≤ c√2(s+1) (1 + r) =: cs,r, n ∈ N. (8.8)

Now, for any k ∈ N, we define

γk := inf {Sk(u) ; u ∈ C([0, k]; H), |u(0)|H ≤ cs,r ∧ r, |u(k)|H ≥ λ} .

If we show that there exists k̄ ∈ N such that γk̄ > 0, then, due to (8.8), we have

Snk̄(unk̄) ≥ nγk̄, n ∈ N,

which contradicts the fact that Snk̄(unk̄) ≤ s + 1. Therefore, in order to conclude our 
proof, we show that there exists some k̄ ∈ N such that γk̄ > 0.

For any x ∈ H, we denote by zx(t) the solution of the problem

z′x(t) + Azx(t) + B(zx(t), zx(t)) = 0, zx(1) = x.

According to (3.3), there exists some integer k̄ ≥ 1 such that

|x|H ≤ cs,r =⇒ |zx(t)|H ≤ λ

2 , t ≥ k̄. (8.9)

We show that, for such k̄, it holds γk̄ > 0. Actually, if γk̄ = 0, then there exists a 
sequence

{vn}n∈ N ⊂
{
u ∈ C([0, k̄]; H) ; |u(0)|H ≤ cs,r ∧ r, |u(k)|H ≥ λ

}
,

such that

lim
n→∞

Sk̄(vn) = 0. (8.10)

Thus, there exists n̄ ∈ N such that Sk̄(vn) ≤ s + 1, for any n ≥ n̄ and hence, according 
to (8.8), |vn(1)|H ≤ cs,r, for any n ≥ n̄. Moreover, thanks to (3.6), there exists a constant 
c̃s,r,k̄ such that

|vn|L∞(1,k̄;V) ≤ c̃s,r,k̄, n ≥ n̄. (8.11)
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This means, in particular, that there exists a subsequence {vnj
}j∈ N ⊂ {vn}n∈ N and 

x̄ ∈ H such that

lim
j→∞

|vnj
(1) − x̄|H = 0. (8.12)

Since |vn(1)|H ≤ cs,r, it follows that |x̄|H ≤ cs,r, and then, due to (8.9), it follows that

|zx̄(k̄)|H ≤ λ

2 . (8.13)

Now, as a consequence of (8.10), for every n ∈ N there exists fn ∈ L2(0, ̄k; H) such that

v′n(t) + Avn(t) + B(vn(t), vn(t)) = fn(t),

and

lim
n→∞

|fn|L2(0,k̄;H) = 0.

According to (8.12), this implies that

lim
j→∞

|vnj
− zx̄|C([1,k̄];H) = 0,

so that |zx̄(k̄)|H ≥ λ, which contradicts (8.13). �
Appendix A. Behavior of the solutions of the Navier–Stokes equations for large 
negative times

In our paper with Mark Freidlin [3] we proved the following two results, see Proposi-
tions A.1 and A.2, for the general 2-D Navier–Stokes Equations. We formulate them in 
way that does not need to use special notation used by us.

Proposition A.1. Assume that z ∈ C((−∞, 0]; H) is such that

lim
t→−∞

|z(t)|H = 0 (A.1)

and S−∞(z) < ∞, i.e.

0∫
−∞

|z′(t) + Az(t) + B(z(t), z(t)) |2H dt < ∞. (A.2)

Then, we have z(0) ∈ V ,

lim |z(t)|V = 0, (A.3)

t→−∞
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and

0∫
−∞

|Az(t)|2H dt +
0∫

−∞

|z′(t)|2H dt < ∞. (A.4)

Moreover, there exists a continuous and strictly increasing function ϕ : [0, ∞) → [0, ∞)
such that ϕ(0) = 0 and, if z satisfying condition (A.1) is a solution to the problem

z′(t) + Az(t) + B(z(t), z(t)) = f(t), t ≤ 0, (A.5)

with f being an element of L2(−∞, 0; H), then

|z(0)|2V +
0∫

−∞

|Az(t)|2H dt +
0∫

−∞

|z′(t)|2H dt ≤ ϕ(
0∫

−∞

|f(t)|2H dt). (A.6)

Proposition A.2. Assume that α ∈ (0, 1/2). If a function z ∈ C((−∞, 0]; H), satisfying 
condition (A.1), satisfies also

0∫
−∞

|z′(t) + Az(t) + B(z(t), z(t)) |2
D(A

α
2 )

dt < ∞, (A.7)

we have

z(0) ∈ D(Aα
2 + 1

2 ), (A.8)

lim
t→−∞

|z(t)|
D(A

α
2 + 1

2 )
= 0, (A.9)

and

0∫
−∞

|Aα
2 +1z(t)|2H dt +

0∫
−∞

|Aα
2 z′(t)|2H dt < ∞. (A.10)

Moreover, there exists a continuous and strictly increasing function ϕα : [0, ∞) → [0, ∞)
such that ϕα(0) = 0 and if z, satisfying condition (A.1), is a solution to problem (A.5)
with f ∈ L2(−∞, 0; D(Aα

2 )), then

|z(0)|2
D(A

α
2 + 1

2 )
+

0∫
−∞

|Aα
2 +1z(t)|2H dt +

0∫
−∞

|Aα
2 z′(t)|2H dt (A.11)

≤ ϕα(|f |2
L2(−∞,0);D(A

α
2 )

). (A.12)
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The reason for the restriction α ∈ (0, 1/2) in Proposition A.2 lies in the fact that we 
have used continuity of the Leray–Helmholtz projection P from Hα(O, R2) into D(Aα/2), 
see Proposition 2.1 in [3] (and (2.6) in the current paper).

The aim of this section is show that in the case of the 2-D NSEs with periodic boundary 
conditions, i.e. NSEs on a 2-dimensional torus, Proposition A.2 holds true for any α > 0. 
Of course we will only need to consider the case α ≥ 1

2 . The main result in this section 
is as follows.

Proposition A.3. Assume that α > 0. If z satisfies conditions (A.1) and (A.7), then it 
satisfies (A.8), (A.9), and (A.10) as well.

Moreover, there exists a continuous and strictly increasing function ϕα : [0, ∞) →
[0, ∞) such that ϕα(0) = 0 and if z, satisfying condition (A.1), is a solution to problem 
(A.5), with f ∈ L2(−∞, 0; D(Aα

2 )), then inequality (A.11) holds as well.

The following proof is an adaptation of the proof of Proposition 2.2 from [3]. In fact, 
we follow the lines quite literary. As mentioned earlier, we only need to consider the case 
α ∈ [1/2, ∞). Since the estimates for the nonlinear term B given in Propositions 2.3 and 
2.4 are different for α ≤ 1 and α > 1 we will have to consider two cases: α ∈ [1/2, 1] and 
α ∈ (1, ∞). If α ∈ [1/2, 1] then we can use inequality (2.15) with s = 2. In this case the 
proof from [3] is virtually the same. Note however, that if α > 1 and inequality (2.17)
holds, this does not imply that inequality (2.15) with s = 2 holds.

Proof of Proposition A.3. In the whole proof all the norms and scalar products are in H.
For the readers convenience and the completeness of the results we will prove our 

result in the special case

α = 1

So, let us fix φ ∈ D(A) and a function z satisfying conditions (A.1) and (A.7). 
Following the methods from the proof of Proposition 2.1 from [3] it is sufficient to prove 
(A.8), (A.9), and (A.10).

Since the function z satisfies inequality (A.6), we can find a decreasing sequence {sn}
such that sn ↘ −∞, z(sn) ∈ D(A), n ∈ N and

lim
n→∞

|Az(sn)|H = 0. (A.13)

Arguing as in the proof of [3, Proposition 3.3], we infer that the function |Az(·)|2H is 
absolutely continuous and satisfies the following identity on (−∞, 0]

1
2
d

dt
|Az(t)|2H + |A 3

2 z(t)|2H = −(B(z(t), z(t)),A2z(t))H + (f(t),A2z(t))H. (A.14)

In view of inequality (2.15), with s = 2 and α = 1, we infer that there exists c > 0 such 
the following inequality is satisfied for f ∈ D(A 1

2 )
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−(B(z, z),A2z) + (Af,A2z) = −(A 1
2B(z, z),A 3

2 z) + (A 1
2 f,A 3

2 z)

≤ 1
2 |A

3
2 z|2 + c |Az|4 + |A 1

2 f |2, z ∈ D(A).

Hence, we infer that on (−∞, 0], we have

d

dt
|Az(t)|2H + |A 3

2 z(t)|2H ≤ c |Az(t)|2H|Az(t)|2H + 2|A 1
2 f(t)|2H. (A.15)

Therefore, by the Gronwall Lemma, we get

|Az(t)|2H ≤ |Az(s)|2Hec
∫ t
s
|Az(r)|2H dr (A.16)

+ 2
t∫

s

|A 1
2 f(r)|2Hec

∫ t
r
|Az(ρ)|2H dρ dr, −∞ < s ≤ t ≤ 0.

Note that by inequality (A.6) we have

sup
n≥1

t∫
sn

|Az(r)|2H dr ≤ ϕ(|f |2), t ≤ 0,

where for the sake of brevity, we set |f |L2(−∞,0;H) = |f |.
Hence, using inequality (A.16) with s = sn from (A.13) and then taking the limit as 

n → ∞, we infer that

|Az(t)|2H ≤ 2
t∫

−∞

|A 1
2 f(r)|2Hec

∫ t
r
|Az(ρ)|2H dρ dr, t ≤ 0. (A.17)

Therefore, we conclude that

sup
t≤0

|Az(t)|2 ≤ 2eCϕ(|f |2)
0∫

−∞

|A 1
2 f(r)|2H dr. (A.18)

Moreover, by assumption (A.7), definition (A.5) of the function f and inequality (A.6)
we have

0∫
−∞

|A 1
2 f(r)|2ec

∫ 0
r
|Az(ρ)|2H dρ dr ≤ ec

∫ 0
−∞ |Az(ρ)|2H dρ

0∫
−∞

|A 1
2 f(r)|2 dr < ∞,

we infer that

lim
t→−∞

t∫
|A 1

2 f(r)|2H exp ec
∫ t
r
|Az(ρ)|2H dρ dr = 0.
−∞
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Hence, due to (A.17), we have that (A.9) holds for α = 1, i.e.

lim
t→−∞

|z(t)|2D(A) = 0.

Now, let us prove the first one of inequalities (A.10), with α = 1. For this aim, let us 
observe that from (A.15) we deduce that

|Az(0)|2H +
0∫

−∞

|A 3
2 z(t)|2H dt ≤ c

0∫
−∞

|Az(t)|4H dt + 2
0∫

−∞

|A 1
2 f(t)|2H dt

≤ c sup
t≤0

|Az(t)|2H
0∫

−∞

|Az(t)|2H dt + 2
0∫

−∞

|A 1
2 f(t)|2H dt.

Taking into account inequalities (A.18) and (A.6), we infer that

|Az(0)|2H +
0∫

−∞

|A 3
2 z(t)|2H dt ≤ 2

0∫
−∞

|A 1
2 f(t)|2H dt (A.19)

+ 2cϕ(|f |2)ecϕ(|f |2)
0∫

−∞

|A 1
2 f(r)|2H dr,

and this concludes the proof of the first part of inequalities (A.10).
In order to prove the second of inequalities (A.10) (with α = 1), i.e.

0∫
−∞

|A 1
2 z′(t)|2H dt < ∞

by the maximal regularity of the linear Stokes problem, it is enough to show that

0∫
−∞

|A 1
2B(z(t), z(t))|2H dt < ∞.

According to inequality (2.15) (with s = 2 and α = 1), we get, similarly to (A.19), 
the following estimate

0∫
−∞

|A 1
2B(z(t), z(t))|2H dt ≤ C

0∫
−∞

|Az(t)|4H dt (A.20)

≤ 2cϕ(|f |2)ecϕ(|f |2)
0∫

−∞

|A 1
2 f(r)|2H dr.

The proof, for α = 1, is now complete.
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The case α > 1 has to be treated very carefully. To this purpose, we first consider 
the case α ∈ (1, 2]. We fix φ ∈ D(Aα+1

2 ) and a function z ∈ C((−∞, 0]; H), such that 
z(0) = φ, satisfying conditions (A.1) and (A.7), i.e.

lim
t→−∞

|z(t)|H = 0,

and

0∫
−∞

|f(t)|2
D(A

α
2 )
dt :=

0∫
−∞

|z′(t) + Az(t) + B(z(t), z(t)) |2
D(A

α
2 )

dt < ∞.

Since the assumptions in the present proposition are stronger than the assumptions of 
Propositions A.1 and A.2, we can freely use the results from their proofs, see [3].

As before, it is sufficient to prove that z satisfies conditions (A.8), (A.9), and (A.10). 
We notice that, due to inequality (A.10) with α = 1, we can find a decreasing sequence 
{sn} such that sn ↘ −∞ and

lim
n→∞

|A 3
2 z(sn)|H = 0. (A.21)

Hence, as α ≤ 2, we get

lim
n→∞

|Aα+1
2 z(sn)|H = 0.

Therefore we can deduce that the function |Aα+1
2 u(t)|2H is absolutely continuous and 

satisfies the following identity on (−∞, 0]

1
2
d

dt
|Aα+1

2 z(t)|2H + |Aα
2 +1z(t)|2H = −(B(z(t), z(t)),Aα+1z(t)) + (f(t),Aα+1z(t)) (A.22)

By inequality (2.17), since α2 ≤ 3
2 , we infer that

−(B(z, z),Aα+1z) = (Aα
2 B(z, z),A1+α

2 z) ≤ c|Aα
2 z|H|A

α+1
2 z|H|A1+α

2 z|H

≤ 1
4 |A

1+α
2 z|2H + c|Aα

2 z|2H|A
α+1

2 z|2H ≤ 1
4 |A

1+α
2 z|2H + c|A 3

2 z|2H|A
α+1

2 z|2H.

Due to (A.22), this implies that

d

dt
|Aα+1

2 z(t)|2H + |Aα
2 +1z(t)|2H ≤ c|A 3

2 z(t)|2H|A
α+1

2 z(t)|2H + 2|Aα
2 f(t)|2H.

Therefore, by the Gronwall Lemma, for any −∞ < s ≤ t ≤ 0 we get
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|Aα+1
2 z(t)|2H ≤ |Aα+1

2 z(s)|2H exp

⎛
⎝c

t∫
s

|A 3
2 z(r)|2H dr

⎞
⎠ (A.23)

+ 2
t∫

s

|Aα
2 f(r)|2H exp

⎛
⎝c

t∫
r

|A 3
2 z(ρ)|2H dρ

⎞
⎠ dr.

Note that by inequality (A.12) with α = 1 we have

sup
n≥1

t∫
sn

|A 3
2 z(r)|2H dr ≤ ϕ1(|f |21

2
),

where we use notation shortcut |f |α/2 = |f |
L2(−∞,0);D(A

α
2 ). Hence, using inequality 

(A.23) with s = sn from (A.21) and then taking the limit as n → ∞, we infer that

|Aα+1
2 z(t)|2H ≤ 2

t∫
−∞

|Aα
2 f(r)|2Hec

∫ t
r
|A

3
2 z(ρ)|2H dρ dr, t ≤ 0, (A.24)

so that

sup
t≤0

|Aα+1
2 z(t)| ≤ 2

0∫
−∞

|Aα
2 f(r)|2H dre

ϕ1(|f |21
2
)
= 2|f |2α

2
e
ϕ1(|f |21

2
)
. (A.25)

Moreover, as

0∫
−∞

|Aα
2 f(r)|2Hec

∫ t
r
|A

3
2 z(ρ)|2H dρ dr < ∞,

we have that

lim
t→−∞

t∫
−∞

|Aα
2 f(r)|2Hec

∫ t
r
|A

3
2 z(ρ)|2H dρ dr = 0,

and (A.9) follows from (A.24).
Next, we observe that, due to (A.15),

|Aα+1
2 z(0)|2H +

0∫
−∞

|Aα+2
2 z(t)|2H dt ≤ c

0∫
−∞

|A 3
2 z(t)|2|Aα+1

2 z(t)|2H dt

+2
0∫
|Aα

2 f(t)|2H dt ≤ c sup
t≤0

|Aα+1
2 z(t)|2H

0∫
|A 3

2 z(t)|2H dt + 2|f |2α
2
.

−∞ −∞
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Taking into account inequalities (A.25) and (A.10) with α = 1, we infer that

|Aα+1
2 z(0)|2H +

0∫
−∞

|Aα+2
2 z(t)|2H dt ≤ 2 |f |2α

2
(A.26)

+ c|f |2α
2
e
ϕ1(|f |21

2
)
ϕ1(|f |21

2
)

and this concludes the proof of the first part of inequality (A.10).
Invoking the maximal regularity of the Stokes evolution equation, in order to prove 

the second inequality in (A.10), it is enough to show that

0∫
−∞

|Aα
2 B(z(t), z(t))|2H dt < ∞.

According to inequalities (2.17), (A.25) and (A.10) with α = 1, we have

0∫
−∞

|Aα
2 B(z(t), z(t))|2H dt ≤ c

0∫
−∞

|Aα
2 z(t)|2H|A

α+1
2 z(t)|2H dt (A.27)

≤ c sup
t≤0

|Aα+1
2 z(t)|2H

0∫
−∞

|A 3
2 z(t)|2H dt

≤ |f |2α
2
eϕ(|f |2α/2)ϕ1(|f |21

2
).

The proof in the case α ∈ (1, 2] is now complete. A simple extension of the last argument 
and mathematical induction with respect to the integer part of α can provide a complete 
proof for all α ≥ 0. �
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