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1. Introduction and Historical Highlights

Algorithmic puzzles are puzzles that require design or analysis 
of algorithms. In other words, these are puzzles that involve, 
explicitly or implicitly, clearly defined procedures for solving 
them. We start with a brief review of the long history of algo-
rithmic puzzles, highlighting its major milestones and their 
applications. In Sections 2 and 3, respectively, we discuss two 
ways to classify algorithmic puzzles: by the question they 
pose and by the generality of their input. Section 4 deals with 
cognitive science applications of algorithmic puzzles, with an 
emphasis on insight problem solving. Possible future work is 
discussed in Section 5; there we list 12 algorithmic puzzles 
that could be useful for research in insight problem solving 
and suggest 6 experiments dealing with other issues such as 
solving puzzles by brute force and working backwards, trans-
fer questions, and a board coloring impact. We end the paper 
with a summary of its content in the “Conclusion” section.

Three river-crossing puzzles in Propositiones ad Acuendos 
Juvenes (Problems to Sharpen Youths),1 attributed to Alcuin 
of York (ca. 735–804 CE), one of the leading scholars of the 
Carolingian Renaissance, have commonly been pointed to as 
the earliest examples of algorithmic puzzles. The most well 
known of the three is the Wolf, Goat, and Cabbage problem, 
whose variations have been found not only in other Euro-
pean countries but also in several African cultures (Ascher, 
1990). But Petković (2009, p. 2) mentioned that what is now 
known as the Josephus Problem appeared in Ambrose of 
Milan’s book ca. 370 CE. A version of this puzzle is quoted 
below in Section 2.

1. Singmaster and Hadley (1992) provided an annotated transla-
tion of Propositiones ad Acuendos Juvenes from Latin to English.

The next important algorithmic puzzle appeared in Libra 
Abaci (The Book of Calculation), published in 1202 by Leon-
ardo of Pisa, known later by his nickname Fibonacci:

A certain man had one pair of rabbits together in a 
certain enclosed place, and one wishes to know how 
many are created from the pair in one year when it is 
the nature of them in a single month to bear another 
pair, and in the second month those born to bear also. 
(Sigler, 2002, p. 404)

The solution to this puzzle is given by a remarkable 
sequence called the Fibonacci numbers by the prominent 
French mathematician Édouard Lucas (1842−1891): 1, 1, 
2, 3, 5, 8, . . . Not only do the Fibonacci numbers appear 
unexpectedly in the natural world, but they also have many 
interesting mathematical properties that continue to be dis-
covered more than 800 years since Fibonacci’s time (see, for 
example, articles in the Fibonacci Quarterly published since 
1963). Also, quite a few recreational problems have been 
designed based on properties of this remarkable sequence 
(e.g., Knott, 2017).

The next milestone in the history of algorithmic puzzles 
had to wait for the great Swiss mathematician Leonhard Euler 
(1707−1783). In 1735, Euler proved that it was impossible 
to walk through all the seven bridges of Königsberg, an old 
Prussian city on the banks of the Pregel River, without cross-
ing the same bridge more than once (Figure 1, see next page). 

Using modern terminology, Euler reduced the problem to 
a question about the existence of a path in a graph that tra-
verses all its edges exactly once. The solution to this puzzle is 
considered the cornerstone of both graph theory and topol-
ogy. Among numerous modern applications of graph theory 
in particular, one of the more important is neural networks, 
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which have advanced studies of brain functions and major 
neurological diseases (e.g., Bullmore & Sporne, 2009).

A century later, the prominent Irish mathematician and 
astronomer William Hamilton (1805−1865) invented the 
Icosian Game to illustrate results of his algebraic discoveries. 
The object of this one-player game was to find a path visiting 
all the vertices of a dodecahedron exactly once before return-
ing to the path’s starting vertex (Figure 2).

When posed for an arbitrary graph, the existence prob-
lem of such a path, called a Hamiltonian cycle, has turned 
out to be very difficult. (In technical terms it is known to 
be NP-complete [Garey & Johnson, 1979].) The complexity 
of the Hamiltonian cycle problem is particularly surprising, 
because the similar question about the existence of a cycle 
that traverses all the edges of a graph exactly once, called 
nowadays a Eulerian cycle, has a simple answer given by 
Euler himself.

In 1883, Éduoard Lucas invented a puzzle that he called 
the Tower of Hanoi.  It consists of three rods and a number 
of disks of different sizes that can slide onto any rod. Initially 
all the disks are on the first rod in order of size, the largest on 
the bottom and the smallest on top (Figure 3, see next page). 
The objective is to transfer all the disks to the third rod, using 

the second one as an auxiliary if necessary. Only one disk can 
be moved at a time, and it is forbidden to place a larger disk 
on top of a smaller one. 

The recursive algorithm solving the puzzle has provided 
an early example of an algorithmic problem with a straight-
forward recursive solution and no obvious nonrecursive 
solutions, although several nonrecursive algorithms were 
later discovered. The puzzle has also proved to be of great 
value for different experiments in human problem solving, 
which we are going to review briefly in Section 4.

The Game of Life, invented by the British American math-
ematician John Horton Conway and popularized by Martin 
Gardner in his October 1970 “Mathematical Games” col-
umn in Scientific American, ought to be considered the most 
important algorithmic puzzle of the 20th century. This soli-
taire game starts with a collection of “life” cells marked on 
an infinite two-dimensional board. After that, a sequence of 
new configurations called “generations” is obtained by the 
following rules, which are applied simultaneously to every 
cell in the current generation. Every cell interacts with its 
eight neighbors, which are the cells that are adjacent to it 
horizontally, vertically, or diagonally. To get a new genera-
tion, the following transitions occur:

Figure 1. 
The seven bridges of the old Königsberg and corresponding graph.

Figure 2. 
The board of the Icosian Game and one of its solutions.
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(i) Death by underpopulation. Any live cell with fewer 
than two live neighbors dies.

(ii) Death by overcrowding. Any live cell with more than 
three live neighbors dies.

(iii) Survival. A live cell with two or three live neigh-
bors lives on to the next generation.

(iv) Birth. Any dead cell with exactly three live neigh-
bors becomes a live cell. 

Depending on the initial configuration of life cells, the 
cells form various patterns—some of which are quite unex-
pected—throughout the course of the game. For example, 
the initial cell configuration, called the “glider” (Figure 4, 
left), descends diagonally one cell down and to the right in 
four subsequent generations. 

Surprisingly, the Game of Life has turned out to have the 
same computational power as a universal Turing machine: 
that is, it is theoretically as powerful as any computer with 
unlimited memory and no time constraints (Berlekamp, 
Conway, & Guy, 2004, Chapter 25). This has also demon-
strated that very complex patterns can emerge from the 
implementation of a few simple rules and led to the bur-
geoning area of study of such systems called the cellular 
automata theory.

Given their ancient history and proliferation of comput-
ers in all spheres of human endeavors in the last 50 years, it 
is surprising that algorithmic puzzles have been recognized 

as a distinct genre of puzzles only relatively recently. They 
were identified as such for the first time by A. K. Dewdney 
in his column in Scientific American, where he called them 
“algopuzzles” (Dewdney, 1987). Many of the puzzles pub-
lished by Dennis Shasha in his columns in the same pub-
lication and Dr. Dobb’s Journal were certainly algorithmic 
puzzles; Shasha (2002) called them “cyberpuzzles” in a col-
lection of puzzle-based stories.

Peter Winkler (2004) devoted a special section to algorith-
mic puzzles in his book of challenging mathematical puz-
zles. He explicitly used the term “algorithmic puzzles” and 
described them as puzzles in which a solver is typically pre-
sented with a “current situation,” a “target state,” and a set of 
“operations” that can be used to modify the situation (p. 77). 

A few years later, Dana Richards organized some of Martin 
Gardner’s columns in Scientific American in a four-part book 
(Gardner, 2006), each part covering a broad topic; one of the 
four was called “Algorithmic Puzzles and Games.” In a short 
introduction to this part of the book, Richards, the book’s 
editor, noted that “a large number of Gardner’s problems ask 
only how to solve a problem, so the puzzle is to devise an 
algorithm, not to use an algorithm” (p. 227). He included 
there a very broad range of puzzles, from situational conun-
drums to matchstick puzzles to chess problems.

Finally, in 2011 Anany and Maria Levitin published a 
book (Levitin & Levitin, 2011) devoted exclusively to algo-
rithmic puzzles. This collection contains 172 puzzles from 
very easy to quite hard; most of the puzzles are not new, 
but they are systematically considered from the algorithm 

Figure 3. 
The Tower of Hanoi puzzle for six disks.

Figure 4. 
A “glider” and its four subsequent generations.
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design and analysis perspective. The book also contains two 
tutorials on solving such puzzles.

Since it is natural to consider algorithmic puzzles as par-
ticular kinds of mathematical puzzles, we believe that algo-
rithmic puzzles should be well defined (e.g., Robertson, 
2017, p. 20). In particular, a solution to an algorithmic puzzle 
should not depend on a trick or a particular interpretation 
of the puzzle’s statement. Here is an example clarifying this 
exclusion. Gardner poses the following puzzle in his delight-
ful book aha! Insight:

There are ten glasses in a row: the first five are filled with 
Kinky Kola, the next five are empty. How many glasses 
does one need to move to make a row in which the full 
and empty glasses alternate? (Gardner, 1978, p. 7)

The answer, considered by Gardner as being based on ver-
bal quibble, is 2: pick up the second glass and pour its con-
tents into the seventh, and then pick up the fourth and pour 
into the ninth. But when Gardner continued with a discussion 
of the puzzle’s general case of an arbitrary even number of 
glasses, he preferred to discuss the number of glass switches to 
avoid the quibble. It should be admitted, though, that without 
this quibble the puzzle can hardly require an “Aha!” moment 
to be solved. A slightly more interesting generalization of this 
puzzle does not assume that n filled glasses are all to the left of 
n empty glasses in a row given (Levitin & Levitin, 2011, #23).

2. Classification of Algorithmic 
Puzzles by Their Question

While there are several ways to classify algorithmic puzzles, 
the most pertinent one for this paper’s subject is a taxonomy 
based on the question type posed by a puzzle. Here are the 
main types of such questions:

1.	 Design an algorithm solving a given puzzle (often in a 
minimum number of steps).

2.	 Show that a puzzle has no solution with operations 
allowed by the puzzle.

3.	 Find, for a given input, the output of a given algorithm.
4.	 Find an input yielding a required output of a given 

algorithm.
5.	 Find the number of steps made by a given algorithm 

to solve a puzzle in question.
By far the most common question posed by algorithmic 

puzzles is of the first type in this taxonomy. This category 
is broad enough to be subdivided into specific algorithm 
design strategies (also called “techniques” or “paradigms”) 
used in puzzle solutions:

These strategies were originally developed for design-
ing algorithms for important problems in computer science. 
Descriptions of these strategies and examples of their applica-
tion to solving puzzles can be found in three books (Backhouse, 
2011; Levitin, 2012; Levitin & Levitin, 2011) and the paper by 
Levitin & Papalaskari (2002) advocating a systematic utiliza-
tion of algorithmic puzzles in teaching algorithms. Of course, 
a required design strategy is usually not specified in a puzzle 
statement. In fact, a solver is not assumed to be aware of them, 
although such knowledge would certainly be very helpful. Fur-
ther, it is assumed without saying that whenever possible a puz-
zle should be solved more efficiently than by exhaustive search 
or its variations such as backtracking and branch and bound—
this is why we didn’t include them in the above list. 

There is one more strategy/heuristic that is used to solve 
several algorithmic puzzles: working backwards. Polya (1957) 
traced this strategy back to mathematicians of ancient Greece 
and paraphrased Pappus, who lived around 300 CE, as follows:

“In analysis, we start from what is required, we take it 
for granted, and we draw consequences from it, and 
consequences from the consequences, till we reach a 
point that we can use as starting point in synthesis. . . . 
This procedure we call analysis, or solution backwards, 
or regressive reasoning.” (p. 142)

Gardner (2006, Problem 9.8) gave an excellent example of 
a puzzle solved by working backwards:

A game of bridge starts with a standard 52-card deck 
dealt clockwise one card at a time by one of the four 
players sitting in a circle. A telephone call interrupts a 
player dealing the cards. When the player returns to the 
table, no one can remember where he had dealt the last 
card. Without learning the number of cards in any of 
the four partly dealt hands, or the number of cards yet 
to be dealt, how can the player continue to deal accu-
rately, everyone getting exactly the same cards they 
would have had if the deal had not been interrupted?

Other examples of algorithmic puzzles based on work-
ing backwards include Collating the Coins (Schuh, 1968, pp. 
17−19), Crowning the Checkers (Gardner, 2006, Problem 
10.4), Circle of Zeros and Ones (Nogin, 2014, p. 69), and Trap-
ping the Knight (Hess, 2009, #58). The last of these puzzles, 
along with Gardner’s Interrupted Bridge Game problem, is 
included in the puzzle sample we provide below as a potentially 
useful material for insight problem solving investigations.

The second type of algorithmic puzzles are those that have 
no solution. Typically, such puzzles are solved by finding an 
invariant, a property that is preserved by any operation allowed 
by the puzzle. If such a property holds for a puzzle’s input (initial 
state) but fails for its output (final state), the puzzle has no algo-
rithmic solution. Two kinds of invariants are encountered more 

decrease and conquer	 greedy
 divide and conquer	 dynamic programming
transform and conquer	 iterative improvement
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often than others in the algorithmic puzzle universe: coloring 
and parity. Coloring is indispensable for showing impossibility 
in many checkerboard and checkerboard-like problems. The 
most well known is the Mutilated Checkerboard puzzle, which 
asks whether it is possible to tile with 2×1 dominoes a standard 
8×8 checkerboard without two diagonally opposite corners; 
other examples can be found in Golomb’s (1994) monograph 
and in the collection by Levitin and Levitin (2011).

The other frequent invariant type is even/odd parity of some 
aspect of a puzzle. It can be the size of a board to be tiled, some 
number to be produced, and so on. The most famous are the par-
ity requirements for vertex degrees in a graph to make possible 
a unicursal traversal of the graph’s edges. It solves not only the 
famous Königsberg›s Bridges puzzle mentioned above in Section 
1 but also figure-tracing puzzles and some others (e.g., Levitin 
& Levitin, 2011). The other famous puzzle solved by the parity 
argument is the Fifteen puzzle, with the initial configuration of 
the tiles numbered sequentially from 1 to 15 except for the last 
two tiles, which are in reverse order (Slocum & Sonneveld, 2006). 
The puzzle’s objective of having all the tiles ordered sequentially 
is impossible to achieve from this configuration due to the per-
mutation parity argument (e.g., Levitin & Levitin, 2011, #145).

We should also mention that invariant ideas are sometimes 
used to prove that every sequence of operations reaches the tar-
get in the same number of steps or with the same result. The most 
well-known example is Breaking a Chocolate Bar (e.g., Winkler, 
2004, p. 82): find a minimum number of breaks needed to break 
an m×n rectangular chocolate bar into its constituent squares if 
you can pick up one piece and break it along any of its vertical or 
horizontal lines. Another example is Pile Splitting (e.g., Levitin 
& Levitin, 2011, #104a). Since there are very few puzzles of this 
kind, we have decided not to create a special category for them.

Puzzles that ask for an output of a given algorithm are rela-
tively rare but do include one of the most famous: Fibonacci’s 
Rabbits problem, mentioned already in Section 1. Another 
example of such a puzzle is the Locker Doors problem to 
determine which doors will be open after n passes along a 
row of n initially closed lockers if on the ith pass (i = 1, 2,  
. . . , n) every ith door is open if it was closed and closed if it 
was open (e.g., Levitin & Levitin, 2011, #79).

The Josephus Problem, named after the famous historian 
of the first century Flavius Josephus, provides an excellent 
example of puzzles that ask to find an input yielding a desired 
output of a specified algorithm:

During the Jewish-Roman war, he [Josephus] was among 
a band of 41 Jewish rebels trapped in a cave by the 
Romans. Preferring suicide to capture, the rebels decided 
to form a circle and, proceeding around it, to kill every 
third remaining person until no one was left. But Jose-
phus, along with an unindicted co-conspirator, wanted 
none of this suicide nonsense; so he [Josephus] quickly 

calculated where he and his friend should stand in the 
vicious circle. (Graham, Knuth, & Patashnik, 1989, p. 8) 

Two other examples are Conway’s Solitaire Army (Berle-
kamp, Conway, & Guy, 2004, pp. 821−823; Levitin & Levitin, 
2011, #132) and the Monkey and the Coconuts (e.g., Levitin 
& Levitin, 2011, #102). Questions about an initial configura-
tion that produces a desired result in the above-mentioned 
Conway’s Game of Life (e.g., Berlekamp, Conway, & Guy, 
2004, Chapter 25; Elran, 2012) fall into this category as well.

The last category in this taxonomy consists of puzzles ask-
ing to analyze the number of steps executed by a given algo-
rithm. Three very simple puzzles that have often been used in 
insight problem solving research—Socks, Frog in a Well, and 
Water Lilies (e.g., Dow & Mayer, 2004; Weisberg, 1995)—are 
examples of such algorithmic puzzles. The question about 
the total number of decimal digits needed to consecutively 
number an n-page book (e.g., Levitin & Levitin, 2011, #19) 
and Penny Distribution Machine (Levitin & Levitin, 2011, 
#120) provide others. Although step counting is central to 
the analysis of algorithms in computer science, there are rela-
tively few puzzles that fall into this category. 

3. Classification of Algorithmic 
Puzzles by Input Generality

The other taxonomy of algorithmic puzzles we want to 
mention here distinguishes between puzzles stated in their 
general form (e.g., find a lighter fake among n > 1 identical-
looking coins) as opposed to puzzles stated for a particular 
instance (e.g., find a lighter fake among eight identical- 
looking coins). Although computer scientists and mathema-
ticians prefer, as a rule, the general form of algorithmic puz-
zle statements, there are several reasons for specific instances 
as well. First, a particular instance can be a traditional form 
of a puzzle, even though the puzzle in question allows for 
a natural generalization. For example, many checkerboard 
puzzles are often stated for a standard 8×8 board.

Second, there are a few algorithmic puzzles that are usu-
ally stated for specific small sizes because solutions to those 
smaller instances contain a main idea behind the puzzle in 
question, whereas solutions to larger instances can be easily 
obtained once the small instance is solved. A good example of 
such a puzzle is the famous Nine Dots problem (Maier, 1930):

Given a 3×3 square of nine points in the upright square 
lattice, connect all of them by four straight lines with-
out lifting a pencil from the paper and without redraw-
ing any parts of the lines.2

2. Some cognitive science researchers prefer to ask for crossing 
nine dots of some physical size with just three rather than four 
lines, which requires an additional insight (Adams, 1974, p. 17; 
Batchelder & Alexander, 2012, Problem 3.6).
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The puzzle can be generalized to n × n points for any  
n ≥ 3, which can be crossed by 2n - 2 straight lines, but once 
the idea of going “outside the box” is perceived for n = 3, 
solving the puzzle’s instances for larger values of n poses little 
difficulty (Levitin & Levitin, 2011, #114).

Third, it might even happen that only a small instance of 
a puzzle is really interesting. For example, Guarini’s Puzzle 
(e.g., Gardner, 1978, p. 36) about exchanging positions of four 
knights, two white and two black, located at the corners of a 
3×3 chessboard can be generalized to an n × n board for any 
n ≥ 3, but its solutions for n > 3 are different and less interest-
ing than for n = 3. Also, larger instances of a puzzle may have 
no solutions at all (e.g., the classic Jealous Husbands puzzle 
for more than three couples and a two-person boat) or have 
much more difficult solutions (e.g., Bridge Crossing at Night, 
Levitin & Levitin, 2011, #7; Rote, 2002).

Finally, casual puzzle solvers usually feel more comfort-
able with particular instances of puzzles than with their most 
general statements possible. This is true even though par-
ticular numbers in a puzzle statement might complicate the 
solver’s task by forcing the solver to decide whether the solu-
tion hinges on some property of the numbers given. Con-
sider, for example, the Lighter False Coin puzzle:

Identify a lighter fake among n > 1 identical-looking 
coins using a minimum number of weighings on a bal-
ance scale without weights.

This puzzle is often posed for n = 8. Since 8 = 23, a solver 
may be led to believe that splitting the coins into two halves 
on three consecutive weighings is an optimal solution, which 
is incorrect: the problem can be solved in just two weigh-
ings starting with two groups of 3 coins each. For another 
example, we can again mention the Socks puzzle:

If you have black socks and brown socks in your drawer, 
mixed in the ratio of 4:5, how many socks will you have 
to take out to be sure of having a pair of the same color? 
(Sternberg & Davidson, 1982, p. 42)

It is easier to solve the more general version of having  
n > 2 socks of two colors, because the ratio given has no 
impact on the puzzle’s solution, making it harder to find. 
These are excellent examples of the general observation 
about problem solving made by Polya (1957), who called it 
inventor’s paradox: “the more general problem may be easier 
to solve” (p. 121).

Unlike mathematicians and computer scientists who are 
typically interested just in puzzle solutions, cognitive scientists 
are more concerned about explaining cognitive mechanisms 
behind the solving processes. It might well be that it is harder to 
study cognitive processes involved in solving general versions 
of algorithmic puzzles than those involved in solving their par-
ticular instances. Further, cognitive science researchers can’t 

expect typical subjects of their experiments to be familiar with 
algorithms well enough to solve algorithmic puzzles in their 
general versions. To alleviate this problem, a researcher could 
just pose a puzzle with a reasonably large particular value of its 
input: for example, Lighter False Coin for 100 coins. Then, just 
a number given as an answer should give the experimenter a 
firm clue whether the solver got the right idea about the opti-
mal algorithm for the problem: for each weighing, divide the 
remaining coins into three groups of as equal size as possible.

We would also like to point out that for some puzzles that 
can be stated for different values of their input size, a cru-
cial insight can be obtained by considering one or two small 
instances. This is, of course, an application of specialization 
heuristic, defined by Polya (1957) as “passing from the given 
set of objects to that of a smaller set, or just one object, con-
tained in the given set” (p. 190). Below are a few examples, 
starting with a simple river-crossing problem:

A detachment of n soldiers must cross a wide and 
deep river with no bridge in sight. They notice two 12- 
year-old boys playing in a rowboat by the shore. The 
boat is so tiny, however, that it can only hold two boys 
or one soldier. How can the soldiers get across the river 
and leave the boys in joint possession of the boat? (Kor-
demsky, 1992, #10)

This puzzle can be all but solved by considering just the 
case of n = 1.

A crucial insight about impossibility to solve the Mutilated 
Checkerboard problem for a standard 8×8 board could be 
deduced from considering its instances for n = 2 and n = 4.

The standard version of the Cheap Necklace problem asks 
to join four 3-link chains into one closed 12-link necklace 
by spending just 15 cents if the costs of opening and closing 
1 link are 2 and 3 cents, respectively. One can speculate that 
its smaller version, with just three 2-link chains and the total 
allowed cost of 10 cents, contains a good hint for solving the 
standard version: the very small number of reasonable alter-
natives in the former includes the right solution of breaking 
one of the given chains into individual links, which is harder 
to see for the larger version. In fact, it would be interesting to 
compare the usefulness of this hint with those used by Chu, 
Dewald, and Chronicle (2007) in their experiments with 
solving the Cheap Necklace problem by students.

In a similar vein, the Eight Coins puzzle asks to move two 
out of eight coins arranged in two offset rows of four coins so 
that each coin touches exactly three others (Ormerod, Mac-
Gregor, & Chronicle, 2002; Öllinger, Jones, Faber, & Knoblich, 
2013). Considering its smaller instance to move one of the 
four given coins in two offset rows of two coins so that each of 
the coins touch exactly three others might well lead a solver to 
the central insight into the problem’s solution: the necessity of 
placing one of the coins on top of the three others.
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For the final example of inverting a triangle of 10 coins 
(Metcalfe, 1986; Chronicle, MacGregor, & Ormerod, 2004), 
considering the smaller triangles of 3 and 6 coins gives all the 
hints one might wish for the case of 10 coins.

The usefulness of solving smaller instances of an algorithmic 
puzzle is, of course, not always a panacea and for some puzzles 
may even support a wrong idea about the puzzles’ solutions. 
Thus, for the above-mentioned Lighter False Coin puzzle, get-
ting the correct answers for all the cases of 2 ≤ n ≤ 7 by always 
dividing the remaining coins into two equal-size groups (after 
setting one coin aside if their number is odd) might lead a 
solver to the wrong conclusion that this is an optimal algorithm 
for solving the problem for all values of n.

4. Algorithmic Puzzles and Research 
in Insight Problem Solving

The Tower of Hanoi has proved to be by far the most impor-
tant algorithmic puzzle for the development of cognitive sci-
ence. According to Varma (2006), it was called “the drosophila 
of cognition” by Herbert Simon. Although Varma found this 
assertion to be an overstatement, he still called this puzzle “a 
signature task of problem solving that has found wide appli-
cation in domains such as working memory, intelligence, 
executive function, and frontal lobe function” (p. 5); he also 
cataloged such applications in his PhD dissertation devoted 
to this problem. It is important to note that researchers in 
modern cognitive science typically don’t ask subjects of their 
experiments to design an algorithm for solving the Tower of 
Hanoi for an arbitrary number of disks. (Admittedly, it would 
be an extremely tough task for all but exceptionally gifted per-
sons or computer science majors.) Rather, they either ask sub-
jects to solve the puzzle for a typically small number of disks 
or prescribe a particular procedure to follow, even allowing 
some training in its execution. While such setups might well 
be quite appropriate for getting empirical data about cognitive 
processes involved in solving specific instances of this puzzle, 
it is entirely different from designing a general algorithm for it.

Other algorithmic puzzles that have been used often in 
cognitive research of problem solving include the river cross-
ing puzzle called Missionaries and Cannibals or Hobbits and 
Orcs (e.g., Guthrie, Vallée-Tourangeau, Vallée-Tourangeau, 
& Howard, 2015); Water Jars, which asks to get a prescribed 
amount of water using three jars of given capacities (starting 
with the pioneering work by Luchins [1942] on the mental 
set effect); the Fifteen puzzle and its extensions (e.g., Pizlo & 
Li, 2005); and a few puzzles employed in the difficult research 
area dealing with insight. We will concentrate on the latter in 
the remaining portion of this section.

“Insight problems” are often described as problems whose 
solution involves an “Aha!” experience: a sudden discovery 
of the solution to a problem that until that point had left the 

solver baffled (Chu & MacGregor, 2011). Not surprisingly, 
puzzles of different kinds have been used as examples of such 
problems (Sternberg & Davidson, 1995, Part II). Somewhat 
surprisingly, just a small number of puzzles, called “classic” by 
Chu and Macgregor (2011), have dominated the literature on 
insight problem solving. They include the above-mentioned 
Nine Dots, Cheap Necklace, Eight Coins, Ten-Coin Triangle, 
Mutilated Checkerboard, Socks, and Water Lilies, all of which 
are instances of algorithmic puzzles, along with some other 
verbal, spatial, and mathematical brainteasers (see, e.g., Dow 
& Mayer, 2004; Weisberg, 1995). Newer additions to this lim-
ited repertoire include matchstick arithmetic with Roman 
numerals (Knöblich, Ohlsson, Haider, & Rhenius, 1999), com-
pound remote associates (CRAs) (Bowden, Jung-Beeman, 
Fleck, & Kounious, 2005), and rebus puzzles (MacGregor & 
Cunningham, 2008). Benefits of this expansion of the insight 
problem universe notwithstanding, it ought to be noted that 
CRAs and rebus puzzles, along with other verbal problems 
such as anagrams and brainteasers based on alternative mean-
ings of words in their statements, share the same weakness: 
their solutions require a native-speaker command of a lan-
guage used. Without special care to account for this, experi-
mental results involving language-dependent puzzles offered 
to a diverse student body can be distorted in an unpredictable 
fashion. Algorithmic puzzles do not share this weakness. In 
addition, the flexibility of varying an input of an algorithmic 
puzzle might provide the experimenter with a set of similar 
problems of different difficulty—a desirable feature for insight 
research (Goldstone & Pizlo, 2009).

Despite a superficial clarity of what insight problems are, as 
introduced above, a more careful analysis of this notion has 
revealed many uncertainties (e.g., Chu & Macgregor, 2011; 
Danek, Wiley, & Öllinger, 2016; Dominowski & Dallob, 1995; 
Mayer, 1995). Weisberg (1995) suggested considering a prob-
lem an insight problem if its solution involves discontinuity 
in thinking and restructuring understood as a change in the 
solver’s representation of the problem. According to his tax-
onomy, if solving a problem involves both of these elements, 
it is an insight problem; otherwise, it is not even if its solution 
may involve an “Aha!” experience. Further, if restructuring is 
the only way to solve the problem, it is said to be a pure insight 
problem; if solving a problem involves discontinuity but it can 
be solved both with and without restructuring, it is said to 
be a hybrid insight problem. Ash, Cushen, and Wiley (2009), 
on the other hand, argued that a better approach would be 
to identify insight problems specifically by their obstacles. 
Recently, Weisberg (2015) suggested a more holistic model of 
the problem-solving process in which the traditional insight 
sequence of an impasse followed by a restructuring and an 
“Aha!” solution is just one possible aspect of the process; the 
model was partly based on the empirical data reported by 
Fleck and Weisberg (2013) and its analysis by the authors.
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We would like to conclude this section by making two 
more observations about insight problems. The first, limited 
to algorithmic puzzles, is an obvious fact that such a puzzle 
can be an insight problem for some of its instances but not 
for the others. For example, the Frying Pancakes puzzle (see 
Problem 8 in Section 5.1 below) is an insight problem for any 
odd n > 1 pancakes and trivial for all the other values of n.

The second observation concerns a potential difference 
between an insight needed to find a solution and an insight 
needed to justify the solution’s correctness. Consider, as a 
simple example, the problem of placing the largest number 
of kings on an 8×8 chessboard so that no 2 kings threaten 
each other—that is, no 2 kings are on adjacent squares verti-
cally, horizontally, or diagonally. One can hardly expect any 
discontinuity in thinking from a reasonable solver before he 
or she places 16 kings on the board (e.g., 4 kings per row in 
four nonadjacent rows). On the other hand, proving that it is 
indeed the maximum number of kings possible does require 
a nontrivial restructuring to represent the board as a union 
of four 4×4 squares in each of which no more than 1 king can 
be placed (e.g., Levitin & Levitin, 2011, p. 16).

5. Future Work

In this section, we first list 12 algorithmic puzzles that, in 
our view, could be useful for future research of insight prob-
lem solving. Then we suggest several experiments involv-
ing other issues: solving puzzles by brute force and working 
backwards, transfer questions, and a board coloring impact.

5.1 Twelve Algorithmic Puzzles for Insight Research

Since several researchers have advocated for a wider range of 
problems used in studying insight (e.g., Batchelder & Alexan-
der, 2012; Chu & Macgregor, 2011), it seems logical to consider 
which algorithmic puzzles beyond the few classics could be use-
ful in insight research. For a sample of such puzzles given below, 
we sought puzzles that satisfy the following requirements:

•	 A puzzle’s solution must not be obvious to the solv-
ers, but it should be simple enough for at least some 
non–computer science majors to get it in a realistic 
amount of time.

•	 A possibility of solving a puzzle by trial and error or 
by labor-intensive computations should be minimized 
to the degree possible.

•	 A puzzle should be well defined; in particular, its 
wording should contain no ambiguities, such as 
the meaning of the word “move” in the Alternating 
Glasses puzzle discussed above.

•	 A puzzle should be stated in a way—e.g., for a par-
ticular input size—that preserves an underlying algo-
rithmic idea without requiring a complete algorithm 
description in its general form.

•	 Whenever there is a meaningful difference in solu-
tions for different input values or a puzzle’s difficulty 
levels, several versions of the puzzle can be given.

Solutions to all the puzzles in the sample, along with brief 
comments, are given in the appendix.

Problem 1. A crazy king of some unfortunate country ordered 
all 100,000 adults in his kingdom to participate in a single- 
elimination tournament to determine the best player in a game the 
king had invented. (The game could not end in a tie, and as is the 
case for any single-elimination tournament, every losing player is 
immediately eliminated from subsequent rounds of play.) How 
many games must his subjects play to determine a winner?

Problem 2. A little girl counts from 1 to 1,000 using  
the fingers of her left hand as follows. She starts by calling the 
thumb 1, the first finger 2, the middle finger 3, the ring finger 
4, and the little finger 5. Then she reverses direction, calling 
the ring finger 6, the middle finger 7, the first finger 8, and 
the thumb 9, after which she calls the first finger 10, and so 
on. If she continues to count in this manner, on which finger 
will she stop?

Problem 3. Is there a way for a chess knight to start at 
the lower left corner of a standard 8×8 chessboard, visit all 
the squares of the board exactly once, and end at the upper 
right corner? (The knight’s moves are L-shaped jumps: two 
squares horizontally or vertically followed by one square in 
the perpendicular direction.)

Problem 4. Can one transform the left table in Figure 5 
into the right table by a sequence of steps if on every step one 
can either exchange two rows or exchange two columns of 
the current table?

Problem 5. Four people find themselves on the same side 
of a river they need to cross using a rickety footbridge. It is 
dark, and they have one flashlight. A maximum of two peo-
ple can cross the bridge at one time. Any party that crosses, 
either one or two people, must have the flashlight with them. 
The flashlight must be walked back and forth; it cannot be 
thrown, for example. Person 1 takes 1 minute to cross the 
bridge, person 2 takes 2 minutes, person 3 takes 5 minutes, 
and person 4 takes 10 minutes. A pair must walk together at 
the rate of the slower person’s pace. For example, if person 1 
and person 4 walk together, it will take them 10 minutes to get 
to the other side. If person 4 returns the flashlight, a total of 20 
minutes has passed. Can they cross the bridge in 17 minutes?

1  2  3  4
 5  6  7  8
 9 10 11 12
13 14 15 16

12 10 9 11
16 14 5 13
 8  6 7 15
 4  2 3  1

Figure 5. 
Initial table (left) and target table (right).
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Problem 6. You have n > 2 identical-looking coins and a 
two-pan balance scale with no weights. One of the coins is  
a fake, but you don’t know whether it is lighter or heavier 
than the genuine coins, which all weigh the same. How can 
you determine whether the fake coin is lighter or heavier 
than the others with just two weighings? Solve the problem 
for (a) n = 11 and (b) n = 10.

Problem 7. Interrupted Bridge Game mentioned above in 
Section 2.

Problem 8. You need to make pancakes using a skillet that 
can hold only two pancakes at a time. Each pancake should 
be fried on both sides; frying one side of a pancake takes 1 
minute, regardless of how many pancakes are fried at the 
same time. What is the minimum amount of time you will 
need to make 13 pancakes?

Problem 9. You have a rectangular chocolate bar marked 
into 5×6 squares, which you wish to break into 30 constituent 
squares. At each step, you can pick up one piece and break it 
along any of its marked horizontal or vertical lines. What is 
the minimum number of such steps you will need?

Problem 10. There are seven glasses on the table, all 
standing upside down. In one move, you can turn over any 
four. Is it possible to turn all the glasses up by a sequence of 
such moves?

Problem 11. What is the minimum number of moves on 
an infinite chessboard needed for a knight to reach a position 
from which it can move only to a previously visited square?

Problem 12. Dissect a square into n smaller squares for 
(a) n = 7; (b) n = 8; (c) n = 9.

 5.2 Few Experiments Based on Algorithmic Puzzles

In addition to the puzzles suggested above for insight 
research, we would like to suggest the following experiments 
with human solving of algorithmic puzzles. At least for some 
of these experiments, it could also be interesting to investi-
gate a possible dependence of the observed results on sub-
jects’ psychometric measures of intelligence (e.g., Burns, Lee, 
& Vickers, 2006).

Experiment 1. Ask a group of subjects to solve the Lighter 
False Coin puzzle for n = 8 coins. Ask the subjects after they 
turn in their solutions whether they considered any alterna-
tives to the solution they provided and if not why.

The common incorrect answer to this puzzle, reported to 
be given during job interviews, is 3, with the first weighing 
of two four-coin subsets. The fact that many solvers are not 
bothered with proving the correctness of their answers is 
noteworthy but not very surprising. What is surprising and, 
in our view, more important is the implication that human 
solvers are reluctant to solve puzzles by exhaustive search 
even when it is not explicitly forbidden and the number of 
possible alternatives is very small. What could force solvers 
to consider the alternatives is to pose this puzzle with the 

requirement that it must be solved in two weighings. This 
hypothesis can be checked by asking a control group of sub-
jects to solve this version of the puzzle.

One can also ask another group of subjects to solve the 
same problem for n = 9 coins and compare the results with 
those for n = 8. (Results for n = 9 could be better, because this 
value might suggest a division of the coins into three groups 
more readily than for n = 8, although this advantage could 
be overwritten by the wrong insight that one coin can be set 
aside before the first weighing.)

Experiment 2. To investigate whether a solver always tries 
to solve a puzzle by an obvious brute-force approach, one 
can use impossible-tiling puzzles such as Questionable Til-
ing (e.g., Levitin & Levitin, 2011, #12) that asks whether it is 
possible to tile an 8×8 board with dominoes so that no two 
dominoes form a 2×2 square and an even simpler question 
about tiling this board with Z-tetrominoes, which are tiles 
made of four unit squares glued together in the shape of the 
letter “Z” (e.g., Levitin & Levitin, 2011, #38e). Both puzzles 
can be solved by the same brute-force attempt to produce 
a required tiling, which might be more difficult for more 
sophisticated solvers who may try to find an invariant pro-
viding an impossibility proof.

Experiment 3. Investigate an impact of considering 
smaller instances in solving algorithmic puzzles (by either 
giving subjects a hint of desirability of such considerations 
or providing specific small instances or doing both for two 
different groups of subjects to compare the effectiveness 
of these two methods). We mentioned in Section 3 several 
puzzles that can be used for such investigations: Mutilated 
Checkerboard, Cheap Necklace, Eight Coins, and Ten-Coin 
Triangle. Also, one can use, among others, two of the insight 
problems mentioned above: Row and Column Exchanges 
(Problem 4) with a 2×2 table as a smaller instance and 
Trapping the Knight (Problem 11) with an 8×8 board as 
a natural smaller instance. It would certainly also be use-
ful to ask subjects in a control group that is provided with 
neither hints nor specific smaller instances whether they 
considered smaller instances on their own and compare the 
performance data of those who did with those who did not. 
Our hypothesis is that considering smaller instances of a 
given problem is not a standard tool of a typical problem 
solver and hence must be taught, but our hypothesis needs 
an empirical verification.

Experiment 4. Investigate how easy it is for human solv-
ers to transfer a standard application of an algorithm to a 
nonstandard one. For the experiment suggested below, the 
algorithm in question is binary search, which is based on 
repeatedly decreasing the problem’s size by half. It should be 
familiar to many if not most subjects from the game Twenty 
Questions. We suggest comparing subjects’ performance in 
solving the following three puzzles:
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(a) What is the minimum number of questions with 
yes/no truthful answers needed to guarantee “guessing” 
an integer between 1 and 100, inclusive? Indicate a way 
to achieve this. (This standard application of binary 
search requires seven questions in the worst case.)

(b) What is the minimum number of questions with 
yes/no truthful answers needed to guarantee “guessing” 
a selected card in a randomly shuffled 52-card deck 
laid out in 4 rows of 13 cards each? Indicate a way to 
achieve this. (Applying binary search either to the card 
suits and values from 1 for an ace to 13 for a king or to 
the row and column numbers of this two-dimensional 
array requires 2 + 4 questions in the worst case.)

(c) Forty index cards with different English words writ-
ten on them (one word per card) lay before you and your 
friend on a table arranged in 4 rows and 10 columns. 
What is the minimum number of questions with yes/
no truthful answers needed to guarantee “guessing” a 
word selected by your friend? Indicate a way to achieve 
this. (Applying binary search to the row and column 
numbers of this two-dimensional array requires 2 + 
4 questions in the worst case. Less elegantly, one can 
apply binary search to the 40 cards numbered from 1 
to 40, say, row by row from the leftmost to the right-
most card, although such a numbering would have to 
be communicated in the questions asked.)

It could be useful for analyzing results of this experi-
ment to ask the experiment’s subjects after they turn in their 
solutions whether they have been familiar with the game of 
Twenty Questions and analyze the results separately for the 
subgroup that has and the subgroup that has not been.

Experiment 5. Most puzzles that must be solved back-
wards are not easy for human solvers. It is not usually clear, 
however, what makes it so: the fact that solvers do not con-
sider this heuristic to begin with or because such puzzles 
remain difficult even after a solver is told that they need to be 
solved backwards. To get some empirical data regarding this 
dilemma, we suggest comparing the effectiveness of the hint 
that a problem should be solved by working backwards for, 
say, such puzzles as Interrupted Bridge Game and Trapping 
the Knight mentioned above in Section 2. Are the puzzles 
easily solved after the hint was given, or do they remain dif-
ficult even after that?

Experiment 6. Investigate the impact of a board’s color-
ings on solving puzzles about a path through a given board. 
In particular, one can compare success rates and solution 
speeds in finding a path through the squares of the three 
boards in Figure 6a (see next page) and proving that such 
a path does not exist for the three boards in Figure 6b (see 
next page). (A path in question may proceed through any 

sequence of horizontally or vertically adjacent squares and is 
not required to return to its starting square.)

The checkerboard coloring should be helpful for finding 
a path for the board in Figure 6a. Since the number of light 
squares there is more by 1 than the number of dark squares, 
a path through all the squares must start and end on light 
squares. One such path, which exploits the board’s symmetry, 
is given in Levitin and Levitin (2011, p. 114). The checker-
board coloring is also helpful in proving that there exists no 
path for the board in Figure 6b. Indeed, the colors of squares 
in such a path would have to alternate, whereas the number 
of black squares is larger than the number of white squares by 
3. As to the success rates in solving the puzzles for the boards 
with row coloring, one would expect them to be comparable 
to or worse than those for the uncolored boards.

As another version of the board coloring, one can investi-
gate a random coloring of the board’s squares in two or more 
colors. Also, in addition to comparing an impact of the board 
colorings for each of the two boards, one can compare the 
observed data for the similarly colored boards to ascertain 
relative difficulty of these two problems, the first of which 
has a solution and the second of which does not.

6. Conclusion

Algorithmic puzzles constitute a relatively small but impor-
tant class of puzzles. Their nature puts them in a unique po-
sition of being of interest to mathematicians, computer sci-
entists, and cognitive science researchers, making some of 
these puzzles a fruitful research topic. We reviewed major 
milestones in the long history of algorithmic puzzles and dis-
cussed two ways to classify them: by a question posed and by 
the generality of their input. 

The Tower of Hanoi, one of the most widely known algo-
rithmic puzzles, has been used extensively in different areas 
of cognitive science. Just a few instances of algorithmic 
puzzles have become a staple of research in insight problem 
solving. In our view, many more algorithmic puzzles can be 
used for that purpose. As specific examples, we suggested 12 
algorithmic puzzles that, in our opinion, could be useful for 
experiments in this challenging research area. In fact, one 
can claim that the previous classifications of insight problems 
into three categories of verbal, special, and mathematical by 
Dow and Mayer (2004) or four categories of brainteasers and 
riddles, geometric, manipulative, and mathematical by Weis-
berg (1995) should be expanded by adding the class of algo-
rithmic puzzles. The main advantages of algorithmic puzzles 
over other kinds of insight problems are their language inde-
pendence and flexibility of varying instance sizes. Finally, in 
addition to expanding the universe of problems for insight 
research, we proposed several experiments dealing with 
other cognitive aspects of solving algorithmic puzzles.
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Appendix

This appendix contains solutions to the sample of 12 algorith-
mic puzzles given in the paper, along with brief comments.

Solution to Problem 1. The total number of matches 
is equal to 99,999: each match yields 1 loser, and exactly 
100,000 - 1 losers need to be produced to get a single winner 
of the tournament.

The insight here is to concentrate on match losers. Simon 
and Newell (1971) mentioned the same problem with 109 
players and commented on its solution as follows: “There 
are many ‘trick’ problems of this kind where a selection of 
the correct problem space permits the problem to be solved 
without any search” (p. 154).

The problem’s statement doesn’t specify explicitly a way 
of dealing with the initial number of players not being equal 
to a power of 2, which requires giving some players “byes”—
transfers of players directly to the next round because they 
have no opponent assigned to them. There are two ways to 
give byes:

 i. The byes are given to the fewest players in the first 
round to have the number of players left for the second 
round equal to a power of 2.

 ii. The byes are given to the fewest players to have an 
even number of players in each round.

The numbers of byes in these two versions are actually dif-
ferent (see, e.g., Levitin & Levitin, 2011, pp. 190−191), but 
they are not needed to solve the problem. 

Solution to Problem 2. The girl will stop on her first fin-
ger. Here is how the finger count starts:

It is easy to see from the table that in order to answer the 
question, all one needs is to find the remainder of the divi-
sion of 1,000 by 8, which is equal to 0. This implies that when 
the girl reaches 1,000 she will be on her first finger, the same 
one she will be on while calling any number divisible by 8. 

The puzzle is from Martin Gardner’s Colossal Book of 
Short Puzzles and Problems (Gardner, 2006, p. 63; see also 
Levitin & Levitin, 2011, #6). A similar problem was included 
in Henry Dudeney’s puzzle collection (Dudeney, 1967, Prob-
lem 164).

Solution to Problem 3. The journey in question is impos-
sible. The squares where the knight starts and ends its move 
are always of the opposite color. To visit all the squares of 
the board once, it would need to make 63 moves; since this 
number is odd, such a journey would need to start and end 
on squares of the opposite color. But the squares of the lower 
left and upper right corners of the board are colored the same 
color, making the journey in question impossible.

The puzzle (e.g., Levitin & Levitin, 2011, #18) is a typi-
cal example of exploiting colors of the board’s squares as the 
invariant idea.

Solution to Problem 4. The answer is “no.” Row and col-
umn exchanges preserve the numbers they contain. This is 
not the case for the tables given: for example, 5 and 6 are in 
the same row in the initial table but are in different rows in 
the target table.

The attractiveness of this impossibility puzzle (Levitin & 
Levitin, 2011, #5) lies in the fact that the solution’s invariant 
(the puzzle’s insight) is neither coloring nor parity.

Solution to Problem 5. The sequence of moves solving 
the puzzle is shown in Figure 7 (see next page).

finger count count
thumb 1 9

first 2 10
middle 3 11

ring 4 12
little 5 13
ring 6 14

middle 7 15
first 8 16
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Figure 7. 
Solution to Problem 5: Labels 1, 2, 5, and 
10 represent the four people, respectively; 
the arrows indicate the crossing directions.

This relatively recent river-crossing puzzle has proved to 
be surprisingly difficult for many solvers. For more informa-
tion, see Levitin and Levitin (2011, p. 87).

Solution to Problem 6. Here is a solution to an arbitrary 
number of coins n > 2. Start by taking aside one coin if n is 
odd and two coins if n is even. After that, divide the remaining 
even number of coins into two equal-size groups and put them 
on the opposite pans of the scale. If they weigh the same all 
these coins are genuine, and the fake coin is among the coins 
set aside. So, we can weigh the set-aside group of one or two 
coins against the same number of genuine coins: if the former 
weighs less, the fake coin is lighter; otherwise, it is heavier.

If the first weighing does not result in balance, take the 
lighter group; if the number of coins in it is odd, add to it 
one of the coins initially set aside (which must be genuine). 
Divide all these coins into two equal-size groups and weigh 
them. If they weigh the same all these coins are genuine, and 
therefore the fake coin is heavier; otherwise, they contain the 
fake, which is lighter.

What makes this puzzle (e.g., Levitin & Levitin, 2011, #44) 
different from typical weighing puzzles is its objective, which 
is not to identify a fake coin but instead only to determine 
whether it is lighter or heavier than the genuine ones.

Solution to Problem 7. The player deals the bottom 
card to himself, then continues dealing from the bottom 
counterclockwise.

This is a remarkable example of solving a problem by 
working backwards, which constitutes its insight.

Solution to Problem 8. One can make 3 pancakes in 3 min-
utes as follows. First, fry pancakes 1 and 2 on one side. Then, 
fry pancake 1 on the second side together with pancake 3 on 
its first side. Finally, fry both pancakes 2 and 3 on the second 
side. After making the first three pancakes in this fashion, the 
remaining 10 pancakes can be fried in pairs, spending the total 
of 10 minutes to fry them on both sides. Thus, the total time 
to fry 13 pancakes will be 13 minutes. This is the minimum 
time possible, because 13 pancakes have 26 sides to be fried, 
and any algorithm can fry no more than 2 sides in one minute.

The insight for solving this old puzzle is to think not in 
terms of whole pancakes but rather in terms of their indi-
vidual sides. This makes it possible to fry 3 pancakes in 3 
minutes, which is the most important instance of the puzzle.

Solution to Problem 9. Since each break increases  
the number of pieces by 1, 29 breaks are needed to solve the 
problem, and any sequence of 29 breaks will do this.

As soon as a solver recognizes the importance of the total 
number of pieces at hand, the answer becomes obvious. Despite 
this “obvious” answer, the puzzle has been reported to stump 
some very high-powered mathematicians (Winkler, 2004, p. 93).

Solution to Problem 10. Since the number of glasses turned 
over in one move is even, the parity of the number of glasses 
that are upside down will always remain odd, as it was in the 
initial position. Hence, the final position in which the number 
of upside-down glasses is 0, which is even, cannot be reached.

This is a typical impossibility puzzle with a parity-based 
solution.

Solution to Problem 11. Solving the puzzle backwards, con-
sider the knight in a final position from which it can move only 
to 1 of the 8 previously visited squares. Since all these squares are 
of the same color, the knight had to visit at least 1 new square 
of the opposite color between every pair of them, for a total of 
7 such squares. Therefore, the answer is 15, as shown in Figure 
8, where the squares are numbered in the order they are visited.

13 1
14 0

12 2
11 15 3

10 4
8 6

9 5
7

Figure 8. 
A tour solving Problem 11, starting at square 0 and 
ending at square 15.
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Solution to Problem 12. Possible dissections of a square into 7, 8, and 9 squares 

are shown in Figure 10.  Once a solver realizes that smaller squares are not required to be 

of the same size, the case of n = 7 becomes almost obvious.  The dissection into n = 8 

smaller squares, which can be generalized to an arbitrary even n = 2k, where k > 1, is 

obtained by having 2k - 1 equal squares along two adjacent sides of the given square, 

with the side length of each smaller square equal 1/k-th of the side length of the given 

square. The dissection into n = 9 smaller squares, which can be generalized to an 

arbitrary odd n > 5, i.e., n = 2k + 1 = 2(k - 1) + 3, where k > 2, is obtained by first 

dissecting the given square into 2(k - 1) squares, as described above for even n’s and then 

dissecting any of the obtained squares (e.g., the one in the top left corner) into four 

smaller ones. 

 

 

 

 

 

(a) 
 

(b) 
 

                   (c) 

Figure 10. Square dissection into (a) 7 squares, (b) 8 squares, and (c) 9 squares. 

 

Figure 9. 
Square dissection into (a) 7 squares, (b) 8 squares, and (c) 9 squares.

Solution to Problem 12. Possible dissections of a square 
into 7, 8, and 9 squares are shown in Figure 9. Once a solver 
realizes that smaller squares are not required to be of the same 
size, the case of n = 7 becomes almost obvious. The dissection 
into n = 8 smaller squares, which can be generalized to an arbi-
trary even n = 2k, where k > 1, is obtained by having 2k - 1 
equal squares along two adjacent sides of the given square, with 

the side length of each smaller square equal 1/k-th of the side 
length of the given square. The dissection into n = 9 smaller 
squares, which can be generalized to an arbitrary odd n > 5, i.e., 
n = 2k + 1 = 2(k - 1) + 3, where k > 2, is obtained by first dissect-
ing the given square into 2(k - 1) squares, as described above 
for even n’s and then dissecting any of the obtained squares 
(e.g., the one in the top left corner) into four smaller ones.
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