

JSON Performance features in Oracle 12c Release 2
O R A C L E W H I T E P A P E R | M A R C H 2 0 1 7

Disclaimer

The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any

material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

JSON Performance features in Oracle 12c Release 2 Page 1

Table of Contents

Disclaimer 1

Introduction 3

Brief Introduction to JSON and Querying JSON in Oracle 12c 4

Storing JSON 4

JSON Path Expressions 5

Querying JSON 5

Indexing JSON 6

NoBench Benchmark 8

Benchmark Details 8

Performance Enhancements for JSON data 10

JSON with In-Memory Columnar Store (IMC) 10

Configuring In-Memory store for JSON documents 10

Benchmark Results 13

In-Memory Store Sizing 13

Functional and JSON Search Index 14

Benchmark Results 15

In-Memory Store and Functional and JSON Search Indexes 16

Performance Guidelines 17

Conclusion 18

JSON performance features in Oracle 12c Release 2 Page 2

Introduction

JSON (JavaScript Object Notation) is a lightweight data interchange format. JSON is text based which

makes it easy for humans to read and write and for machine to read and parse and generate. JSON

being text based makes it completely language independent. JSON has gained a wide popularity

among application developers (specifically web application developers) and is used as a persistent

format for application data. JSON is schema-less, which makes it particularly attractive to developers,

enabling the applications to make changes without requiring corresponding changes to the storage

schema. Detailed JSON specification can be found at http://json.org.

Oracle 12c Release 1 provides flexibility of NoSQL data store along with other traditional relational

data with the power of SQL based analytics and reporting. This release also introduces an extension

to SQL which enables storing, indexing and querying of JSON data. It also provides APIs which offer

application developers a NoSQL development experience. These enhancements along with traditional

SQL reporting and analytics makes Oracle 12c an ideal platform to store JSON content.

This whitepaper covers performance enhancements in the latest release, Oracle 12c Release 2, for

efficient querying of JSON content. A brief introduction on JSON querying in Oracle 12c is given in the

next section as a refresher. A separate whitepaper on “Oracle as a document store” covers storing,

loading and querying JSON content in greater detail. Benchmark results are presented to quantify the

gains seen by the performance features. In this paper Oracle 12c is used to refer to both Oracle 12c

Releases 1 and 2 unless otherwise indicated.

JSON Performance features in Oracle 12c Release 2 Page 3

http://www-content.oracle.com/technetwork/database/application-development/oracle-document-store/index.html
http:http://json.org

Brief Introduction to JSON and Querying JSON in Oracle 12c

JSON is a light weight data interchange format (http://www.json.org). JSON consists of a collection of

key/value pairs and an ordered list of values (similar to array, vector, list etc.). A sample JSON

document in text form is shown below.

{

"PONumber" : 1438,

"Reference" : "SKVIS-20140421",

"Requestor" : "Skar Viswa",

"User" : "SKVIS",

"CostCenter" : "A50",

"ShippingInstructions" : { "name" : "Skar Viswa",

"Address": {

"street" : "200 Sporting Green",

"city" : "South San Francisco",

"state" : "CA",

"zipCode" : 99236,

"country" : "United States of America"

},

"Phone" : [{ "type": "Office","number": "909-555-7307"

},

{ "type": "Mobile","number": "415-555-1234" }

]

},

"Special Instructions" : null,

"AllowPartialShipment" : false,

"LineItems" : [{ "ItemNumber" : 1,

"Part" : { "Description" : "Mission Impossible",

"UnitPrice" : 19.95,

"UPCCode" : 13131092705

},

"Quantity" : 9.0

}, {

"ItemNumber" : 2,

"Part" : { "Description" : "Lethal Weapon",

"UnitPrice" : 21.95,

"UPCCode" : 85391628927 },

"Quantity": 5.0

}]

JSON documents can contain one or more key-value pairs. Values can be scalars, arrays and/or

objects. Scalar values can be strings, numbers, Booleans or nulls. There are no date, time or other

scalar data types. An object consists of one or more key-value pairs. Arrays are ordered collections of

values. The elements of an array can be of different types.

Storing JSON

In Oracle Database 12c JSON is stored in standard columns of data type CLOB, BLOB, standard

VARCHAR2(4K) and extended VARCHAR2(32K). The standard data type being used for JSON means

that all enterprise-level functionality like replication and high-availability are automatically available for

JSON data as well. To enable storing JSON, a constraint called ‘IS JSON’ is introduced, which tells the
Oracle database that the column contains a valid JSON document. All the enterprise-level security

JSON Performance features in Oracle 12c Release 2 Page 4

http://www.json.org/
http:http://www.json.org

JSON Performance features in Oracle 12c Release 2 Page 5----------------

features are automatically available on JSON data. This whitepaper will not cover the details of loading

JSON data into relational table.

JSON Path Expressions

JSON Path expressions are expressions used to navigate a JSON document. JSON Path expression is

analogous to XPath for XML. JSON Path expressions contain the set of keys that need to be navigated

in order to reach a particular item. A JSON Path can be used to reference a value of a particular key, an

object, an array, or an entire document. In Oracle, an entire JSON document is referenced using the $

symbol. All JSON Path expressions start with the $ symbol. The following table demonstrates some

JSON Path expressions based on the PurchaseOrder example given in the earlier section.

JSON Path Expression Result Remarks

$.PONumber 1438 Scalar; Number

value

$.Requestor Skar Viswa Scalar; String value

$.ShippingInstructions.Phone [{"type": "Office","number": "909-555-7307" },

{ "type": "Mobile","number": "415-555-1234" }]

Array value

$.ShippingInstructions.Address {

"street": "200 Sporting Green",

"city" :"South San Francisco",

"state”:"CA",

"zipCode":99236,

"country":"United States of America"

}

Object

Querying JSON

Oracle Database 12c Release 2 has support for JSON queries using SQL. The SQL/JSON

enhancements allow SQL queries on JSON data. The enhanced operators JSON_VALUE,

JSON_EXISTS, JSON_QUERY, JSON_TABLE and JSON_TEXTCONTAINS allow JSON path

expressions to be evaluated on columns containing JSON data. These operators let JSON data to be

queried just like relational data. The following examples showcase some of the JSON operators.

JSON_VALUE operator enables a JSON Path expression to be used to return a scalar value based on

the JSON path of a key. JSON_VALUE operator can be used in the select list or the predicate list as a

filter in the WHERE clause. The following example demonstrates the use of JSON_VALUE.

select JSON_VALUE(PO_DOCUMENT ,'$.LineItems[0].Part.UnitPrice' returning

NUMBER(5,3)) UNIT_PRICE

from J_PURCHASEORDER p

where JSON_VALUE(PO_DOCUMENT ,'$.PONumber' returning NUMBER(10)) = 1438

/

UNIT_PRICE

19.95

---------- --------------- ------------ ------ ---------- ----------

JSON_EXISTS operator checks whether a key-value pair exists in the JSON document for the specified

JSON Path expression. It returns a true or false based on the presence of the key-value pair. The

following example demonstrates the use of JSON_EXISTS. The query assumes that

J_PURCHASEORDER table has a column PO_DOCUMENT containing JSON data.

select count(*) from J_PURCHASEORDER

where JSON_EXISTS(PO_DOCUMENT ,'$.ShippingInstructions.Address.state')
/

COUNT(*)

435

JSON_TABLE a very useful operator that facilitates relational access to JSON data. JSON_TABLE

creates an inline view of the JSON data. JSON_TABLE operator contains one or more columns

specified via JSON path expressions. The following example demonstrates the use of JSON_TABLE.

select M.*

from J_PURCHASEORDER p,

JSON_TABLE(

p.PO_DOCUMENT ,

'$'

columns

PO_NUMBER NUMBER(10) path '$.PONumber',

REFERENCE VARCHAR2(30 CHAR) path '$.Reference',

REQUESTOR VARCHAR2(32 CHAR) path '$.Requestor',

USERID VARCHAR2(10 CHAR) path '$.User',

COSTCENTER VARCHAR2(16 CHAR) path '$.CostCenter',

TELEPHONE VARCHAR2(16 CHAR) path '$.ShippingInstructions.Phone[0].number’
) M

where PO_NUMBER > 1437 and PO_NUMBER < 1440

/

PO_NUMBER REFERENCE REQUESTOR USERID COSTCENTER TELEPHONE

1438 SKVIS-20140421 Skar Viswa SKVIS A50 909-555-7307

1440 SKVIS-20140422 Skar Viswa SKVIS A50 909-555-9119

JSON_TABLE can also be used to generate an inline view from nested objects in JSON.

Indexing JSON

Oracle Database 12c supports indexing on JSON documents. Functional indexes can be created on

specific keys or combination of keys. A search (full-text) index can also be created on the entire JSON

documents. These indexes are used to optimize query operations that use SQL/JSON operators.

Functional indexes are built using JSON_VALUE operators. Functional indexes on key values support

both bitmap and B-Tree index format.

The following example demonstrates creation of a functional index on the PONumber key in the

PurchaseOrder document.

JSON Performance features in Oracle 12c Release 2 Page 6

create unique index PO_NUMBER_IDX

on J_PURCHASEORDER (

JSON_VALUE(

PO_DOCUMENT, ‘$.PONumber’ returning number(10) error on error
)

)

/

Index created.

Oracle Database 12c supports indexing the entire JSON document using a search index which is based

on Oracle Full-Text index. The search index incorporates not only the values but the key names as well

and also allows Full text searches over the JSON documents. The syntax below shows creating the

index in Oracle Database 12c Release 1. In Release 2, a new simpler syntax has been introduced to

create the search index which supersedes the older syntax.

exec CTX_DDL.SET_SEC_GRP_ATTR('json_group','json_enable','t');

exec ctx_ddl.drop_preference('live_st');

exec ctx_ddl.create_preference('live_st', 'BASIC_STORAGE');

create index PO_DOCUMENT_INDEX on J_PURCHASE_ORDER(PO_DOCUMENT) indextype is

ctxsys.context parameters('sync (on commit) section group json_group storage live_st

memory 1G') parallel 24;

The sync (on commit) enables the index to be updated every time insert and update operations are

committed to the JSON documents. For documents with very frequent updates this will have a

performance impact. This option is more suitable for read-mostly documents. The explain plan for a

query will show if the context index is being utilized for executing the query.

The optimizer is aware of the functional index and search index and uses the appropriate index with a

lesser cost, even though either could be used to satisfy the query.

JSON Performance features in Oracle 12c Release 2 Page 7

{

"_id" : ObjectId("53214c880dca4a8c46f0dd1f"),

"num" : 28483498,

"bool" : false,

"nested_obj" : {

"num" : 60483498,

"str" : "GBRDCMJRGAYDCMJQGEYDCMJRGAYDCMJRGEYDCMBRGAYTA==="

},

"dyn2" : "GBRDCMJQGEYTAMBRGAYTAMBRGEYTCMJRGAYTAMJQGEYA====",

"dyn1" : 28483498,

"nested_arr" : ["take", "walked"],

"str2" : "GBRDCMJRGAYDCMJQGEYDCMJRGAYDCMJRGEYDCMBRGAYTA===",

"str1" : "GBRDCMJQGEYTAMBRGAYTAMBRGEYTCMJRGAYTAMJQGEYA====",

"thousandth" : 498,

"sparse_980" : "GBRDCMBRGA======",

"sparse_981" : "GBRDCMBRGA======",

"sparse_982" : "GBRDCMBRGA======",

"sparse_983" : "GBRDCMBRGA======",

"sparse_984" : "GBRDCMBRGA======",

"sparse_985" : "GBRDCMBRGA======",

"sparse_986" : "GBRDCMBRGA======",

"sparse_987" : "GBRDCMBRGA======",

"sparse_988" : "GBRDCMBRGA======",

"sparse_989" : "GBRDCMBRGA======"

}

NoBench Benchmark

NoBench benchmark was used to evaluate the performance of the enhanced JSON features.

NoBench is a benchmark suite that evaluates the performance of several classes of queries over

JSON data in NoSQL and SQL databases. Details of Nobench benchmark can be found at

http://paperhub.s3.amazonaws.com/cb2e514d67256700c7eaeec9ac36d174.pdf.

Benchmark Details

The Nobench benchmark was configured with 16 million documents. Each document is of

approximately 600 bytes. A typical benchmark document is shown below:

Key “num” and “nested_obj.num” are unique across all the documents. Key “str1” is also unique across
all the documents. “sparse_XX0” through “sparse_XX9” are sparse keys and same sparse keys repeat
after every hundred documents. The range of values for sparse columns are “sparse_000” through
“sparse_999”.

The benchmark consists of 10 queries, shown in the table below. The queries are executed by a single

user and the response times are measured. The benchmark was modified to add four extra queries Q1a

Q1b, Q2a and Q2b to include the MAX aggregation function on scalar and nested fields.

JSON Performance features in Oracle 12c Release 2 Page 8

http://paperhub.s3.amazonaws.com/cb2e514d67256700c7eaeec9ac36d174.pdf
http://paperhub.s3.amazonaws.com/cb2e514d67256700c7eaeec9ac36d174.pdf

NoBench Queries

Query Query description
Q1 SELECT str,num FROM nobench_main, JSON_TABLE(jobj, '$' columns

str varchar(128) path '$.str1', num NUMBER path '$.num') where

rownum < 200;

Q1a SELECT MAX(JSON_VALUE(jobj, '$.str1')) FROM nobench_main;

Q1b SELECT MAX(JSON_VALUE(jobj, ‘$.str2’)) FROM nobench_main;

Q2 SELECT nested_str, nested_num FROM nobench_main, JSON_TABLE(jobj,

'$' columns nested_str varchar(128) path '$.nested_obj.str',

nested_num NUMBER path '$.nested_obj.num') where rownum < 200;

Q2a SELECT MAX(JSON_VALUE(jobj, '$.nested_obj.str')) FROM

nobench_main;

Q2b SELECT MAX(JSON_VALUE(jobj, '$.nested_obj.num')) FROM

nobench_main;

Q3 SELECT sparse_xx0, sparse_yy0 FROM nobench_main, JSON_TABLE(jobj,

'$' columns sparse_xx0 varchar(128) path '$.sparse_XX0',

sparse_yy0 varchar(128) path '$.sparse_XX9') WHERE

(JSON_EXISTS(jobj, '$.sparse_XX0') OR JSON_EXISTS(jobj,

'$.sparse_XX9'));

Q4 SELECT sparse_xx0, sparse_yy0 FROM nobench_main, JSON_TABLE(jobj,

'$' columns sparse_xx0 varchar(128) path '$.sparse_XX0',

sparse_yy0 varchar(128) path '$.sparse_YY0') WHERE

(JSON_EXISTS(jobj, '$.sparse_460') OR JSON_EXISTS(jobj,

'$.sparse_670'));

Q5 SELECT jobj FROM nobench_main WHERE JSON_VALUE(jobj format json,

'$.str1') = :1;

Q6 SELECT jobj FROM nobench_main WHERE JSON_VALUE(jobj, '$.num'

RETURNING NUMBER) BETWEEN :1 AND :2;

Q7 SELECT jobj FROM nobench_main WHERE JSON_VALUE(jobj, '$.dyn1'

RETURNING NUMBER) BETWEEN :1 AND :2;

Q8 SELECT jobj FROM nobench_main WHERE json_textcontains(jobj,

'$.nested_arr', 'accelerate');

Q9 SELECT jobj FROM nobench_main WHERE JSON_VALUE(jobj,

'$.sparse_456') = 'dontfindme';

Q10 SELECT count(*) FROM nobench_main WHERE JSON_VALUE(jobj, '$.num'

RETURNING NUMBER) BETWEEN :1 AND :2 GROUP BY JSON_VALUE(jobj,

JSON Performance features in Oracle 12c Release 2 Page 9

'$.thousandth')

The queries set consists of wide range of queries including single key selects, range scans,

aggregation, and selection of documents based on sparse fields.

Performance Enhancements for JSON data

JSON with In-Memory Columnar Store (IMC)

Oracle Database 12c Release 1 introduced In-Memory Columnar option (also known as DBIM –
Database In-Memory option) which is an in-memory columnar store to store tables and materialized

views to speed up analytical queries that typically scan large number of records. In Oracle Database

12c Release 2 this feature is enhanced to support JSON in memory, where JSON is loaded into in-

memory store in a binary format to speed up SQL/JSON queries that scan large number of JSON

documents. The binary format is optimized to efficiently evaluate SQL/JSON path queries. The JSON

in-memory feature uses the same Oracle SGA memory configured to store In-Memory columnar store

and thus uses the same configuration parameters designed for Oracle In-Memory columnar feature.

The JSON In-Memory store feature benefits the following use cases:

» Non-DML intensive workload with SQL/JSON analytical queries based on JSON_TABLE functions
and JSON_QUERY(), JSON_VALUE() and JSON_EXISTS() operators scanning a large number of
JSON documents.

» Each JSON document is less than 32K in size. If the JSON document is larger than 32K, then it
won’t benefit from the JSON In-Memory feature.

» If there are functional indexes on the JSON column, the optimizer is intelligent enough to choose In-
Memory scan or functional index on queries based on the selectivity of the query.

» In addition to storing entire JSON documents, the Database also allows caching of JSON_VALUE()
or JSON_QUERY() expressions and JSON_TABLE() constructs. Users can create virtual columns on
frequently queried JSON_VALUE(), JSON_QUERY() operators to project top level scalar values from
a JSON column and have them loaded into Oracle In-Memory store. In-Memory virtual columns
assume users have knowledge of the most frequently queried JSON operators. Ad-hoc SQL/JSON
operators will still benefit from the JSON In-Memory store.

Configuring In-Memory store for JSON documents

The JSON In-Memory feature uses the same Oracle SGA memory configured to store In-Memory

columnar store and thus uses the same configuration parameters designed for Oracle In-Memory

columnar feature.

The following Oracle parameters need to be set in the init.ora/spfile parameter file:

compatible = 12.2.0.0

inmemory_expressions_usage = STATIC_ONLY

inmemory_size = 35433480192

inmemory_virtual_columns = ENABLE

JSON Performance features in Oracle 12c Release 2 Page 10

The varchar2/CLOB/BLOB column storing JSON documents musts have the “IS JSON” check
constraint to designate the column as a JSON column. The table can be loaded into In-Memory store by

executing the following SQL commands:

alter table nobench_main add str1_vc as (JSON_VALUE(jobj format json, '$.str1'));

alter table nobench_main add num_vc as (JSON_VALUE(jobj format json,

'$.num' RETURNING NUMBER));

alter table nobench_main add nstr_vc as (JSON_VALUE(jobj format json,

'$.nested_obj.str'));

alter table nobench_main add dyn1_vc as (JSON_VALUE(jobj format json,

'$.dyn1' RETURNING NUMBER));

alter table nobench_main add constraint j_c check (jobj is json);

alter table nobench_main inmemory;

select count(*) from nobench_main;

Virtual columns are created on the frequently used JSON operators. The virtual columns will also be

loaded into the In-Memory store. In the above example, four virtual columns are created. Functional

indexes are also created on these columns. Setting the inmemory_virtual_columns to ENABLE, enables

storing of all the virtual columns of all the tables in the In-Memory store. The default value for this

parameter is MANUAL. To manually store selective virtual columns the following statement can be

issued, where vc1 and vc2 are previously created virtual columns.

alter table nobench_main inmemory inmemory(vc1,vc2);

A check constraint is added on the jobj column which holds the JSON document. The In-Memory store

for the table is enabled by the alter table <table_name> inmemory command. The last command checks

to make sure the table is fully loaded in memory. This query may return immediately, however the

population of the In-Memory binary format of the JSON documents in the In-Memory store happens in

the background.

To verify that the JSON documents are loaded into the memory, the following queries can be executed

to check the In-Memory store segments.

JSON Performance features in Oracle 12c Release 2 Page 11

--

------------- -------------

-------------------------- ----------- ---------- --------------------------

--------------------------- ------------

--

--

--

SQL> select distinct SEGMENT_NAME, POPULATE_STATUS from gv$IM_SEGMENTS where

SEGMENT_NAME='NOBENCH_MAIN';

SEGMENT_NAME

INMEMORY_SIZE POPULATE_STAT

NOBENCH_MAIN

2.5547E+10 COMPLETED

SQL> select pool, alloc_bytes, used_bytes, populate_status from v$inmemory_area;

POOL ALLOC_BYTES USED_BYTES POPULATE_STATUS

1MB POOL 2.8158E+10 2.5680E+10 DONE

64KB POOL 722678579 30015488 DONE

SQL> select substr(column_name, 1, 13) as NM, HIDDEN_COLUMN from user_tab_cols

where table_name = 'NOBENCH_MAIN';

NM HID

JOBJ NO

SYS_NC00002$ YES

SYS_NC00003$ YES

SYS_NC00004$ YES

SYS_NC00005$ YES

SYS_IME_OSON_0001000000019160 YES

The query on gv$IM_SEGMENTS should show the POPULATE_STATUS on the table as

“COMPLETED”. Running the second query on v$inmemory_area shows the amount of In-Memory store

being used. The inmemory_size parameter can be adjusted to fit the data in memory.

To verify that the JSON in-memory format is successfully loaded , first verify that the virtual column with

name like SYS_IME_OSON_XXXXXXX is displayed when the table columns are inspected.

The query execution plan should show that the in-memory column is being used, as shown below. The

query execution plan should show the TABLE ACCESS as INMEMORY_FULL on the table being

queried. Also the "SYS_IME_OSON_XXXXX"[RAW,32767] parameter should be displayed in the

column projection section of the explain plan.

SELECT MAX(JSON_VALUE(jobj, '$.str2')) FROM nobench_main;

Plan hash value: 1125102308

| Id | Operation | Name |

| 1 | SORT AGGREGATE | |

| 2 | TABLE ACCESS INMEMORY FULL| NOBENCH_MAIN |

Column Projection Information (identified by operation id):

1 - (#keys=0) MAX(JSON_VALUE("JOBJ" FORMAT JSON , '$.str2' RETURNING

VARCHAR2(4000) NULL ON ERROR , "NOBENCH_MAIN"."SYS_IME_OSON_0001000003BB

569C"))[4000]

2 - "JOBJ"[VARCHAR2,4000],"NOBENCH_MAIN"."SYS_IME_OSON_0001000003BB5

69C"[RAW,32767]

JSON Performance features in Oracle 12c Release 2 Page 12

Creating a functional index on a JSON expression implicitly creates a virtual column. Any such virtual

columns associated with functional indexes are automatically stored in the In-Memory store once the In-

Memory option is enabled on the table. No extra steps are needed.

Benchmark Results

The NoBench benchmark was run with the In-Memory option enabled and with all the indexes disabled.

Virtual columns were created and loaded into IMC on the expressions as described in the table above.

With In-Memory option, the queries are sped up by scanning the In-Memory binary format of JSON and

by scanning the virtual columns where applicable. The following graph shows the speed up achieved by

In-Memory option. The y-axis of the graph is shown in log-scale to accommodate the large range of

speedups in the graph.

Figure 1

From the graph above, it can be clearly seen that In-Memory storage of the binary format of JSON and

caching of the virtual column gives significant speedup in query execution times. In this test no

functional indexes or JSON Search index was built, this was done to study the impact of In-Memory

caching alone. The queries with high selectivity show speed-up due to scanning of the virtual columns

(configured on JSON expressions on queried field) in the In-Memory store.

In-Memory Store Sizing

The In-Memory area for the Oracle Database 12c Release 2 has to be configured via an init.ora

parameter. The In-Memory store has to be sized for the JSON text documents, in-memory binary

format of JSON and any other virtual columns that are configured. The size of the binary format is same

as the size of the original JSON text documents. To illustrate an example, for the above NoBench

benchmark with 16 million documens of size 600 bytes each, the In-Memory store was sized as follows:

JSON Performance features in Oracle 12c Release 2 Page 13

Total In-Memory Store = JSON Documents + JSON binary format + Virtual Columns

= 16000000 * 600 + 16000000 * 600 + <size of the virtual columns>

Functional and JSON Search Index

Functional indexes yield fast query performance with minimal DML overheads. Based on the query

requirement, building functional indexes on JSON Path expressions will result in faster query execution.

The following functional indexes were configured for this benchmark based on the query definitions.

create index j_get_str1 on nobench_main(JSON_VALUE(jobj format json, '$.str1'));

create index j_get_num on nobench_main(JSON_VALUE(jobj format json, '$.num' RETURNING

NUMBER));

create index j_get_nstr on nobench_main(JSON_VALUE(jobj format json,

'$.nested_obj.str'))

create index j_get_dyn1 on nobench_main(JSON_VALUE(jobj format json, '$.dyn1'

RETURNING NUMBER))

In cases where the predicate is not known (adhoc queries) or the keys being queried are sparse across

the documents, instead of building multiple functional indexes, building a search index across all the

documents in a table would be more efficient. The optimizer can utilize the search index to search and

retrieve the documents that match. The following sample query demonstrates the use of the search

index. This is especially suited for documents that are updated infrequently, where the overhead of

maintaining the search index during updates and inserts will be less.

select sparse_xx0, sparse_yy0 FROM nobench_main,

JSON_TABLE(jobj, '$' columns sparse_xx0 varchar(128) path '$.sparse_450',

sparse_yy0 varchar(128) path '$.sparse_459'

)

WHERE (JSON_EXISTS(jobj, '$.sparse_450') OR JSON_EXISTS(jobj, '$.sparse_459'));

Execution Plan

Plan hash value: 3007270940

| Id | Operation | Name |

| 1 | NESTED LOOPS | |

| 2 | TABLE ACCESS BY INDEX ROWID| NOBENCH_MAIN |

|* 3 | DOMAIN INDEX | NOBENCH_JSON_VCHAR_IDX |

| 4 | JSONTABLE EVALUATION | |

Predicate Information (identified by operation id):

3 - access("CTXSYS"."CONTAINS"("NOBENCH_MAIN"."JOBJ",'(HASPATH(/sparse_450))

or (HASPATH(/sparse_459))')>0)

Column Projection Information (identified by operation id):

1 - (#keys=0) VALUE(A0)[128], VALUE(A0)[128]

2 - "JOBJ"[VARCHAR2,4000]

JSON Performance features in Oracle 12c Release 2 Page 14

In the query mentioned above, the keys being queried are sparsely populated across the JSON

documents. Building a large number of functional indexes on the sparse keys would be impractical. A

Search Index is a better option as shown in the query plan above.

Benchmark Results

The NoBench benchmark was run to study the impact of search index and the functional index. The

following graph shows the speedup with functional and JSON search index compared to table

scans. In this test IMC was turned off and only functional indexes and JSON search index were

configured to study the impact of indexes alone. The queries with high selectivity benefit greatly

with functional indexes (query Q5) and JSON search index (Q3, Q4, Q8 and Q9). Q1a and Q2a

are aggregation queries using max() function, which benefit with the presence of functional index.

Query execution times for these queries are greatly reduced due to the functional indexes built on

the functional expressions. The y-axis of the graph is shown in log-scale to accommodate the

large range of speedups in the graph.

Figure 2

As it is evident from the graph above (Figure 2), JSON functional indexes and search index can be

used to speedup queries with full search capability. One thing to bear in mind is the performance

overhead of updating the search index during DML statements on the JSON document. The full

Search index is well suited for JSON documents with infrequent updates.

JSON Performance features in Oracle 12c Release 2 Page 15

In-Memory Store and Functional and JSON Search Indexes

Indexes and IMC can be configured together to derive benefits of both the features. The following graph

(Figure 3) shows the speedup due to enabling IMC and configuring indexes (both functional and JSON

Search index) compared to configuring only IMC..

Figure 3

By configuring indexes based on selectivity, a further speedup can be seen for these queries, whereas

still enjoying the speedup due to IMC for queries with low selectivity. The optimizer automatically picks

the right plan (IMC vs Indexes) based on the query selectivity.

JSON Performance features in Oracle 12c Release 2 Page 16

Performance Guidelines

The following section describes the performance guidelines while storing and retrieving JSON data in

Oracle 12c Release 2 database.

» JSON functional Indexes yield fast query performance with minimal DML overheads.

» In-Memory store can be used to boost the performance of JSON queries across the board with
minimal DML overhead.

» IMC improves performance on JSON data by using a post parsed binary representation in
memory for fast scans. This features helps queries with low selectivity.

» IMC virtual columns are automatically created for any functional index expressions. No further
steps are required other than just turning on IMC. The Optimizer is intelligent enough to pick
either functional index or IMC scan of the virtual column based on the selectivity.

» The JSON search index provides full search capability (both on keys and values) of JSON
documents. Combined with functional index, the JSON search index provides the best performance in
terms of response times. However the search index maintenance can add to the DML overhead. So
the JSON search index is most suitable for read-mostly workloads.

» For documents smaller than 4000 bytes, storing them in varchar2 columns gives the maximum
performance. For documents smaller than 32KB (and larger than 4000 bytes) extended varchar2
gives the best performance. Documents larger than 32KB can be stored in BLOB columns.

JSON Performance features in Oracle 12c Release 2 Page 17

Conclusion

Oracle Database 12c Release 2 provides performance enhancements for SQL/JSON processing which

results in significant performance speed up for queries. The JSON full-text search index provides speed

up for adhoc queries where the keys being looked up are not known a priori. It can also be used for

cases where sparse keys are queried or where full text searches are needed. The Oracle Database 12c

Release 2 In-Memory store feature has been enhanced to support an in-memory binary format of

JSON for efficient SQL/JSON operations. In addition to loading the whole JSON document, virtual

columns can also be loaded into the In-Memory store. Any virtual columns underlying functional indexes

are automatically loaded into the In-Memory store. The optimizer is intelligent enough to pick a full In-

Memory store scan or functional index based on the selectivity of the query.

JSON Performance features in Oracle 12c Release 2 Page 18

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0116

White Paper JSON Performance features in Oracle 12c Release 2
December 2016

http:oracle.com

