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Abstract

The R package jsr223 is a high-level integration for five programming languages in the Java
platform: Groovy, JavaScript, JRuby, Jython, and Kotlin. Each of these languages can use Java
objects in their own syntax. Hence, jsr223 is also an integration for R and the Java platform.
It enables developers to leverage Java solutions from within R by embedding code snippets or
evaluating script files. This approach is generally easier than rJava’s low-level approach that
employs the Java Native Interface. jsr223’s multi-language support is dependent on the Java
Scripting API: an implementation of “JSR-223: Scripting for the Java Platform” that defines a
framework to embed scripts in Java applications. The jsr223 package also features extensive
data exchange capabilities and a callback interface that allows embedded scripts to access the
current R session. In all, jsr223 makes solutions developed in Java or any of the jsr223-supported
languages easier to use in R.
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1 Introduction

About the same time Ross Ihaka and Robert Gentleman began developing R at the University of
Auckland in the early 1990s, James Gosling and the so-called Green Project Team was working
on a new programming language at Sun Microsystems in California. The Green Team did not set
out to make a new language; rather, they were trying to move platform-independent, distributed
computing into the consumer electronics marketplace. As Gosling explained, “All along, the
language was a tool, not the end” (O’Connell, 1995). Unexpectedly, the programming language
outlived the Green Project and sparked one of the most successful development platforms in
computing history: Java. According to the TIOBE index, Java has been the most popular pro-
gramming language, on average, over the last sixteen years. Java’s success can be attributed to
several factors. Perhaps the most important factor is platform-independence: the same Java pro-
gram can run on several operating systems and hardware devices. Another important factor is
that memory management is handled automatically for the programmer. Consequently, Java pro-
grams are easier to write and have fewer memory-related bugs than programs written in C/C++.
These and other factors accelerated Java’s adoption in enterprise systems which, in turn, estab-
lished a thriving developer community that has created production-quality frameworks, libraries,
and programming languages for the Java platform. Many successful Java solutions are relevant
to data science today such as Hadoop, Hive, Spark, Cassandra, HBase, Mahout, Deeplearning4j,
Stanford CoreNLP, and others.

In 2003, Simon Urbanek released rJava (2017), an integration package designed to avail R of the
burgeoning development surrounding Java. The package has been very successful to this end.
Today, it is one of the top-ranked solutions for R as measured by monthly downloads.1 rJava is
described by Urbanek as a low-level R to Java interface analogous to .C and .Call, the built-in R
functions for calling compiled C code. Like R’s integration for C, rJava loads compiled code into
an R process’s memory space where it can be accessed via various R functions. Urbanek achieves
this feat using the Java Native Interface (JNI), a standard framework that enables native (i.e.
platform-dependent) code to access and use compiled Java code. The rJava API requires users to
specify classes and data types in JNI syntax. One advantage to this approach is that it gives users
granular, direct access to Java classes. However, as with any low-level interface, the learning
curve is relatively high and implementation requires verbose coding. A second advantage to
using JNI is that it avoids the difficult task of dynamically interpreting or compiling source code.
Of course, this is also a disadvantage: it limits rJava to using compiled code as opposed to
embedding source code directly within R script.

Our jsr223 package builds on rJava to provide a high-level interface to the Java platform.
We accomplish this by embedding other programming languages in R that use Java objects in
natural syntax. As we show in the rJava software review, this approach is generally simpler
and more intuitive than rJava’s low-level JNI interface. To date, jsr223 supports embedding five
programming languages: Groovy, JavaScript, JRuby, Jython, and Kotlin. (JRuby and Jython are
Java platform implementations of the Ruby and Python languages, respectively.) See Table 1 for
a brief description of each language.

The jsr223 multi-language integration is made possible by the Java Scripting API (Oracle,
2016a), an implementation of the specification “JSR-223: Scripting for the Java Platform” (Sun
Microsystems, Inc., 2006). The JSR-223 specification includes two crucial elements: an interface

1 rJava ranks in the 99th percentile for R package downloads according to http://rdocumentation.org.

https://www.tiobe.com/tiobe-index/
http://hadoop.apache.org/
https://hive.apache.org/
https://spark.apache.org/
http://cassandra.apache.org/
https://hbase.apache.org/
https://mahout.apache.org/
https://deeplearning4j.org/
https://stanfordnlp.github.io/CoreNLP/
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=jsr223
http://rdocumentation.org
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Table 1: The five programming languages supported by jsr223.

Language Description

Groovy Groovy is a scripting language that follows Java syntax very
closely. Hence, jsr223 enables developers to embed Java source
code directly in R script. Groovy also supports an optionally
typed, functional paradigm with relaxed syntax for less verbose
code.

JavaScript JavaScript is well known for its use in web applications. How-
ever, its popularity has overflowed into standalone solutions
involving databases, plotting, machine learning, and network-
enabled utilities, to name just a few. jsr223 uses Nashorn, the
ECMA-compliant JavaScript implementation for the Java plat-
form. Note: As of Java 11, Nashorn is deprecated. Nashorn will
be removed in a future Java release.

JRuby JRuby is the Ruby implementation for the Java platform. Ruby is
a general-purpose, object-oriented language with unique syntax.
It is often used with the web application framework Ruby on
Rails. Ruby libraries, called gems, can be accessed via jsr223.

Jython Jython is the Python implementation for the Java platform. Like
R, the Python programming language is used widely in science
and analytics. Python has many powerful language features, yet
it is known for being concise and easy to read. Popular libraries
SciPy and NumPy are available for the Java platform through
JyNI (the Jython Native Interface).

Kotlin Kotlin version 1.0 was released in 2016 making it the newest
jsr223-supported language. It is a statically typed language
that supports both functional and object-oriented programming
paradigms. Kotlin has similarities to Java, but it often requires
less code than Java to accomplish the same task. Kotlin and Java
are the only languages officially supported by Google for An-
droid application development.

for Java applications to execute code written in scripting languages, and a guide for scripting
languages to create Java objects in their own syntax. Hence, JSR-223 is the basis for our package.
However, no knowledge of JSR-223 or the Java Scripting API is necessary to use jsr223. Figures
1 and 2 show how rJava and jsr223 facilitate access to the Java platform. Where rJava uses JNI,
jsr223 uses the Java Scripting API and embeddable programming languages.

The primary goal of jsr223 is to enable R developers to leverage existing Java solutions with
relative ease. We demonstrate two typical use cases in this document with subjects that are of
particular interest to many data scientists: a natural language processor, and a neural network

http://groovy-lang.org
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
http://jruby.org
http://rubyonrails.org/
http://rubyonrails.org/
http://www.jython.org
http://www.jyni.org/
https://kotlinlang.org/
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Figure 1: The rJava package facilitates low-level access to the Java platform through the Java Native Inter-
face (JNI). Some knowledge of JNI is required.

Figure 2: The jsr223 package provides high-level access to the Java platform through five programming
languages. Although jrs223 uses the Java Scripting API in its implementation, users do not need
to learn the API.

classifier. In addition to Java solutions, R developers can use projects developed in any of the five
jsr223-supported programming languages. In essence, jsr223 opens R to a broader ecosystem.

For Java developers, jsr223 facilitates writing high-performance, cross-platform R extensions
using their preferred platform. jsr223 also allows organizations that run enterprise Java appli-
cations to more readily develop dashboards and other business intelligence tools. Instead of
writing R code to query raw data from a database, jsr223 enables R packages to consume data
directly from their application’s Java object model where the data has been coalesced accord-
ing to business rules. Java developers will also be interested to know that the jsr223-supported
programming languages can implement interfaces and extend classes, just like the Java pro-
gramming language. See Extending existing Java solutions for an in-depth code example that
demonstrates extending Java classes and several other features.

1.1 jsr223 package implementation and features overview

The jsr223 package supports most of the major programming languages that implement JSR-223.
Technically, any JSR-223 implementation will work with our package, but we may not officially
support some languages. The most notable exclusion is Scala; we don’t support it simply because
the JSR-223 implementation is not complete. (Consider, instead, the rscala package for a Scala/R
integration (Dahl, 2018).) We also exclude languages that are not actively developed, such as
BeanShell.

https://CRAN.R-project.org/package=rscala
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The jsr223 package features extensive, configurable data exchange between R and Java via
jsr223’s companion package jdx (Gilbert and Dahl, 2018a). R vectors, factors, n-dimensional ar-
rays, data frames, lists, and environments are converted to standard Java objects. Java scalars,
n-dimensional arrays, maps, and collections are inspected for content and converted to the most
appropriate R structure (vectors, n-dimensional arrays, data frames, or lists). Several data ex-
change options are available including row-major and column-major ordering schemes for data
frames and n-dimensional arrays. Many language integrations for R provide a comparable fea-
ture set by using JSON (JavaScript Object Notation) libraries. In contrast, the jsr223 package
implements data exchange using custom Java routines to avoid the serialization overhead and
loss of floating point precision inherent in JSON data conversion.

The jsr223 package also supports converting the most common data structures from the jsr223-
supported languages. For example, jsr223 can convert Jython dictionaries and user-defined
JavaScript objects to R objects. Behind the scenes, every Java-based programming language uses
Java objects. For example, a Jython dictionary is backed by a Java object that defines the dictio-
nary’s behavior. The jsr223 package uses jdx to inspect these Java objects for data and convert
them to an appropriate R object. In most cases, the default conversion rules are intuitive and
seamless.

The jsr223 programming interface follows design cues from rscala, and V8 (Ooms, 2017b). The
application programming interface is implemented using R6 (Chang, 2017) classes for a tradi-
tional object-oriented style of programming. R6 objects wrap methods in an R environment mak-
ing them accessible from the associated variable using list-like syntax (e.g., myObject$myMethod()).

jsr223 uses rJava to load and communicate with the Java Virtual Machine (JVM): the abstract
computing environment that executes compiled Java code. jsr223 employs a client-server ar-
chitecture and a custom multi-threaded messaging protocol to exchange data and handle script
execution. This protocol optimizes performance by eliminating rJava calls that inspect generic
return values and transform data, both which incur significant overhead. The protocol also facil-
itates callbacks that allow embedded scripts to manipulate variables and evaluate R code in the
current R session. This callback implementation is lightweight, does not require any special R
software configuration, and supports infinite callback recursion between R and the script engine
(limited only by stack space). Other distinguishing jsr223 features include script compiling and
string interpolation.

1.2 Document organization

We begin with Helpful terminology and concepts to clarify some key ideas and define relevant
jargon. Next, we provide Typical use cases that highlight jsr223’s core functionality. The sections
Installation and Feature documentation provide the necessary details to install jsr223 and become
familiar with all of its features. If you are primarily interested in using jsr223 with a specific
programming language, jump to R with Groovy, R with JavaScript, R with Python, R with Ruby,
or R with Kotlin. The section Software review is a discussion that puts the jsr223 project in
context with comparisons to other relevant software solutions.

All code examples related to this document are available at our GitHub page: https://github.
com/floidgilbert/jsr223.

https://CRAN.R-project.org/package=jdx
https://CRAN.R-project.org/package=V8
https://CRAN.R-project.org/package=R6
https://github.com/floidgilbert/jsr223
https://github.com/floidgilbert/jsr223
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2 Helpful terminology and concepts

Java programs are compiled to Java bytecode that can be executed by an instance of a Java
Virtual Machine (JVM). A JVM is an abstraction layer that provides a platform-independent
execution environment for Java programs. A JVM interprets Java bytecode to machine code
(i.e., processor-specific instructions). JVMs are available for a wide variety of hardware and
software platforms. In principle, the same Java program will run on any platform that supports
a JVM. The Java paradigm contrasts with traditional compiled languages, such as C, that are
compiled directly to processor-dependent machine code, and therefore must be recompiled for
every targeted architecture. Often, changes in the source code are also required to support
different platforms.

Today, there are several programming languages that compile down to Java bytecode including
all of the languages currently supported by jsr223. This may be surprising to some readers
because languages like JavaScript are traditionally interpreted only, not compiled. In fact, the
jsr223 languages blur the line between scripting languages (those that are interpret-only) and
traditional compiled languages. Nevertheless, we generally refer to the languages supported by
jsr223 as scripting languages in this document because, as far as the user is aware, source code is
interpreted and executed (i.e., evaluated) in one step. Even so, this implementation benefits from
the significant performance gains of compiled code.

A scripting engine (usually shortened to script engine) is software that enables a scripting lan-
guage to be embedded in an application. Internally, a script engine uses an interpreter to parse
and execute source code. The terms script engine and interpreter are often used interchangeably.
In this document, script engine refers to the software component, not the interpreter. A script
engine instance denotes an instantiated script engine. Finally, a script engine environment refers to
the state (i.e., the variables and settings) of a given instance.

Bindings refers to the name/value pairs associated with variables in a given scope. Concep-
tually, a variable’s name is bound to its value. The variable names and values in R’s global
environment are examples of bindings.
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3 Typical use cases

This section includes introductory examples that demonstrate typical use cases for the jsr223
package. For a complete overview of jsr223 features, see the Feature documentation. Following
that section, we provide details and examples for each of the jsr223-supported languages.

3.1 Using Java libraries

For this introductory example, we use Stanford’s Core Natural Language Processing Java li-
braries (Manning et al., 2014) to identify grammatical parts of speech in a text. Natural language
processing (NLP) is a key component in statistical text analysis and artificial intelligence. This
example shows how so-called “glue” code can be embedded in R to quickly leverage the Stan-
ford NLP libraries. It also demonstrates how easily jsr223 converts Java data structures to R
objects. The full script is available at https://github.com/floidgilbert/jsr223/tree/master/
examples/JavaScript/stanford-nlp.R.

The first step: create a jsr223 "ScriptEngine" instance that can dynamically execute source
code. In this case, we use a JavaScript engine. The object is created using the ScriptEngine$new

constructor method. This method takes two arguments: a scripting language’s name and a
character vector containing paths to the required Java libraries. In the code below, the class.path

variable contains the required Java library paths. The new "ScriptEngine" object is assigned to
the variable engine.

class.path <- c(

"./protobuf.jar",

"./stanford-corenlp-3.9.0.jar",

"./stanford-corenlp-3.9.0-models.jar"

)

library("jsr223")

engine <- ScriptEngine$new("JavaScript", class.path)

Now we can execute JavaScript source code. The jsr223 interface provides several methods to do
so. In this example, we use the %@% operator; it executes a code snippet and discards the return
value, if any. The code snippet imports the Stanford NLP "Document" class. The import syntax
is peculiar to the JavaScript dialect. The result, DocumentClass, is used to instantiate objects or
access static methods.

engine %@% 'var DocumentClass = Java.type("edu.stanford.nlp.simple.Document");'

The next code sample defines a JavaScript function named getPartsOfSpeech. It tags each ele-
ment in a text with a grammatical part of speech (e.g., noun, adjective, or verb). The function
parses the text using a new instance of the "Document" class. The parsing results are transferred
to a list of JavaScript objects. Each JavaScript object contains the parsing information for a single
sentence.

https://github.com/floidgilbert/jsr223/tree/master/examples/JavaScript/stanford-nlp.R
https://github.com/floidgilbert/jsr223/tree/master/examples/JavaScript/stanford-nlp.R
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engine %@% '

function getPartsOfSpeech(text) {

var doc = new DocumentClass(text);

var list = [];

for (i = 0; i < doc.sentences().size(); i++) {

var sentence = doc.sentences().get(i);

var o = {

"words":sentence.words(),

"pos.tag":sentence.posTags(),

"offset.begin":sentence.characterOffsetBegin(),

"offset.end":sentence.characterOffsetEnd()

}

list.push(o);

}

return list;

}

'

We use engine$invokeFunction to call the JavaScript function getPartsOfSpeech from R. The
method invokeFunction takes the name of the function as the first parameter; any arguments
that follow are automatically converted to Java objects and passed to the JavaScript function.
The function’s return value is converted to an R object. In this case, jsr223 intuitively converts
the list of JavaScript objects to a list of R data frames as seen in the output below. The parts of
speech abbreviations are defined by the Penn Treebank Project (Taylor et al.). A quick reference
is available at https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.

html.

engine$invokeFunction(

"getPartsOfSpeech",

"The jsr223 package makes Java objects easy to use. Download it from CRAN."

)

## [[1]]

## words pos.tag offset.begin offset.end

## 1 The DT 0 3

## 2 jsr223 NN 4 10

## 3 package NN 11 18

## 4 makes VBZ 19 24

## 5 Java NNP 25 29

## 6 objects NNS 30 37

## 7 easy JJ 38 42

## 8 to TO 43 45

## 9 use VB 46 49

## 10 . . 49 50

##

## [[2]]

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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## words pos.tag offset.begin offset.end

## 1 Download VB 51 59

## 2 it PRP 60 62

## 3 from IN 63 67

## 4 CRAN NNP 68 72

## 5 . . 72 73

In this example, we effectively used Stanford’s Core NLP library with a minimal amount of
code. This same functionality can be replicated in any of the jsr223-supported programming
languages.

3.2 Using Java libraries with complex dependencies

In this example we use Deeplearning4j (DL4J) (Eclipse Deeplearning4j Development Team, 2018)
to build a neural network. DL4J is an open-source deep learning solution for the Java platform.
It is notable both for its scalability and performance. DL4J can run on a local computer with a
standard CPU, or it can use Spark for distributed computing and GPUs for massively parallel
processing. DL4J is modular in design and it has a large number of dependencies. As with many
other Java solutions, it is designed to be installed using a software project management utility like
Apache Maven, Gradle, or sbt. These utilities feature dependency managers that automatically
download a library’s dependencies from a central repository and make them accessible to your
project. This is similar to installing an R package from CRAN using install.packages; by
default, any referenced packages are also downloaded and installed.

The primary goal of this example is to show how jsr223 can easily leverage complex Java
solutions with the help of a project management utility. We will install both Groovy and DL4J
using Apache Maven. We will then integrate Groovy script with R to create a simple neural
network. The process is straightforward: i.) create a skeleton Java project; ii.) add dependencies
to the project; iii.) build a class path referencing all of the dependencies; and iv.) pass the class
path to jsr223. Though we use Maven here, the same concepts apply to any project management
utility that supports Java.

To begin, visit the Maven web site (https://maven.apache.org/) and follow the installation
instructions for your operating system. Next, create an empty folder for this sample project.
Open a terminal (a system command prompt) and change the current directory to the project
folder. Execute the following Maven command. It will create a skeleton Java project named ‘stub’
in a subfolder by the same name. The Java project is used only to retrieve dependencies; it is not
required for the R project. If this is the first time Maven has been executed on your computer,
several files will be downloaded to the local Maven repository cache on your computer.

mvn archetype:generate -DgroupId=none -DartifactId=stub -DinteractiveMode=false

Open the Maven project object model file, ‘stub/pom.xml’, in a plain text editor or an XML editor.
Locate the XML element <dependencies>. It will be similar to the example displayed below. A
<dependency> child element defines a single project dependency that will be retrieved from the
Maven repository. Notice that a dependency has a group ID, an artifact ID, and a version. (Artifact
is the general term for any file residing in a repository.) How do you know which dependencies
are required for your project? They are often provided in installation documentation. Or, if

https://deeplearning4j.org/
https://maven.apache.org/
https://gradle.org/
https://www.scala-sbt.org/
https://maven.apache.org/
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you are starting from a code example, dependencies can be located in a Maven repository using
fully-qualified Java class names.

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.12</version>

<scope>test</scope>

</dependency>

</dependencies>

Maven dependency definitions can be located at https://search.maven.org. We will search
for dependencies using the syntax ‘g:<group-id> a:<artifact-id>’. This avoids erroneous
results and near-matches. A search string for each dependency in our demonstration is provided
in the bullet list below. Perform a search using the first bullet item. In the search results, click
the version number under the column heading “Latest Version.” On the right-hand side of the
page that follows you will see an XML Maven dependency definition for the artifact. Copy the
XML and insert it after the last </dependency> end tag in your ‘pom.xml’ file. It is not necessary to
preserve indentations or other white space. Repeat this process for each of the remaining search
strings below.

• g:org.apache.logging.log4j a:log4j-core

• g:org.slf4j a:slf4j-log4j12

• g:org.deeplearning4j a:deeplearning4j-core

• g:org.nd4j a:nd4j-native-platform

• g:org.datavec a:datavec-api

• g:org.codehaus.groovy a:groovy-all

Save the ‘pom.xml’ file. In your terminal window, change directories to the Java project folder
(‘stub’) and execute the following Maven command. This will download all of the dependencies
to a local repository cache on your computer. It will also create a file named ‘jsr223.classpath’ in
the parent folder. It contains a class path referencing all of the dependencies that will be used by
jsr223.

mvn dependency:build-classpath -Dmdep.outputFile="../jsr223.classpath"

Now everything is in place to create a neural network using Groovy and DL4J. To keep the
example simple, we use a feedforward neural network to classify species in the iris data set. The
example involves an R script (‘dl4j.R’) and a Groovy script (‘dl4j.groovy’). Both scripts can be
downloaded from https://github.com/floidgilbert/jsr223/tree/master/examples/Groovy/

dl4j. Save both scripts in the same folder as ‘jsr223.classpath’.

https://search.maven.org
https://github.com/floidgilbert/jsr223/tree/master/examples/Groovy/dl4j
https://github.com/floidgilbert/jsr223/tree/master/examples/Groovy/dl4j
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the r script First, we read in the class path created by Maven and create the Groovy script
engine.

library(jsr223)

file.name <- "jsr223.classpath"

class.path <- readChar(file.name, file.info(file.name)$size)

engine <- ScriptEngine$new("groovy", class.path)

Next, we set a seed for reproducible results. The value is saved in a variable that will be
retrieved by the Groovy script.

seed <- 10

set.seed(seed)

The code that follows splits the iris data into train and test matrices. The inputs are centered
and scaled. The labels are converted to a binary matrix format: for each record, the number 1 is
placed in the column corresponding to the correct label.

train.idx <- sample(nrow(iris), nrow(iris) * 0.65)

train <- scale(as.matrix(iris[train.idx, 1:4]))

train.labels <- model.matrix(~ -1 + Species, iris[train.idx, ])

test <- scale(as.matrix(iris[-train.idx, 1:4]))

test.labels <- model.matrix(~ -1 + Species, iris[-train.idx, ])

Finally, we execute the Groovy script. The results will be printed to the console.

result <- engine$source("dl4j.groovy")

cat(result)

the groovy script The Groovy script here follows Java syntax with one exception: we pro-
vide no class. Instead, we place all of the code at the top level to be executed at once. This is
merely a style choice to keep the code samples easy to follow. The script begins by importing the
necessary classes.

import org.deeplearning4j.eval.Evaluation;

import org.deeplearning4j.nn.conf.MultiLayerConfiguration;

import org.deeplearning4j.nn.conf.NeuralNetConfiguration;

import org.deeplearning4j.nn.conf.layers.DenseLayer;

import org.deeplearning4j.nn.conf.layers.OutputLayer;

import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;

import org.deeplearning4j.nn.weights.WeightInit;

import org.nd4j.linalg.activations.Activation;

import org.nd4j.linalg.api.ndarray.INDArray;

import org.nd4j.linalg.cpu.nativecpu.NDArray;

import org.nd4j.linalg.dataset.DataSet;

import org.nd4j.linalg.learning.config.Sgd;

import org.nd4j.linalg.lossfunctions.LossFunctions;
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Next, we convert the train and test data from R objects to the DataSet objects consumed by
DL4J. We retrieve the data from the R environment using the get method of jsr223’s built-in
R object. The R matrices are automatically converted to multi-dimensional Java arrays. These
arrays are used to instantiate the NDArray objects which, in turn, are used to instantiate the
DataSet objects.

DataSet train = new DataSet(

new NDArray(R.get("train")),

new NDArray(R.get("train.labels"))

);

DataSet test = new DataSet(

new NDArray(R.get("test")),

new NDArray(R.get("test.labels"))

);

Pulling the data from the R environment using the R object is just one convenient way to share
data between R and the Java environment. It is also possible to push data from R to the Groovy
environment, or to pass the data as function parameters. Note: for very large data sets it is
impractical to exchange data between R and Java using jsr223 methods. Instead, load the data
on the Java side for processing using DL4J classes optimized for big data.

Here we configure a feedforward neural network with backpropagation. The network consists
of four inputs, a seven node hidden layer, a three node hidden layer, and a three node output
layer. An explanation of the network’s hyperparameters is beyond the scope of this discussion.
See https://deeplearning4j.org/docs/latest/deeplearning4j-troubleshooting-training for
a DL4J hyperameter reference.

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()

.seed(R.get("seed").intValue())

.activation(Activation.TANH)

.weightInit(WeightInit.XAVIER)

.updater(new Sgd(0.1)) // Learning rate.

.list()

.layer(new DenseLayer.Builder().nIn(4).nOut(7).build())

.layer(new DenseLayer.Builder().nIn(7).nOut(3).build())

.layer(

new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)

.activation(Activation.SOFTMAX)

.nIn(3)

.nOut(3)

.build()

)

.backprop(true)

.build();

We use the network configuration to initialize a model which is then trained over 200 epochs.

MultiLayerNetwork model = new MultiLayerNetwork(conf);

model.init();

https://deeplearning4j.org/docs/latest/deeplearning4j-troubleshooting-training
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for (int i = 0; i < 200; i++) {

model.fit(train);

}

At last, the trained model is evaluated using the test data. The last line produces a text report
including classification metrics and a confusion matrix.

Evaluation eval = new Evaluation(3); // 3 is the number of possible classes

INDArray output = model.output(test.getFeatures());

eval.eval(test.getLabels(), output);

eval.stats();

results Executing the R script will produce the following console output. Our simple model
performs reasonably well in this case, misclassifying two out of 53 observations.

## ========================Evaluation Metrics========================

## # of classes: 3

## Accuracy: 0.9623

## Precision: 0.9628

## Recall: 0.9628

## F1 Score: 0.9628

## Precision, recall & F1: macro-averaged (equally weighted avg. of 3 classes)

##

##

## =========================Confusion Matrix=========================

## 0 1 2

## ----------

## 17 0 0 | 0 = 0

## 0 16 1 | 1 = 1

## 0 1 18 | 2 = 2

##

## Confusion matrix format: Actual (rowClass) predicted as (columnClass) N times

## ==================================================================

This example demonstrated that complex Java solutions can be integrated with R using jsr223
and standard dependency management practices.

3.3 Extending existing Java solutions

Many Java libraries are designed to let the developer define custom behaviors by implementing
interfaces or extending classes. We illustrate one such solution here in the context of a Bayesian
analysis. The library at hand implements a multi-threaded Metropolis sampler (Metropolis et al.,
1953). We define a density function for the sampler by extending (i.e., subclassing) an abstract
Java class.

We use the Groovy scripting language for this example. Groovy follows the Java programming
language syntax very closely; hence, it is a natural choice for Java integrations. Programmers
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that know Groovy will notice that our code is unnecessarily verbose. We chose to use strict Java
coding conventions to make the implementation more familiar to Java programmers.

The Bayesian analysis involves count data y1, . . . ,yn that we believe to be independently and
identically distributed according to a zero-inflated Poisson sampling model. Given 0 < π < 1

and λ > 0,

Pr(yi = 0 | π, λ) = π+ (1− π) e−λ

Pr(yi = k | π, λ) = (1− π)
λk e−λ

k!
, for k = 1, 2, . . .

We choose independent priors π ∼ Beta(α,β) and λ ∼ Gamma(θ, κ). Furthermore, we use
independent Gaussian proposal densities for π and λ.

Our analysis involves two scripts: (i) a Groovy script to extend and execute the Metropolis sam-
pler class; and (ii) an R script to prepare the data and parameters, execute the Groovy script, and
summarize the results. The scripts, named ‘metropolis.groovy’ and ‘metropolis.R’, are located at
https://github.com/floidgilbert/jsr223/tree/master/examples/Groovy. The required Java
files can be downloaded from the ‘lib’ subfolder.

the groovy script To begin, we import the necessary classes. The first line below imports
all of the static methods of the "Math" class. The second line imports the abstract class for the
Metropolis sampler. The last line imports a univariate normal proposal class. (This latter class
implements the interface "ProposalDistributionUnivariate". If we wanted to use a custom
proposal distribution, we could do so by creating a class that implements this interface in script.)

import static java.lang.Math.*;

import org.fgilbert.jsr223.examples.MetropolisSamplerUnivariateProposal;

import org.fgilbert.jsr223.examples.ProposalDistributionUnivariateNormal;

The code that follows is the key element of this example; it defines the behavior of a Java
class in script. Specifically, we define a class named "Sampler" that extends the abstract class
"MetropolisSamplerUnivariateProposal". The "Sampler" class has just two members: the con-
structor method and the logPosterior method. The constructor method takes the parameter
values for the prior distributions and computes statistics used in the posterior function. The
logPosterior method implements the log of the posterior function that is called by the sampler.

public class Sampler extends MetropolisSamplerUnivariateProposal {

private double alpha, beta, theta, kappa;

private double dataLength, dataSum, dataZeroCount, dataPositiveCount;

public Sampler(double alpha, double beta, double theta, double kappa, int[] data) {

this.alpha = alpha; this.beta = beta;

this.theta = theta; this.kappa = kappa;

dataLength = data.length;

for (int i = 0; i < dataLength; i++) {

dataSum += data[i];

https://github.com/floidgilbert/jsr223/tree/master/examples/Groovy
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if (data[i] == 0)

dataZeroCount++;

}

dataPositiveCount = dataLength - dataZeroCount;

}

@Override

public double logPosterior(double[] values) {

double pi = values[0];

double lambda = values[1];

if (pi <= 0 || pi >= 1 || lambda < 0)

return Double.NEGATIVE_INFINITY;

return (alpha - 1) * log(pi) + (beta - 1) * log(1 - pi) +

(theta - 1) * log(lambda) - kappa * lambda +

dataZeroCount * log(pi + (1 - pi) * exp(-lambda)) +

dataPositiveCount * log((1 - pi) * exp(-lambda)) +

dataSum * log(lambda);

}

}

The next lines initialize an array of normal proposal distribution objects that will be used by
the sampler. Each distribution object is initialized with a variance. The proposalVariances array
is not defined here; it is supplied by the R script.

ProposalDistributionUnivariateNormal[] pd =

new ProposalDistributionUnivariateNormal[proposalVariances.length];

for (int i = 0; i < proposalVariances.length; i++)

pd[i] = new ProposalDistributionUnivariateNormal(proposalVariances[i]);

Finally, we create a "Sampler" instance and assign it to the variable sampler. The last line runs
the sampler. Because it is the last line in the script, its return value will be automatically returned
to the R environment. Notice that all but one of the variables passed as method arguments have
not been defined yet. They will be provided by the R script.

Sampler sampler = new Sampler(alpha, beta, theta, kappa, data);

sampler.sample(startingValues, pd, iterations, discard, threads);

the r script First, we instantiate a Groovy script engine. The paths to the required Java
libraries are defined in class.path. The first file is the Groovy script engine; the second file
contains the Metropolis sampler; and the last file is the Apache Commons Mathematics Library
(http://commons.apache.org/proper/commons-math).

library("jsr223")

class.path <- c(

"lib/groovy-all-2.4.7.jar",

"lib/org.fgilbert.jsr223.examples-0.3.0.jar",

http://commons.apache.org/proper/commons-math
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"lib/commons-math3-3.6.1.jar"

)

engine <- ScriptEngine$new("Groovy", class.path)

The matrix starting.values defined here contains initial values for the Metropolis sampler.
Each row is a (π, λ) value pair that will be used to initialize a random walk. Hence, we will have
four MCMC chains for each parameter. The multi-threaded sampler computes these chains in
parallel.

starting.values <- rbind(

c(0.999, 0.001),

c(0.001, 0.001),

c(0.001, 30),

c(0.999, 30)

)

In the next step, we initialize global variables that are used by the Groovy script. The jsr223
package provides a few ways to do this, but the most convenient approach is the list-like as-
signment syntax shown below. The first four assignments (alpha, beta, theta, and kappa) cor-
respond to the parameter values for the prior densities; the variable data contains the counts
y1, . . . ,yn; proposalVariances is an array of variances for the Gaussian proposal distributions;
startingValues contains the initial (π, λ) parameter values for four random walks; iterations
indicates the number of MCMC iterations per random walk; discard is the number of initial
draws to ignore; and threads defines the size of the parallel processing thread pool.

engine$alpha <- 1

engine$beta <- 1

engine$theta <- 2

engine$kappa <- 1

engine$data <- as.integer(c(rep(0, 25), rep(1, 6), rep(2, 4), rep(3, 3), 5))

engine$proposalVariances <- c(0.3^2, 1.2^2)

engine$startingValues <- starting.values

engine$iterations <- 10000L

engine$discard <- as.integer(engine$iterations * 0.20)

engine$threads <- parallel::detectCores()

The Metropolis sampler will return two multi-dimensional arrays. We prefer the arrays to be
structured in a specific order, so we change the default ordering using the code here. For the
sake of brevity, we refer the reader to Handling R matrices and other n-dimensional arrays for
details regarding array order settings.

engine$setArrayOrder("column-minor")

Next, we compile and execute the Groovy script. Compiling the script is optional; we could
evaluate the code in one step using the jsr223 source method. However, we intend to execute the
script more than once, so we compile it for efficiency. The first line below compiles the script and
assigns the resulting object to the variable cs. The second line executes the compiled code and
assigns the output to the variable r. The result is the return value of the last line in the script. In
our Groovy script, the last line is a call to the method sample of the "Sampler" class.
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cs <- engine$compileSource("metropolis.groovy")

r <- cs$eval()

The sample method returns a Java map (i.e., an associative array or dictionary) with two mem-
bers: "acceptance_rates" and "chains". The jsr223 package automatically converts the map
and its contents to an R named list with the same member names. Define k as the number of
iterations minus the number discarded, p = 2 as the number of parameters, and w = 4 as the
number of random walks. Then the "chains" member is a 3-dimensional k× p×w matrix con-
taining the MCMC results. Here, we output the dimensions of the 3-dimensional array and the
top six rows of first random walk.

dim(r$chains)

## [1] 8000 2 4

parameter.names <- c("pi", "lambda")

dimnames(r$chains) <- list(NULL, parameter.names, NULL)

head(r$chains[, , 1])

## pi lambda

## [1,] 0.5225463 1.647577

## [2,] 0.4613551 1.647577

## [3,] 0.4613551 1.647577

## [4,] 0.6012411 1.647577

## [5,] 0.6012411 1.647577

## [6,] 0.4965568 1.647577

The "acceptance_rates" member is a w× p matrix containing the acceptance rates for each
parameter and random walk. We output those values below.

colnames(r$acceptance_rates) <- parameter.names

r$acceptance_rates

## pi lambda

## [1,] 0.3695 0.3143

## [2,] 0.3655 0.3209

## [3,] 0.3638 0.3175

## [4,] 0.3708 0.3148

For the sake of demonstration, let’s say that the acceptance rates are too high. We need to
widen the variances for the proposal distributions and re-run the sampler. There is no need
to recompile the script; instead, just update the corresponding global variable and execute the
compiled script again. We output the acceptance rates here for comparison.

engine$proposalVariances <- c(0.5^2, 1.7^2)

r <- cs$eval()

colnames(r$acceptance_rates) <- parameter.names
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r$acceptance_rates

## pi lambda

## [1,] 0.2361 0.2377

## [2,] 0.2354 0.2383

## [3,] 0.2340 0.2305

## [4,] 0.2418 0.2304

Table 2 contains a summary for each parameter by individual chain. The code used to sum-
marize the results can be found in the R script ‘metropolis.R’ on GitHub.

performance So far we have shown that we can extend compiled Java classes from within
R. But, is the runtime performance acceptable? We report some performance metrics here. The
scripts were run on a typical notebook computer with an Intel i7-5500U, 2.40Ghz processor and
8GB RAM. The processor can execute four threads in parallel. We allocated all four threads
to the Metropolis sampler to execute four walks in parallel. We ran the simulation for 10,000,
100,000, and 1,000,000 MCMC iterations per random walk. No values were discarded. Timings
were recorded using the microbenchmark package (Mersmann, 2018). We report the mean run
time over 40 simulations in Table 3. The first column contains the number of MCMC iterations
per random walk. The second column contains the mean run times for the expression cs$eval()

as in our preceding example. The third column contains the mean run times for the expression
cs$eval(discard.return.value = TRUE). This expression executes the Groovy script but dis-
cards the results instead of converting them to R objects. The last column contains the difference
of columns two and three; hence, it roughly represents the time required to convert the Java re-
sults to R. The number of values returned to R for each simulation is p×w+ iterations× p×w.
For example, when one million MCMC iterations are requested, a total of 8,000,008 numeric
values are returned. The size of the resulting R object is about 61MB (see object.size(r)).

To put these results in context, we ran another simulation where the Metropolis abstract class
is extended in a compiled Java class instead of Groovy. Otherwise, the simulation is identical
to the foregoing example. Table 4 summarizes those results. In the maximum case (one million
MCMC iterations), the difference between the implementations is well under two seconds. We
find this performance to be acceptable. Hence, the Groovy solution is a good balance of scripting
convenience and compiled performance. These results may vary depending on the scripting
language used.

What we have shown here is only one approach to this implementation. The total runtime
could be reduced by using simpler data structures or summarizing the data on the Java side.
However, R is designed for summarizing data. Therefore, we chose to transfer the full results
to R in a convenient format because we believe it represents the most typical use case. Further-
more, we could have implemented this solution using anonymous classes, lambda functions, or
closures. These constructs usually require less code, and they are supported within the various
jsr223-compatible programming languages. However, we found that they did not execute as
quickly.

Finally, how does the performance compare to a base R implementation? We created a parallel
Metropolis sampler in R that is very similar to the Java sampler (see ‘metropolis-base-r.R’ on
GitHub). Table 5 reports the mean run times over 40 simulations. For comparison, the table
includes the timings for the implementations featuring the Groovy class and the Java class.

https://CRAN.R-project.org/package=microbenchmark
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Table 2: A summary of the MCMC chains generated by the Metropolis sampler. Each parameter and
chain is listed with quantiles, acceptance rate, and effective sample size (ESS).

Parameter Chain 2.5% 25% 50% 75% 97.5% Acc. Rate ESS

π 1 0.288 0.460 0.537 0.606 0.724 0.236 764

π 2 0.288 0.467 0.540 0.604 0.724 0.235 864

π 3 0.298 0.459 0.529 0.603 0.722 0.234 989

π 4 0.268 0.456 0.528 0.598 0.713 0.242 702

λ 1 0.933 1.313 1.563 1.814 2.377 0.238 1023

λ 2 0.968 1.324 1.563 1.839 2.412 0.238 805

λ 3 0.935 1.356 1.579 1.816 2.344 0.231 785

λ 4 0.875 1.303 1.532 1.803 2.364 0.230 813

Table 3: Benchmark timings for the Java Metropolis sampler extended in Groovy. All times are in millisec-
onds. The first column indicates the number of MCMC iterations computed for each of the four
random walks run in parallel. The second column contains the mean runtime for the expression
cs$eval() over 40 simulations. The third column is the mean runtime for cs$eval(TRUE) (i.e.,
the return value is discarded). The last column is the difference between columns two and three;
hence, it roughly represents the time required to convert the Java results to R objects.

With Return Values

Iterations Yes No Difference

10,000 43.6 28.5 15.2
100,000 426.2 294.0 132.2

1,000,000 6,004.1 3,783.7 2,220.4

Table 4: Benchmark timings for the Metropolis sampler extended in Java. All times are in milliseconds.
The columns are as in Table 3.

With Return Values

Iterations Yes No Difference

10,000 33.6 17.9 15.8
100,000 293.2 171.1 122.2

1,000,000 5,348.2 2,391.5 2,956.7

Table 5: Performance comparison for the Metropolis samplers. The values are the mean run-times over
40 iterations reported in milliseconds.

Iterations R Groovy Class Java Class

10,000 1,185.3 43.6 33.6
100,000 4,174.6 426.2 293.2

1,000,000 34,202.5 6,004.1 5,348.2
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For 10,000 iterations, the Groovy class implementation is 27.2 times faster than the R implemen-
tation. The Java class implementation is 35.3 times faster. Part of the performance difference
can be attributed to how parallelization is implemented in Java vs. R. The Java sampler uses a
thread pool whereas the R approach uses a process pool. The latter requires significantly more
overhead. When we consider one million iterations, the difference in parallelization implemen-
tations becomes insignificant and the Groovy implementation is only 5.7 times faster than the R
implementation. However, the reduction in performance ratio is due, in part, to the conversion
of large Java objects to R objects. If we exclude the data conversion time we have a more direct
comparison of code execution performance. Using the run times excluding data conversion in
Table 3 and Table 4, we find that the Groovy implementation executes 9.0 times faster than the
R implementation and the Java implementation executes 14.3 times faster. This comparison is
not comprehensive; we report these numbers only to give the reader some basic expectation of
performance benefits.

conclusion This example illustrated how jsr223 facilitates the development of advanced Java
solutions. Java interfaces can be implemented and classes extended within script promoting
rapid application development and quick execution times.

3.4 Using other language libraries

In addition to using Java libraries, jsr223 can easily take advantage of solutions written in other
languages. In some cases, integration is as simple as sourcing a script file. For example, many
common JavaScript libraries like Underscore (http://underscorejs.org) and Voca (https://
vocajs.com/) can be sourced using a URL. The following example sources Voca and parses a
string. See Using JavaScript Solutions - Voca for a more in-depth example.

engine$source(

"https://raw.githubusercontent.com/panzerdp/voca/master/dist/voca.min.js",

discard.return.value = TRUE

)

engine$invokeMethod(

"v",

"wordWrap",

"A long sentence to wrap using Voca methods.",

list(width = 20)

)

## [1] "A long sentence to\nwrap using Voca\nmethods."

Compiled Groovy and Kotlin libraries are accessed in the same way as Java libraries: simply
include the relevant class or JAR files when instantiating a script engine.

The section R with Ruby includes detailed instructions for using Ruby gems (i.e., libraries) in
R. Specifically, the example shows how to generate fake entities for demonstration data sets.

The core Python language features are fully accessible via jsr223. However, compatibility with
many common Python libraries is limited. Please see R with Python for more information. That

http://underscorejs.org
https://vocajs.com/
https://vocajs.com/
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section also includes a code example that uses core Python to implement a simple HTTP server.
The server uses R callbacks to generate content.
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4 Installation

4.1 Package installation

The jsr223 package requires Java 8 Standard Edition or above. The current version of the Java
Runtime Environment (JRE) can be determined by executing ‘java -version’ from a system
command prompt. See the example output below. Java 8 is denoted by version 1.8.x_xx.

java version "1.8.0_144"

Java(TM) SE Runtime Environment (build 1.8.0_144-b01)

Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)

The JRE can be obtained from Oracle’s web site. Select the architecture (32 or 64 bit) that
matches your R installation.

jsr223 runs on a standard installation of R (e.g., the R build option --enable-R-shlib is not
required). jsr223 is available on CRAN and can be installed with the usual command:

install.packages("jsr223")

This command will also download and install the rJava dependency. However, the rJava in-
stallation will fail if R is not yet configured to use Java on Unix, Linux, or OSX. To configure
R for Java, execute ‘sudo R CMD javareconf’ in a terminal. This command is not required for
Windows systems. If the Java reconfiguration command generates errors, address the errors and
execute the command again. One common error can be resolved by determining whether the
GNU Compiler Collection (GCC) is accessible. To check for GCC, execute ‘gcc --help’ from a
terminal. This command will fail if GCC is not installed or if the license agreement has not been
accepted.

4.2 Script engine installation and instantiation

To create an instance of a language’s script engine, jsr223 requires access to the associated Java
Archive (JAR) files. These instructions will help you obtain the required files and create a script
engine instance. For simplicity, these instructions only direct you to download the files directly.
For an example using a dependency manager, see Using Java libraries with complex dependen-
cies.

4.2.1 Groovy

Groovy is a Java-like scripting language. Java code can often be executed by the Groovy engine
with little modification. Hence, this Groovy integration essentially brings the Java language to R.

To obtain the standalone Groovy engine, go to http://groovy-lang.org and click the ‘Download’
link. Locate the current binary distribution. Download and extract the archive to a temporary
folder. Locate the ‘embeddable’ subfolder. Copy the file named ‘groovy-all-x.x.x.jar’ to a con-
venient location and make note of the path. Specify this path in the class.path parameter of the
ScriptEngine$new constructor to create a Groovy script engine instance:

library("jsr223")

engine <- ScriptEngine$new("groovy", class.path = "~/your-path/groovy-all.jar")

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://groovy-lang.org
http://groovy-lang.org
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4.2.2 JavaScript (Nashorn)

Nashorn is the JavaScript dialect included in Java 8 through 10. For these versions, Nashorn is
included in the JRE, so no downloads are necessary to use JavaScript with jsr223. Note: As of
Java 11, Nashorn is deprecated. Nashorn will be removed in a future Java release. Technical
documentation and examples for Nashorn are available at Oracle’s web site. Create a JavaScript
instance using

library("jsr223")

engine <- ScriptEngine$new("javascript")

4.2.3 JRuby

JRuby is a Java-based implementation of the Ruby programming language. Obtain the stan-
dalone JRuby engine by clicking the ‘Downloads’ link at at http://jruby.org. Find ‘JRuby
x.x.x.x Complete.jar’ and save it to a convenient location. Specify the path to the JAR file
in the class.path parameter of the ScriptEngine$new constructor to create a JRuby script engine
instance.

library("jsr223")

engine <- ScriptEngine$new("ruby", class.path = "~/your-path/jruby-complete.jar")

4.2.4 Jython

Jython is a Java-based implementation of the Python programming language. The standalone
Jython engine is available at http://www.jython.org. Follow the ‘Download’ link. Click ‘Download
Jython x.x.x - Standalone Jar’ to start the download. Save the JAR file to a convenient loca-
tion and remember the path. This path will be used by jsr223 to load the script engine as in the
following code.

library("jsr223")

engine <- ScriptEngine$new(

"python",

class.path = "~/your-path/jython-standalone.jar"

)

4.2.5 Kotlin

Kotlin is a relatively new programming language that is interoperable with Java. As of this
writing, a standalone JAR file is not available for the script engine. The most straight-forward
way to obtain the files is to use selected files from the Community Edition of the JetBrains
IntelliJ Idea integrated development environment (IDE). The IDE doesn’t need to be installed.
Download the IDE’s archive file (e.g., a zip file, not the executable installer package). Create
an empty target folder on your system for the Kotlin files. Extract the ‘bin’ and ‘plugins/Kotlin’
folders to the target folder preserving the original folder structures. Note: The ‘bin’ folder isn’t
strictly required, but it will eliminate warnings on some systems. Make note of the fully-qualified
path to the ‘plugins/Kotlin’ folder; it will be used by jsr223 to load the script engine.

https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
http://jruby.org
http://jruby.org
http://www.jython.org
http://www.jython.org
https://kotlinlang.org/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
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If you are already using a current version of IntelliJ Idea, or if you decide to install the IDE,
locate the path to the ‘plugins/Kotlin’ subfolder of the IDE’s installation path. This folder will be
used to load the script engine.

Because Kotlin does not provide a standalone script engine JAR file, jsr223 includes a conve-
nience function getKotlinScriptEngineJars to simplify adding JAR files to the class path. The
following code demonstrates creating a Kotlin script engine instance using only the minimum
required JAR files. The kotlin.path variable contains the path to the ‘plugins/Kotlin’ folder on
your system.

library("jsr223")

engine <- ScriptEngine$new(

"kotlin",

class.path = getKotlinScriptEngineJars(kotlin.path)

)

To include all Kotlin system JAR files in the class path, use this example instead.

library("jsr223")

engine <- ScriptEngine$new(

"kotlin",

class.path = getKotlinScriptEngineJars(kotlin.path, minimum = FALSE)

)
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5 Feature documentation

The primary features of jsr223 are designed to be accessible to R programmers of all experience
levels. This quick start guide illustrates these features with simple code examples. In general,
the code samples work with all supported script engines with two exceptions.

1. Global variables in Ruby script must be prefixed with a dollar sign.

2. Kotlin script engine bindings are not created as global variables. See Kotlin idiosyncrasies.

5.1 Hello world

The R code snippet below demonstrates the basic elements required to embed a scripting lan-
guage: start a script engine, optionally pass data to the script engine environment, execute a
script, and terminate the script engine when it is no longer needed.

library("jsr223")

engine <- ScriptEngine$new("javascript")

engine$message <- "Hello world"

engine %~% "print(message);"

## Hello world

engine$terminate()

The ScriptEngine$new constructor method creates a script engine instance. In the preceding
example, we assign the new script engine object to the variable engine. The first argument of
ScriptEngine$new specifies the type of script engine to create. In this case, we create a JavaScript
engine. The third line assigns the value "Hello world" to a global variable named message in
the script engine environment. The next line executes a JavaScript code snippet using the %∼%

operator. The snippet uses the JavaScript print method to write the message to the console. The
last line in the example terminates the script engine and releases the associated resources.

To create a script engine other than JavaScript, specify a different script engine name and a
character vector containing the required script engine JAR files. (See Script engine installation
for instructions to obtain script engines.) The supported script engine names are listed in Table
6. These names are defined by the script engine provider. Note: Script engine names are case
sensitive.

The next example reproduces the “Hello world” example in Ruby script.

library("jsr223")

engine <- ScriptEngine$new(

engine.name = "ruby",

class.path = "~/your-path/jruby-complete.jar"

)

engine$message <- "Hello world"

engine %~% "puts $message"
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## Hello world

engine$terminate()

In this case, two parameters are passed to the ScriptEngine$new method: the script engine name
"ruby", and the path to the JRuby script engine JAR file. As before, we assign the value "Hello

world" to a global variable named message and print it to the console. Notice that we prefix the
global variable with a dollar sign: $message. This syntax is peculiar to global variables in the
Ruby language.

Language Script engine names

Groovy groovy, Groovy

JavaScript (Nashorn) js, JS, JavaScript, javascript, nashorn, Nashorn,
ECMAScript, ecmascript

JRuby (Ruby) jruby, ruby

Jython (Python) jython, python

Kotlin kotlin

Table 6: The ScriptEngine$new constructor method creates a new script engine instance for a given lan-
guage using the associated names in this table. Script engine names are case sensitive.

5.2 Executing script

jsr223 provides several methods to execute script. The lines

return.value <- engine %~% script

return.value <- engine$eval(script)

both evaluate the expression in the character vector script. The return value is the result of the
last expression in the script, if any, or NULL otherwise. Text written to standard output by the
script engine is printed to the R console. The following line executes JavaScript code and assigns
the result to an R variable.

result <- engine %~% "isFinite(1);"

The following lines also execute script, but there are no return values. This notation is conve-
nient if the last expression in the snippet returns unneeded data or an unsupported type (like a
function).

engine %@% script

engine$eval(script, discard.return.value = TRUE)

To execute a script file, use either of the following lines where file.name is the path or URL to
the script file.

http://groovy-lang.org
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
http://jruby.org
http://www.jython.org
https://kotlinlang.org/
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engine$source(file.name)

engine$source(file.name, discard.return.value = TRUE)

The methods eval and source take an argument named bindings that accepts an R named
list. The name/value pairs in the list replace the script engine’s global bindings during script
execution. The following JavaScript example demonstrates this functionality. Notice that the
result of a + b changes when bindings are specified.

engine$a <- 2

engine$b <- 3

engine$eval("a + b")

## 5

lst1 <- list(a = 6, b = 7)

engine$eval("a + b", bindings = lst1)

## 13

This script would throw an error because ’b’ is not defined in the list.

lst2 <- list(a = 6)

engine$eval("a + b", bindings = lst2)

When the bindings parameter is not specified, the script engine reverts to the default global
bindings.

engine$eval("a + b")

## 5

5.3 Sharing data between language environments

The following two lines of R code are equivalent: they convert an R object to a Java object and
assign the new object to a variable myValue in the script engine’s environment. This syntax is the
same for all supported R data structures.

engine$myValue <- iris

engine$set("myValue", iris)

To retrieve myValue from the script engine (i.e., to convert a Java object to an R object), use
either of the following lines.

engine$myValue

engine$get("myValue")
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Remove the myValue variable with engine$remove("myValue"). List all bindings in the script
engine’s environment with engine$getBindings().

Bindings are synonymous with global variables in most script engine environments. For exam-
ple, the following sample creates a binding using the R interface and retrieves the value through
JavaScript.

engine$myValue1 <- 5

engine %~% "myValue1;"

## [1] 5

This example does the opposite; it creates a new global variable in JavaScript and returns its
value through the jsr223 binding interface.

engine %@% "var myValue2 = 6;"

engine$myValue2

## [1] 6

The Kotlin language is an exception to this behavior. It handles bindings through a the global
object jsr223Bindings as follows. See Kotlin idiosyncrasies for more information.

engine$myValue1 <- 5

engine %~% 'jsr223Bindings["myValue1"]'

## [1] 5

engine %@% 'jsr223Bindings["myValue2"] = 6'

engine$myValue2

## [1] 6

All data structures in Java-based languages are backed by Java objects. Hence, jsr223 can
usually convert what appears to be a native language construct to an appropriate R object (e.g.
JavaScript objects and Python tuples). Discover the Java class for any global variable using
engine$getJavaClassName("identifier") where identifier is the variable’s name.

Behind the scenes, jsr223’s simplified data exchange is provided by the R package jdx: Java
Data Exchange for R and rJava. The jdx package’s functionality was originally part of jsr223,
but it was broken out into a separate package to simplify maintenance and to make its features
available to other developers.

The jdx package (and hence jsr223) supports converting R vectors, factors, n-dimensional ar-
rays, data frames, named lists, unnamed lists, nested lists (i.e., lists containing lists), and environ-
ments to generic Java objects. Row-major and column-major ordering options are available for
arrays and data frames. R data types numeric, integer, character, raw, and logical are supported.
Complex types and date/time classes are not supported.

Java scalars, n-dimensional arrays, collections, and maps can be converted to standard objects
in the R environment. These structures cover all of the primary data types in the supported

https://CRAN.R-project.org/package=jdx
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scripting languages. Moreover, collections and maps are ubiquitous in Java APIs; providing
support for these structures gives R developers easy access to a vast number of data structures
available on the Java platform. This includes most scripting language structures such as Python
dictionaries and native JavaScript objects.

All jdx data conversion options are mirrored by settings in jsr223. The most pertinent details
are discussed in the following sections. For a more thorough discussion, see the vignette included
with the jdx package.

5.4 Setting and getting script engine options

The jsr223 "ScriptEngine" class exposes several methods that control settings for a script engine
instance. These methods are named using the Java getter/setter convention: methods that set
values are prefixed with “set” and methods that retrieve values begin with “get”. For example,
if engine is a script engine object, engine$setArrayOrder(’column-major’) will change the array
order setting. The code engine$getArrayOrder() will retrieve the current array order setting.

5.5 Handling R vectors

By default, length-one R vectors are converted to Java scalars when passed to the script engine
environment. If a Java length-one array is desired, wrap the value in the R “as-is” function (e.g.,
I(myValue)), or set the length one vector as array setting to TRUE using the
setLengthOneVectorAsArray method. By default, length-one vectors are converted to Java scalars
as demonstrated here.

engine$setLengthOneVectorAsArray(FALSE)

engine$myScalar <- 1

engine$getJavaClassName("myScalar")

## [1] "java.lang.Double"

Wrap a length-one vector with I() to indicate that an array should be created instead. In this
case, the resulting Java class name is "[D" which denotes a primitive, double one-dimensional
array.

To change the conversion behavior for all length-one vectors, set the length one vector as array
setting to TRUE.

engine$setLengthOneVectorAsArray(TRUE)

engine$myArray <- 1

engine$getJavaClassName("myArray")

## [1] "[D"

Vectors of any length other than one are always converted to primitive Java arrays. The follow-
ing code passes a vector of ten random normal deviates to the script engine environment. The
first element of the resulting array is returned. Note: Java arrays use zero-based indexes.
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set.seed(10)

engine$norms <- rnorm(10)

engine %~% "norms[0]"

## [1] 0.01874617

text

5.6 Handling R matrices and other n-dimensional arrays

By default, n-dimensional arrays are copied in row-major order. The following example demon-
strates converting a simple 2 x 2 R matrix. Because the order is row-major, the last line of code
returns the element in the first row, second column. Remember, Java arrays use zero-based
indexes.

m <- matrix(1:4, 2, 2)

m

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

engine$m <- m

engine %~% "m[0][1]"

## [1] 3

The setArrayOrder script engine method controls ordering for arrays converted from R to Java,
and vice versa. Three array index ordering schemes are available: ’row-major’, ’column-major’,
and ’column-minor’. These settings control how the destination Java array is constructed.

Before describing the ordering schemes, it is helpful to think of n-dimensional arrays as col-
lections of smaller structures. A one-dimensional array (a vector) is a collection of scalars. A
two-dimensional array (a matrix) is a collection of one-dimensional arrays representing either
rows or columns of the matrix. A three-dimensional array (a rectangular prism or cube) is a
collection of matrices. A four-dimensional array is a collection of cubes, and so forth.

Now we describe the each of the array order settings. We use the notation

[row][column][matrix]...[n]

to mean that, for a given array, the row index (within a column) comes first, followed by the
column index (within a matrix), followed by the matrix index (within a cube), etc.

• ’row-major’ – The data of the resulting Java n-dimensional array are ordered
[row][column][matrix]...[n]. The jsr223 package defaults to ’row-major’ because R
syntax uses this indexing scheme (though R stores the array in memory using column-
major order). This row-major scheme is not intuitive for Java programmers when n > 2

because Java n-dimensional arrays are constructed as high-order objects containing low-
order objects.
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• ’column-major’ – The data of the resulting Java n-dimensional array are ordered
[n]...[matrix][column][row]. This ordering scheme is natural for Java programmers: the
data contained in the one-dimensional arrays represent columns of the parent matrix.

• ’column-minor’ – The data of the resulting Java n-dimensional array are ordered
[n]...[matrix][row][column]. This provides Java programmers with a natural ordering
scheme where the arrays at the one-dimensional level represent rows of the parent matrix.
For matrices, ’column-minor’ and ’row-major’ are equivalent.

Note: If an R array is converted to Java using a particular array order, use the same array order
when converting it back from Java to R. Otherwise, the data will be in the wrong order.

In the following JavaScript example, a three-dimensional array is copied to the script engine
using each of the three indexing options. We use the Java static method deepToString to create a
string representation of the array that shows the resulting order of the data in the script engine.

a <- array(1:8, c(2, 2, 2))

a

## , , 1

##

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

##

## , , 2

##

## [,1] [,2]

## [1,] 5 7

## [2,] 6 8

engine$setArrayOrder("row-major")

engine$a <- a

engine %~% "java.util.Arrays.deepToString(a);"

## [1] "[[[1, 5], [3, 7]], [[2, 6], [4, 8]]]"

engine$setArrayOrder("column-major")

engine$a <- a

engine %~% "java.util.Arrays.deepToString(a);"

## [1] "[[[1, 2], [3, 4]], [[5, 6], [7, 8]]]"

engine$setArrayOrder("column-minor")

engine$a <- a

engine %~% "java.util.Arrays.deepToString(a);"

## [1] "[[[1, 3], [2, 4]], [[5, 7], [6, 8]]]"
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5.7 Handling R data frames

R data frames can be converted to the script engine using either row-major or column-major
order. Row-major order (the default) creates a list of records. This representation is perhaps the
most common in programming for tabular data. Column-major order, on the other hand, creates
a list of columns. Column-major structures are faster to create and are generally preferred for ag-
gregate column calculations. Change the data frame order setting with the setDataFrameRowMajor

method.
When the row-major setting is selected (i.e., engine$setDataFrameRowMajor(TRUE)), an R data

frame is converted to a java.util.ArrayList object. The list contains java.util.LinkedHashMap
objects that represent the rows of the data frame. Each member of the hash map is a name/value
pair of a single field in the data frame. The name of the field is the corresponding column’s
name. The following example uses R’s built-in iris data set to illustrate using row-major data
frames in the script environment.

engine$setDataFrameRowMajor(TRUE)

engine$iris <- iris

# Return the number of rows.

engine %~% "iris.size()"

## [1] 150

# Retrieve the sepal length in the first row.

engine %~% "iris[0].get('Sepal.Length')"

## [1] 5.1

# Retrieve the second row as a list.

engine %~% "iris[1]"

## $`Sepal.Length`

## [1] 4.9

##

## $Sepal.Width

## [1] 3

##

## $Petal.Length

## [1] 1.4

##

## $Petal.Width

## [1] 0.2

##

## $Species

## [1] "setosa"

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
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When the column-major setting is selected (i.e., engine$setDataFrameRowMajor(FALSE)), an R
data frame is converted to a java.util.LinkedHashMap object. The map members are arrays
representing the columns in the data frame.

Row names for data frames are not preserved during conversion. To include row names in the
conversion, simply add them as a column in your data frame. We do not automatically include
row names in conversion because it would require us to create an additional element in the Java
map with a reserved key value such as _row. Instead, we leave the decision of how to handle row
names to the developer.

The following commented example uses R’s built-in mtcars data set to illustrate basic func-
tionality.

engine$setDataFrameRowMajor(FALSE)

# 'mtcars' is an R data frame containing information for 32 cars. 'mtcars'

# stores vehicle names as row names. Row names are not preserved during

# conversion. This line creates a new R data frame with the vehicle names as

# a new column 'name'.

df <- data.frame(name = row.names(mtcars), mtcars)

# This line converts the new data frame to a Java map named 'mtcars'.

engine$mtcars <- df

# Return the number of columns in the map.

engine %~% "mtcars.size()"

## [1] 12

# Access each column using the map's 'get' method and the column's name. This

# line returns the first element of the column 'name'.

engine %~% "mtcars.get('name')[0]"

## [1] "Mazda RX4"

# Add a new column named 'cylsize' representing the size of a single cylinder.

engine$cylsize <- mtcars[, "disp"] / mtcars[, "cyl"]

engine %@% "mtcars.put('cylsize', cylsize)"

# Remove the columns 'name' and 'cylsize'.

engine %@% "mtcars.remove('name')"

engine %@% "mtcars.remove('cylsize')"

# Compare the contents of the map to the original data frame in R.

all.equal(mtcars, engine$mtcars, check.attributes = FALSE)

## [1] TRUE

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
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Groovy and JavaScript support an additional syntax that allows map elements to be accessed
like object properties instead of using the get and put methods.

# The following two lines are equivalent in Groovy and JavaScript.

engine %~% "mtcars.cyl[0];"

engine %~% "mtcars.get('cyl')[0];"

5.8 Handling R factors

R factors are comprised of a character vector of levels and an integer vector of indexes that ref-
erence the levels. For example, if the integer vector 5:7 is converted to a factor, the levels will be
c("5", "6", "7") and the indexes will be c(1L, 2L, 3L). The script engine coerce factors setting
determines how the factor levels are handled when converting the factor to a Java array. When
this setting is enabled (e.g., engine$setCoerceFactors(TRUE)), an attempt is made to coerce the
factor levels to integer, numeric, or logical values. If coercion fails, the character levels are used.
When coerce factors is disabled, the factor is always converted to a string array. The coerce factors
setting applies to standalone factors as well as factors in data frames.

After jsr223 converts an R factor to a Java array, there is no consistent way to determine whether
the array was originally created from an R factor. Therefore, if an R factor is copied to the script
engine, and then the resulting array is returned to R, it will be converted to an R vector, not a
factor.

When creating a data frame in R, character vectors are converted to factors by default. The
jsr223 package follows this standard when a qualifying Java object is converted to an R data
frame. The setStringsAsFactors method modifies this behavior. The method takes one of three
values: NULL, TRUE, and FALSE. If NULL is specified (the default), the R system setting is used (see
getOption("stringsAsFactors")). A value of TRUE ensures that character vectors are always
converted to factors for new data frames. Finally, a setting of FALSE disables conversion to
factors.

5.9 Handling R lists and environments

The jsr223 package converts R lists and environments to Java objects. List elements may be any R
data structure supported by jsr223, including other lists (i.e., nested lists). There is no limitation
to the levels of nesting.

R named lists and environments are converted to Java java.util.HashMap objects. See Han-
dling R data frames for map code examples. The only difference is that a data frame’s contents
are always converted to a map of arrays. For lists, the map elements may be any data structure.

R unnamed lists are converted to Java objects implementing the java.util.ArrayList inter-
face. The following code demonstrates basic java.util.ArrayList functionality.

# Create an unnamed list with three elements.

engine$list <- list(c("a", "b", "c"), TRUE, pi)

# Members in the list are accessed by index. This line returns the first element.

engine %~% "list[0]"

https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
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## [1] "a" "b" "c"

# Replace an element in the list.

engine %@% "list[0] = 'replaced'"

# Add a new element to the end of the list.

engine %@% "list.add('last item')"

# Insert a new item before the first item.

engine %@% "list.add(0, 'first item')"

# Remove the last item.

engine %@% "list.remove(list.size() - 1)"

# Return the number of elements

engine %~% "list.size()"

## [1] 4

5.10 Data exchange details

So far, we have discussed all of the basic functionality and settings related to data exchange. This
section includes a few additional notes for data exchange. A comprehensive guide, including
details for unexpected conversion behaviors, is included in the jdx package vignette.

R reserves special NA values to indicate missing types. Table 7 outlines how NA values are
handled for different R data types. Table 8, in turn, describes how Java null values are interpreted
when converting Java objects to R.

Because jsr223 converts data to generic Java data structures, R attributes such as names cannot
always be included in conversion. For example, R vectors are converted to native Java arrays,
therefore names associated with vector elements must be discarded. Likewise, dimension names
are not preserved for n-dimensional structures. Column names for data frames are preserved,
but row names are not. To preserve data frame row names, simply copy the names to a new
column before converting the data frame.

R Structure NA Behavior

numeric NA_real_ maps to a reserved value.

integer NA_integer_ maps to a reserved value.

character NA_character_ maps to Java null.

logical NA maps to Java false with a warning.

Table 7: R reserves special NA values to indicate missing types. This table outlines how NA values are
converted to Java values.
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Java Structure Java null Conversion

Boolean[]..[] null maps to FALSE with a warning.

Byte[]..[] null maps to raw 0x00 with a warning.

Character[]..[] null maps to NA_character_.

Double[]..[] null maps to NA_real_.

Float[]..[] null maps to NA_real_.

Integer[]..[] null maps to NA_integer_.

java.math.BigDecimal[]..[] null maps to NA_real_.

java.math.BigInteger[]..[] null maps to NA_real_.

Long[]..[] null maps to NA_real_.

Object[]..[] null maps to NULL.

Short[]..[] null maps to NA_integer_.

java.lang.String[]..[] null maps to NA_character_.

Table 8: Java null indicates missing or uninitialized values. This table outlines how null is interpreted
when converting Java objects to R. The syntax []..[] is used to indicate an array of one or more
dimensions.

The jsr223 package always converts R vectors and arrays to Java arrays. Java arrays are in-
tuitive to use in all of the supported scripting environments. However, the supported scripting
languages can also create array structures that are not native Java arrays. jsr223 also supports
converting these language-specific array and collection structures to R vectors and arrays.

Java n-dimensional arrays whose subarrays of a given dimension are not the same dimension
are known as ragged arrays. Ragged arrays cannot be converted to R arrays. Instead, jsr223 trans-
lates ragged arrays to lists of the appropriate object. For example, a matrix containing subarrays
of different lengths will be converted to an R list of vectors. Likewise, a three-dimensional array
containing two matrices of different dimensions will be converted to an R list of matrices.

As described earlier, R unnamed lists are converted to java.util.ArrayList objects. The
ArrayList class implements the java.util.Collection interface. This is one of the most basic
interfaces in Java and it is common to a large number of structures. jsr223 converts Java objects
implementing the java.util.Collection interface to vectors, n-dimensional arrays, data frames,
and unnamed lists, depending on the structure’s content. In some cases an R list converted to a
Java object, and then converted back to an R object, may not produce an R list. See the sections
“Java Collections” and “Conversion Issues” in the jdx package vignette for conversion rules and
in-depth explanations.

The jdx package converts R raw values to Java byte values and vice versa. R raw values and
Java byte values are both 8 bits, but they are interpreted differently. R raw values range from 0

to 255 (i.e., unsigned bytes). Java byte values range from -128 to 127 (i.e., signed bytes). The 8-bit
value 0xff represents 255 in R, but is -1 in Java. Usually this discrepancy is not an issue because

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
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raw and byte values are used to store and transfer binary data such as images. If human-readable
values are important, use integer vectors instead.

5.11 Calling script functions and methods

Functions and methods defined in script can be called directly from R via the invokeFunction

and invokeMethod script engine methods. Any number of supported R structures can be passed
as parameter values.

Note: The Groovy, Python, and Kotlin engines can use invokeMethod to call methods of Java
objects. The JavaScript and Ruby engines only support calling methods of native scripting objects.
For the latter two engines, we recommend wrapping Java objects in native functions or methods
to facilitate their use from R.

As described in Handling R vectors, length-one vectors are converted to Java scalars by default.
One way to ensure that a vector is always converted to a Java array is by wrapping it in the “as-
is” function I(). This feature is particularly useful when passing multiple parameters to a script
function. In the same function, some parameters may require scalars while others require arrays.
Simply use I() to indicate which vectors should be converted to arrays.

The following example demonstrates calling a simple JavaScript function, sumThis, that sums
the elements of an array. If the first parameter is not an array, the function throws an error.

# Define a simple global function 'sumThis'.

engine %@% "

function sumThis(a) {

if (!a.getClass().isArray())

throw 'Not an array.';

sum = 0;

for (i = 0; i < a.length; i++) {

sum += a[i];

}

return sum;

}

"

# Set the default length-one vectors setting so the example works as intended.

engine$setLengthOneVectorAsArray(FALSE)

# Call the function with a vector with length > 1.

vector <- c(1, 2, 3)

engine$invokeFunction("sumThis", vector)

## [1] 6

# If the vector is length-one, an error is thrown because an array parameter

# is expected.

vector <- 1
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engine$invokeFunction("sumThis", vector)

## javax.script.ScriptException: Not an array. in <eval> at line number 4 at

## column number 4

# Try again, this time marking the vector as-is, meaning that it should

# always be converted to an array.

vector <- 1

engine$invokeFunction("sumThis", I(vector))

## [1] 1

The next example demonstrates using invokeMethod. It is essentially the same as
invokeFunction except that the first two parameters require the object’s name and method, re-
spectively.

# Invoke the 'abs' (absolute value) method of the JavaScript 'Math' object.

engine$invokeMethod("Math", "abs", -3)

## [1] 3

5.12 String interpolation

jsr223 features string interpolation before code evaluation. R code placed between @{ and } in a
code snippet is evaluated and replaced by the a string representation of the return value before
the snippet is executed by the script engine. A script may contain multiple @{...} expressions.
String interpolation is enabled by default. It can be disabled using

engine$setInterpolation(FALSE)

Note: Interpolated decimal values may lose precision when coerced to a string.
This example simply sums two numbers. The section Callbacks includes a more interesting

interpolation example involving recursion.

a <- 1; b <- 2

engine %~% "@{a} + @{b}"

## 3

Interpolation expressions are evaluated in the current scope. The following example shows
that interpolation locates the value defined in the function’s scope before the global variable of
the same name.

a <- 1

constantFunction <- function() {

a <- 3
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engine %~% "@{a}"

}

constantFunction()

## [1] 3

5.13 Callbacks

Embedded scripts can access the R environment using the jsr223 callback interface. When a
script engine is started, jsr223 creates a global object named R in the script engine’s environment.
This object is used to execute R code and set/get variables in the R session’s global environment.

This code example demonstrates setting and getting a variable in the R environment. For Ruby,
remember to prefix the global variable R with a dollar sign.

engine %@% "R.set('a', [1, 2, 3])"

engine %~% "R.get('a')"

## [1] 1 2 3

Note: Changing any of the data exchange settings will affect the behavior of the callback in-
terface. For example, using engine$setLengthOneVectorAsArray(TRUE) will cause R.get("pi")

to return an array with a single element instead of a scalar value.
Execute R script with R.eval(script) where script is a string containing R code. This exam-

ple returns a single random normal draw from R.

set.seed(10)

engine %~% "R.eval('rnorm(1)')"

## [1] 0.01874617

Infinite recursive calls between R and the script engine are supported. The only limitation is
available stack space. The following code demonstrates recursive calls and string interpolation
with a countdown.

recursiveCountdown <- function(start.value) {

cat("T minus ", start.value, "\n", sep = "")

if (start.value > 0)

engine %~% "R.eval('recursiveCountdown(@{start.value - 1})');"

}

engine %~% "R.eval('recursiveCountdown(3)')"

## T minus 3

## T minus 2

## T minus 1

## T minus 0
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5.14 Embedding R in another scripting language

It is often desirable to use R as an embedded language. The jsr223 interface does not provide
a standalone interface to call into R. However, the same functionality can be achieved with the
RScript command line executable, a simple launch script, and the jsr223 callback interface. The
following R script is an example of a launch script for Groovy. It executes any Groovy script file
provided as a command line parameter.

library("jsr223")

engine <- ScriptEngine$new("groovy", "groovy-all.jar")

tryCatch (

engine$source(commandArgs(TRUE)[1], discard.return.value = TRUE),

error = function(e) { cat(e$message, "\n", sep = "") },

finally = { engine$terminate() }

)

The following command line uses the launch script to execute a Groovy script. The launch
script is named ‘groovy-launcher.R’ and ‘source.groovy’ is an arbitrary Groovy source file.

RScript groovy-launcher.R source.groovy

With this setup, a developer can author a Groovy script in a dedicated script editor. The Groovy
script can embed R using the jsr223 callback interface as if it were a standalone interface. The
command line above can be provided to a code editor to execute the Groovy script on demand.
The Groovy code below is an example of embedding R.

// Set a variable named 'probabilities' in the R global environment.

R.set('probabilities', [0.25, 0.5, 0.20, 0.05]);

// Take a random draw of size two using the given probabilities.

draws = R.eval('sample(4, 2, prob = probabilities)');

5.15 Compiling script

The Java Scripting API supports compiling script to Java bytecode before evaluation. If unstruc-
tured code (i.e., code not encapsulated in methods or functions) is to be executed repeatedly,
compiling it will improve performance. This feature does not apply to methods and functions as
they are compiled on demand.

The following two lines show how to compile code snippets and source files, respectively. For
the latter, local disk files or URLs can be specified. In both cases, a compiled script object is
returned.

cs <- engine$compile(script)

cs <- engine$compileSource(file.name)

The compiled script object has a single method, eval, that is used to execute the compiled
code. It can be argued that the method should be called exec in this case, but our interface
follows the Java Scripting API naming scheme. The following trivial example demonstrates the
compiled script interface.
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# Compile a code snippet.

cs <- engine$compile("c + d")

# This line would throw an error because 'c' and 'd' have not yet been declared.

## cs$eval()

engine$c <- 2

engine$d <- 3

cs$eval()

## 5

The eval method takes an argument named bindings that accepts an R named list. The
name/value pairs in the list replace the script engine’s global bindings during script execution
as shown in this code sample.

lst <- list(c = 6, d = 7)

cs$eval(bindings = lst)

## 13

# When 'bindings' is not specified, the script engine reverts to the original

# environment.

cs$eval()

## 5

The discard.return.value argument of the eval method determines whether the return value
of a script is discarded. The default is FALSE. The following line executes code but does not return
a value.

cs$eval(discard.return.value = TRUE)

5.16 Handling console output

When script is evaluated, any text printed to standard output appears in the R console by de-
fault. Console output can be disabled entirely with engine$setStandardOutputMode(’quiet’).
To resume printing output to the console, use engine$setStandardOutputMode(’console’).

Text printed to the console by a script engine cannot be captured using R’s sink or
capture.output methods. To capture output, set the standard output mode setting to ’buffer’.
In this JavaScript example, the print method output will not appear in the R console; it will be
stored in an internal buffer. The contents of the buffer can be retrieved and cleared using the
getStandardOutput method.

engine$setStandardOutputMode("buffer")

engine %@% ("print('abc');")

engine$getStandardOutput()
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## [1] "abc\n"

Alternatively, the buffer can be discarded using the clearStandardOutput method.

engine %@% ("print('abc');")

engine$clearStandardOutput()

5.17 Console mode: a simple REPL

jsr223 provides a simple read-evaluate-print-loop (REPL) for interactive code execution. This fea-
ture is inspired by Jeroen Ooms’s V8 package. The REPL is useful for quickly setting and inspect-
ing variables in the script engine. Returned values are printed to the console using base::dput.
The base::cat function is not used because it does not handle complex data structures.

Use engine$console() to enter the REPL. Enter ‘exit’ to return to the R prompt. The REPL
supports only single line entry: no line continuations or carriage returns are allowed. This
limitation arises from the fact that the Java Scripting API does not support code validation.

The following output was produced by a Python REPL session. The code creates a Python
dictionary object and accesses the elements. The tilde character (‘∼’) indicates a prompt.

python console. Press ESC, CTRL + C, or enter 'exit' to exit the console.

~ dict = {"first": 1, "second": 2}

~ dict["first"]

1

~ dict["second"]

2

~ exit

Exiting console.

Most developers are familiar with the command history in the R REPL. Unfortunately, com-
mand history for the jsr223 REPL is unreliable or non-existent because there is no functional
standard for saving and restoring commands in R consoles.
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6 R with Groovy

Groovy is a dynamically typed programming language that closely follows Java syntax. Hence,
the jsr223 integration for Groovy enables developers to essentially embed Java language solutions
in R. There are some minor language differences between Groovy and Java; they are described
in the online guide Differences with Java.

6.1 Groovy idiosyncrasies

Top-level (i.e., global) variables created in Groovy script will be discarded after script evaluation
unless the variables are declared using specific syntax. To create a binding that persists in the
script engine environment, declare a top-level variable omitting the type definition and Groovy’s
def keyword. For example myValue = 42 will create a global variable. The @myValue notation
cannot be used. To specify a data type for a global variable, use a constructor (myVar = new

Integer(42)) or a type suffix (myVar = 42L).

6.2 Groovy and Java classes

If you already know Java, using Java classes in Groovy will be very familiar. Java package
members are imported (i.e., made accessible to the script) using the import statement. Groovy
automatically imports many common Java packages by default such as java.io.*, java.lang.*,
java.net.*, and java.util.*. If the package is not part of the JRE, add the package’s JAR file to
the class.path parameter of the ScriptEngine$new constructor when creating the script engine.

Tip: Supply class paths as separate elements of a vector instead of concatenating the paths
with the usual path delimiters (“;” for Windows, and “:” for all others). This will make your code
platform-independent and easier to read.

This example demonstrates using Java objects in R. We use the Apache Commons Mathematics
Library to sample from a bivariate normal distribution.

library("jsr223")

# Include both the Groovy script engine and the Apache Commons Mathematics

# libraries in the class path. Specify the paths seperately in a character

# vector.

engine <- ScriptEngine$new(

engine.name = "groovy",

class.path = c("groovy-all.jar", "commons-math3-3.6.1.jar")

)

# The getClassPath method displays the current class path.

engine$getClassPath()

# Define the means vector and covariance matrix that will be used to create the

# bivariate normal distribution.

engine$means <- c(0, 2)

http://www.groovy-lang.org/
http://groovy-lang.org/differences.html
http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
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engine$covariances <- diag(1, nrow = 2)

# Import the package member and instantiate a new class. For Groovy, excluding

# the type and 'def' keyword will make 'mvn' a global variable.

engine %@% "

import org.apache.commons.math3.distribution.MultivariateNormalDistribution;

mvn = new MultivariateNormalDistribution(means, covariances);

"

# Take a sample.

engine$invokeMethod("mvn", "sample")

## [1] 0.3279374 0.8652296

# Take three samples.

replicate(3, engine$invokeMethod("mvn", "sample"))

## [,1] [,2] [,3]

## [1,] 0.9924368 -1.295875 0.2025815

## [2,] 2.5145855 2.128243 1.1666272

engine$terminate()
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7 R with JavaScript

Note: As of Java 11, Nashorn JavaScript is deprecated. See JEP 335.
The popularity of JavaScript has overflowed the arena of web development into standalone so-

lutions involving databases, charting, machine learning, and network-enabled utilities, to name
just a few. Many of these solutions can be harnessed by R with the help of jsr223. Even browser-
based scripts that require a document object model (DOM) can be executed using Java’s WebView

browser. Popular JavaScript solutions can be found at JavaScripting, an online database of
JavaScript solutions. Github also lists trending solutions for JavaScript, as well as other lan-
guages.

Nashorn is the JavaScript dialect included in Java 8. Nashorn implements ECMAScript 5.1. No
download is required to use JavaScript with jsr223. JavaScript Nashorn provides wide support
for Java classes, including the ability to extend classes and implement interfaces. For details, see
the official Nashorn documentation.

Data in JavaScript objects can be converted to R named lists or data frames, depending on
content. The following converts a simple JavaScript object to an R named list. Other native
JavaScript types, such as lists, are also converted to R objects.

engine %@% 'var person = {fname:"Jim", lname:"Hyatt", title:"Principal"};'

engine$person

## $`fname`

## [1] "Jim"

##

## $lname

## [1] "Hyatt"

##

## $title

## [1] "Principal"

7.1 JavaScript and Java classes

Nashorn provides several methods to reference JavaScript classes. We demonstrate the two most
common methods. The first approach is the one recommended in the Nashorn documentation;
it uses the built-in Java.type method to create a JavaScript reference to the class. This reference
can be used to access static members or to create instances. In this example, we use a static
method of the java.util.Arrays class to sort a vector of integers.

engine %~% "

var Arrays = Java.type('java.util.Arrays');

var random = R.eval('sample(5)');

Arrays.sort(random);

random;

"

## [1] 1 2 3 4 5

https://openjdk.java.net/jeps/335
https://www.javascripting.com/
https://github.com/trending/javascript?since=monthly
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
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A second approach involves accessing the target class using its fully-qualified name. This
approach requires more overhead per call, but it is more convenient than using Java.type. The
following code is functionally equivalent to the previous example.

engine %~% "

var random = R.eval('sample(5)');

java.util.Arrays.sort(random);

random;

"

## [1] 1 2 3 4 5

The Java.type method is required to create Java primitives. In this example, we create a Java
integer array with five elements.

engine %~% "

var IntegerArrayType = Java.type('int[]');

var myArray = new IntegerArrayType(5);

myArray;

"

## [1] 0 0 0 0 0

Next, we reproduce the Groovy bivariate normal example in JavaScript. The code demon-
strates importing an external library and highlights an important limitation in Nashorn regarding
invokeMethod.

library("jsr223")

# Include the Apache Commons Mathematics library in class.path.

engine <- ScriptEngine$new(

engine.name = "js",

class.path = "commons-math3-3.6.1.jar"

)

# Define the means vector and covariance matrix that will be used to create the

# bivariate normal distribution.

engine$means <- c(0, 2)

engine$covariances <- diag(1, nrow = 2)

# Import the package member and instantiate a new class.

engine %@% "

var MultivariateNormalDistributionClass = Java.type(

'org.apache.commons.math3.distribution.MultivariateNormalDistribution'

);

var mvn = new MultivariateNormalDistributionClass(means, covariances);

"
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# This line would throw an error. Nashorn JavaScript supports 'invokeMethod' for

# native JavaScript objects, but not for Java objects.

#

## engine$invokeMethod("mvn", "sample")

# Instead, use script...

engine %~% "mvn.sample();"

## [1] 0.3279374 0.8652296

# ...or wrap the method in a JavaScript function.

engine %@% "function sample() {return mvn.sample();}"

engine$invokeFunction("sample")

## [1] 0.2527757 1.1942332

# Take three samples.

replicate(3, engine$invokeFunction("sample"))

## [,1] [,2] [,3]

## [1,] 0.9924368 -1.295875 0.2025815

## [2,] 2.5145855 2.128243 1.1666272

engine$terminate()

7.2 Using JavaScript solutions - Voca

The jsr223 package enables developers to access solutions developed in other languages by sim-
ply sourcing a script file. For example, Voca is a popular string manipulation library that simpli-
fies many difficult tasks such as word wrapping and diacritic detection (e.g., the “é” café). Using
Voca with jsr223 is simply a matter of sourcing a single script file. This sample script loads Voca
and demonstrates its functionality.

# Source the Voca library. This creates a utility object named 'v'.

engine$source(

"https://raw.githubusercontent.com/panzerdp/voca/master/dist/voca.min.js",

discard.return.value = TRUE

)

# 'prune' truncates string, without break words, ensuring the given length, including

# a trailing "..."

engine %~% "v.prune('A long string to prune.', 12);"

## [1] "A long..."

# Methods can be invoked from within R using parameters.

https://vocajs.com/
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engine$invokeMethod("v", "prune", "A long string to prune.", 12)

## [1] "A long..."

# Provide a different suffix to 'prune'.

engine$invokeMethod("v", "prune", "A long string to prune.", 12, "(more)")

## [1] "A long (more)"

# Voca supports method chaining.

engine %~% "

v('Voca chaining example')

.lowerCase()

.words()

"

## [1] "voca" "chaining" "example"

# Split graphemes.

engine$invokeMethod("v", "graphemes", "cafe\u0301")

## [1] "c" "a" "f" "é"

# Word wrapping.

engine %~% "v.wordWrap('A long string to wrap', {width: 10});"

## [1] "A long\nstring to\nwrap"

# Notice above, the second method parameter is a JavaScript object. We can still

# use invokeMethod as follows.

engine$invokeMethod(

"v",

"wordWrap",

"A long sentence to wrap using Voca methods.",

list(width = 20)

)

## [1] "A long\nstring to\nwrap"

# Word wrapping with custom delimiters.

engine$invokeMethod(

"v",

"wordWrap",

"A long sentence to wrap using Voca methods.",

list(width = 20, newLine = "<br>", indent="__")

)

## [1] "__A long<br/>__string to<br/>__wrap"
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8 R with Python

Like R, the Python programming language is used widely in science and analytics. Python has
many powerful language features, yet it is known for being concise and easy to read. The Jython
project has migrated core Python to the Java platform. This implementation does not include
popular libraries such as NumPy and SciPy. These libraries compile to machine code and, as
such, they are not compatible with the JVM. However, JVM implementations of some Python
native libraries are being developed in a related project, JyNI (the Jython Native Interface). To
include these libraries in a jsr223 solution, download the JyNI JAR file and include it in the class
path when instantiating a Jython script engine.

The jsr223 package automatically converts most of the core Python data structures to equiva-
lent R objects. For example, lists, tuples, and sets are converted to R vectors; dicts are converted
to R data frames or named lists, depending on content.

8.1 Python idiosyncrasies

Leading white space is significant in Python; it is used to delimit code blocks. Avoid syntax
errors by left-aligning code in multi-line string snippets as shown in the examples.

8.2 Python and Java classes

To create a Java object in Python, simply import the associated package and call the class con-
structor. The Jython User Guide provides further details for using Java classes. This example
generates a random number using the java.util.Random class. Notice that the Python code is
not indented; leading white space is significant.

# Create an object from the java.util.Random class.

engine %~% "

from java.util import Random

r = Random(10)

"

# Jython supports invoking Java methods.

engine$invokeMethod("r", "nextDouble")

## [1] 0.7304303

Jython’s jarray module is required to create native Java arrays. The array method copies a
Python sequence to a Java array of the given type. The zeros method initializes a Java array of
the requested type with zero or null. This code snippet demonstrates both methods.

# Use 'jarray.array' to copy a sequence to a Java array of the requested type.

engine %~% "

from jarray import *
myArray = array([3, 2, 1], 'i')

"

https://www.python.org/
http://www.jython.org/
http://www.jyni.org/
https://wiki.python.org/jython/NewUsersGuide


R with Python 52

engine$myArray

## [1] 3 2 1

# Alternatively, use zeros to initialize an array with zeros or null. This

# example allocates an array and udpates the values with a loop.

engine %~% "

myArray = zeros(5, 'i')

for i in range(myArray.__len__()):

myArray[i] = i

"

engine$myArray

## [1] 0 1 2 3 4

8.3 A simple Python HTTP server

This code sample creates a simple HTTP server using core Python features and libraries. It
demonstrates calling Python class members from R and calling R code from Python. The Python
script below defines two classes: the MyHandler class processes HEAD and GET requests for the
server; and the MyServer class is used from an R script to start and stop the web server. The
Python code is adapted from the Python Wiki.

import time

import BaseHTTPServer

# HTTP request handler class

class MyHandler(BaseHTTPServer.BaseHTTPRequestHandler):

def do_HEAD(s):

s.send_response(200)

s.send_header("Content-type", "text/html")

s.end_headers()

def do_GET(s):

print time.asctime(), "Received request"

s.send_response(200)

s.send_header("Content-type", "text/html")

s.end_headers()

s.wfile.write("<html><head><title>R/Python HTTP Server</title></head>")

html = R.eval('getHtmlTable()') # Get HTML table from R.

s.wfile.write(html)

s.wfile.write("</body></html>")

class MyServer:

def __init__(self, host_name, port_number, timeout):

self.host_name = host_name

self.port_number = port_number

server_class = BaseHTTPServer.HTTPServer

self.httpd = server_class((self.host_name, self.port_number), MyHandler)

self.httpd.timeout = timeout

https://wiki.python.org/moin/BaseHttpServer
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print time.asctime(), "Server Started - %s:%s" % (self.host_name, self.port_number)

def handle_request(self):

# This method exists only for demonstration purposes. For a more robust

# implementation, see 'SocketServer.serve_forever()'.

self.httpd.handle_request()

def close(self):

self.httpd.server_close()

print time.asctime(), "Server Stopped - %s:%s" % (self.host_name, self.port_number)

The R script here sources the Python script and starts the web server. It also defines
getHtmlTable: a function that generates HTML content for the web server. Run the R script and
point a web browser to http://localhost:8080 to see the result. For demonstration purposes,
the R script shuts down the Python web server automatically after 60 seconds.

library("xtable")

library("jsr223")

# Format the iris data set as an HTML table. This function will be called from

# the Python web server in response to an HTTP GET request.

getHtmlTable <- function() {

t <- xtable(iris, "Iris Data")

html <- capture.output(print(t, type = "html", caption.placement = "top"))

paste0(html, collapse = "\n")

}

# Start the python engine.

engine <- ScriptEngine$new(

engine.name = "python",

class.path = "jython-standalone.jar"

)

# Source the Python script.

engine$source("./python-http-server.py", discard.return.value = TRUE)

runServer <- function(server.runtime = 60) {

# Automatically shut down server when this function exits.

on.exit(

{

engine$invokeMethod("server", "close")

engine$terminate()

}

)

# Create an instance of Python 'MyServer' class which starts the server at the

# specified port with the given request timeout in seconds. A timeout would

# not be used in a production scenario.

engine %@% "server = MyServer('localhost', 8080, 2)"

http://localhost:8080
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# Handle requests for 'server.runtime' seconds before shutting down. The

# 'handle_request' method waits for the timeout specified in the 'MyServer'

# constructor before returning to the event loop to allow interruptions. In a

# true web service, the R side would not be involved in monitoring requests.

# See Python's 'SocketServer.serve_forever()' for more information.

started <- as.numeric(Sys.time())

while(as.numeric(Sys.time()) - started < server.runtime)

engine$invokeMethod("server", "handle_request")

}

runServer(60)
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9 R with Ruby

The Ruby programming language is a general-purpose, object-oriented programming language
invented by Yukihiro Matsumoto. According to Matsumoto, he designed the language to “help
every programmer in the world to be productive, and to enjoy programming, and to be happy”
(Matsumoto, 2008). JRuby is a Java implementation of the Ruby language. It is compatible with
the popular web application framework Ruby on Rails.

The jsr223 package automatically converts the primary Ruby data structures to equivalent R
objects (e.g. Ruby n-dimensional arrays and hashes).

9.1 Ruby idiosyncrasies

Global variables in Ruby script must be prefixed with a dollar sign. Hence, if we create a variable
myValue using a jsr223 assignment (e.g., engine$myValue <- 10), it is accessed in Ruby script as
$myValue. Do not use the dollar sign prefix when accessing global variables via jsr223 methods
(e.g., engine$get("myValue")).

We have observed a bug in JRuby’s exception handling: when JRuby encounters an error,
the engine may continue to throw errors erroneously in subsequent evaluation requests. If this
happens, restart the script engine.

9.2 Ruby and Java classes

JRuby implements several methods to access Java classes in Ruby syntax. For a comprehen-
sive guide, see Calling Java from JRuby. We demonstrate the most intuitive syntax using the
multivariate normal random sampler.

library("jsr223")

# Include both the JRuby script engine and the Apache Commons Mathematics

# libraries in the class path. Specify the paths seperately in a character

# vector.

engine <- ScriptEngine$new(

engine.name = "ruby",

class.path = c(

"jruby-complete.jar",

"commons-math3-3.6.1.jar"

)

)

# Define the means vector and covariance matrix that will be used to create the

# bivariate normal distribution.

engine$means <- c(0, 2)

engine$covariances <- diag(1, nrow = 2)

# Import the class and create a new object from the class.

https://www.ruby-lang.org
http://jruby.org/
http://rubyonrails.org/
https://github.com/jruby/jruby/wiki/CallingJavaFromJRuby
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engine %@% "

java_import org.apache.commons.math3.distribution.MultivariateNormalDistribution

$mvn = MultivariateNormalDistribution.new($means, $covariances)

"

# This line would throw an error. JRuby supports 'invokeMethod' for

# native Ruby objects, but not for Java objects.

#

## engine$invokeMethod("mvn", "sample")

# Instead, use script...

engine %~% "$mvn.sample()"

## [1] 0.3279374 0.8652296

# ...or wrap the method in a function.

engine %@% "

def sample()

return $mvn.sample()

end

"

engine$invokeFunction("sample")

## [1] 0.2527757 1.1942332

# Take three samples.

replicate(3, engine$invokeFunction("sample"))

## [,1] [,2] [,3]

## [1,] 0.9924368 -1.295875 0.2025815

## [2,] 2.5145855 2.128243 1.1666272

engine$terminate()

9.3 Ruby gems

Ruby libraries and programs are distributed in a standardized package format called a gem. We
demonstrate using gems in jsr223 with Benjamin Curtis’s faker: a library used to produce fake
records for data sets (2018).

A full installation of JRuby is required to use gems. Install JRuby and using the instructions
found in Getting Started with JRuby. Install the faker gem using ‘gem install faker’ in a
terminal.

To access faker with jsr223, the paths to the gem and its dependencies must be added to the
ScriptEngine$new class path. These paths can be discovered using the JRuby REPL, jirb, in a
terminal session as shown here.

https://github.com/stympy/faker
https://github.com/jruby/jruby/wiki/GettingStarted
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me@ubuntu:~$ jirb

irb(main):001:0> require 'faker'

=> true

irb(main):002:0> puts $LOAD_PATH

~/jruby-9.1.15.0/lib/ruby/gems/shared/gems/concurrent-ruby-1.0.5-java/lib

~/jruby-9.1.15.0/lib/ruby/gems/shared/gems/i18n-0.9.3/lib

~/jruby-9.1.15.0/lib/ruby/gems/shared/gems/faker-1.8.7/lib

~/jruby-9.1.15.0/lib/ruby/2.3/site_ruby

~/jruby-9.1.15.0/lib/ruby/stdlib

=> nil

irb(main):003:0> exit

These resulting paths will be required along with the path to ‘jruby.jar’ (the latter is in the
‘lib’ subfolder of the JRuby installation). Supply these paths to the class.path parameter of the
jsr223 ScriptEngine$new method when creating the script engine instance. In our experience,
the ‘site_ruby’ path did not exist. If ScriptEngine$new throws an error indicating a path does
not exist, simply exclude it from the class path.

The code below uses the faker gem to generate a data frame containing fake names and titles.

library("jsr223")

class.path <- "

~/jruby-9.1.12.0/lib/jruby.jar

~/jruby-9.1.12.0/lib/ruby/gems/shared/gems/i18n-0.8.6/lib

~/jruby-9.1.12.0/lib/ruby/gems/shared/gems/faker-1.8.4/lib

~/jruby-9.1.12.0/lib/ruby/stdlib

"

class.path <- unlist(strsplit(class.path, "\n", fixed = TRUE))

engine <- ScriptEngine$new(

engine.name = "jruby",

class.path = class.path

)

# Import the required Ruby libraries.

engine %@% "require 'faker'"

# To create data deterministically, set a seed.

engine %@% "Faker::Config.random = Random.new(10)"

# Demonstrate unique, fake name.

engine %~% "Faker::Name.unique.name"

## [1] "Ms. Adrain Torphy"

# Define a Ruby function to return a given number of fake profiles.
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engine %@% "

def random_profile(n = 1)

fname = Array.new(n)

lname = Array.new(n)

title = Array.new(n)

for i in 0..(n - 1)

fname[i] = Faker::Name.unique.first_name

lname[i] = Faker::Name.unique.last_name

title[i] = Faker::Name.unique.title

end

return {'fname' => fname, 'lname' => lname, 'title' => title}

end

"

# Retrieve 5 fake profiles. The Ruby hash of same-length arrays will be

# automatically converted to a data frame.

engine$invokeFunction("random_profile", 5)

## fname lname title

## 1 Quentin Barton Dynamic Paradigm Agent

## 2 Claud Bernier Regional Metrics Planner

## 3 Kevin Hodkiewicz Investor Marketing Designer

## 4 Toni Stracke Legacy Implementation Strategist

## 5 Jannie Haag Dynamic Implementation Architect

engine$terminate()
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10 R with Kotlin

Kotlin is a statically typed programming language that supports both functional and object-
oriented programming paradigms. Kotlin is concise and pragmatic; in many cases, it requires
less code than Java to accomplish the same task. Kotlin version 1.0 was released in 2016 (Breslav,
2016) making it the newest of the jsr223-supported languages.

Kotlin’s JSR-223 implementation is progressing quickly though it is not complete. We will not
list the deficiencies here as they will probably be resolved soon. See the jsr223 issue tracker to
review pending issues and workarounds. In the issue tracker search dialog, select the “Kotlin
issues” label and include both open and closed issues.

10.1 Kotlin idiosyncrasies

The Kotlin script engine handles bindings through a global map object instead of creating global
variables in the script engine environment. The best way to illustrate this behavior is by example.
The following code creates and retrieves a binding myValue as you would expect.

engine$myValue <- 4

engine$myValue

## [1] 4

However, myValue will not be available as a global variable in Kotlin script environment. Instead,
it must be accessed and updated via the jsr223Bindings object as follows.

engine %@% 'jsr223Bindings.put("myValue", 5)'

engine %~% 'jsr223Bindings.get("myValue")'

## [1] 5

Kotlin documentation demonstrates managing bindings through an object named bindings.
However, the bindings object is read-only as of this writing. This is a reported bug. The accepted
workaround is to use jsr223Bindings.

In Callbacks, we explain how a global R object is added to the script engine environment to
enable callbacks into the R environment. This R object is necessarily present in jsr223Bindings,
but we do not recommend accessing it from that structure. Instead, use the global R variable as
demonstrated in the code here.

# jsr223 automatically creates a variable R in the global scope of the Kotlin

# environment to facilitate callbacks.

engine %@% 'R.set("c", 4)'

# The R object in `jsr223Bindings` is inconvenient to use because it must be

# cast to an explicit type.

engine %@% '(jsr223Bindings["R"] as org.fgilbert.jsr223.RClient).set("c", 3)'

https://kotlinlang.org/
https://github.com/floidgilbert/jsr223/issues
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10.2 Kotlin and Java classes

Kotlin is designed to be interoperable with Java. This example uses the Apache Commons Math-
ematics Library to sample from a bivariate normal distribution.

library("jsr223")

# Change this path to the installation directory of the Kotlin compiler.

kotlin.directory <- Sys.getenv("KOTLIN_HOME")

# Include both the Kotlin script engine jars and the Apache Commons Mathematics

# libraries in the class path.

engine <- ScriptEngine$new(

engine.name = "kotlin"

, class.path = c(

getKotlinScriptEngineJars(kotlin.directory),

"commons-math3-3.6.1.jar"

)

)

# Define the means vector and covariance matrix that will be used to create the

# bivariate normal distribution.

engine$means <- c(0, 2)

engine$covariances <- diag(1, nrow = 2)

# Import the package member and instantiate a new class.

engine %@% '

import org.apache.commons.math3.distribution.MultivariateNormalDistribution

val mvn = MultivariateNormalDistribution(

jsr223Bindings["means"] as DoubleArray,

jsr223Bindings["covariances"] as Array<DoubleArray>

)

'

# This line is a workaround for a Kotlin bug involving `invokeMethod`.

# https://github.com/floidgilbert/jsr223/issues/1

engine %@% 'jsr223Bindings["mvn"] = mvn'

# Take a multivariate sample.

engine$invokeMethod("mvn", "sample")

## [1] -2.286145 2.016230

# Take three samples.

replicate(3, engine$invokeMethod("mvn", "sample"))

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
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## [,1] [,2] [,3]

## [1,] 0.9924368 -1.295875 0.2025815

## [2,] 2.5145855 2.128243 1.1666272

# Terminate the script engine.

engine$terminate()
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11 Software review

There are many integrations that combine the strengths of R with other programming languages.
These language integrations can generally be classified as either R-major or R-minor. R-major
integrations use R as the primary environment to control some other embedded language envi-
ronment. R-minor integrations are the inverse of R-major integrations. For example, rJava is an
R-major integration that allows Java objects to be used within an R session. The Java/R Interface
(JRI), in contrast, is an R-minor integration that enables Java applications to embed R.

The jsr223 package provides an R-major integration for the Java platform and several pro-
gramming languages. In this software review, we provide context for the jsr223 project through
comparisons with other R-major integrations. Popular R-minor language integrations such as
Rserve (Urbanek, 2013) and opencpu (Ooms, 2017a) are not included in this discussion because
their objectives and features do not necessarily align with those of jsr223. We do, however,
include a brief discussion of an R language implementation for the JVM.

Before we compare jsr223 to other R packages, we point out one unique feature that contrasts
jsr223 with all other integrations in this discussion: jsr223 is the only package that provides a
standard interface to integrate R with multiple programming languages. This key feature enables
developers to take advantage of solutions and features in several languages without the need to
learn multiple integration packages.

Our software review does not include integrations for Ruby and Kotlin because jsr223 is the
only R-major integration for those languages on CRAN.

11.1 rJava software review

As noted in the introduction, rJava is the preeminent Java integration for R. It provides a low-
level interface to compiled Java classes via the JNI. The jsr223 package uses rJava together with
the Java Scripting API to create a user-friendly, multi-language integration for R and the Java
platform.

The following code example is taken from rJava’s web site http://www.rforge.net/rJava. It
demonstrates the essential functions of the rJava API by way of creating and displaying a GUI
window with a single button. The first two lines are required to initialize rJava. The next lines
use the .jnew function to create two Java objects: a GUI frame and a button. The associated
class names are denoted in JNI syntax. Of particular note is the first invocation of .jcall, the
function used to call object methods. In this case, the add method of the frame object is invoked.
For rJava to identify the appropriate method, an explicit return type must be specified in JNI
notation as the second parameter to .jcall (unless the return value is void). The last parameter
to .jcall specifies the object to be added to the frame object. It must be explicitly cast to the
correct interface for the call to be successful.

library("rJava")

.jinit()

f <- .jnew("java/awt/Frame", "Hello")

b <- .jnew("java/awt/Button", "OK")

.jcall(f, "Ljava/awt/Component;", "add", .jcast(b, "java/awt/Component"))

.jcall(f, , "pack")

# Show the window.

https://CRAN.R-project.org/package=Rserve
https://CRAN.R-project.org/package=opencpu
http://www.rforge.net/rJava
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.jcall(f, , "setVisible", TRUE)

# Close the window.

.jcall(f, , "dispose")

The snippet below reproduces the rJava example above using JavaScript. In comparison, the
JavaScript code is more natural for most programmers to write and maintain. The fine details of
method lookups and invocation are handled automatically: no explicit class names or type casts
are required. This same example can be reproduced in any of the five other jsr223-supported
programming languages.

var f = new java.awt.Frame('Hello');

f.add(new java.awt.Button('OK'));

f.pack();

// Show the window.

f.setVisible(true);

// Close the window.

f.dispose();

Using jsr223, the preceding code snippet can be embedded in an R script. The first step is to
create an instance of a script engine. A JavaScript engine is created as follows.

library(jsr223)

engine <- ScriptEngine$new("JavaScript")

This engine object is now ready to evaluate script on demand. Source code can be passed to the
engine using character vectors or files. The sample below demonstrates embedding JavaScript
code in-line with character vectors. This method is appropriate for small snippets of code. (Note:
If you try this example the window may appear in the background. Also, the window must be
closed using the last line of code. These are limitations of the code example, not jsr223.)

# Execute code inline to create and show the window.

engine %@% "

var f = new java.awt.Frame('Hello');

f.add(new java.awt.Button('OK'));

f.pack();

f.setVisible(true);

"

# Close the window

engine %@% "f.dispose();"

To execute source code in a file, use the script engine object’s source method:
engine$source(file.name). The variable file.name may specify a local file path or a URL.
Whether evaluating small code snippets or sourcing script files, embedding source code using
jsr223 is straightforward.

In comparison to rJava’s low-level interface, jsr223 allows developers to use Java objects with-
out knowing the details of JNI and method lookups. However, it is important to note that rJava
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does include a high-level interface for invoking object methods. It uses the Java reflection API to
automatically locate the correct method signature. This is an impressive feature, but according
to the rJava web site, its high-level interface is much slower than the low-level interface and it
does not work correctly for all scenarios.

The jsr223-compatible programming languages also feature support for advanced object-oriented
constructs. For example, classes can be extended and interfaces can be implemented using any
language. These features allow developers to quickly implement sophisticated solutions in R
without developing, compiling, and distributing custom Java classes. This can speed develop-
ment and deployment significantly.

The rJava package supports exchanging scalars, arrays, and matrices between R and Java. The
following R code demonstrates converting an R matrix to a Java object, and vice versa, using
rJava.

a <- matrix(rnorm(10), 5, 2)

# Copy matrix to a Java object with rJava

o <- .jarray(a, dispatch = TRUE)

# Convert it back to an R matrix.

b <- .jevalArray(o, simplify = TRUE)

Again, the jsr223 package builds on rJava functionality by extending data exchange. Our
package converts R vectors, factors, n-dimensional arrays, data frames, lists, and environments
to generic Java objects.2 In addition, jsr223 can convert Java scalars, n-dimensional arrays, maps,
and collections to base R objects. Several data exchange options are available, including row-
major and column-major ordering schemes for data frames and n-dimensional arrays.

This code snippet demonstrates data exchange using jsr223. The variable engine is a jsr223
ScriptEngine object. Similar to the preceding rJava example, this code copies a matrix to the
Java environment and back again. The same syntax is used for all supported data types and
structures.

a <- matrix(rnorm(10), 5, 2)

# Copy an R object to Java using jsr223.

engine$a <- a

# Retrieve the object.

engine$a

The rJava package does not directly support callbacks into R. Instead, callbacks are imple-
mented through JRI: the Java/R Interface. The JRI interface is included with rJava. However, to
use JRI, R must be compiled with the shared library option ‘--enable-R-shlib’. The JRI inter-
face is technical and extensive. In contrast, jsr223 supports callbacks into R using a lightweight
interface that provides just three methods to execute R code, set variable values, and retrieve
variable values. The jsr223 package does not use JRI, so there is no requirement for R to be
compiled as a shared library.

In conclusion, jsr223 provides an alternative integration for the Java platform that is easy to
learn and use.

2 rJava’s interface can theoretically support n-dimensional arrays, but currently the feature does not produce correct
results for n > 2. See the related issue at the rJava Github repository: “.jarray(..., dispatch=T) on multi-dimensional
arrays creates Java objects with wrong content.”
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11.2 Groovy integrations software review

Besides jsr223, the only other Groovy language integration available on CRAN is rGroovy (Fuller,
2018). It is a simple integration that uses rJava to instantiate groovy.lang.GroovyShell and
pass code snippets to its evaluate method. We outline the typical integration approach using
rGroovy.

Class paths must set in the global option GROOVY_JARS before loading the rGroovy package.

options(GROOVY_JARS = list("groovy-all.jar", ...))

library("rGroovy")

After the package is loaded, the Initialize function is called to instantiate an instance of the
Groovy script engine that will be used to handle script evaluation. The Initialize function has
one optional argument named binding. This argument accepts an rJava object reference to a
groovy.lang.Binding object that represents the bindings available to the Groovy script engine.
Hence, rJava must be used to create, set, and retrieve values in the bindings object. The following
code example demonstrates instantiating the Groovy script engine. We initialize the script engine
bindings with a variable named myValue that contains a vector of integers. Notice that knowledge
of rJava and JNI notation is required to create an instance of the bindings object, convert the
vector to a Java array, cast the resulting Java array to the appropriate interface, and finally, call
the setVariable method of the bindings object.

bindings <- rJava::.jnew("groovy/lang/Binding")

Initialize(bindings)

myValue <- rJava::.jarray(1:3)

myValue <- rJava::.jcast(myValue, "java/lang/Object")

rJava::.jcall(bindings, "V", method = "setVariable", "myValue", myValue)

Finally, Groovy code can be executed using the Evaluate method; it returns the value of the
last statement, if any. In this example, we modify the last element of our myValue array, and
return the contents of the array.

script <- "

myValue[2] = 5;

myValue;

"

Evaluate(groovyScript = script)

## [1] 1 2 5

The rGroovy package includes another function, Execute, that allows developers to evaluate
Groovy code without using rJava. However, this interface creates a new Groovy script engine
instance each time it is called. In other words, it does not allow the developer to preserve state
between each script evaluation.

In this code example, we demonstrate Groovy integration with jsr223. After the library is
loaded, an instance of a Groovy script engine is created. The class path is defined at the same
time the script engine is created. The variable engine represents the script engine instance; it

https://CRAN.R-project.org/package=rGroovy
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exposes several methods and properties that control data exchange behavior and code evaluation.
The third line creates a binding named myValue in the script engine’s environment; the R vector
is automatically converted to a Java array. The fourth line executes Groovy code that changes the
last element of the myValue Java array before returning it to the R environment.

library("jsr223")

engine <- ScriptEngine$new("Groovy", "groovy-all.jar")

engine$myValue <- 1:3

engine %~% "

myValue[2] = 5;

myValue;

"

## [1] 1 2 5

In comparison to rGroovy, the jsr223 implementation is more concise and requires no knowl-
edge of rJava or Java classes. Though not illustrated in this example, jsr223 can invoke Groovy
functions and methods from within R, it supports callbacks from Groovy into R, and it provides
extensive and configurable data exchange between Groovy and R. These features are not available
in rGroovy.

In summary, rGroovy exposes a simple interface for executing Groovy code and returning a
result. Data exchange is primarily handled through rJava, and therefore requires knowledge of
rJava and JNI. The jsr223 integration is more comprehensive and does not require any knowledge
of rJava.

11.3 JavaScript integrations software review

The most prominent JavaScript integration for R is Jeroen Ooms’ V8 package (2017b). It uses
the open source V8 JavaScript engine (Google developers, 2018) featured in Google’s Chrome
browser. We discuss the three primary differences between V8 and jsr223.

First, the JavaScript engine included with V8 provides only essential ECMAscript function-
ality. For example, V8 does not include even basic file and network operations. In contrast,
jsr223 provides access to the entire JVM which includes a vast array of libraries and computing
functionality.

Second, all data exchanged between V8 and R is serialized using JSON via the jsonlite package
(Ooms et al., 2017). JSON is very flexible; it can represent virtually any data structure. How-
ever, JSON converts all values to/from string representations which adds overhead and imposes
round-off error for floating point values. The jsr223 package handles all data using native val-
ues which reduces overhead and preserves maximum precision. In many applications, the loss
of precision is not critical as far as the final numeric results are concerned, but it does require
defensive programming when checking for equality. For example, an application using V8 must
round two values to a given decimal place before checking if they are equal.

The following code example demonstrates the precision issue using the R constant pi. The
JSON conversion is handled via jsonlite, just as in the V8 package. We see that after JSON
conversion the value of pi is not identical to the original value. In contrast, the jsr223 conversion
result is identical to the original value.

https://CRAN.R-project.org/package=V8
https://CRAN.R-project.org/package=jsonlite
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# `digits = NA` requests maximum precision.

library("jsonlite")

identical(pi, fromJSON(toJSON(pi, digits = NA)))

## [1] FALSE

library("jsr223")

engine <- ScriptEngine$new("js")

engine$pi <- pi

identical(engine$pi, pi)

## [1] TRUE

The third significant difference between V8 and jsr223 is syntax checking. V8 includes an
interface to check JavaScript code syntax. The Java Scripting API does not provide an interface for
syntax checking, hence, jsr223 does not provide this feature. We have investigated other avenues
to check syntax, but none are uniformly reliable across all of the jsr223-supported languages.
Moreover, this feature is not critical for most integration scenarios; syntax validation is more
common in applications that involve interactive code editing.

11.4 Python integrations software review

In this section, we compare jsr223 with two Python integrations for R: reticulate (Allaire et al.,
2018) and rJython (Grothendieck and Bellosta, 2012). Of the many Python integrations available
for R on CRAN, reticulate is the most popular as measured by monthly downloads.3 We also
discuss rJython because, like jsr223, it targets Python on the JVM.

The reticulate package is a very thorough Python integration for R. It includes some refined
interface features that are not available in jsr223. For example, reticulate enables Python objects
to be manipulated in R script using list-like syntax. One major jsr223 feature that reticulate
does not support is callbacks (i.e., calling R from Python). Though there are many interface
differences between jsr223 and reticulate (too many to list here), the most practical difference
arises from their respective Python implementations. The reticulate package targets CPython,
the reference implementation of the Python script engine. As such, reticulate can take advantage
of the many Python libraries compiled to machine code such as Pandas (McKinney, 2010). The
jsr223 package targets the JVM via Jython, and therefore supports accessing Java objects from
Python script. It cannot, however, access the Python libraries compiled to machine code because
they cannot be executed by the JVM. This isn’t a complete dead-end for Jython; many important
Python extensions are being migrated to the JVM by the Jython Native Interface project (http:
//www.jyni.org). These extensions can easily be accessed through jsr223.

The rJython package is similar to jsr223 in that it employs Jython. Both jsr223 and rJython
can execute arbitrary Python code, call Python functions and methods directly from R, use Java
objects, and copy data between environments. However, there are also several important differ-
ences.

3 The reticulate package has 3,681 downloads per month according to http://rdocumentation.org. The next most
popular Python integration is PythonInR (Schwendinger, 2018) with 322 monthly downloads.

https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=rJython
http://www.jyni.org
http://www.jyni.org
http://rdocumentation.org
https://CRAN.R-project.org/package=PythonInR
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Data exchange for rJython can be handled via JSON or direct calls to the Jython interpreter
object via rJava. When using rJava for data exchange, rJython is essentially limited to vectors and
matrices. When using JSON for data exchange, rJython converts R objects to Jython structures.
In contrast, the jsr223 supports a single data exchange interface that supports all major R data
structures. It uses custom Java routines that avoid the overhead and roundoff error associated
with JSON conversion. Finally, jsr223 converts R objects to generic Java structures instead of
Jython objects.

JSON data exchange for rJython is handled by the rjson (Couture-Beil, 2014) package. It
does not handle some R structures as one would expect. For example, n-dimensional arrays
and unnamed lists are both converted to one-dimensional JSON arrays. Furthermore, rJython
converts data frames to Jython dictionaries, but dictionaries are always returned to R as named
lists.

The jsr223 package does not exhibit these limitations; it provides predictable data exchange
for all major R data structures.

Unlike jsr223, the rJython package does not return the value of the last expression when exe-
cuting Python code. Instead, scripts must assign a value to a global Python variable to be fetched
by another rJython method. This does not promote fast code exploration and prototyping. In
addition, rJython does not supply interfaces for callbacks, script compiling, or capturing console
output.

In essence, rJython implements a basic interface to the Jython language. The jsr223 package,
in comparison, provides a more developed feature set.

11.5 Renjin software review

Renjin (Renjin developers, 2018) is an ambitious project whose primary goal is to create a drop-
in replacement for the R language on the Java platform. The Renjin solution features R syntax
extensions that allow Java classes to created and used naturally within R script. The Renjin
language implementation has two important limitations: (i) it does not support plotting; and
(ii) it can’t use R packages that contain native libraries (like C). The jsr223 package, in contrast,
is designed for the reference distribution of R. As such, it can be used in concert with any R
package.

Renjin also distributes an R package called renjin. It is not available from CRAN. (Find the
installation instructions at http://www.renjin.org.) The renjin package exports a single method
that evaluates an R expression. It is designed only to improve execution performance for R
expressions; it does not allow Java classes to be used in R script. Hence, the renjin package is
not a Java platform integration.

Overall, Renjin is a promising Java solution for R, but it is not yet feature-complete. In com-
parison, jsr223 presents a viable Java solution for R today.

12 Limitations and issues

All limitations and issues are managed via the GitHub issue tracker at https://github.com/

floidgilbert/jsr223/issues. Be default, the tracker lists only open issues. Modify the search
parameters to see limitations and workarounds deemed as closed issues.

https://CRAN.R-project.org/package=rjson
http://www.renjin.org
https://github.com/floidgilbert/jsr223/issues
https://github.com/floidgilbert/jsr223/issues
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13 Summary

Java is one of the most successful development platforms in computing history. Its popularity
continues as more programming languages, tools, and technologies target the JVM. The jsr223
package provides a high-level, user-friendly interface that enables R developers to take advan-
tage of the flourishing Java ecosystem. In addition, jsr223’s unified integration interface for
Groovy, JavaScript, Python, Ruby, and Kotlin also facilitates access to solutions developed in
these languages. In all, jsr223 significantly extends the computing capabilities of the R software
environment.
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