

July 14, 2016

Scratch reduction through new CMP slurry technologies

Takafumi Sakurada

Polishing Materials R&D Dept. Hitachi Chemical Co., Ltd.

Outline

- Background
- Estimated root cause of scratch
- Correlation of scratch with abrasive property
- Summary

Polishing performance

Removal rate, Planarity, Selectivity, Non-uniformity, Defects and Scratch

Small scratches would affect the operation of devices

It is necessary to reduce scratches

Statistical Analysis

Hitachi **Chemical**Working On Wonders

We have investigated correlation of scratch with manufacturing process factor, raw materials property and slurry property.

Analysis for 3 parameters

We chose three parameters to obtain better correlation with scratch.

Time of Process A

Slurry property B

Raw material property C

Each correlation was not so good

Combined parameter

Three parameters was combined to obtain better correlation

Combined parameter

```
= a x Time of Process A
```

+ b x Slurry property B

+ c x Raw material property C

+ d

*a, b, c, d = constant

The combined parameter could correlate to scratch. Now we control three parameters to reduce scratch.

Large Particle Count

(LPC)

- Large abrasive
- Agglomerate abrasive
- Contamination

Abrasive type

- <u>Ceria</u>
- <u>Silica</u>
- Alumina
- Diamond

Abrasive hardness

- Harder
- Softer

Scum

- From wafer edge
- From polishing pad
- Agglomerate abrasive

Contamination

- Metal
- Ceramic

Calcined Ceria

LPC (>1um, relative value)

LPC correlated scratch. But scratch count saturated at a critical point.

Large Particle Count

(LPC)

- Large abrasive
- Agglomerate abrasive
- Contamination

Abrasive type

- <u>Ceria</u>
- Silica
- Alumina
- Diamond

Abrasive hardness

- Harder
- Softer

Scum

- From wafer edge
- From polishing pad
- Agglomerate abrasive

Contamination

- Metal
- Ceramic

Three kind of calcined Ceria abrasive were made by changing manufacturing process

Calcined Ceria

Abrasive C

It is difficult to measure hardness of abrasive directly.

Measurement of abrasive hardness

We estimated hardness of abrasive to use a beads mill

Measurement of abrasive hardness

Result of contaminated Si amount after milling

Abrasive A

Abrasive B

Abrasive C

Samples	Abrasive A	Abrasive B	Abrasive C	Blank (Bead only)
Si amount (relative value, ICP-MS)	133	120	111	100
Scratch count (relative value)	111	103	100	-

Bead mill method can be estimated abrasive hardness and scratch level

Large Particle Count

(LPC)

- Large abrasive
- Agglomerate abrasive
- Contamination

Abrasive type

- <u>Ceria</u>
- Silica
- Alumina
- Diamond

Abrasive hardness

- Harder
- Softer

Scum

- From wafer edge
- From polishing pad
- Agglomerate abrasive

Contamination

- Metal
- Ceramic

Abrasive size effect

Nano Size Cerium (NSC)

	NSC	Calcined ceria
Material	Ce(OH) ₄	CeO ₂
Particle size (nm)	5	150-500
Large particle count (>1 µm, relative value)	1	>1000
Zeta potential	Positive	Negative

Particle size and LPC of NSC are extremely low

SiO₂ Removal Rate and Scratch Count

	NSC	Calcined ceria	
SiO ₂ removal rate (nm/min)	280	200-300	
Defect map			
Scratch count (relative value)	1	30	

SiO2 removal rate of NSC slurry is equivalent to calcined ceria slurry. NSC slurry can reduce scratch count.

Further approach to reduce scratch

Surface potential of SiO2, Abrasive and polishing pad

Is there correlation between surface potential and scratch?

Further approach to reduce scratch

Combination between film, abrasive and polishing pad

We try to control each surface potential of material(film, abrasive and pad)
And we investigate relationship between surface potential and scratch

Summary

- The influence of scratch becomes ever more critical in the overall CMP process.
- Large particle in slurry may cause scratch.
- We have investigated correlation of scratch with abrasive size, shape, hardness and other factors in CMP. It is suggested that hard abrasive cause scratch.
- Now we try to control the interaction between wafer surface, slurry abrasive and polishing pad surface to reduce scratch.

Hitachi Chemical Working On Wonders

@Hitachi Chemical Co., Ltd.