

Proactive by Design

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL.

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702

June 27, 2017 File No. 01.0015522.17

United States Environmental Protection Agency – Region 1 1 Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

Re: Submittal of Notice of Intent (NOI)

Remediation General Permit - Authorization #MAG910002

175 Wyman Street

Waltham, Massachusetts

To Whom It May Concern:

GZA GeoEnvironmental, Inc. (GZA), on behalf of our client, HP, Inc. (HP), is submitting the attached Notice of Intent (NOI) form (Appendix A) for a Remediation General Permit (RGP) for the 175 Wyman Street project (the Site). A groundwater containment and treatment system (GCTS) was installed at the Site in 1997 to treat trichloroethene (TCE)-affected groundwater associated with the Site. Coverage under the National Pollutant Discharge Elimination System (NPDES) RGP was initially issued by the United States Environmental Protection Agency (EPA) on September 22, 2005 for discharges associated with the treatment system. With submission of this NOI, we are proposing the continued operation of the GCTS and associated discharge.

BACKGROUND

The Site consists primarily of an approximately 27.5-acre parcel located on the easterly side of Route 128 (Interstate Route 95) at 175 Wyman Street, in the north central section of Waltham (Figure 1 - Locus Plan). HP used the Site from 1959 to 1995 for the manufacture of medical equipment. New owners of the property undertook a significant redeveloped of the property in 2008 with demolition of prior buildings, construction of two new buildings, with other associated improvements consisting of parking, landscaping, and a stormwater retention basin.

As indicated previously, a GCTS designed to remove volatile organic compounds (VOCs) from the groundwater has been operating at the Site since September 19, 1997. The Site is governed under the Massachusetts Contingency Plan (MCP; 310 CMR 40.0000) under Release Tracking Number 3-13311. The GCTS consists of six groundwater recovery wells, a flow equalization tank, a tray aerator, a bag filtration system, liquid-phase granular activated carbon/ion exchange adsorption unit and two vapor-phase granular activated carbon adsorption units, and associated instrumentation and controls. A process flow diagram is illustrated in Figure 2.

Treated groundwater is discharged to an on-property storm drain which eventually flows into an off-property storm water retention area, which in turn discharges to the Cambridge Reservoir as shown on Figure 3. This discharge is currently performed in accordance with the following permits and approvals: coverage under the NPDES Remediation General Permit (Authorization #MAG910002); approval from the City of Cambridge Water Department; and a Massachusetts Highway Department (MHD) access permit (for discharge to the stormwater retention pond). Copies of these permits and approvals are included in Appendix B. In addition, copies of semi-annual status reports, including operational status of the GCTS and water quality monitoring of

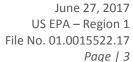
the influent and effluent, are provided to the City of Cambridge Water Department and the Massachusetts Department of Environmental Protection.

NOTICE OF INTENT

This NOI application also includes the following items:

- Summary of historically believed present parameters of the influent groundwater is included in Table 1 and laboratory analytical results of the source water are included as Appendix C (note: because of the high concentration of some volatile organic compounds the detection limit of other compounds is elevated to above applicable effluent limits);
- Laboratory analytical results for the receiving water area are included as Appendix D;
- Calculation sheets for establishing effluent limitations are included as Appendix E;
- Review of Areas of Critical Environmental Concern indicate that the proposed discharge is not to an ACEC and
 a review of Federally Listed Endangered and Threatened Species in Massachusetts indicated that the
 Northern Long-eared Bat is located state-wide. However, this species is not likely to be present at the Site
 additionally the discharge does not impact habitat. In addition, review of the US Fish and Wildlife's online
 Information for Planning and Consultation (IPaC) service, indicated that federally listed species were not likely
 to be present within the action area of site activities (see Appendix F);
- Review of the Massachusetts Geographic Information Systems (MassGIS) DEP Priority Resources Map of Waltham shows that there are no ACECs and no habitats for Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site (Figure 4). Therefore, permit eligibility meets "Criterion A"; and
- Review of the electronic Massachusetts Cultural Resource Information System database, made available
 through Massachusetts Historical Commission, found that the are no properties listed or eligible for listing on
 the National Registry of Historic Places under the National Historic Preservation Act. Therefore, there will be
 no impact associated with this discharge to such properties. The documentation of this review can be found
 in Appendix G.

Please do not hesitate to contact the undersigned at (781) 278-3700 if you have any questions or require further information.


Very truly yours,

GZA GEOENVIRONMENTAL, INC.

John A. Colbert, P.E. Senior Project Manager Patrick F. Sheehan, P.E. Consultant/Reviewer

William R. Norman, LSP

Principal

Enclosures:

Table: Table 1 – Summary of Historically Believed Present Parameters - Influent Groundwater Analytical Results

Figures: Figure 1 - Site Locus Map

Figure 2 - Groundwater Containment and Treatment System Process Flow Diagram

Figure 3 – Site Plan

Figure 4 – Site Scoring Map Showing 500 Foot & ½ Mile Radii

Appendices: Appendix A - Notice of Intent Form

Appendix B – Discharge Approval Letters

Appendix C – Influent Laboratory Analytical Report

Appendix D – Receiving Water Laboratory Analytical Report Appendix E – Calculation Sheets for Effluent Limitations

Appendix F - ACEC and Federally Listed Endangered and Threatened Species in Massachusetts Evaluation

Appendix G – MACRIS Search Results

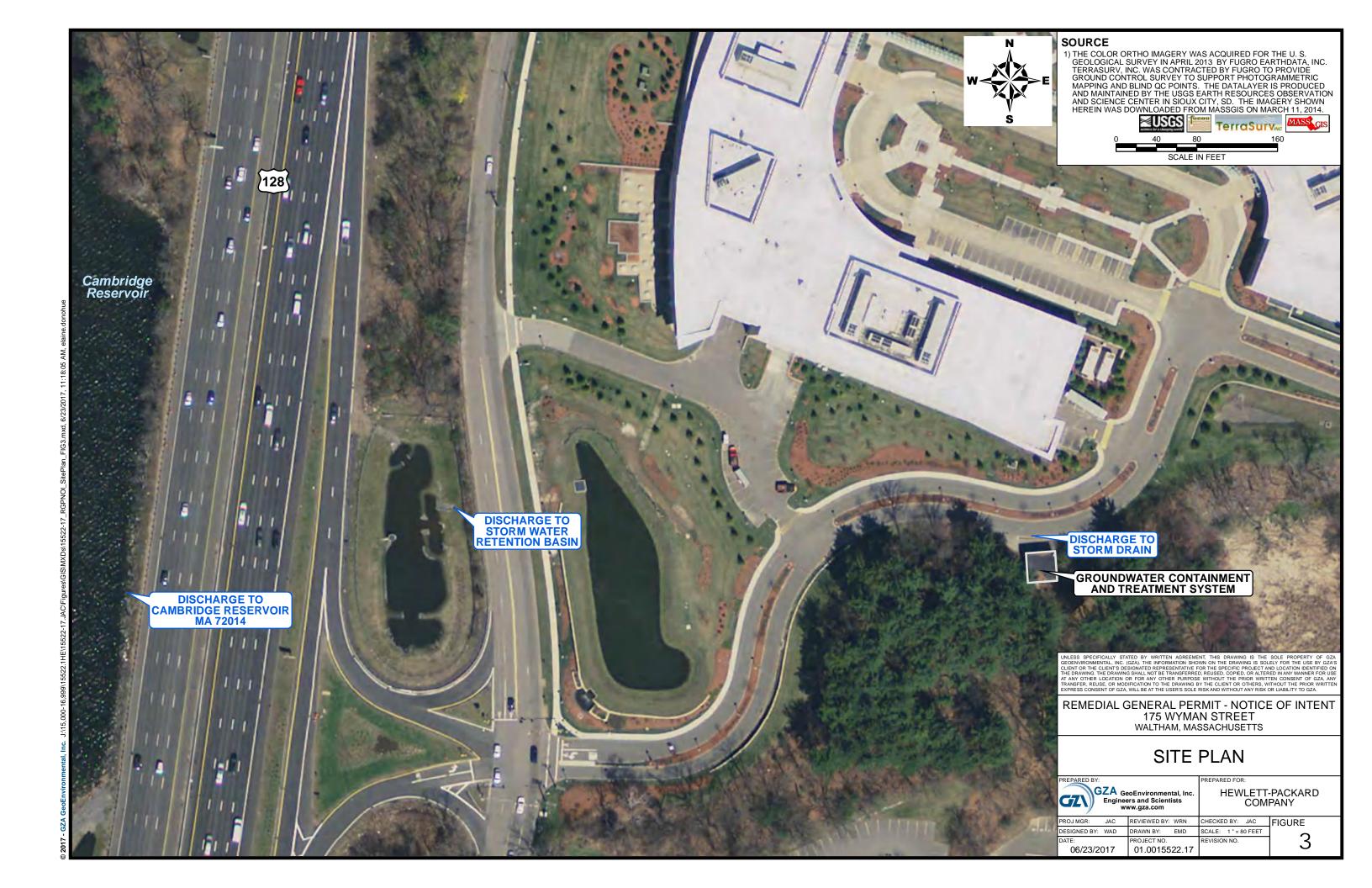
TABLES

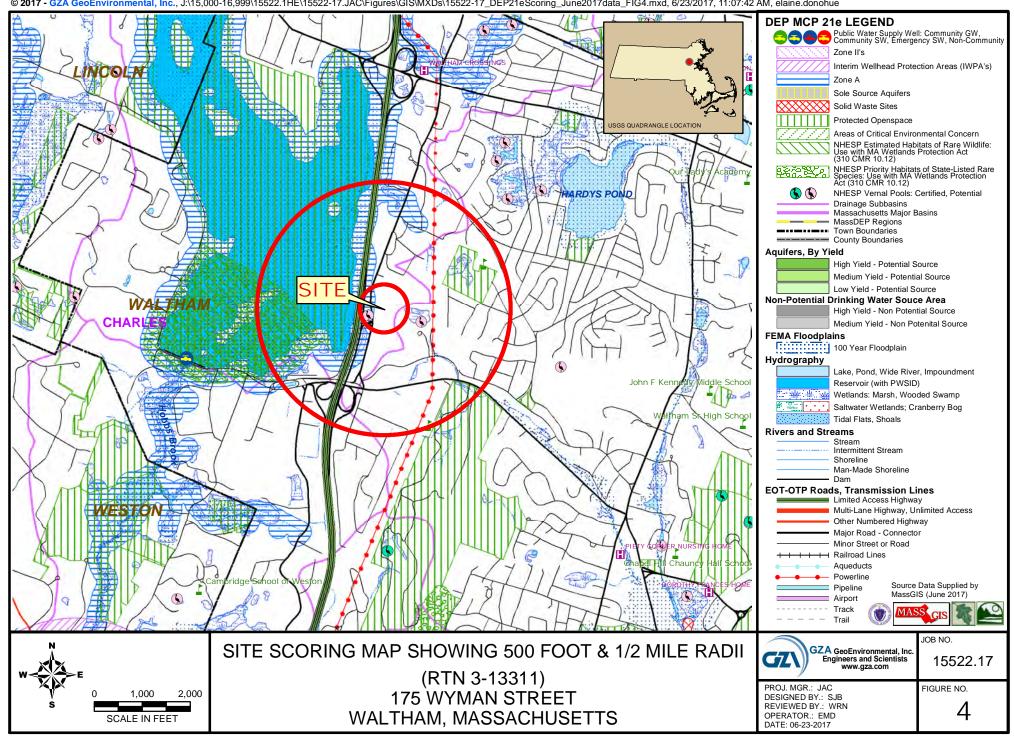
TABLE 1 SUMMARY OF HISTORICALLY BELIEVED PRESENT PARAMETERS INFLUENT GROUNDWATER ANALYTICAL RESULTS

Notice of Intent Application 175 Wyman Street, Waltham, Massachusetts

Sample Collection	System Influent Samples							
Date	TCE (ppb)	PCE (ppb)	DCE (ppb)	Fe (ppb)	Zn (ppb)	Cu (ppb)	Pb (ppb)	Se (ppb)
7/14/2016	6,600	50	25	343	53.1	52.4	7.6	2.5
8/11/2016	5,400	25	25	162	11.5	10.2	1.3	5.0
9/9/2016	4,600	25	25	144	11.0	8.5	1.2	2.5
10/6/2016	6,400	25	25	1,300	57.3	55	7.8	2.5
11/10/2016	8,200	59	25	1,410	78.6	38	6.9	2.5
12/8/2016	7,800	52	25	765	56.2	33	4.4	2.5
1/13/2017	9,300	65	25	3,690	25.5	51.4	25.3	2.5
2/8/2017	8,100	25	25	58	5.0	8	0.5	2.5
3/9/2017	6,400	25	25	538	43.1	17	1.6	2.5
4/7/2017	7,300	55	25	494	13.0	9	0.5	2.5
5/4/2017	7,400	59	25	95	11.3	7	0.25	2.5
5/4/2017	7,200	57	<u>25</u>	107	<u>6.73</u>	5.16	0.25	2.5
6/8/2017	7,400	47	25	116	16.3	8	0.5	2.5
Average	7,085	44	25	709	29.9	23	4.5	2.7
95th percentile	9,027	69	25	2295	68.7	54.2	15.4	3.8

Notes:


- 1. Samples analyzed for VOCs via EPA Method 8260 and samples analyzed for metals via EPA Method 3005/6020 or 200.7.
- 2. Concentrations in *italics* represent half of the reported detection limit and concentrations with *italics* and *underline* are reported as estimated.
- 3. TCE = Trichloroethylene; PCE = Tetrachloroethylene; DCE = cis-1,2-Dichloroethylene; Fe = iron; Zn = zinc; Cu = copper; Pb = Lead; Se = Selenium.
- 4. For a complete list of target analytes and detection limits, see attached laboratory data sheets.
- 5. Two sets of samples were collected on May 4, 2017 to statisfy the NOI application and compliance with the existing RGP permit.
- 6. Calculated concentrations in bold have been used to represent influent concentrations to calculate water quality effluent standards.



FIGURES

06-21-2017

01.0015522.17

APPENDIX A

NOTICE OF INTENT FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:							
	Street:							
	City:		State:	Zip:				
2. Site owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:	l						
	Street:							
Owner is (check one): □ Federal □ State/Tribal □ Private □ Other; if so, specify:	City:		State:	Zip:				
3. Site operator, if different than owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:							
	Street:							
	City:		State:	Zip:				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):					
	☐ MA Chapter 21e; list RTN(s):	□ CERCI	CLA					
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	NIII Crown divistor Management Downit or	□ UIC Program						
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment						
		☐ CWA Section 404						

□ Yes □ No

B. Receiving water info	ormation:
-------------------------	-----------

1. Name of receiving water(s):	waterbody identification of receiving water	S): Classific	Classification of receiving water(s):						
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accorda	2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): ☐ Yes ☐ No								
Are sensitive receptors present near the site? (check o If yes, specify:	Are sensitive receptors present near the site? (check one): □ Yes □ No If yes, specify:								
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP.									
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.									
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ☐ Yes ☐ No If yes, indicate date confirmation received:									
7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII?									
(check one): □ Yes □ No									
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other							
in accordance with the instruction in Appendix VIII? (check one):	ce with the instruction in Appendix RGP in accordance with the instruction in so indicate waterbody:								

□ Yes □ No

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system	
If the discharge enters the receiving water via a private or municipal storm sew Has notification been provided to the owner of this system? (check one): \Box Ye	
	or discharges? (check one): □ Yes □ No, if so, explain, with an estimated timeframe for
obtaining permission:	
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: ☐ less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
□ I – Petroleum-Related Site Remediation	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ D. Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known		Test	5	Infl	uent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report μg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3							-	
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 μg/L	

	Known	Known		_		Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 μg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 μg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVOC	s								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene									
Benzo(a)pyrene]	
Benzo(b)fluoranthene									
Benzo(k)fluoranthene								As Total PAHs	
Chrysene									
Dibenzo(a,h)anthracene									
Indeno(1,2,3-cd)pyrene								1	

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 μg/L	
Pentachlorophenol								1.0 μg/L	
	1	•	•	•	•				
F. Fuels Parameters Total Petroleum		1		<u> </u>		<u> </u>			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	nts present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): □ Yes □ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☐ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

I.	Certification	requirement
v.	CCI IIIICation	requirement

3. Certification requirement		
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	ersons who manage t lief, true, accurate, a	he system, or those nd complete. I have
A BMPP meeting the requirements of this general permit will be imple BMPP certification statement: discharge.	mented upon ini	tiation of the
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes	No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes	No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
permit(s). Additional discharge permit is (check one): ☐ RGP ☐ DGP ☐ CGP ☐ MSGP ☐ Individual NPDES permit	Check one: Yes □	No □ NA ■
□ Other; if so, specify:		
Signature: Date	e: 6/27/17	
Print Name and Title: William R. Norman, Principal, LSP GZA GWE	nvivonmenta	I, Inc.

APPENDIX B

DISCHARGE APPROVAL LETTERS

CITY OF CAMBRIDGE

MASSACHUSETTS

WATER DEPARTMENT 250 FRESH POND PARKWAY CAMBRIDGE, MASS. 02138

617-349-4770

September 15, 1997

William Norman, L.S.P.
Principal
GZA GeoEnvironmental, Inc.
320 Needham Street
Newton Upper Falls, MA 02164

Re: Request for Approval
Groundwater Treatment System Discharge
175 Wyman Street
Waltham, Massachusetts

Dear Mr. Norman

The Cambridge Water Department (CWD) would like to acknowledge the tremendous efforts that you and your staff have made in the development and implementation of the groundwater remediation program for the above referenced site. Your early inclusion of the CWD in the design process, as well as your efforts to address our water quality concerns are very much appreciated.

As requested in your letter of April 28, 1997, the CWD does approve the discharge of treated groundwater into Hobbs Brook Reservoir as part of the implementation of the Immediate Response Action Plan for this site. As part of this approval the CWD would like to receive copies of all analytical test results for water quality samples collected and be notified within 24 hours of a controller-initiated shutdown of the system and any corrective actions that are being taken or considered.

Please call me if you have any questions regarding this approval.

Chip Norton

Watershed Manager

cc: Michael Nicoloro, CWD Cambridge Water Board Paul Dadak, Hewlett Packard Kyle MacAfee, DEP-NERO

Permit No. 496-0271

PERMIT - WALTHAM

Subject to all the terms, conditions, and restrictions printed or written below, and on the reverse side hereof, permission is hereby granted to GZA Geoenvironmental, Inc. to enter upon the State Highway known as northbound Route 128/ Interstate 95 at the Wyman Street interchange for the purpose of discharging treated groundwater from the aquifer surrounding the Hewlett Packard Facility on Wyman Street into the State owned drainage system and detention pond via an on-site stormwater catch basin.

This Permit requires periodic inspection of the detention pond to ensure conformance with the National Pollution Discharge Elimination System Permit Exclusion.

Any and all technical data derived from the afore-mentioned operation shall be forwarded to the MHD District Four Environmental Engineer.

WORK HOURS: 9:00 A.M. thru 3:00 P.M. Monday thru Friday

Provisions shall be made for the safety and protection of any Pedestrian Traffic during the work period.

The work will be performed as per plans on file at the Massachusetts Highway Department District Four Permits Office.

The Grantee shall notify the District Permits Engineer at (617) 648-6100, two (2) days prior to the start of work.

The Grantee shall make contact with the Area Contract Specialist III via Pager Telephone Number #617-644-3602, forty-eight hours prior to start of work. No work shall be authorized without said notification.

A copy of this permit must be on the job site at all times for inspection. Failure to have this permit available will result in suspension of the rights granted by this permit.

This permit is issued with the stipulation that it may be modified or revoked at any time at the discretion of the District Four Highway Director or his representative without rendering said Department or the Commonwealth of Massachusetts liable in any way.

Free flow of traffic shall be maintained at all times.

When in the opinion of the Engineer, this operation constitutes a hazard to traffic in any area, the Grantee may be required to suspend operations during certain hours and to remove his equipment from the roadway.

The Grantee will be responsible for any damage caused by his operation to curbing, structures, roadway, etc..

The Grantee shall be responsible for any ponding of water which may develop within the State Highway Layout, caused by this work.

No work shall be authorized during snow, sleet, or ice storms and subsequent snow removal operations. No bituminous concrete shall be installed between November 15, 199 and April 15, 199.

The Highway surface shall be kept clean of debris at all times and shall be thoroughly cleaned at the completion of this permit.

At the completion of this permit, all disturbed areas shall be restored to a condition equal or similar to that which existed prior to the work.

The Grantee shall indemnify and save harmless the Commonwealth and its Highway Department against all suits, claims or liability of every name and nature arising at any time out of or in consequence of the acts of the Grantee in the performance of the work covered by this permit and or failure to comply with terms and conditions of the permit whether by themselves or their employees or subcontractors.

APPLICANT'S REPRESENTATIVE: Pat Sheehan

TELEPHONE NUMBER: 617-630-6190

(SEE OTHER SIDE FOR ADDITIONAL CONDITIONS)

No work shall be done under this permit until the Grantee shall have communicated with and received instructions from the District Highway Director of the Massachusetts Highway Department at 519 Appleton Street, Arlington, Ma. 02174.

This permit shall be void unless the work herein contemplated shall have been completed before June 11, 1997.

Dated at Arlington this 11th day of June, 1996.

Massachusetts Highway Department,

By

Sherman Eidelman, P.E. District Highway Director

WJD

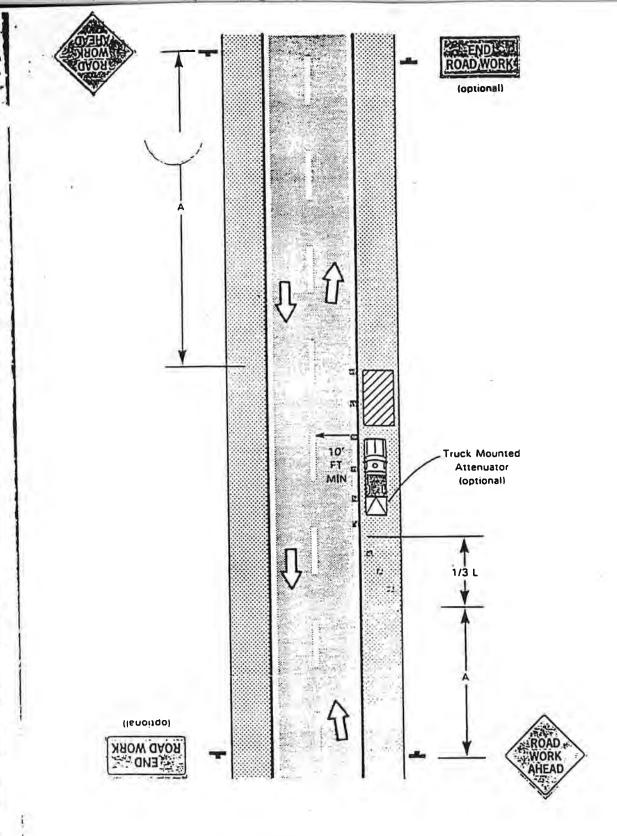


Figure TA-6. Shoulder work with minor encroachment.

APPENDIX C

INFLUENT LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number: L1621793

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.16

Report Date: 07/22/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1621793 **Report Date:** 07/22/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1621793-01	INF	WATER	WALTHAM, MA	07/14/16 09:30	07/14/16
L1621793-02	MID	WATER	WALTHAM, MA	07/14/16 09:30	07/14/16
L1621793-03	EFF	WATER	WALTHAM, MA	07/14/16 09:30	07/14/16

Serial No:07221615:24

Project Name:HP WALTHAMLab Number:L1621793Project Number:01.0015522.16Report Date:07/22/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

٢	lease	contact	Client	Services	at 800	-624-92	220 with	n any	questions	٠.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/22/16

Melissa Cripps Melissa Cripps

ORGANICS

VOLATILES

Serial_No:07221615:24

07/14/16

Not Specified

Date Received:

Field Prep:

Project Name: HP WALTHAM Lab Number: L1621793

Project Number: 01.0015522.16 **Report Date:** 07/22/16

SAMPLE RESULTS

Lab ID: L1621793-01 D Date Collected: 07/14/16 09:30

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 07/18/16 13:15

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
I,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	50		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
,2-Dichloroethane	ND		ug/l	50		100
,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
rans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
/inyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
,1-Dichloroethene	ND		ug/l	50		100
rans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	6600		ug/l	50		100
,2-Dichlorobenzene	ND		ug/l	250		100

ND

ND

100

100

250

250

ug/l

ug/l

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Serial_No:07221615:24

100

100

Project Name: HP WALTHAM Lab Number: L1621793

Project Number: 01.0015522.16 **Report Date:** 07/22/16

SAMPLE RESULTS

Lab ID: L1621793-01 D Date Collected: 07/14/16 09:30

Client ID: Date Received: 07/14/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 100 100 ug/l ND 100 p/m-Xylene ug/l 100 ND 100 100 o-Xylene ug/l -cis-1,2-Dichloroethene ND 50 100 ug/l

ug/l

ug/l

500

250

--

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	97		70-130
Toluene-d8	105		70-130
4-Bromofluorobenzene	99		70-130
Dibromofluoromethane	97		70-130

ND

ND

Dichlorodifluoromethane

Naphthalene

L1621793

Project Name: HP WALTHAM

Project Number: 01.0015522.16

SAMPLE RESULTS

Lab Number:

Report Date: 07/22/16

Lab ID: L1621793-02

Client ID: MID

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 07/18/16 13:52

Analyst: PD Date Collected: 07/14/16 09:30 Date Received: 07/14/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	0.63		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1621793

Project Number: 01.0015522.16 **Report Date:** 07/22/16

SAMPLE RESULTS

Lab ID: L1621793-02 Date Collected: 07/14/16 09:30

Client ID: MID Date Received: 07/14/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	97		70-130	

L1621793

Project Name: Lab Number: HP WALTHAM

Project Number: Report Date: 01.0015522.16 07/22/16

SAMPLE RESULTS

Lab ID: L1621793-03 Date Collected: 07/14/16 09:30

Client ID: **EFF**

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 07/18/16 14:29

Analyst: PD

Date Collec	icu.	01/14/10 05.50
Date Recei	ved:	07/14/16
Field Prep:		Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1621793

Project Number: 01.0015522.16 **Report Date:** 07/22/16

SAMPLE RESULTS

Lab ID: L1621793-03 Date Collected: 07/14/16 09:30

Client ID: EFF Date Received: 07/14/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	97		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1621793

 Project Number:
 01.0015522.16
 Report Date:
 07/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/18/16 12:02

Analyst: PD

Parameter	Result	Qualifier Unit	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lal	b for sample(s):	01-03 Batch:	WG914991-5
Methylene chloride	ND	ug/	íl 3.0	
1,1-Dichloroethane	ND	ug/	l 0.75	
Chloroform	ND	ug/	l 0.75	
Carbon tetrachloride	ND	ug/	l 0.50	
1,2-Dichloropropane	ND	ug/	l 1.8	
Dibromochloromethane	ND	ug/	l 0.50	
1,1,2-Trichloroethane	ND	ug/	l 0.75	
Tetrachloroethene	ND	ug/	l 0.50	
Chlorobenzene	ND	ug/	l 0.50	
Trichlorofluoromethane	ND	ug/	l 2.5	
1,2-Dichloroethane	ND	ug/	l 0.50	
1,1,1-Trichloroethane	ND	ug/	l 0.50	
Bromodichloromethane	ND	ug/	l 0.50	
trans-1,3-Dichloropropene	ND	ug/	l 0.50	
cis-1,3-Dichloropropene	ND	ug/	l 0.50	
Bromoform	ND	ug/	1 2.0	
1,1,2,2-Tetrachloroethane	ND	ug/	l 0.50	
Benzene	ND	ug/	l 0.50	
Toluene	ND	ug/	l 0.75	
Ethylbenzene	ND	ug/	l 0.50	
Chloromethane	ND	ug/	l 2.5	
Bromomethane	ND	ug/	l 1.0	
Vinyl chloride	ND	ug/	l 1.0	
Chloroethane	ND	ug/	l 1.0	
1,1-Dichloroethene	ND	ug/	l 0.50	
trans-1,2-Dichloroethene	ND	ug/	l 0.75	
Trichloroethene	ND	ug/	l 0.50	
1,2-Dichlorobenzene	ND	ug/	1 2.5	
1,3-Dichlorobenzene	ND	ug,	l 2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1621793

 Project Number:
 01.0015522.16
 Report Date:
 07/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/18/16 12:02

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - W	estborough Lab	for sample(s):	01-03 Batch:	WG914991-5	
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dichlorodifluoromethane	ND	ug/l	5.0		
Naphthalene	ND	ug/l	2.5		

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	99		70-130	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1621793

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG914991-3	WG914991-4			
Methylene chloride	95		100		70-130	5	20	
1,1-Dichloroethane	100		110		70-130	10	20	
Chloroform	93		98		70-130	5	20	
Carbon tetrachloride	79		84		63-132	6	20	
1,2-Dichloropropane	110		110		70-130	0	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	120		120		70-130	0	20	
Tetrachloroethene	100		110		70-130	10	20	
Chlorobenzene	110		110		75-130	0	25	
Trichlorofluoromethane	81		83		62-150	2	20	
1,2-Dichloroethane	93		96		70-130	3	20	
1,1,1-Trichloroethane	80		85		67-130	6	20	
Bromodichloromethane	93		93		67-130	0	20	
trans-1,3-Dichloropropene	84		88		70-130	5	20	
cis-1,3-Dichloropropene	89		88		70-130	1	20	
1,1-Dichloropropene	92		97		70-130	5	20	
Bromoform	98		99		54-136	1	20	
1,1,2,2-Tetrachloroethane	120		130		67-130	8	20	
Benzene	100		100		70-130	0	25	
Toluene	110		120		70-130	9	25	
Ethylbenzene	110		110		70-130	0	20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1621793

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-03 Batch:	WG914991-3	WG914991-4			
Chloromethane	90		89		64-130	1		20
Bromomethane	49		50		39-139	2		20
Vinyl chloride	98		98		55-140	0		20
Chloroethane	120		120		55-138	0		20
1,1-Dichloroethene	84		92		61-145	9		25
trans-1,2-Dichloroethene	93		100		70-130	7		20
Trichloroethene	94		98		70-130	4		25
1,2-Dichlorobenzene	120		120		70-130	0		20
1,3-Dichlorobenzene	120		120		70-130	0		20
1,4-Dichlorobenzene	120		120		70-130	0		20
Methyl tert butyl ether	86		92		63-130	7		20
p/m-Xylene	110		115		70-130	4		20
o-Xylene	115		120		70-130	4		20
cis-1,2-Dichloroethene	99		110		70-130	11		20
Dibromomethane	100		100		70-130	0		20
1,4-Dichlorobutane	130		130		70-130	0		20
1,2,3-Trichloropropane	120		120		64-130	0		20
Styrene	115		125		70-130	8		20
Dichlorodifluoromethane	60		60		36-147	0		20
Acetone	130		120		58-148	8		20
Carbon disulfide	95		100		51-130	5		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1621793

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch:	WG914991-3	WG914991-4			
2-Butanone	120		130		63-138	8	20	
Vinyl acetate	93		100		70-130	7	20	
4-Methyl-2-pentanone	120		140	Q	59-130	15	20	
2-Hexanone	120		120		57-130	0	20	
Ethyl methacrylate	99		110		70-130	11	20	
Acrylonitrile	130		140	Q	70-130	7	20	
Bromochloromethane	100		110		70-130	10	20	
Tetrahydrofuran	130		130		58-130	0	20	
2,2-Dichloropropane	62	Q	67		63-133	8	20	
1,2-Dibromoethane	100		110		70-130	10	20	
1,3-Dichloropropane	110		120		70-130	9	20	
1,1,1,2-Tetrachloroethane	100		100		64-130	0	20	
Bromobenzene	110		120		70-130	9	20	
n-Butylbenzene	120		120		53-136	0	20	
sec-Butylbenzene	120		120		70-130	0	20	
tert-Butylbenzene	110		110		70-130	0	20	
o-Chlorotoluene	120		110		70-130	9	20	
p-Chlorotoluene	110		110		70-130	0	20	
1,2-Dibromo-3-chloropropane	110		110		41-144	0	20	
Hexachlorobutadiene	100		100		63-130	0	20	
Isopropylbenzene	110		120		70-130	9	20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1621793

Report Date:

07/22/16

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	b Associated	sample(s):	01-03	Batch:	WG914991-3	WG914991-4				
p-Isopropyltoluene	120			120		70-130	0		20	
Naphthalene	130			140	Q	70-130	7		20	
n-Propylbenzene	120			120		69-130	0		20	
1,2,3-Trichlorobenzene	130			130		70-130	0		20	
1,2,4-Trichlorobenzene	120			120		70-130	0		20	
1,3,5-Trimethylbenzene	110			120		64-130	9		20	
1,2,4-Trimethylbenzene	110			110		70-130	0		20	
trans-1,4-Dichloro-2-butene	110			110		70-130	0		20	
Ethyl ether	100			110		59-134	10		20	

Surragata	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Surrogate	76Recovery	Quai	76Recovery	Quai	Orneria	—
1,2-Dichloroethane-d4	98		96		70-130	
Toluene-d8	106		109		70-130	
4-Bromofluorobenzene	98		98		70-130	
Dibromofluoromethane	95		97		70-130	

METALS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1621793

 Project Number:
 01.0015522.16
 Report Date:
 07/22/16

SAMPLE RESULTS

Lab ID: L1621793-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 07/14/16 09:30

Date Received: 07/14/16
Field Prep: Not Specified

D. D. Auchstical

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Copper, Total	0.0524		mg/l	0.0020		1	07/19/16 11:4	0 07/19/16 16:35	EPA 3005A	1,6020A	AM
Iron, Total	0.343		mg/l	0.050		1	07/19/16 11:4	0 07/19/16 18:36	EPA 3005A	19,200.7	AB
Lead, Total	0.0076		mg/l	0.0020		1	07/19/16 11:4	0 07/19/16 16:35	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.010		1	07/19/16 11:4	0 07/19/16 16:35	EPA 3005A	1,6020A	AM
Zinc, Total	0.0531		mg/l	0.0200		1	07/19/16 11:4	0 07/19/16 16:35	EPA 3005A	1,6020A	AM

 Project Name:
 HP WALTHAM
 Lab Number:
 L1621793

 Project Number:
 01.0015522.16
 Report Date:
 07/22/16

SAMPLE RESULTS

Lab ID: L1621793-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 07/14/16 09:30

Date Received: 07/14/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Copper, Total	0.0028		mg/l	0.0010		1	07/19/16 11:40	0 07/19/16 16:48	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	07/19/16 11:40	0 07/19/16 20:08	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.0010		1	07/19/16 11:40	0 07/19/16 16:48	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	07/19/16 11:40	0 07/19/16 16:48	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.0100		1	07/19/16 11:40	0 07/19/16 16:48	EPA 3005A	1,6020A	AM

Project Name: HP WALTHAM Project Number: 01.0015522.16

Lab Number: L1621793

Report Date: 07/22/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01,03 E	Batch: Wo	G91490	8-1				
Iron, Total	ND	mg/l	0.050		1	07/19/16 11:40	07/19/16 18:24	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01,03 B	atch: WC	391490	9-1				
Copper, Total	ND	mg/l	0.0010		1	07/19/16 11:40	07/19/16 17:07	7 1,6020A	AM
Lead, Total	ND	mg/l	0.0010		1	07/19/16 11:40	07/19/16 17:07	7 1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	07/19/16 11:40	07/19/16 17:07	7 1,6020A	AM
Zinc, Total	ND	mg/l	0.0100		1	07/19/16 11:40	07/19/16 17:07	7 1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1621793

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sam	ole(s): 01,03 Batc	ch: WG91490	08-2					
Iron, Total	93		-		85-115	-		
Total Metals - Mansfield Lab Associated sam	ole(s): 01,03 Batc	ch: WG91490	99-2		80-120	-		
Lead, Total	110		-		80-120	-		
Selenium, Total	111		-		80-120	-		
Zinc, Total	102		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1621793

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab As	sociated sam	ple(s): 01,03	QC Bat	ch ID: WG914	908-4	QC Samp	le: L1621793-01	Client ID: INF			
Iron, Total	0.343	1	1.25	91		-	-	75-125	-		20
Total Metals - Mansfield Lab As	sociated sam	nple(s): 01,03	QC Bat	ch ID: WG914	909-4	QC Samp	le: L1621793-01	Client ID: INF			
Copper, Total	0.0524	0.25	0.2909	95		-	-	75-125	-		20
Lead, Total	0.0076	0.51	0.5358	104		-	-	75-125	-		20
Selenium, Total	ND	0.12	0.121	101		-	-	75-125	-		20
Zinc, Total	0.0531	0.5	0.4935	88		-	-	75-125	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1621793

Report Date:

07/22/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,0	O3 QC Batch ID: 1	WG914908-3 QC Sample:	L1621793-01	Client ID:	INF	
Iron, Total	0.343	0.369	mg/l	7		20
Total Metals - Mansfield Lab Associated sample(s): 01,0	O3 QC Batch ID:	WG914909-3 QC Sample:	L1621793-01	Client ID:	INF	
Copper, Total	0.0524	0.0491	mg/l	6		20
Lead, Total	0.0076	0.0080	mg/l	5		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.0531	0.0468	mg/l	13		20

INORGANICS & MISCELLANEOUS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1621793

 Project Number:
 01.0015522.16
 Report Date:
 07/22/16

SAMPLE RESULTS

Lab ID: L1621793-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 07/14/16 09:30

Date Received: 07/14/16
Field Prep: Not Specified

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab								
Chloride	590	mg/l	10		10	-	07/15/16 19:30	1,9251	LA

Project Name: Lab Number: **HP WALTHAM** L1621793 **Project Number:** 01.0015522.16 Report Date:

07/22/16

SAMPLE RESULTS

Lab ID: L1621793-03

EFF Client ID:

Sample Location: WALTHAM, MA

Matrix: Water Date Collected: 07/14/16 09:30

Date Received: 07/14/16

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab									
Chloride	590		mg/l	10		10	-	07/15/16 19:32	1,9251	LA

Project Name: HP WALTHAM
Project Number: 01.0015522.16

Lab Number: L1621793

Report Date: 07/22/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ole(s): 01	,03 Ba	atch: W0	G914063-1				
Chloride	ND	mg/l	1.0		1	-	07/15/16 19:11	1,9251	LA

Project Name: HP WALTHAM Project Number: 01.0015522.16

Lab Number:

L1621793

Report Date:

07/22/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	associated sample(s):	01,03	Batch: WG91406	3-2					
Chloride	100		-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1621793

Report Date:

07/22/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD	RPD Qual Limits
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 01,03	QC Batch ID	D: WG914063-4	QC Sample: L162	1675-03 Clier	nt ID: M	/IS Sample
Chloride	5.8	20	26	101	-	-	58-140	-	7

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1621793

Report Date:

07/22/16

Parameter	Native Sam	ple D	ouplicate Sampl	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03	QC Batch ID:	WG914063-3	QC Sample:	L1621675-03	Client ID:	DUP Sample
Chloride	5.8		6.1	mg/l	5		7

Project Name:

Project Number:

HP WALTHAM

01.0015522.16

 Project Name:
 HP WALTHAM
 Lab Number:
 L1621793

 Project Number:
 01.0015522.16
 Report Date:
 07/22/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation		Temp				
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1621793-01A	Vial HCl preserved	Α	N/A	2.5	Υ	Absent	8260(14)
L1621793-01B	Vial HCI preserved	Α	N/A	2.5	Υ	Absent	8260(14)
L1621793-01C	Vial HCI preserved	Α	N/A	2.5	Υ	Absent	8260(14)
L1621793-01D	Plastic 120ml HNO3 preserved	Α	<2	2.5	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1621793-01E	Plastic 60ml unpreserved	Α	7	2.5	Υ	Absent	CL-9251(28)
L1621793-02A	Vial HCl preserved	Α	N/A	2.5	Υ	Absent	8260(14)
L1621793-02B	Vial HCl preserved	Α	N/A	2.5	Υ	Absent	8260(14)
L1621793-02C	Vial HCl preserved	Α	N/A	2.5	Υ	Absent	8260(14)
L1621793-03A	Vial HCI preserved	Α	N/A	2.5	Υ	Absent	8260(14)
L1621793-03B	Vial HCI preserved	Α	N/A	2.5	Υ	Absent	8260(14)
L1621793-03C	Vial HCI preserved	Α	N/A	2.5	Υ	Absent	8260(14)
L1621793-03D	Plastic 120ml HNO3 preserved	Α	<2	2.5	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1621793-03E	Plastic 60ml unpreserved	Α	8	2.5	Υ	Absent	CL-9251(28)

Project Name: Lab Number: **HP WALTHAM** L1621793 **Project Number:** 01.0015522.16 **Report Date:** 07/22/16

GLOSSARY

Acronvms

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of LFB

analytes or a material containing known and verified amounts of analytes.

MDI. - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound TIC

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1621793

 Project Number:
 01.0015522.16
 Report Date:
 07/22/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1621793

 Project Number:
 01.0015522.16
 Report Date:
 07/22/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 2/3/2016 10:23:10 AM

ID No.:17873

Revision 6

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1,

SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ΔLPHA	CHAIN O	F CUSTO	DY P	AGE	OF_	Date R	Rec'd in La	b: 7/1	4/1	(ALF	PHA Job #:	L162179	3
8 Walkup Drive	320 Forbes Blvd	Project Informa				Repo	rt Inform	ation - Da	ta Delive	erable	es Bill	ing Informat	tion	
Westboro, MA (Tel: 508-898-9	01581 Mansfield, MA 02048	Project Name:	fp h	on lfha	in	□AD	Ex	□ EMAIL			□ Sa	me as Client i	nfo PO#:	
Client Information	on:	Project Location:	Walth	am /	Mes.							ation Requi	The state of the s	
Client: GZA		Project #: 0(, ac	15522			☐ Yes	□ No MA I □ No Matr	MCP Analyt x Spike Re	ical Methorical Methor	ods this S	DG? (Reau	Yes □ No Cuired for MCP	T RCP Analytical Meth Inorganics)	nods
Address: 249	Vanderbilf An	Project Manager:	T. Col.	bert		☐ Yes	□ No GW	Standards	(Info Red	quired	for Metals 8	REPH with Ta	rgets)	
Norm	and Mr 92062	ALPHA Quote #:					□ No NPD er State /Fe	d Program				Criteria		
Phone: 78(-	-983-1357	Turn-Around Ti	ne				/cx/	75/5	/4/	1	11	///	/ / /	
	roject Information:	Date Due:) RUSH (anly o	onfirmed if pre-ap	proved!)	4	METALS: DINCP 13	EPH: DRanges & Targets UPH: C.	C PCB C PEST	Quant Only DEin	He land		SAMPLE INF Filtration Field Lab to do Preservation	TOTAL # BOTTL
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle Date	ection Time	Sample Matrix	Sampler Initials	1.	METALS	EPH: DI	D P. C. H. C.		Mers /	' / / ,	☐ Lab to do Sample Comment	_ E
21793-01	INF	7/14/16	930an	Gh	BP	X				X	X		Cample Common	5
d2_	MID		945-	1	1	X				1				7
03	EFF		1000am	1		8				V	X)
			(4) Uniting		-	/-				^				1
	*								D).					
Container Type	Preservative			Contai	ner Type	1/				p	P			
P= Plastic A= Amber glass V= Vial	A= None B= HCl C= HNO ₃			7,000	servative	HCL				/	FM7			
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH F= MeOH	Relinquished By:		Date	/Time		Receiv	ed By:	1		ate/Time			-
O= Other E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	STO A	ALTK		G 101	John Ju	Sh	on,	41/1	7/16	13:38	Alpha's Te	es submitted are subjections and Conditions se side. 1-01 (rev. 12-Mar-2012)	et to

ANALYTICAL REPORT

Lab Number: L1625352

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769
Project Name: HP WALTHAM

Project Number: 1552216

Report Date: 08/19/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM

Project Number: 1552216

Lab Number: L1625352 **Report Date:** 08/19/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1625352-01	INF	WATER	WALTHAM, MA	08/11/16 10:20	08/12/16
L1625352-02	MID	WATER	WALTHAM, MA	08/11/16 10:27	08/12/16
L1625352-03	EFF	WATER	WALTHAM, MA	08/11/16 10:40	08/12/16
L1625352-04	TRIP BLANK	WATER	WALTHAM, MA	08/11/16 00:00	08/12/16

Project Name:HP WALTHAMLab Number:L1625352Project Number:1552216Report Date:08/19/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name:HP WALTHAMLab Number:L1625352Project Number:1552216Report Date:08/19/16

Case Narrative (continued)

Sample Receipt

A Trip Blank was received in the laboratory, but not listed on the Chain of Custody, and was not analyzed. The sample collection times were obtained from the container labels.

Chloride

The WG923271-4 MS recovery (150%), performed on L1625352-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/19/16

Custen Walker Cristin Walker

ORGANICS

VOLATILES

Project Name: HP WALTHAM

Project Number: 1552216

SAMPLE RESULTS

Lab Number: L1625352

Report Date: 08/19/16

Lab ID: L1625352-01 D

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 08/15/16 13:40

Analyst: PD Date Collected: 08/11/16 10:20 Date Received: 08/12/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	ND		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
trans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
trans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	5400		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

08/11/16 10:20

Project Name: HP WALTHAM Lab Number: L1625352

Project Number: 1552216 **Report Date:** 08/19/16

SAMPLE RESULTS

Lab ID: L1625352-01 D Date Collected:

Client ID: INF Date Received: 08/12/16

Sample Location: WALTHAM, MA Field Prep: Not Specified

Result Qualifier Units RI MDI Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
Methyl tert butyl ether	ND		ug/l	100		100	
p/m-Xylene	ND		ug/l	100		100	
o-Xylene	ND		ug/l	100		100	
cis-1,2-Dichloroethene	ND		ug/l	50		100	
Dichlorodifluoromethane	ND		ug/l	500		100	
Naphthalene	ND		ug/l	250		100	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	84		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	96		70-130	

08/11/16 10:27

Not Specified

08/12/16

Project Name: HP WALTHAM

Project Number: 1552216

SAMPLE RESULTS

Lab Number: L1625352

Report Date: 08/19/16

Date Collected:

Date Received:

Field Prep:

SAMPLE RESUL

Lab ID: L1625352-02

Client ID: MID

Sample Location: WALTHAM, MA

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 08/15/16 14:12

Analytical Date. 00/15/10 1

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	0.92		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1625352

Project Number: 1552216 **Report Date:** 08/19/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/11/16 10:27

Client ID: Date Received: 08/12/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	87		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	98		70-130	

Project Name: HP WALTHAM

Project Number: 1552216

SAMPLE RESULTS

Lab Number: L1625352

Report Date: 08/19/16

Lab ID: L1625352-03

Client ID: **EFF**

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 08/15/16 14:45

Analyst: PD

Date Collected:	08/11/16 10:40
Date Received:	08/12/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1625352

Project Number: 1552216 **Report Date:** 08/19/16

SAMPLE RESULTS

Lab ID: L1625352-03 Date Collected: 08/11/16 10:40

Client ID: EFF Date Received: 08/12/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Methyl tert butyl ether	ND		ug/l	1.0		1				
p/m-Xylene	ND		ug/l	1.0		1				
o-Xylene	ND		ug/l	1.0		1				
cis-1,2-Dichloroethene	ND		ug/l	0.50		1				
Dichlorodifluoromethane	ND		ug/l	5.0		1				
Naphthalene	ND		ug/l	2.5		1				

	Acceptance							
Surrogate	% Recovery	Qualifier	Criteria					
1,2-Dichloroethane-d4	87		70-130					
Toluene-d8	97		70-130					
4-Bromofluorobenzene	99		70-130					
Dibromofluoromethane	98		70-130					

Project Name:HP WALTHAMLab Number:L1625352

Project Number: 1552216 **Report Date:** 08/19/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/15/16 12:34

Analyst: PD

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03 Batch:	WG922875-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l		
Chloroform	ND	ug/l		
Carbon tetrachloride	ND	ug/l		
1,2-Dichloropropane	ND	ug/l		
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

Project Name:HP WALTHAMLab Number:L1625352

Project Number: 1552216 **Report Date:** 08/19/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/15/16 12:34

Analyst: PD

Parameter	Result	Qualifier Unit	ts	RL	MDL
Volatile Organics by GC/MS - Westl	oorough Lab	o for sample(s):	01-03	Batch:	WG922875-5
1,4-Dichlorobenzene	ND	ug	/I	2.5	
Methyl tert butyl ether	ND	ug	/I	1.0	
p/m-Xylene	ND	ug	/I	1.0	
o-Xylene	ND	ug	/I	1.0	
cis-1,2-Dichloroethene	ND	ug	/I	0.50	
Dichlorodifluoromethane	ND	ug	/I	5.0	
Naphthalene	ND	ug	/I	2.5	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	84		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	97		70-130	

Project Name: HP WALTHAM

Project Number: 1552216

Lab Number: L1625352

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westbore	ough Lab Associated	sample(s):	01-03 Batch:	WG922875-3	WG922875-4				
Methylene chloride	100		94		70-130	6		20	
1,1-Dichloroethane	86		79		70-130	8		20	
Chloroform	92		85		70-130	8		20	
Carbon tetrachloride	91		85		63-132	7		20	
1,2-Dichloropropane	81		77		70-130	5		20	
Dibromochloromethane	92		86		63-130	7		20	
1,1,2-Trichloroethane	98		89		70-130	10		20	
2-Chloroethylvinyl ether	86		82		70-130	5		20	
Tetrachloroethene	110		100		70-130	10		20	
Chlorobenzene	100		96		75-130	4		25	
Trichlorofluoromethane	99		74		62-150	29	Q	20	
1,2-Dichloroethane	80		75		70-130	6		20	
1,1,1-Trichloroethane	97		88		67-130	10		20	
Bromodichloromethane	91		84		67-130	8		20	
trans-1,3-Dichloropropene	80		74		70-130	8		20	
cis-1,3-Dichloropropene	81		77		70-130	5		20	
1,1-Dichloropropene	89		84		70-130	6		20	
Bromoform	100		98		54-136	2		20	
1,1,2,2-Tetrachloroethane	94		91		67-130	3		20	
Benzene	95		88		70-130	8		25	
Toluene	100		93		70-130	7		25	

Project Name: HP WALTHAM

Project Number: 1552216

Lab Number: L1625352

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG922875-3	WG922875-4				
Ethylbenzene	99		92		70-130	7		20	
Chloromethane	38	Q	38	Q	64-130	0		20	
Bromomethane	87		80		39-139	8		20	
Vinyl chloride	62		58		55-140	7		20	
Chloroethane	70		61		55-138	14		20	
1,1-Dichloroethene	110		100		61-145	10		25	
trans-1,2-Dichloroethene	110		99		70-130	11		20	
Trichloroethene	96		90		70-130	6		25	
1,2-Dichlorobenzene	100		97		70-130	3		20	
1,3-Dichlorobenzene	100		97		70-130	3		20	
1,4-Dichlorobenzene	100		96		70-130	4		20	
Methyl tert butyl ether	100		92		63-130	8		20	
p/m-Xylene	105		95		70-130	10		20	
o-Xylene	105		100		70-130	5		20	
cis-1,2-Dichloroethene	100		98		70-130	2		20	
Dibromomethane	97		91		70-130	6		20	
1,4-Dichlorobutane	77		74		70-130	4		20	
Iodomethane	33	Q	44	Q	70-130	29	Q	20	
1,2,3-Trichloropropane	86		83		64-130	4		20	
Styrene	100		100		70-130	0		20	
Dichlorodifluoromethane	88		98		36-147	11		20	

Project Name: HP WALTHAM

Project Number: 1552216

Lab Number: L1625352

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-03 Batch:	WG922875-3	WG922875-4			
Acetone	80		68		58-148	16	20	
Carbon disulfide	92		82		51-130	11	20	
2-Butanone	75		70		63-138	7	20	
Vinyl acetate	60	Q	56	Q	70-130	7	20	
4-Methyl-2-pentanone	67		64		59-130	5	20	
2-Hexanone	68		64		57-130	6	20	
Ethyl methacrylate	86		83		70-130	4	20	
Acrolein	78		73		70-130	7	20	
Acrylonitrile	82		76		70-130	8	20	
Bromochloromethane	120		110		70-130	9	20	
Tetrahydrofuran	70		65		58-130	7	20	
2,2-Dichloropropane	85		77		63-133	10	20	
1,2-Dibromoethane	100		99		70-130	1	20	
1,3-Dichloropropane	90		85		70-130	6	20	
1,1,1,2-Tetrachloroethane	100		99		64-130	1	20	
Bromobenzene	100		100		70-130	0	20	
n-Butylbenzene	94		86		53-136	9	20	
sec-Butylbenzene	100		95		70-130	5	20	
tert-Butylbenzene	110		99		70-130	11	20	
o-Chlorotoluene	96		90		70-130	6	20	
p-Chlorotoluene	94		88		70-130	7	20	

Project Name: HP WALTHAM

Project Number: 1552216

Lab Number: L1625352

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG922875-3	WG922875-4				
1,2-Dibromo-3-chloropropane	88		89		41-144	1		20	
Hexachlorobutadiene	100		96		63-130	4		20	
Isopropylbenzene	100		99		70-130	1		20	
p-Isopropyltoluene	100		96		70-130	4		20	
Naphthalene	88		84		70-130	5		20	
n-Propylbenzene	100		92		69-130	8		20	
1,2,3-Trichlorobenzene	98		93		70-130	5		20	
1,2,4-Trichlorobenzene	100		92		70-130	8		20	
1,3,5-Trimethylbenzene	100		93		64-130	7		20	
1,3,5-Trichlorobenzene	100		94		70-130	6		20	
1,2,4-Trimethylbenzene	100		95		70-130	5		20	
trans-1,4-Dichloro-2-butene	67	Q	62	Q	70-130	8		20	
Halothane	110		100		70-130	10		20	
Ethyl ether	100		74		59-134	30	Q	20	
Methyl Acetate	68	Q	62	Q	70-130	9		20	
Ethyl Acetate	74		74		70-130	0		20	
Isopropyl Ether	69	Q	64	Q	70-130	8		20	
Cyclohexane	83		77		70-130	8		20	
Tert-Butyl Alcohol	88		84		70-130	5		20	
Ethyl-Tert-Butyl-Ether	86		80		70-130	7		20	
Tertiary-Amyl Methyl Ether	96		91		66-130	5		20	

Project Name: HP WALTHAM

Project Number: 1552216

Lab Number: L16

L1625352

Report Date:

08/19/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-03 Batch:	WG922875-3	WG922875-4			
1,4-Dioxane	106		112		56-162	6		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	110		100		70-130	10		20
Methyl cyclohexane	100		93		70-130	7		20
p-Diethylbenzene	100		93		70-130	7		20
4-Ethyltoluene	100		98		70-130	2		20
1,2,4,5-Tetramethylbenzene	100		98		70-130	2		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	82		81		70-130	
Toluene-d8	98		98		70-130	
4-Bromofluorobenzene	94		94		70-130	
Dibromofluoromethane	101		101		70-130	

METALS

Project Name:HP WALTHAMLab Number:L1625352Project Number:1552216Report Date:08/19/16

SAMPLE RESULTS

Lab ID: L1625352-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 08/11/16 10:20

Date Received: 08/12/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Copper, Total	0.0102		mg/l	0.0010		1	08/15/16 07:4	5 08/17/16 16:51	EPA 3005A	1,6020A	TT
Iron, Total	0.162		mg/l	0.050		1	08/15/16 07:4	5 08/15/16 14:22	EPA 3005A	19,200.7	JH
Lead, Total	0.0013		mg/l	0.0010		1	08/15/16 07:4	5 08/17/16 16:51	EPA 3005A	1,6020A	TT
Selenium, Total	ND		mg/l	0.005		1	08/15/16 07:4	5 08/17/16 16:51	EPA 3005A	1,6020A	TT
Zinc, Total	0.0115		mg/l	0.0100		1	08/15/16 07:4	5 08/17/16 16:51	EPA 3005A	1,6020A	TT

Project Name: Lab Number: HP WALTHAM L1625352 **Project Number:** 1552216 **Report Date:** 08/19/16

SAMPLE RESULTS

Lab ID: L1625352-03

Client ID: **EFF**

Sample Location: WALTHAM, MA

Matrix: Water Date Collected: 08/11/16 10:40

Date Received: 08/12/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0020		mg/l	0.0010		1	08/15/16 07:45	5 08/17/16 16:54	EPA 3005A	1,6020A	TT
Iron, Total	ND		mg/l	0.050		1	08/15/16 07:45	5 08/15/16 14:18	EPA 3005A	19,200.7	JH
Lead, Total	ND		mg/l	0.0010		1	08/15/16 07:45	5 08/17/16 16:54	EPA 3005A	1,6020A	TT
Selenium, Total	ND		mg/l	0.005		1	08/15/16 07:45	5 08/17/16 16:54	EPA 3005A	1,6020A	TT
Zinc, Total	ND		mg/l	0.0100		1	08/15/16 07:45	5 08/17/16 16:54	EPA 3005A	1,6020A	TT

Project Name: HP WALTHAM

Project Number: 1552216

Lab Number:

L1625352

Report Date:

08/19/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	01,03 E	Batch: Wo	G92271	7-1				
Copper, Total	ND	mg/l	0.0010		1	08/15/16 07:45	08/17/16 15:44	1,6020A	TT
Lead, Total	ND	mg/l	0.0010		1	08/15/16 07:45	08/17/16 15:44	1,6020A	TT
Selenium, Total	ND	mg/l	0.005		1	08/15/16 07:45	08/17/16 15:44	1,6020A	TT
Zinc, Total	ND	mg/l	0.0100		1	08/15/16 07:45	08/17/16 15:44	1,6020A	TT

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01,03 E	Batch: Wo	G92271	8-1				
Iron, Total	ND	mg/l	0.050		1	08/15/16 07:45	08/15/16 11:55	19,200.7	JH

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM

Project Number: 1552216

Lab Number: L1625352

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	ole(s): 01,03 Batc	h: WG92	2717-2					
Copper, Total	103		-		80-120	-		
Lead, Total	106		-		80-120	-		
Selenium, Total	115		-		80-120	-		
Zinc, Total	95		-		80-120	-		
Total Metals - Mansfield Lab Associated samp	ole(s): 01,03 Bato	h: WG92	2718-2					
Iron, Total	95		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM

Lab Number:

L1625352

Project Number: 1552216

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	r RPD	Qual	RPD Limits
Total Metals - Mansfield Lab A	Associated sam	nple(s): 01,03	QC Bat	ch ID: WG9227	717-3 \	WG922717-4	QC Sample	e: L16252	257-05	Client ID	: MS S	ample
Copper, Total	ND	0.25	0.2524	101		0.2672	107		75-125	6		20
Lead, Total	ND	0.51	0.5679	111		0.6011	118		75-125	6		20
Selenium, Total	ND	0.12	0.132	110		0.134	112		75-125	2		20
Zinc, Total	ND	0.5	0.4973	99		0.5174	103		75-125	4		20
Total Metals - Mansfield Lab A	Associated sam	nple(s): 01,03	QC Bat	ch ID: WG9227	718-4	QC Sample	e: L1625425-0	1 Clie	nt ID: MS	Sample		
Iron, Total	0.355	1	1.09	74	Q	-	-		75-125	-		20

INORGANICS & MISCELLANEOUS

Project Name: HP WALTHAM Lab Number: L1625352

Project Number: 1552216 Report Date: 08/19/16

SAMPLE RESULTS

Lab ID: L1625352-01 Date Collected: 08/11/16 10:20

Client ID: Date Received: 08/12/16

Sample Location: WALTHAM, MA Field Prep: Not Specified Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Chloride	580		mg/l	10		10	-	08/17/16 17:57	1,9251	MR

08/11/16 10:40

Project Name: Lab Number: **HP WALTHAM** L1625352

Project Number: 1552216 Report Date: 08/19/16

SAMPLE RESULTS

Lab ID: L1625352-03 Date Collected:

EFF Client ID:

Date Received: 08/12/16 Sample Location: WALTHAM, MA Not Specified Field Prep:

Matrix: Water

Parameter	Result Quali	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab								
Chloride	580	mg/l	10		10	-	08/17/16 18:03	1,9251	MR

L1625352

Project Name: HP WALTHAM Lab Number:

Project Number: 1552216 **Report Date:** 08/19/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed		Analyst
General Chemistry - \	Westborough Lab for sam	ole(s): 01	,03 Ba	atch: W0	G923271-1				
Chloride	ND	mg/l	1.0		1	-	08/17/16 17:13	1,9251	MR

Project Name: HP WALTHAM Lab Number:

L1625352

Project Number: 1552216

Report Date:

08/19/16

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03	Batch: WG92327	'1-2				
Chloride	107	-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM

Lab Number:

L1625352

Project Number: 1552216

Report Date:

08/19/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery ial Limits	RPD Qual	RPD Limits
General Chemistry - Westborou	gh Lab Asso	ociated samp	ole(s): 01,03	QC Batch IE	D: WG923271-4	QC Sample: L162	5352-01 Client	t ID: INF	
Chloride	580	20	610	150	Q -	-	58-140	-	7

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1625352

Report Date:

08/19/16

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associ	ated sample(s): 01,03 QC	C Batch ID: WG923271-3	QC Sample:	L1625352-01	Client ID:	INF
Chloride	580	590	mg/l	2		7

Project Name:

Project Number: 1552216

HP WALTHAM

Project Name:HP WALTHAMLab Number: L1625352Project Number:1552216Report Date: 08/19/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation		Temp				
Container ID	Container Type	Cooler	рН		Pres	Seal	Analysis(*)
L1625352-01A	Vial HCI preserved	Α	N/A	5.3	Υ	Absent	8260(14)
L1625352-01B	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	8260(14)
L1625352-01C	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	8260(14)
L1625352-01D	Plastic 250ml HNO3 preserved	Α	<2	5.3	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1625352-01E	Plastic 60ml unpreserved	Α	7	5.3	Υ	Absent	CL-9251(28)
L1625352-02A	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	8260(14)
L1625352-02B	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	8260(14)
L1625352-02C	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	8260(14)
L1625352-03A	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	8260(14)
L1625352-03B	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	8260(14)
L1625352-03C	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	8260(14)
L1625352-03D	Plastic 250ml HNO3 preserved	Α	<2	5.3	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1625352-03E	Plastic 60ml unpreserved	Α	7	5.3	Υ	Absent	CL-9251(28)
L1625352-04A	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	HOLD-8260(14)
L1625352-04B	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	HOLD-8260(14)

Project Name: HP WALTHAM Lab Number: L1625352

Project Number: 1552216 Report Date: 08/19/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:HP WALTHAMLab Number:L1625352Project Number:1552216Report Date:08/19/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:HP WALTHAMLab Number:L1625352Project Number:1552216Report Date:08/19/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 7

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA	CHA	AIN OF	CUSTOD	Y PAGE	OF	Date R	ec'd in Lab	8/17	116		ALF	HA Job#	:1162	5352
t a t t C A L	2002.000		oject Informatio	n		Repor	t Informa	ition - Data	Deliver	ables		ing Informa	The second second	
8 Walkup Drive Westboro, MA (Tel: 508-898-92	320 Forbes Blv 01581 Mansfield, MA 220 Tel: 508-822-9	02048 Pr	oject Name: 🗀	P Walth	am	□ ADE	x	MEMAIL			√ Sa	me as Client	info PO#:	
Client Information	on	Pro	oject Location:	athan.	MA	Regul	atory Rec	quirements	& P	roject	Inform	ation Requ	irements	
Client: 200	Vonderb	It AUR Pro	oject#: 55	2216				ICP Analytic x Spike Requ			2 (Dogs	Yes No	CT RCP Analyti	cal Methods
Address: Non	Wood M	A Pro	oject Manager:	ah Calh	ord	☐ Yes □	No GW1	Standards (
9.7	A	A	LPHA Quote #:	O . · · CO · ·	0.1		No NPD State /Fed	ES RGP d Program_				Criteria		
Phone: 78	983 139	57 1	urn-Around Time				by/	7 7	/_/.	11	1	[3]	111	
Additional P	roject Informat		Standard □ R	USH (only confirmed if pre-app	roved!)	78260 C 624	METALS: DMCP 13 C.	EPH: DRanges & Targets DRCRA8 WPH: DRanges & Targets D R.	D PCB D PEST Ranges Only TPH: DQLISS	Chlon, Dringerprint	Also de la como de la	(12)	Filtrat □ Fie □ Lat Prese	The second secon
ALPHA Lab ID	San	nple ID	Collecti	100 000 000 000	Sampler	Noc:	ETAL	Harris Harris	PCB	0			Lac	, to do
(Lab Use Only)	CT NIC		Date	Time Matrix	Initials	7 0	2 2	W S	Q /E	V X		-/-/	Sample Co	omments s
22354.01	177		211110	GW	On,	-				1				5
.00	70177				1	1								3
(4)	EL L		V	V	V	X				XX				5
Container Type	Preservative			Contain	ner Type	V			(00				
P= Plastic A= Amber glass V= Vial	A= None B= HCI C= HNO ₃				servative	13				4C				
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH F= MeOH	R	elinguished By:	Date/	Time	40/	Receiv	ed BQn	7	-	/Time			
O= Other E= Encore D= BOD Bottle Page 38 of 38	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Àcid J = NH ₄ Cl K= Zn Acetate O= Other	(WN	apple	8/19/16	0 16	47	Voge	Ulm	2/16	17:2		Alpha's See revi	oles submitted a Terms and Conc erse side 101-01 (rev 12-Mar-2	ditions.

ANALYTICAL REPORT

Lab Number: L1628422

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.16

Report Date: 09/19/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

 Lab Number:
 L1628422

 Report Date:
 09/19/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1628422-01	INF	WATER	WALTHAM, MA	09/09/16 10:00	09/09/16
L1628422-02	MID	WATER	WALTHAM, MA	09/09/16 09:45	09/09/16
L1628422-03	EFF	WATER	WALTHAM, MA	09/09/16 09:30	09/09/16

Serial No:09191617:05

 Project Name:
 HP WALTHAM
 Lab Number:
 L1628422

 Project Number:
 01.0015522.16
 Report Date:
 09/19/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Smal Ing Lura L Troy

Authorized Signature:

Title: Technical Director/Representative

ДІРНА

Date: 09/19/16

ORGANICS

VOLATILES

09/09/16

Not Specified

Date Received:

Field Prep:

Project Name: HP WALTHAM Lab Number: L1628422

Project Number: 01.0015522.16 **Report Date:** 09/19/16

SAMPLE RESULTS

Lab ID: L1628422-01 D Date Collected: 09/09/16 10:00

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/16/16 17:31

Analyst: BD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	ND		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
rans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
rans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	4600		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100

ND

ND

100

100

250

250

ug/l

ug/l

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Project Name: HP WALTHAM Lab Number: L1628422

Project Number: 01.0015522.16 **Report Date:** 09/19/16

SAMPLE RESULTS

Lab ID: L1628422-01 D Date Collected: 09/09/16 10:00

Client ID: Date Received: 09/09/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methyl tert butyl ether	ND		ug/l	100		100	
p/m-Xylene	ND		ug/l	100		100	
o-Xylene	ND		ug/l	100		100	
cis-1,2-Dichloroethene	ND		ug/l	50		100	
Dichlorodifluoromethane	ND		ug/l	500		100	
Naphthalene	ND		ug/l	250		100	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	105		70-130
Toluene-d8	94		70-130
4-Bromofluorobenzene	103		70-130
Dibromofluoromethane	99		70-130

09/09/16

Not Specified

Date Received:

Field Prep:

2.5

1.0

1.0

1.0

0.50

0.75

0.50

2.5

2.5

2.5

ug/l

--

--

--

--

--

Project Name: HP WALTHAM Lab Number: L1628422

Project Number: 01.0015522.16 **Report Date:** 09/19/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/09/16 09:45

Client ID: MID

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 09/16/16 16:22

Analyst: BD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1

ND

1

1

1

1

1

1

1

1

1

1

Chloromethane

Bromomethane

Vinyl chloride

Chloroethane

1,1-Dichloroethene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Trichloroethene

trans-1,2-Dichloroethene

Project Name: HP WALTHAM Lab Number: L1628422

Project Number: 01.0015522.16 **Report Date:** 09/19/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/09/16 09:45

Client ID: MID Date Received: 09/09/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	105		70-130
Toluene-d8	93		70-130
4-Bromofluorobenzene	104		70-130
Dibromofluoromethane	103		70-130

L1628422

Project Name: HP WALTHAM

Lab Number:

Project Number: Report Date: 01.0015522.16 09/19/16

SAMPLE RESULTS

00/00/16 00:20 Lab ID: L1628422-03

Client ID: **EFF**

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 09/16/16 16:57

Analyst: BD

Date Collected:	09/09/16 09:30
Date Received:	09/09/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1628422

Project Number: 01.0015522.16 **Report Date:** 09/19/16

SAMPLE RESULTS

Lab ID: L1628422-03 Date Collected: 09/09/16 09:30

Client ID: EFF Date Received: 09/09/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	103		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1628422

 Project Number:
 01.0015522.16
 Report Date:
 09/19/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/16/16 11:38

Analyst: PK

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03 Batch:	WG933166-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l		
Chloroform	ND	ug/l		
Carbon tetrachloride	ND	ug/l		
1,2-Dichloropropane	ND	ug/l		
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1628422

 Project Number:
 01.0015522.16
 Report Date:
 09/19/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/16/16 11:38

Analyst: PK

Parameter	Result	Qualifier Uni	its	RL	MDL
Volatile Organics by GC/MS - Westh	orough Lab	o for sample(s)	: 01-03	Batch:	WG933166-5
1,4-Dichlorobenzene	ND	uç	g/l	2.5	
Methyl tert butyl ether	ND	uç	g/l	1.0	
p/m-Xylene	ND	uç	g/l	1.0	
o-Xylene	ND	uç	g/l	1.0	
cis-1,2-Dichloroethene	ND	uç	g/l	0.50	
Dichlorodifluoromethane	ND	uç	g/l	5.0	
Naphthalene	ND	uç	g/l	2.5	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	101		70-130	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1628422

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	_ab Associated	sample(s):	01-03 Batch:	WG933166-3	WG933166-4		
Methylene chloride	110		100		70-130	10	20
1,1-Dichloroethane	110		110		70-130	0	20
Chloroform	110		110		70-130	0	20
Carbon tetrachloride	120		110		63-132	9	20
1,2-Dichloropropane	110		110		70-130	0	20
Dibromochloromethane	83		82		63-130	1	20
1,1,2-Trichloroethane	93		92		70-130	1	20
2-Chloroethylvinyl ether	110		100		70-130	10	20
Tetrachloroethene	98		94		70-130	4	20
Chlorobenzene	100		98		75-130	2	25
Trichlorofluoromethane	97		91		62-150	6	20
1,2-Dichloroethane	110		110		70-130	0	20
1,1,1-Trichloroethane	110		100		67-130	10	20
Bromodichloromethane	110		110		67-130	0	20
trans-1,3-Dichloropropene	85		84		70-130	1	20
cis-1,3-Dichloropropene	110		110		70-130	0	20
1,1-Dichloropropene	110		100		70-130	10	20
Bromoform	74		74		54-136	0	20
1,1,2,2-Tetrachloroethane	87		87		67-130	0	20
Benzene	110		110		70-130	0	25
Toluene	100		97		70-130	3	25

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1628422

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	01-03 Batch:	WG933166-3	WG933166-4			
Ethylbenzene	100		100		70-130	0		20
Chloromethane	76		72		64-130	5		20
Bromomethane	94		83		39-139	12		20
Vinyl chloride	96		92		55-140	4		20
Chloroethane	110		100		55-138	10		20
1,1-Dichloroethene	93		91		61-145	2		25
trans-1,2-Dichloroethene	110		100		70-130	10		20
Trichloroethene	110		110		70-130	0		25
1,2-Dichlorobenzene	92		91		70-130	1		20
1,3-Dichlorobenzene	97		95		70-130	2		20
1,4-Dichlorobenzene	95		94		70-130	1		20
Methyl tert butyl ether	100		100		63-130	0		20
p/m-Xylene	105		100		70-130	5		20
o-Xylene	105		100		70-130	5		20
cis-1,2-Dichloroethene	110		110		70-130	0		20
Dibromomethane	110		110		70-130	0		20
1,4-Dichlorobutane	96		96		70-130	0		20
lodomethane	80		80		70-130	0		20
1,2,3-Trichloropropane	88		89		64-130	1		20
Styrene	110		105		70-130	5		20
Dichlorodifluoromethane	65		60		36-147	8		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1628422

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch:	WG933166-3	WG933166-4		
Acetone	74		71		58-148	4	20
Carbon disulfide	87		82		51-130	6	20
2-Butanone	85		91		63-138	7	20
Vinyl acetate	96		97		70-130	1	20
4-Methyl-2-pentanone	76		79		59-130	4	20
2-Hexanone	76		74		57-130	3	20
Ethyl methacrylate	80		80		70-130	0	20
Acrolein	78		78		70-130	0	20
Acrylonitrile	90		94		70-130	4	20
Bromochloromethane	110		110		70-130	0	20
Tetrahydrofuran	82		84		58-130	2	20
2,2-Dichloropropane	130		130		63-133	0	20
1,2-Dibromoethane	92		93		70-130	1	20
1,3-Dichloropropane	94		93		70-130	1	20
1,1,1,2-Tetrachloroethane	100		97		64-130	3	20
Bromobenzene	98		97		70-130	1	20
n-Butylbenzene	100		96		53-136	4	20
sec-Butylbenzene	100		99		70-130	1	20
tert-Butylbenzene	100		96		70-130	4	20
o-Chlorotoluene	95		100		70-130	5	20
p-Chlorotoluene	100		100		70-130	0	20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1628422

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch:	WG933166-3	WG933166-4			
1,2-Dibromo-3-chloropropane	68		69		41-144	1	20	
Hexachlorobutadiene	94		87		63-130	8	20	
Isopropylbenzene	100		100		70-130	0	20	
p-Isopropyltoluene	100		98		70-130	2	20	
Naphthalene	64	Q	66	Q	70-130	3	20	
n-Propylbenzene	100		100		69-130	0	20	
1,2,3-Trichlorobenzene	63	Q	65	Q	70-130	3	20	
1,2,4-Trichlorobenzene	82		82		70-130	0	20	
1,3,5-Trimethylbenzene	100		100		64-130	0	20	
1,3,5-Trichlorobenzene	95		90		70-130	5	20	
1,2,4-Trimethylbenzene	100		100		70-130	0	20	
trans-1,4-Dichloro-2-butene	92		89		70-130	3	20	
Halothane	100		100		70-130	0	20	
Ethyl ether	94		97		59-134	3	20	
Methyl Acetate	92		92		70-130	0	20	
Ethyl Acetate	93		98		70-130	5	20	
Isopropyl Ether	110		110		70-130	0	20	
Cyclohexane	100		94		70-130	6	20	
Tert-Butyl Alcohol	92		100		70-130	8	20	
Ethyl-Tert-Butyl-Ether	110		110		70-130	0	20	
Tertiary-Amyl Methyl Ether	100		100		66-130	0	20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1628422

Report Date:

09/19/16

arameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough L	ab Associated s	sample(s):	01-03	Batch:	WG933166-3	WG933166-4				
1,4-Dioxane	82			78		56-162	5		20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	98			93		70-130	5		20	
Methyl cyclohexane	100			99		70-130	1		20	
p-Diethylbenzene	100			97		70-130	3		20	
4-Ethyltoluene	100			100		70-130	0		20	
1,2,4,5-Tetramethylbenzene	98			95		70-130	3		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	100		101		70-130	
Toluene-d8	96		94		70-130	
4-Bromofluorobenzene	106		106		70-130	
Dibromofluoromethane	102		104		70-130	

METALS

Project Name: Lab Number: HP WALTHAM L1628422 **Project Number:** 01.0015522.16 **Report Date:** 09/19/16

SAMPLE RESULTS

Lab ID: L1628422-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water Date Collected: 09/09/16 10:00

Date Received: 09/09/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.00845		mg/l	0.00100		1	09/13/16 08:35	09/13/16 12:56	EPA 3005A	1,6020A	BV
Iron, Total	0.144		mg/l	0.050		1	09/13/16 08:35	09/13/16 21:33	EPA 3005A	19,200.7	PS
Lead, Total	0.00119		mg/l	0.00100		1	09/13/16 08:35	09/13/16 12:56	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500		1	09/13/16 08:35	09/13/16 12:56	EPA 3005A	1,6020A	BV
Zinc, Total	0.01098		mg/l	0.01000		1	09/13/16 08:35	09/13/16 12:56	EPA 3005A	1,6020A	BV

 Project Name:
 HP WALTHAM
 Lab Number:
 L1628422

 Project Number:
 01.0015522.16
 Report Date:
 09/19/16

SAMPLE RESULTS

Lab ID: L1628422-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 09/09/16 09:30

Date Received: 09/09/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Nosuit	Qualifici	Office		WIDE		<u> </u>				Analyst
Total Metals - Ma	nsfield Lab										
Copper, Total	0.00281		mg/l	0.00100		1	09/13/16 08:3	5 09/13/16 13:00	EPA 3005A	1,6020A	BV
Iron, Total	ND		mg/l	0.050		1	09/13/16 08:3	5 09/13/16 21:38	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00100		1	09/13/16 08:3	5 09/13/16 13:00	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500		1	09/13/16 08:3	5 09/13/16 13:00	EPA 3005A	1,6020A	BV
Zinc, Total	ND		mg/l	0.01000		1	09/13/16 08:3	5 09/13/16 13:00	EPA 3005A	1,6020A	BV

Project Name: HP WALTHAM
Project Number: 01.0015522.16

Lab Number: L1628422 **Report Date:** 09/19/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01,03	Batch: Wo	G93125	9-1				
Iron, Total	ND	mg/l	0.050		1	09/13/16 08:35	09/13/16 19:10	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01,03 B	Batch: WC	93126	2-1				
Copper, Total	ND	mg/l	0.00100		1	09/13/16 08:35	09/13/16 12:26	1,6020A	BV
Lead, Total	ND	mg/l	0.00050		1	09/13/16 08:35	09/13/16 12:26	1,6020A	BV
Selenium, Total	ND	mg/l	0.00500		1	09/13/16 08:35	09/13/16 12:26	1,6020A	BV
Zinc, Total	ND	mg/l	0.01000		1	09/13/16 08:35	09/13/16 12:26	1,6020A	BV

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1628422

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bato	ch: WG93	1259-2					
Iron, Total	96		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bato	ch: WG93	1262-2					
Copper, Total	104		-		80-120	-		
Lead, Total	110		-		80-120	-		
Selenium, Total	108		-		80-120	-		
Zinc, Total	105		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1628422

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01,03	QC Bate	ch ID: WG9312	259-4	QC Sampl	e: L1628464-01	Client ID: MS	Sample	
Iron, Total	5.50	1	6.21	71	Q	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01,03	QC Bate	ch ID: WG9312	262-4	QC Sampl	e: L1628464-01	Client ID: MS	Sample	
Copper, Total	0.0061	0.25	0.2580	101		-	-	75-125	-	20
Lead, Total	0.00206	0.51	0.5503	107		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.137	114		-	-	75-125	-	20
Zinc, Total	0.0111	0.5	0.5135	100		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1628422

Report Date:

09/19/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual I	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID:	WG931259-3 QC Sample:	L1628464-01	Client ID:	DUP Sample	
Iron, Total	5.50	5.61	mg/l	2		20
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID:	WG931262-3 QC Sample:	L1628464-01	Client ID:	DUP Sample	
Lead, Total	0.00206	0.00209	mg/l	1		20

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: **HP WALTHAM** L1628422 **Project Number:** 01.0015522.16

Report Date: 09/19/16

SAMPLE RESULTS

Lab ID: L1628422-01 Date Collected: 09/09/16 10:00

INF Client ID: Date Received: 09/09/16

Not Specified WALTHAM, MA Sample Location: Field Prep:

Matrix: Water

Parameter	Result Qua	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	√ - Westborough Lab								
Chloride	550	mg/l	10		10	-	09/13/16 21:26	1,9251	ML

 Project Name:
 HP WALTHAM
 Lab Number:
 L1628422

 Project Number:
 01.0015522.16
 Report Date:
 09/19/16

SAMPLE RESULTS

Lab ID: L1628422-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 09/09/16 09:30

Date Received: 09/09/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Chloride	560		mg/l	10		10	-	09/13/16 21:28	1,9251	ML

Project Name: HP WALTHAM
Project Number: 01.0015522.16

Lab Number: L1628422

Report Date: 09/19/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - Westborough Lab for sample(s): 01,03 Batch: WG931519-1										
Chloride	ND	mg/l	1.0		1	-	09/13/16 21:05	1,9251	ML	

Project Name: HP WALTHAM Project Number: 01.0015522.16

Lab Number: L1628422

Report Date:

09/19/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s):	01,03	Batch: WG9315	19-2					
Chloride	103		-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1628422

Report Date:

09/19/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery ial Limits	RPD Qu	RPD _{ual} Limits
General Chemistry - Westborough Lab Associated sample(s): 01,03				QC Batch IE	D: WG931519-4	QC Sample: L162	8252-01 Clien	t ID: MS	Sample
Chloride	ND	20	21	105	-	-	58-140	-	7

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1628422

Report Date:

09/19/16

Parameter	Native Samp	ole D	uplicate Sampl	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01,03	QC Batch ID:	WG931519-3	QC Sample:	L1628252-01	Client ID:	DUP Sample
Chloride	ND		ND	mg/l	NC		7

Project Name:

Project Number:

HP WALTHAM

01.0015522.16

Project Name:HP WALTHAMLab Number:L1628422Project Number:01.0015522.16Report Date:09/19/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation		Temp				
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1628422-01A	Vial HCI preserved	Α	N/A	5.8	Υ	Absent	8260(14)
L1628422-01B	Vial HCl preserved	Α	N/A	5.8	Υ	Absent	8260(14)
L1628422-01C	Vial HCl preserved	Α	N/A	5.8	Υ	Absent	8260(14)
L1628422-01D	Plastic 250ml HNO3 preserved	Α	<2	5.8	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1628422-01E	Plastic 60ml unpreserved	Α	7	5.8	Υ	Absent	CL-9251(28)
L1628422-02A	Vial HCl preserved	Α	N/A	5.8	Υ	Absent	8260(14)
L1628422-02B	Vial HCl preserved	Α	N/A	5.8	Υ	Absent	8260(14)
L1628422-02C	Vial HCl preserved	Α	N/A	5.8	Υ	Absent	8260(14)
L1628422-03A	Vial HCl preserved	Α	N/A	5.8	Υ	Absent	8260(14)
L1628422-03B	Vial HCl preserved	Α	N/A	5.8	Υ	Absent	8260(14)
L1628422-03C	Vial HCl preserved	Α	N/A	5.8	Υ	Absent	8260(14)
L1628422-03D	Plastic 250ml HNO3 preserved	Α	<2	5.8	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1628422-03E	Plastic 60ml unpreserved	Α	7	5.8	Υ	Absent	CL-9251(28)

Project Name:HP WALTHAMLab Number:L1628422Project Number:01.0015522.16Report Date:09/19/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:HP WALTHAMLab Number:L1628422Project Number:01.0015522.16Report Date:09/19/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1628422

 Project Number:
 01.0015522.16
 Report Date:
 09/19/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 8/5/2016 11:25:56 AM

ID No.:17873

Revision 7

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

Page 1 of 1

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; Azobenzene; Azobenzene;

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA	CHA	AIN OF	CU	STO	DY F	PAGE	OF	Da	te Re	e'd in	Lab:	191	16			ALP	HA Jol	b #:\	1628	122	4.
A PICAL	000 F (- P)		Project	Informa	tion			R	eport	Infor	matio	on - Da	ta De	livera	bles		ng Info	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN			
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92		02048 0300	Project N	ame:	fp 4	Valt	alm		ADE	(Ţ	EMAI	L			□ Sai	me as Cli	ient info	PO #:		
Client Information	on		Project Lo	ocation:	fp h	im /	na,	Re	gula	tory I	Requ	iremer	its 8	Pr	ojec	t Informa	ation Re	equirer	nents		
Client: GZA			Project #:	01.00	15522.	16						P Analy Spike Re				□ G? (Requ			RCP Analytica	al Method	s
Address: 249	Vanderb.	It Ave	Project M	anager:	T. Co.	bert		0	Yes □	No G	W1 S	tandard				r Metals 8					
Address: Zya Narwa	ad Man	02062	ALPHA (RGP Program					_ Criteria	a			
Phone: 78/-	983-135	7	Turn-A	round Ti	me					(1)		15/	2/3	/_	/	///	/ /	11	//		
Email: wolau	1:5@ 979.	com	mal	201	3 501011			1	(1	67	'/	DRCRAB DPD	\$ On	soni	/	//	e/ /	/ /			
			Stand		RUSH (only	confirmed if pre-a,	oproved!)	,	8	24	12	2 8	Rang	Range	Dring		1	/			T
Additional P	roject Informa	tion:	Date D	ue:				ANALL	27	D PAH	MC	RCR.	0 / 5	5/	O Fingerprin	/ (5)	3/	//	SAMPL	E INFO	-
								A	0 624	10	13	7 Par.	Targe	1. 1	0		//	/ /	/ Filtratio		#
									09	ABN	D G	les de	les de	PEST	5	6/2/	//		│ □ Lab t		В
								1/4	8260	1 / 3	Sil	Rang	Rang	O Collai	/3	13	/ /	//	Preserv □ Lab to	ELECTION OF	O
ALPHA Lab ID (Lab Use Only)	Sai	mple ID		Coll	ection Time	Sample Matrix	Sampler Initials	, io	SVOC	METALS: CI	METAL	EPH: DRanges & Tarm DRCR48	D PCB Targes & Targets C Ranges Only	TPH: DQuant C	3	1	/ /	/ /			T L E
10 CCN2C	TWE	1		- / /	1000		P()	X			\dashv	7 -		_			1-1	-	Sample Con	nments	s
ar arial	101			9/9/16	and the	Gu	20	2		-	+	+		-	~		+)
107	70110				945an	50	1111	1		=	+	+			1		+ +				3
05	EFF			V	930am	60	(3)	1						-	5 >						5
											1										
			A 1																		
							1														
Container Type	Preservative					Conta	iner Type	1/						1) 1	2					
P= Plastic A= Amber glass V= Vial	A= None B= HCI C= HNO ₃						servative	HCL	1	1	+				HA	0.5					
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH F= MeOH		Relinquished By: Date/Time					Rec	eived	By:			Dat	e/Time			-				
O= Other E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	1080	11	10		9/9/	16 135/	M	CK	1		44		9	19/	6 /731	Alpha		submitted are as and Condit		to
Page 38 of 38	J = NH₄CI K= Zn Acetate O= Other	AM		V		9/9/1	1640	> 6	Ul	n	1	nc		9/	9/1	110	See FORM	reverse I NO: 01-0	side. 1 (rev. 12-Mar-20)	12)	

ANALYTICAL REPORT

Lab Number: L1631900

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: John Colbert
Phone: (781) 278-3700
Project Name: HP WALTHAM
Project Number: 01.0015522.16

Report Date: 10/13/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.16 Lab Number: L1631900

Report Date: 10/13/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1631900-01	INF	WATER	WALTHAM, MA	10/06/16 00:00	10/06/16
L1631900-02	MID	WATER	WALTHAM, MA	10/06/16 00:00	10/06/16
L1631900-03	EFF	WATER	WALTHAM, MA	10/06/16 00:00	10/06/16

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Smal Ing Lura L Troy

Authorized Signature:

Title: Technical Director/Representative

ΔLPHA

Date: 10/13/16

ORGANICS

VOLATILES

Project Name: Lab Number: HP WALTHAM L1631900

Project Number: Report Date: 01.0015522.16 10/13/16

SAMPLE RESULTS

Lab ID: L1631900-01 D Date Collected: 10/06/16 00:00

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 10/11/16 16:36

Analyst: PD Date Received: 10/06/16 Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboro	ıgh Lab						
Methylene chloride	ND		ug/l	300		100	
1,1-Dichloroethane	ND		ug/l	75		100	
Chloroform	ND		ug/l	75		100	
Carbon tetrachloride	ND		ug/l	50		100	
1,2-Dichloropropane	ND		ug/l	180		100	
Dibromochloromethane	ND		ug/l	50		100	
1,1,2-Trichloroethane	ND		ug/l	75		100	
Tetrachloroethene	ND		ug/l	50		100	
Chlorobenzene	ND		ug/l	50		100	
Trichlorofluoromethane	ND		ug/l	250		100	
1,2-Dichloroethane	ND		ug/l	50		100	
1,1,1-Trichloroethane	ND		ug/l	50		100	
Bromodichloromethane	ND		ug/l	50		100	
trans-1,3-Dichloropropene	ND		ug/l	50		100	
cis-1,3-Dichloropropene	ND		ug/l	50		100	
Bromoform	ND		ug/l	200		100	
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100	
Benzene	ND		ug/l	50		100	
Toluene	ND		ug/l	75		100	
Ethylbenzene	ND		ug/l	50		100	
Chloromethane	ND		ug/l	250		100	
Bromomethane	ND		ug/l	100		100	
Vinyl chloride	ND		ug/l	100		100	
Chloroethane	ND		ug/l	100		100	
1,1-Dichloroethene	ND		ug/l	50		100	
trans-1,2-Dichloroethene	ND		ug/l	75		100	
Trichloroethene	6400		ug/l	50		100	
1,2-Dichlorobenzene	ND		ug/l	250		100	
1,3-Dichlorobenzene	ND		ug/l	250		100	
1,4-Dichlorobenzene	ND		ug/l	250		100	

Project Name: HP WALTHAM Lab Number: L1631900

Project Number: 01.0015522.16 **Report Date:** 10/13/16

SAMPLE RESULTS

Lab ID: L1631900-01 D

Client ID: INF

Sample Location: WALTHAM, MA

Date Collected: 10/06/16 00:00 Date Received: 10/06/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough	Lab						
Methyl tert butyl ether	ND		ug/l	100		100	
p/m-Xylene	ND		ug/l	100		100	
o-Xylene	ND		ug/l	100		100	
cis-1,2-Dichloroethene	ND		ug/l	50		100	
Dichlorodifluoromethane	ND		ug/l	500		100	
Naphthalene	ND		ug/l	250		100	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	95		70-130	

10/06/16

Not Specified

Date Received:

Field Prep:

Project Name: HP WALTHAM Lab Number: L1631900

Project Number: 01.0015522.16 **Report Date:** 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/06/16 00:00

Client ID: MID

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 10/11/16 16:01

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	4.0		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1631900

Project Number: 01.0015522.16 **Report Date:** 10/13/16

SAMPLE RESULTS

Lab ID: L1631900-02 Date Collected: 10/06/16 00:00

Client ID: MID Date Received: 10/06/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	99		70-130	

Project Name: Lab Number: HP WALTHAM L1631900

Project Number: Report Date: 01.0015522.16 10/13/16

SAMPLE RESULTS

Date Collected: 10/06/16 00:00 Lab ID: L1631900-03

Client ID: **EFF**

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 10/12/16 13:04

Analyst: PD

Date Collected:	10/06/16 00:00
Date Received:	10/06/16
Field Prep:	Not Specified

Parameter	Result	Qualifier U	nits	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND	u	g/l	3.0		1
1,1-Dichloroethane	ND	u	g/l	0.75		1
Chloroform	ND	u	g/l	0.75		1
Carbon tetrachloride	ND	u	g/l	0.50		1
1,2-Dichloropropane	ND	u	g/l	1.8		1
Dibromochloromethane	ND	u	g/l	0.50		1
1,1,2-Trichloroethane	ND	u	g/l	0.75		1
Tetrachloroethene	ND	u	g/l	0.50		1
Chlorobenzene	ND	u	g/l	0.50		1
Trichlorofluoromethane	ND	u	g/l	2.5		1
1,2-Dichloroethane	ND	u	g/l	0.50		1
1,1,1-Trichloroethane	ND	u	g/l	0.50		1
Bromodichloromethane	ND	u	g/l	0.50		1
trans-1,3-Dichloropropene	ND	u	g/l	0.50		1
cis-1,3-Dichloropropene	ND	u	g/l	0.50		1
Bromoform	ND	u	g/l	2.0		1
1,1,2,2-Tetrachloroethane	ND	u	g/l	0.50		1
Benzene	ND	u	g/l	0.50		1
Toluene	ND	u	g/l	0.75		1
Ethylbenzene	ND	u	g/l	0.50		1
Chloromethane	ND	u	g/l	2.5		1
Bromomethane	ND	u	g/l	1.0		1
Vinyl chloride	ND	u	g/l	1.0		1
Chloroethane	ND	u	g/l	1.0		1
1,1-Dichloroethene	ND	u	g/l	0.50		1
trans-1,2-Dichloroethene	ND	u	g/l	0.75		1
Trichloroethene	0.91	u	g/l	0.50		1
1,2-Dichlorobenzene	ND	u	g/l	2.5		1
1,3-Dichlorobenzene	ND	u	g/l	2.5		1
1,4-Dichlorobenzene	ND	u.	g/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1631900

Project Number: 01.0015522.16 **Report Date:** 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/06/16 00:00

Client ID: EFF Date Received: 10/06/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	83		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	115		70-130	
Dibromofluoromethane	91		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/11/16 12:33

Analyst: PD

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batcl	h: WG941196-5	
Methylene chloride	ND	ug/	3.0		
1,1-Dichloroethane	ND	ug/			
Chloroform	ND	ug/			
Carbon tetrachloride	ND	ug/			
1,2-Dichloropropane	ND	ug/			
Dibromochloromethane	ND	ug/			
1,1,2-Trichloroethane	ND	ug/			
Tetrachloroethene	ND	ug/			
Chlorobenzene	ND	ug/			
Trichlorofluoromethane	ND	ug/			
1,2-Dichloroethane	ND	ug/			
1,1,1-Trichloroethane	ND	ug/			
Bromodichloromethane	ND	ug/	0.50		
trans-1,3-Dichloropropene	ND	ug/	0.50		
cis-1,3-Dichloropropene	ND	ug/			
Bromoform	ND	ug/	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/	0.50		
Benzene	ND	ug/	0.50		
Toluene	ND	ug/	0.75		
Ethylbenzene	ND	ug/	0.50		
Chloromethane	ND	ug/	2.5		
Bromomethane	ND	ug/	1.0		
Vinyl chloride	ND	ug/	1.0		
Chloroethane	ND	ug/	1.0		
1,1-Dichloroethene	ND	ug/	0.50		
trans-1,2-Dichloroethene	ND	ug/	0.75		
Trichloroethene	ND	ug/	0.50		
1,2-Dichlorobenzene	ND	ug/	2.5		
1,3-Dichlorobenzene	ND	ug/	2.5		

Project Name: Lab Number: L1631900 HP WALTHAM **Project Number:** 01.0015522.16

Report Date: 10/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 1,8260C 10/11/16 12:33

Analyst: PD

Parameter	Result	Qualifier Uni	ts	RL	MDL
Volatile Organics by GC/MS - Wes	tborough La	b for sample(s):	01-02	Batch:	WG941196-5
1,4-Dichlorobenzene	ND	uç	g/l	2.5	
Methyl tert butyl ether	ND	uç	g/l	1.0	
p/m-Xylene	ND	uç	g/l	1.0	
o-Xylene	ND	uç	g/l	1.0	
cis-1,2-Dichloroethene	ND	uç	g/l	0.50	
Dichlorodifluoromethane	ND	uç	g/l	5.0	
Naphthalene	ND	uç	g/l	2.5	

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	100		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/12/16 12:08

Analyst: PD

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sampl	e(s): 03	Batch:	WG941471-5
Methylene chloride	ND		ug/l	3.0	
1,1-Dichloroethane	ND		ug/l	0.75	
Chloroform	ND		ug/l	0.75	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	1.8	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.75	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	2.5	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
Bromoform	ND		ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.75	
Ethylbenzene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	2.5	
Bromomethane	ND		ug/l	1.0	
Vinyl chloride	ND		ug/l	1.0	
Chloroethane	ND		ug/l	1.0	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.75	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	2.5	
1,3-Dichlorobenzene	ND		ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/12/16 12:08

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - Westl	borough La	b for sample(s): 0	3 Batch:	WG941471-5	
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dichlorodifluoromethane	ND	ug/l	5.0		
Naphthalene	ND	ug/l	2.5		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	84		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	113		70-130	
Dibromofluoromethane	92		70-130	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1631900

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborou	igh Lab Associated	sample(s):	01-02 Batch:	WG941196-3	WG941196-4				
Methylene chloride	93		96		70-130	3		20	
1,1-Dichloroethane	96		100		70-130	4		20	
Chloroform	100		100		70-130	0		20	
Carbon tetrachloride	110		110		63-132	0		20	
1,2-Dichloropropane	96		99		70-130	3		20	
Dibromochloromethane	89		91		63-130	2		20	
1,1,2-Trichloroethane	97		100		70-130	3		20	
2-Chloroethylvinyl ether	89		95		70-130	7		20	
Tetrachloroethene	94		97		70-130	3		20	
Chlorobenzene	98		100		75-130	2		25	
Trichlorofluoromethane	85		88		62-150	3		20	
1,2-Dichloroethane	97		100		70-130	3		20	
1,1,1-Trichloroethane	99		100		67-130	1		20	
Bromodichloromethane	100		100		67-130	0		20	
trans-1,3-Dichloropropene	89		92		70-130	3		20	
cis-1,3-Dichloropropene	100		100		70-130	0		20	
1,1-Dichloropropene	95		98		70-130	3		20	
Bromoform	86		88		54-136	2		20	
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20	
Benzene	100		100		70-130	0		25	
Toluene	100		100		70-130	0		25	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1631900

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG941196-3	WG941196-4			
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	48	Q	48	Q	64-130	0	20	
Bromomethane	80		94		39-139	16	20	
Vinyl chloride	70		69		55-140	1	20	
Chloroethane	90		94		55-138	4	20	
1,1-Dichloroethene	86		90		61-145	5	25	
trans-1,2-Dichloroethene	98		100		70-130	2	20	
Trichloroethene	100		100		70-130	0	25	
1,2-Dichlorobenzene	97		87		70-130	11	20	
1,3-Dichlorobenzene	99		100		70-130	1	20	
1,4-Dichlorobenzene	99		100		70-130	1	20	
Methyl tert butyl ether	99		100		63-130	1	20	
p/m-Xylene	100		105		70-130	5	20	
o-Xylene	100		105		70-130	5	20	
cis-1,2-Dichloroethene	98		100		70-130	2	20	
Dibromomethane	99		100		70-130	1	20	
1,4-Dichlorobutane	100		110		70-130	10	20	
lodomethane	74		78		70-130	5	20	
1,2,3-Trichloropropane	100		100		64-130	0	20	
Styrene	105		110		70-130	5	20	
Dichlorodifluoromethane	62		70		36-147	12	20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1631900

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	n Lab Associated	sample(s):	01-02 Batch:	WG941196-3	WG941196-4			
Acetone	65		71		58-148	9		20
Carbon disulfide	82		100		51-130	20		20
2-Butanone	79		85		63-138	7		20
Vinyl acetate	89		92		70-130	3		20
4-Methyl-2-pentanone	82		82		59-130	0		20
2-Hexanone	70		74		57-130	6		20
Ethyl methacrylate	86		91		70-130	6		20
Acrolein	73		80		70-130	9		20
Acrylonitrile	85		91		70-130	7		20
Bromochloromethane	100		110		70-130	10		20
Tetrahydrofuran	74		80		58-130	8		20
2,2-Dichloropropane	120		120		63-133	0		20
1,2-Dibromoethane	99		100		70-130	1		20
1,3-Dichloropropane	97		100		70-130	3		20
1,1,1,2-Tetrachloroethane	100		100		64-130	0		20
Bromobenzene	100		100		70-130	0		20
n-Butylbenzene	96		98		53-136	2		20
sec-Butylbenzene	100		100		70-130	0		20
tert-Butylbenzene	100		100		70-130	0		20
o-Chlorotoluene	99		100		70-130	1		20
p-Chlorotoluene	110		110		70-130	0		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1631900

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - West	borough Lab Associated	sample(s):	01-02 Batch:	WG941196-3	WG941196-4				
1,2-Dibromo-3-chloropropane	66		84		41-144	24	Q	20	
Hexachlorobutadiene	81		86		63-130	6		20	
Isopropylbenzene	110		110		70-130	0		20	
p-Isopropyltoluene	100		100		70-130	0		20	
Naphthalene	76		80		70-130	5		20	
n-Propylbenzene	110		110		69-130	0		20	
1,2,3-Trichlorobenzene	63	Q	67	Q	70-130	6		20	
1,2,4-Trichlorobenzene	75		78		70-130	4		20	
1,3,5-Trimethylbenzene	100		110		64-130	10		20	
1,3,5-Trichlorobenzene	84		88		70-130	5		20	
1,2,4-Trimethylbenzene	110		110		70-130	0		20	
trans-1,4-Dichloro-2-butene	95		100		70-130	5		20	
Halothane	95		99		70-130	4		20	
Ethyl ether	97		99		59-134	2		20	
Methyl Acetate	84		91		70-130	8		20	
Ethyl Acetate	85		90		70-130	6		20	
Isopropyl Ether	93		97		70-130	4		20	
Cyclohexane	84		89		70-130	6		20	
Tert-Butyl Alcohol	106		116		70-130	9		20	
Ethyl-Tert-Butyl-Ether	100		110		70-130	10		20	
Tertiary-Amyl Methyl Ether	97		100		66-130	3		20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1631900

Report Date:

10/13/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough L	ab Associated s	sample(s):	01-02 Batch:	WG941196-3	WG941196-4				
1,4-Dioxane	94		104		56-162	10		20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	87		88		70-130	1		20	
Methyl cyclohexane	87		91		70-130	4		20	
p-Diethylbenzene	99		100		70-130	1		20	
4-Ethyltoluene	110		110		70-130	0		20	
1,2,4,5-Tetramethylbenzene	81		100		70-130	21	Q	20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	102		103		70-130	
Toluene-d8	103		103		70-130	
4-Bromofluorobenzene	113		109		70-130	
Dibromofluoromethane	101		102		70-130	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1631900

Parameter	LCS %Recovery	Qual	LCSD %Recovery		covery mits RPD	PD nits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	3 Batch: WG9	41471-3 WG9414	71-4	
Methylene chloride	89		100	70-	130 12	20
1,1-Dichloroethane	96		94	70-	130 2	20
Chloroform	97		98	70-	130 1	20
Carbon tetrachloride	89		88	63-	132 1	20
1,2-Dichloropropane	91		92	70-	130 1	20
Dibromochloromethane	88		93	63-	130 6	20
1,1,2-Trichloroethane	93		97	70-	130 4	20
Tetrachloroethene	93		92	70-	130 1	20
Chlorobenzene	92		94	75-	130 2	25
Trichlorofluoromethane	87		84	62-	150 4	20
1,2-Dichloroethane	85		86	70-	130 1	20
1,1,1-Trichloroethane	97		96	67-	130 1	20
Bromodichloromethane	92		93	67-	130 1	20
trans-1,3-Dichloropropene	85		88	70-	130 3	20
cis-1,3-Dichloropropene	85		87	70-	130 2	20
1,1-Dichloropropene	96		94	70-	130 2	20
Bromoform	93		94	54-	136 1	20
1,1,2,2-Tetrachloroethane	96		100	67-	130 4	20
Benzene	99		98	70-	130 1	25
Toluene	100		100	70-	130 0	25
Ethylbenzene	100		100	70-	130 0	20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1631900

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	03 Batch: WC	941471-3	WG941471-4			
Chloromethane	80		78		64-130	3	20	
Bromomethane	54		66		39-139	20	20	
Vinyl chloride	84		80		55-140	5	20	
Chloroethane	96		90		55-138	6	20	
1,1-Dichloroethene	94		91		61-145	3	25	
trans-1,2-Dichloroethene	100		100		70-130	0	20	
Trichloroethene	99		98		70-130	1	25	
1,2-Dichlorobenzene	91		93		70-130	2	20	
1,3-Dichlorobenzene	95		95		70-130	0	20	
1,4-Dichlorobenzene	90		92		70-130	2	20	
Methyl tert butyl ether	86		90		63-130	5	20	
p/m-Xylene	100		100		70-130	0	20	
o-Xylene	95		100		70-130	5	20	
cis-1,2-Dichloroethene	99		100		70-130	1	20	
Dibromomethane	89		91		70-130	2	20	
1,4-Dichlorobutane	97		98		70-130	1	20	
Iodomethane	80		69	Q	70-130	15	20	
1,2,3-Trichloropropane	97		97		64-130	0	20	
Styrene	95		100		70-130	5	20	
Dichlorodifluoromethane	78		75		36-147	4	20	
Acetone	98		96		58-148	2	20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1631900

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RF Qual Lin	
platile Organics by GC/MS - Westborough	Lab Associated	sample(s): (3 Batch: WG	941471-3	WG941471-4			
Carbon disulfide	96		93		51-130	3	2	0
2-Butanone	85		94		63-138	10	2	0
Vinyl acetate	95		95		70-130	0	2	0
4-Methyl-2-pentanone	72		76		59-130	5	2	0
2-Hexanone	66		69		57-130	4	2	0
Ethyl methacrylate	73		76		70-130	4	2	0
Acrolein	72		71		70-130	1	2	0
Acrylonitrile	87		90		70-130	3	2	0
Bromochloromethane	90		92		70-130	2	2	0
Tetrahydrofuran	84		82		58-130	2	2	0
2,2-Dichloropropane	90		92		63-133	2	2	0
1,2-Dibromoethane	89		93		70-130	4	2	0
1,3-Dichloropropane	90		94		70-130	4	2	0
1,1,1,2-Tetrachloroethane	86		89		64-130	3	2	0
Bromobenzene	97		98		70-130	1	2	0
n-Butylbenzene	94		92		53-136	2	2	0
sec-Butylbenzene	100		100		70-130	0	2	0
tert-Butylbenzene	92		89		70-130	3	2	0
o-Chlorotoluene	110		110		70-130	0	2	0
p-Chlorotoluene	110		110		70-130	0	2	0
1,2-Dibromo-3-chloropropane	82		88		41-144	7		0

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1631900

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): (03 Batch: WG9	941471-3	WG941471-4			
Hexachlorobutadiene	100		100		63-130	0	20	
Isopropylbenzene	110		110		70-130	0	20	
p-Isopropyltoluene	100		100		70-130	0	20	
Naphthalene	68	Q	69	Q	70-130	1	20	
n-Propylbenzene	110		110		69-130	0	20	
1,2,3-Trichlorobenzene	77		78		70-130	1	20	
1,2,4-Trichlorobenzene	71		73		70-130	3	20	
1,3,5-Trimethylbenzene	110		100		64-130	10	20	
1,3,5-Trichlorobenzene	98		97		70-130	1	20	
1,2,4-Trimethylbenzene	100		110		70-130	10	20	
trans-1,4-Dichloro-2-butene	93		94		70-130	1	20	
Halothane	98		98		70-130	0	20	
Ethyl ether	86		85		59-134	1	20	
Methyl Acetate	95		97		70-130	2	20	
Ethyl Acetate	87		87		70-130	0	20	
Isopropyl Ether	96		97		70-130	1	20	
Cyclohexane	89		85		70-130	5	20	
Tert-Butyl Alcohol	50	Q	58	Q	70-130	15	20	
Ethyl-Tert-Butyl-Ether	92		94		70-130	2	20	
Tertiary-Amyl Methyl Ether	91		94		66-130	3	20	
1,4-Dioxane	82		84		56-162	2	20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1631900

Report Date:

10/13/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 03	Batch: WG	941471-3	WG941471-4				
1,1,2-Trichloro-1,2,2-Trifluoroethane	85		80		70-130	6		20	
Methyl cyclohexane	88		84		70-130	5		20	
p-Diethylbenzene	92		91		70-130	1		20	
4-Ethyltoluene	110		110		70-130	0		20	
1,2,4,5-Tetramethylbenzene	93		91		70-130	2		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	78		78		70-130	
Toluene-d8	99		100		70-130	
4-Bromofluorobenzene	107		108		70-130	
Dibromofluoromethane	88		88		70-130	

METALS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

SAMPLE RESULTS

Lab ID: L1631900-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 10/06/16 00:00

Date Received: 10/06/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0550		mg/l	0.0010		1	10/10/16 09:50	10/11/16 16:26	EPA 3005A	1,6020A	AM
Iron, Total	1.30		mg/l	0.050		1	10/10/16 09:50	10/10/16 15:35	EPA 3005A	19,200.7	PS
Lead, Total	0.0078		mg/l	0.0010		1	10/10/16 09:50	10/11/16 16:26	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	10/10/16 09:50	10/11/16 16:26	EPA 3005A	1,6020A	AM
Zinc, Total	0.0573		mg/l	0.0100		1	10/10/16 09:50	10/11/16 16:26	EPA 3005A	1,6020A	AM

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

SAMPLE RESULTS

Lab ID: L1631900-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 10/06/16 00:00

Date Received: 10/06/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Copper, Total	0.0032		mg/l	0.0010		1	10/10/16 09:5	0 10/11/16 16:29	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	10/10/16 09:5	0 10/10/16 15:40	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.0010		1	10/10/16 09:5	0 10/11/16 16:29	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	10/10/16 09:5	0 10/11/16 16:29	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.0100		1	10/10/16 09:5	0 10/11/16 16:29	EPA 3005A	1,6020A	AM

10/11/16 09:05

10/11/16 09:05

1,6020A

1,6020A

ΑM

AM

10/10/16 09:50

10/10/16 09:50

1

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Mansfield	Lab for sample(s):	01,03	Batch: \	NG94044	7-1				
Copper, Total	ND	mg/l	0.001	0	1	10/10/16 09:50	10/11/16 09:05	1,6020A	AM
Lead, Total	ND	mg/l	0.000	5	1	10/10/16 09:50	10/11/16 09:05	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

0.005

0.0100

mg/l

mg/l

ND

ND

Selenium, Total

Zinc, Total

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
Total Metals - Mansfield Lab for sample(s): 01,03 Batch: WG940449-1										
Iron, Total	ND	mg/l	0.050		1	10/10/16 09:50	10/10/16 15:11	19,200.7	PS	

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1631900

Report Date:

10/13/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sam	ole(s): 01,03 Bato	ch: WG940	0447-2					
Copper, Total	108		-		80-120	-		
Lead, Total	113		-		80-120	-		
Selenium, Total	92		-		80-120	-		
Zinc, Total	102		-		80-120	-		
Total Metals - Mansfield Lab Associated sam	ole(s): 01,03 Bate	ch: WG940	0449-2					
Iron, Total	89		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1631900

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD al Limits
Total Metals - Mansfield Lab A	Associated san	nple(s): 01,03	QC Bat	ch ID: WG940	447-4	QC Samp	ole: L1631700-02	Client ID: MS	Sample	
Copper, Total	ND	0.25	0.2461	98		-	-	75-125	-	20
Lead, Total	ND	0.51	0.5449	107		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.047	0	Q	-	-	75-125	-	20
Zinc, Total	0.3394	0.5	0.8721	106		-	-	75-125	-	20
otal Metals - Mansfield Lab A	Associated san	nple(s): 01,03	QC Bat	ch ID: WG940	449-4	QC Samp	ole: L1631700-02	Client ID: MS	Sample	
Iron, Total	1.50	1	2.44	94		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1631900

Parameter	Native Sample D	uplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID: WG94044	17-3 QC Sample:	L1631700-02	Client ID:	DUP Sample	е
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.3394	0.3770	mg/l	10		20
otal Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID: WG94044	19-3 QC Sample:	L1631700-02	Client ID:	DUP Sample	е
Iron, Total	1.50	1.50	mg/l	0		20

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: **HP WALTHAM** L1631900 **Project Number:**

Report Date: 10/13/16 01.0015522.16

SAMPLE RESULTS

Lab ID: L1631900-01 Date Collected: 10/06/16 00:00

INF Client ID: Date Received: 10/06/16

Not Specified WALTHAM, MA Sample Location: Field Prep:

Matrix: Water

Parameter	Result Qualific	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab								
Chloride	550	mg/l	10		10	-	10/12/16 17:22	1,9251	ML

10/06/16 00:00

Date Collected:

Project Name: Lab Number: **HP WALTHAM** L1631900 **Project Number:** 01.0015522.16

Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1631900-03

EFF Client ID:

Date Received: 10/06/16 Not Specified WALTHAM, MA Sample Location: Field Prep:

Matrix: Water

Parameter	Result Qualif	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	/ - Westborough Lab								
Chloride	580	mg/l	10		10	-	10/12/16 17:27	1,9251	ML

Project Name: Lab Number: HP WALTHAM L1631900 **Project Number:** 01.0015522.16

Report Date: 10/13/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab for sam	ple(s): 01	,03 Ba	atch: Wo	G941238-1				
Chloride	ND	mg/l	1.0		1	-	10/12/16 17:12	1,9251	ML

L1631900

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

Report Date: 10/13/16

Project Number: 01.0015522.16

Parameter	LCS %Recovery Qual	LCSD %Recovery Qu	%Recovery al Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03	Batch: WG941238-2				
Chloride	100	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1631900

Report Date:

10/13/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery al Limits	RPD Qu	RPD _{ual} Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01,03	QC Batch ID	D: WG941238-4	QC Sample: L1632	018-01 Clien	t ID: MS	Sample
Chloride	110	20	120	50	Q -	-	58-140	-	7

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1631900

Report Date:

10/13/16

Parameter	Native Sample	Duplicate Sampl	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass	sociated sample(s): 01,03 QC	Batch ID: WG941238-3	QC Sample: L	1632018-01	Client ID:	DUP Sample
Chloride	110	100	mg/l	10	Q	7

Project Name:

Project Number:

HP WALTHAM

01.0015522.16

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1631900-01A	Vial HCl preserved	Α	N/A	16.6	Υ	Absent	8260(14)
L1631900-01B	Vial HCI preserved	Α	N/A	16.6	Υ	Absent	8260(14)
L1631900-01C	Vial HCI preserved	Α	N/A	16.6	Υ	Absent	8260(14)
L1631900-01D	Plastic 250ml HNO3 preserved	Α	<2	16.6	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1631900-01E	Plastic 60ml unpreserved	Α	7	16.6	Υ	Absent	CL-9251(28)
L1631900-02A	Vial HCl preserved	Α	N/A	16.6	Υ	Absent	8260(14)
L1631900-02B	Vial HCl preserved	Α	N/A	16.6	Υ	Absent	8260(14)
L1631900-02C	Vial HCl preserved	Α	N/A	16.6	Υ	Absent	8260(14)
L1631900-03A	Vial HCl preserved	Α	N/A	16.6	Υ	Absent	8260(14)
L1631900-03B	Vial HCl preserved	Α	N/A	16.6	Υ	Absent	8260(14)
L1631900-03C	Vial HCI preserved	Α	N/A	16.6	Υ	Absent	8260(14)
L1631900-03D	Plastic 250ml HNO3 preserved	Α	<2	16.6	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1631900-03E	Plastic 60ml unpreserved	Α	7	16.6	Υ	Absent	CL-9251(28)

Project Name:HP WALTHAMLab Number:L1631900Project Number:01.0015522.16Report Date:10/13/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

-The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 7

ID No.:17873

Published Date: 8/5/2016 11:25:56 AM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility **SM 2540D:** TSS

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Project Information	(D
Project Name:	
Client Information	
Client: G-2-4 Address: 249 Vandrh. If Aproject Manager: J. Collectify Noward Men. 92062 ALPHA Quote #: Phone: 787-1357 Email: Vdav. 60 929 calm Additional Project Information: Additional Project Information: Collection Date Time Matrix Initials ALPHA Lab ID (Lab Use Only) Sample ID Collection Date Time Matrix Initials Sample Con	
Address: 2 49 Vands b. If A Project Manager: T. Ca bet F Noward Ma. 02062 ALPHA Quote #: Other State / Fed Program Phone: 787-[357 Turn-Around Time Email: Vdav.5@ 929 calm Additional Project Information: Additional Project Information: Additional Project Information: Additional Project Information: Collection Sample	Methods
Criteria Criteria Other State Fed Program Criteria	
Phone: 787-1357 Email: Wdavis@ 929.cam Additional Project Information: Date Due: Collection Date Time Date	
Additional Project Information: Additional Project Information: Collection Sample Matrix Initials Sample Collection Sample Collection Sample Collection Sample Collection C	
3/900,01 INF 10/6/16 GW BD X	o do Bation O
3/900,01 INF 10/6/16 GW B1 X	L
.02 MID / X	5
	3
103 EFF V VX	5
Container Type Preservative Container Type	
F - Plastic A= None A= Amber glass B= HCl V= Vial C= HNO ₃ Preservative UC	
G= Glass B= Bacteria cup C= Cube C= Cube O= Other D= BOD Bottle D= BOD Bottle Page 45 of 45 D= H_SO_4 E= NaOH Relinquished By: Date/Time All samples submitted are Alpha's Terms and Condition See reverse side. FORM NO: 01-01 (rev. 12-Mar-20)	ions.

ANALYTICAL REPORT

Lab Number: L1636726

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.16

Report Date: 11/18/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1636726 **Report Date:** 11/18/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1636726-01	INF	WATER	WALTHAM, MA	11/10/16 09:40	11/11/16
L1636726-02	MID	WATER	WALTHAM, MA	11/10/16 10:00	11/11/16
L1636726-03	EFF	WATER	WALTHAM, MA	11/10/16 10:20	11/11/16

Project Name:HP WALTHAMLab Number:L1636726Project Number:01.0015522.16Report Date:11/18/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

۲	lease	contact	Client	Services	at 800	-624-92	220 with	n any	questions	٠.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

ΔLPHA

Date: 11/18/16

ORGANICS

VOLATILES

11/11/16

Not Specified

Date Received:

Field Prep:

Project Name: HP WALTHAM Lab Number: L1636726

Project Number: 01.0015522.16 **Report Date:** 11/18/16

SAMPLE RESULTS

Lab ID: L1636726-01 D Date Collected: 11/10/16 09:40

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 11/14/16 13:51

Analyst: KD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
Methylene chloride	ND		ug/l	300		100	
1,1-Dichloroethane	ND		ug/l	75		100	
Chloroform	ND		ug/l	75		100	
Carbon tetrachloride	ND		ug/l	50		100	
1,2-Dichloropropane	ND		ug/l	180		100	
Dibromochloromethane	ND		ug/l	50		100	
1,1,2-Trichloroethane	ND		ug/l	75		100	
Tetrachloroethene	59		ug/l	50		100	
Chlorobenzene	ND		ug/l	50		100	
Trichlorofluoromethane	ND		ug/l	250		100	
1,2-Dichloroethane	ND		ug/l	50		100	
1,1,1-Trichloroethane	ND		ug/l	50		100	
Bromodichloromethane	ND		ug/l	50		100	
trans-1,3-Dichloropropene	ND		ug/l	50		100	
cis-1,3-Dichloropropene	ND		ug/l	50		100	
Bromoform	ND		ug/l	200		100	
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100	
Benzene	ND		ug/l	50		100	
Toluene	ND		ug/l	75		100	
Ethylbenzene	ND		ug/l	50		100	
Chloromethane	ND		ug/l	250		100	
Bromomethane	ND		ug/l	100		100	
Vinyl chloride	ND		ug/l	100		100	
Chloroethane	ND		ug/l	100		100	
1,1-Dichloroethene	ND		ug/l	50		100	
trans-1,2-Dichloroethene	ND		ug/l	75		100	
Trichloroethene	8200		ug/l	50		100	
1,2-Dichlorobenzene	ND		ug/l	250		100	
1,3-Dichlorobenzene	ND		ug/l	250		100	
1,4-Dichlorobenzene	ND		ug/l	250		100	

11/10/16 09:40

Project Name: HP WALTHAM Lab Number: L1636726

Project Number: 01.0015522.16 **Report Date:** 11/18/16

SAMPLE RESULTS

Lab ID: L1636726-01 D Date Collected:

Client ID: Date Received: 11/11/16

Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
Methyl tert butyl ether	ND		ug/l	100		100	
p/m-Xylene	ND		ug/l	100		100	
o-Xylene	ND		ug/l	100		100	
cis-1,2-Dichloroethene	ND		ug/l	50		100	
Dichlorodifluoromethane	ND		ug/l	500		100	
Naphthalene	ND		ug/l	250		100	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	98		70-130	

Project Name: HP WALTHAM Lab Number: L1636726

Project Number: 01.0015522.16 **Report Date:** 11/18/16

SAMPLE RESULTS

Lab ID: Date Collected: 11/10/16 10:00

Client ID: MID

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 11/14/16 14:25

Analyst: KD

Date Collected.	11/10/16 10.00
Date Received:	11/11/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	0.88		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1636726

Project Number: 01.0015522.16 **Report Date:** 11/18/16

SAMPLE RESULTS

Lab ID: L1636726-02 Date Collected: 11/10/16 10:00

Client ID: MID Date Received: 11/11/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wo	estborough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ua/l	2.5		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	110		70-130
Toluene-d8	97		70-130
4-Bromofluorobenzene	92		70-130
Dibromofluoromethane	102		70-130

Project Name: HP WALTHAM

Project Number: 01.0015522.16

SAMPLE RESULTS

Lab Number: L1636726

Report Date: 11/18/16

Lab ID: L1636726-03

Client ID: **EFF**

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 11/14/16 15:00

Analyst: KD Date Collected: 11/10/16 10:20 Date Received: 11/11/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1636726

Project Number: 01.0015522.16 **Report Date:** 11/18/16

SAMPLE RESULTS

Lab ID: L1636726-03 Date Collected: 11/10/16 10:20

Client ID: EFF Date Received: 11/11/16
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	100		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1636726

 Project Number:
 01.0015522.16
 Report Date:
 11/18/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 11/14/16 11:32

Analyst: KD

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03 Batch:	WG952218-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l		
Chloroform	ND	ug/l		
Carbon tetrachloride	ND	ug/l		
1,2-Dichloropropane	ND	ug/l		
Dibromochloromethane	ND	ug/l		
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

Project Name: HP WALTHAM Lab Number: L1636726

Project Number: 01.0015522.16 **Report Date:** 11/18/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 11/14/16 11:32

Analyst: KD

Parameter	Result Qual	ifier Units	RL	MDL
olatile Organics by GC/MS	· Westborough Lab for s	sample(s): 01-03	Batch:	WG952218-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	2.7	
Naphthalene	ND	ug/l	2.5	

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	92	70-130
Dibromofluoromethane	101	70-130

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1636726

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborou	gh Lab Associated	sample(s):	01-03 Batch:	WG952218-3	WG952218-4			
Methylene chloride	110		110		70-130	0	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	110		110		70-130	0	20	
Carbon tetrachloride	90		86		63-132	5	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	98		96		63-130	2	20	
1,1,2-Trichloroethane	99		96		70-130	3	20	
2-Chloroethylvinyl ether	70		67	Q	70-130	4	20	
Tetrachloroethene	110		100		70-130	10	20	
Chlorobenzene	100		100		75-130	0	25	
Trichlorofluoromethane	120		110		62-150	9	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	95		93		67-130	2	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	66	Q	67	Q	70-130	2	20	
cis-1,3-Dichloropropene	83		83		70-130	0	20	
1,1-Dichloropropene	110		100		70-130	10	20	
Bromoform	74		75		54-136	1	20	
1,1,2,2-Tetrachloroethane	96		93		67-130	3	20	
Benzene	110		110		70-130	0	25	
Toluene	110		100		70-130	10	25	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1636726

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Bat	ch: WG952218-3	WG952218-4			
Ethylbenzene	110		110		70-130	0		20
Chloromethane	93		90		64-130	3		20
Bromomethane	140	Q	140	Q	39-139	0		20
Vinyl chloride	120		110		55-140	9		20
Chloroethane	110		110		55-138	0		20
1,1-Dichloroethene	110		110		61-145	0		25
trans-1,2-Dichloroethene	110		110		70-130	0		20
Trichloroethene	110		110		70-130	0		25
1,2-Dichlorobenzene	100		99		70-130	1		20
1,3-Dichlorobenzene	100		100		70-130	0		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	80		84		63-130	5		20
p/m-Xylene	115		110		70-130	4		20
o-Xylene	110		110		70-130	0		20
cis-1,2-Dichloroethene	110		110		70-130	0		20
Dibromomethane	110		110		70-130	0		20
1,4-Dichlorobutane	97		93		70-130	4		20
Iodomethane	77		76		70-130	1		20
1,2,3-Trichloropropane	92		90		64-130	2		20
Styrene	115		110		70-130	4		20
Dichlorodifluoromethane	140		130		36-147	7		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1636726

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborou	igh Lab Associated	sample(s):	01-03 Batch:	WG952218-3	WG952218-4			
Acetone	100		100		58-148	0		20
Carbon disulfide	100		97		51-130	3		20
2-Butanone	110		100		63-138	10		20
Vinyl acetate	81		86		70-130	6		20
4-Methyl-2-pentanone	86		87		59-130	1		20
2-Hexanone	97		92		57-130	5		20
Ethyl methacrylate	80		83		70-130	4		20
Acrolein	100		100		70-130	0		20
Acrylonitrile	110		110		70-130	0		20
Bromochloromethane	110		110		70-130	0		20
Tetrahydrofuran	110		110		58-130	0		20
2,2-Dichloropropane	53	Q	55	Q	63-133	4		20
1,2-Dibromoethane	94		95		70-130	1		20
1,3-Dichloropropane	98		100		70-130	2		20
1,1,1,2-Tetrachloroethane	90		90		64-130	0		20
Bromobenzene	99		96		70-130	3		20
n-Butylbenzene	110		110		53-136	0		20
sec-Butylbenzene	110		100		70-130	10		20
tert-Butylbenzene	100		100		70-130	0		20
o-Chlorotoluene	100		100		70-130	0		20
p-Chlorotoluene	100		100		70-130	0		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1636726

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	n Lab Associated	sample(s):	01-03 Batch: \	NG952218-3	WG952218-4			
1,2-Dibromo-3-chloropropane	72		71		41-144	1	20	
Hexachlorobutadiene	100		96		63-130	4	20	
Isopropylbenzene	100		100		70-130	0	20	
p-Isopropyltoluene	110		100		70-130	10	20	
Naphthalene	100		100		70-130	0	20	
n-Propylbenzene	110		100		69-130	10	20	
1,2,3-Trichlorobenzene	100		100		70-130	0	20	
1,2,4-Trichlorobenzene	93		92		70-130	1	20	
1,3,5-Trimethylbenzene	100		100		64-130	0	20	
1,3,5-Trichlorobenzene	100		98		70-130	2	20	
1,2,4-Trimethylbenzene	110		100		70-130	10	20	
trans-1,4-Dichloro-2-butene	85		82		70-130	4	20	
Halothane	100		100		70-130	0	20	
Ethyl ether	110		110		59-134	0	20	
Methyl Acetate	100		110		70-130	10	20	
Ethyl Acetate	120		120		70-130	0	20	
Isopropyl Ether	120		120		70-130	0	20	
Cyclohexane	120		120		70-130	0	20	
Tert-Butyl Alcohol	62	Q	72		70-130	15	20	
Ethyl-Tert-Butyl-Ether	58	Q	63	Q	70-130	8	20	
Tertiary-Amyl Methyl Ether	64	Q	68		66-130	6	20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1636726

Report Date:

11/18/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG952218-3	WG952218-4			
1,4-Dioxane	132		128		56-162	3	ı	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	120		120		70-130	0		20
Methyl cyclohexane	120		110		70-130	9		20
p-Diethylbenzene	120		120		70-130	0		20
4-Ethyltoluene	110		110		70-130	0		20
1,2,4,5-Tetramethylbenzene	110		110		70-130	0		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	108		108		70-130	
Toluene-d8	99		99		70-130	
4-Bromofluorobenzene	95		93		70-130	
Dibromofluoromethane	103		102		70-130	

METALS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1636726

 Project Number:
 01.0015522.16
 Report Date:
 11/18/16

SAMPLE RESULTS

Lab ID: L1636726-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 11/10/16 09:40

Date Received: 11/11/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Copper, Total	0.0375		mg/l	0.0010		1	11/15/16 19:06	11/16/16 10:45	EPA 3005A	1,6020A	AM
Iron, Total	1.41		mg/l	0.050		1	11/15/16 19:06	11/17/16 13:02	EPA 3005A	19,200.7	PS
Lead, Total	0.0069		mg/l	0.0010		1	11/15/16 19:06	11/16/16 10:45	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	11/15/16 19:06	11/16/16 10:45	EPA 3005A	1,6020A	AM
Zinc, Total	0.0786		mg/l	0.0100		1	11/15/16 19:06	11/16/16 10:45	EPA 3005A	1,6020A	AM

 Project Name:
 HP WALTHAM
 Lab Number:
 L1636726

 Project Number:
 01.0015522.16
 Report Date:
 11/18/16

SAMPLE RESULTS

Lab ID: L1636726-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 11/10/16 10:20

Date Received: 11/11/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
rotal motalo mane	mora Lab										
Copper, Total	0.0026		mg/l	0.0010		1	11/15/16 19:00	6 11/16/16 10:48	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	11/15/16 19:00	6 11/17/16 13:21	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.0010		1	11/15/16 19:0	6 11/16/16 10:48	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	11/15/16 19:06	6 11/16/16 10:48	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.0100		1	11/15/16 19:00	6 11/16/16 10:48	EPA 3005A	1,6020A	AM

Project Name: Lab Number: HP WALTHAM L1636726 **Project Number:** 01.0015522.16 **Report Date:** 11/18/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01,03 B	atch: Wo	G95262	3-1				
Copper, Total	ND	mg/l	0.0010		1	11/15/16 19:06	11/16/16 08:54	1,6020A	AM
Lead, Total	ND	mg/l	0.0010		1	11/15/16 19:06	11/16/16 08:54	1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	11/15/16 19:06	11/16/16 08:54	1,6020A	AM
Zinc, Total	ND	mg/l	0.0100		1	11/15/16 19:06	11/16/16 08:54	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01,03 E	Batch: Wo	G95314	5-1				
Iron, Total	ND	mg/l	0.050		1	11/15/16 19:06	11/17/16 12:24	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1636726

Report Date:

11/18/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample	(s): 01,03 Bato	h: WG952	2623-2					
Copper, Total	110		-		80-120	-		
Lead, Total	108		-		80-120	-		
Selenium, Total	113		-		80-120	-		
Zinc, Total	110		-		80-120	-		
otal Metals - Mansfield Lab Associated sample	(s): 01,03 Bato	h: WG950	3145-2					
Iron, Total	92		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1636726

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recover Qual Limits	•	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01,03	QC Bat	ch ID: WG952	623-3	WG952623-4	QC Sample	e: L1636608-02	Client ID	: MS	Sample
Copper, Total	0.0035	0.25	0.2848	112		0.2682	106	75-125	6		20
Lead, Total	ND	0.51	0.5379	105		0.5508	108	75-125	2		20
Selenium, Total	0.008	0.12	0.121	94		0.157	124	75-125	26	Q	20
Zinc, Total	ND	0.5	0.5440	109		0.5507	110	75-125	1		20
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01,03	QC Bat	ch ID: WG953	145-3	WG953145-4	QC Sample	e: L1600011-87	Client ID	: MS	Sample
Iron, Total	0.286	1	1.18	89		1.18	89	75-125	0		20

INORGANICS & MISCELLANEOUS

Project Name: HP WALTHAM Lab Number: L1636726

Project Number: 01.0015522.16 **Report Date:** 11/18/16

SAMPLE RESULTS

Lab ID: L1636726-01 Date Collected: 11/10/16 09:40

Client ID: Date Received: 11/11/16

Sample Location: WALTHAM, MA Field Prep: Not Specified

Matrix: Water

Parameter	Result 0	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	/ - Westborough Lab									
Chloride	520		mg/l	10		10	-	11/11/16 22:48	1,9251	ML

Project Name: HP WALTHAM

Lab Number: L1636726

Project Number: 01.0015522.16 **Report Date:** 11/18/16

SAMPLE RESULTS

Lab ID: L1636726-03 Date Collected: 11/10/16 10:20

Client ID: EFF Date Received: 11/11/16

Sample Location: WALTHAM, MA Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	· - Westborough Lab									
Chloride	540		mg/l	10		10	-	11/11/16 22:50	1,9251	ML

Project Name: Lab Number: HP WALTHAM L1636726 **Project Number:** 01.0015522.16

Report Date: 11/18/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	,03 Ba	tch: W0	G951626-1				
Chloride	ND	mg/l	1.0		1	-	11/11/16 22:01	1,9251	ML

Project Name: HP WALTHAM Project Number: 01.0015522.16

Lab Number:

Report Date:

L1636726 11/18/16

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	associated sample(s): 01,03	Batch: WG95162	26-2				
Chloride	100	-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1636726

Report Date:

11/18/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD Q	RPD Rual Limits
General Chemistry - Westborou	igh Lab Asso	ciated samp	ole(s): 01,03	QC Batch IE): WG951626-4	QC Sample: L1636	611-02 Clier	nt ID: MS	Sample
Chloride	3.4	20	24	103	-	-	58-140	-	7

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1636726

Report Date:

11/18/16

Parameter	Native Sam	ple D	uplicate Sampl	le Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01,03	QC Batch ID:	WG951626-3	QC Sample:	L1636611-02	Client ID:	DUP Sample	
Chloride	3.4		3.6	mg/l	6		7	

Project Name:

Project Number:

HP WALTHAM

01.0015522.16

Serial_No:11181613:32

Project Name:HP WALTHAMLab Number:L1636726Project Number:01.0015522.16Report Date:11/18/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	Container Information						
Container ID	Container Type	Cooler	рН	Temp deg C	Pres	Seal	Analysis(*)
L1636726-01A	Vial HCI preserved	Α	N/A	2.3	Υ	Absent	8260(14)
L1636726-01B	Vial HCl preserved	Α	N/A	2.3	Υ	Absent	8260(14)
L1636726-01C	Vial HCl preserved	Α	N/A	2.3	Υ	Absent	8260(14)
L1636726-01D	Plastic 250ml HNO3 preserved	Α	<2	2.3	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1636726-01E	Plastic 60ml unpreserved	Α	7	2.3	Υ	Absent	CL-9251(28)
L1636726-02A	Vial HCl preserved	Α	N/A	2.3	Υ	Absent	8260(14)
L1636726-02B	Vial HCl preserved	Α	N/A	2.3	Υ	Absent	8260(14)
L1636726-02C	Vial HCl preserved	Α	N/A	2.3	Υ	Absent	8260(14)
L1636726-03A	Vial HCl preserved	Α	N/A	2.3	Υ	Absent	8260(14)
L1636726-03B	Vial HCl preserved	Α	N/A	2.3	Υ	Absent	8260(14)
L1636726-03C	Vial HCl preserved	Α	N/A	2.3	Υ	Absent	8260(14)
L1636726-03D	Plastic 250ml HNO3 preserved	Α	<2	2.3	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1636726-03E	Plastic 60ml unpreserved	Α	7	2.3	Υ	Absent	CL-9251(28)

Project Name:HP WALTHAMLab Number:L1636726Project Number:01.0015522.16Report Date:11/18/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Serial_No:11181613:32

Project Name:HP WALTHAMLab Number:L1636726Project Number:01.0015522.16Report Date:11/18/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:11181613:32

Project Name:HP WALTHAMLab Number:L1636726Project Number:01.0015522.16Report Date:11/18/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:11181613:32

ID No.:17873 Revision 7

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	CHAIN O	F CUSTODY	PAGEL_OF	Date Rec'd in Lab:	16 ALPH	IA Job#: L1636726
Walden Danie	200 Factor Blad	Project Information		Report Information - Data Deliv		g Information
8 Walkup Drive Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project Name: HP	on It ham	□ ADEx EMAIL		e as Client info PO #:
Client Information	on	Project Location: Was (H)	M.	Regulatory Requirements &		
Client: G2A		Project #: 01.001552		☐ Yes ☐ No MA MCP Analytical Meth	nods 🗆 Ye	es No CT RCP Analytical Methods
		Project Manager:	Colbert	☐ Yes ☐ No Matrix Spike Required or ☐ Yes ☐ No GW1 Standards (Info Re	n this SDG?(Require equired for Metals & E	ed for MCP Inorganics) EPH with Targets)
Norn	randers: It Are	ALPHA Quote #:	01 2501	☐ Yes ☐ No NPDES RGP☐ Other State /Fed Program		
Phone: 78/-	487-1357	Turn-Around Time				Criteria
Email: Wola	Project Information:	Date Due:	r confirmed if pre-approved!)	4 D S42 BOY I PAH DINCP 14 DRCP DRCRA8 DPP1 Fets D Ranges On!	Metalsony Deingerprint	SAMPLE INFO Filtration Field Lab to do Preservation Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date Time	Sample Sampler Matrix Initials	VOC: METALS SVOC: METALS EPH: DIA VPH: DIA DIA TOR	The same of the sa	L
36726-61	INF	11/10/16 940am	The DA	X		
02	MID	1 1000-	1 80		11	5
03	EFF		1 1 1 1		1	3
U-3	LFF	1020 cm	V BO		XX	5
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle	Preservative A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH F = MeOH Ascorbic Acid J = NH ₄ CI K = Zn Acetate O = Other	Relinquished By:	Container Type Preservative Date/Time it/(a//6 23)	Received By:	P P MM Date/Time Mu/10 /079	All samples submitted are subject to Alpha's Terms and Conditions. See reverse side. FORM NO: 01-01 (rev. 12-Mar-2012)

ANALYTICAL REPORT

Lab Number: L1639882

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.16

Report Date: 12/15/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM
Project Number: 01.0015522.16

Lab Number:

L1639882

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1639882-01	INF	WATER	WALTHAM, MA	12/08/16 10:56	12/08/16
L1639882-02	MID	WATER	WALTHAM, MA	12/08/16 10:45	12/08/16
L1639882-03	EFF	WATER	WALTHAM, MA	12/08/16 10:30	12/08/16

Project Name:HP WALTHAMLab Number:L1639882Project Number:01.0015522.16Report Date:12/15/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

	Please contact C	Client Services	at 800-624-9220	with any	questions.
--	------------------	-----------------	-----------------	----------	------------

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/15/16

Melissa Cripps Melissa Cripps

ORGANICS

VOLATILES

12/08/16

Not Specified

Date Received:

Field Prep:

Project Name: HP WALTHAM Lab Number: L1639882

Project Number: 01.0015522.16 **Report Date:** 12/15/16

SAMPLE RESULTS

Lab ID: L1639882-01 D Date Collected: 12/08/16 10:56

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/13/16 18:17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	52		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
trans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
trans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	7800		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

Project Name: HP WALTHAM Lab Number: L1639882

Project Number: 01.0015522.16 **Report Date:** 12/15/16

SAMPLE RESULTS

Lab ID: L1639882-01 D

Client ID: INF

Sample Location: WALTHAM, MA

Date Collected: 12/08/16 10:56

Date Received: 12/08/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methyl tert butyl ether	ND		ug/l	100		100	
p/m-Xylene	ND		ug/l	100		100	
o-Xylene	ND		ug/l	100		100	
cis-1,2-Dichloroethene	ND		ug/l	50		100	
Dichlorodifluoromethane	ND		ug/l	500		100	
Naphthalene	ND		ug/l	250		100	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	119		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	100		70-130	

Project Name: HP WALTHAM

Project Number: 01.0015522.16

SAMPLE RESULTS

Lab Number: L1639882

Report Date: 12/15/16

Date Collected: 12/08/16 10:45 Lab ID: L1639882-02

Client ID: MID

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/13/16 18:52

Date Collected:	12/08/16 10:45
Date Received:	12/08/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	6.1		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1639882

Project Number: 01.0015522.16 **Report Date:** 12/15/16

SAMPLE RESULTS

Lab ID: L1639882-02 Date Collected: 12/08/16 10:45

Client ID: Date Received: 12/08/16
Sample Location: WALTHAM, MA Date Received: 12/08/16
Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbe	orough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	

ug/l

ug/l

5.0

2.5

--

--

1

1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	100		70-130	

ND

ND

Dichlorodifluoromethane

Naphthalene

Project Name: HP WALTHAM

Project Number: 01.0015522.16

SAMPLE RESULTS

Lab Number: L1639882

Report Date: 12/15/16

SAMPLE RESUL

Lab ID: L1639882-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/14/16 11:41

Analyst: PK

Date Collected: 12/08/16 10:30 Date Received: 12/08/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	0.85		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

12/08/16 10:30

Project Name: HP WALTHAM Lab Number: L1639882

Project Number: 01.0015522.16 **Report Date:** 12/15/16

SAMPLE RESULTS

Lab ID: L1639882-03 Date Collected:

Client ID: EFF Date Received: 12/08/16
Sample Location: WALTHAM MA Field Prep: Not Specified

Sample Location: WALTHAM, MA Field Prep: Not Specified

Result Qualifier Units RI MDI Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1639882

 Project Number:
 01.0015522.16
 Report Date:
 12/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/13/16 11:17

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG960976-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l		
Chloroform	ND	ug/l		
Carbon tetrachloride	ND	ug/l		
1,2-Dichloropropane	ND	ug/l		
Dibromochloromethane	ND	ug/l		
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1639882

 Project Number:
 01.0015522.16
 Report Date:
 12/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/13/16 11:17

Parameter	Result	Qualifier Un	its	RL	MDL
Volatile Organics by GC/MS - West	borough La	b for sample(s)	: 01-02	Batch:	WG960976-5
1,4-Dichlorobenzene	ND	uį	g/l	2.5	
Methyl tert butyl ether	ND	uį	g/l	1.0	
p/m-Xylene	ND	uį	g/l	1.0	
o-Xylene	ND	uį	g/l	1.0	
cis-1,2-Dichloroethene	ND	uį	g/l	0.50	
Dichlorodifluoromethane	ND	uį	g/l	5.0	
Naphthalene	ND	uį	g/l	2.5	

		Acceptance	
%Recovery	Qualifier	Criteria	
116		70-130	
102		70-130	
98		70-130	
101		70-130	
	116 102 98	%Recovery Qualifier 116 102 98	116 70-130 102 70-130 98 70-130

 Project Name:
 HP WALTHAM
 Lab Number:
 L1639882

 Project Number:
 01.0015522.16
 Report Date:
 12/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/14/16 09:47

Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene	ND N	for sample	e(s): 03 ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	3.0 0.75 0.75 0.50 1.8 0.50 0.75	WG961283-5
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	ND		ug/l ug/l ug/l ug/l ug/l ug/l	0.75 0.75 0.50 1.8 0.50 0.75	
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	ND ND ND ND ND ND ND ND ND		ug/l ug/l ug/l ug/l ug/l	0.75 0.50 1.8 0.50 0.75	
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	ND ND ND ND ND ND ND ND		ug/l ug/l ug/l ug/l	0.50 1.8 0.50 0.75	
1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	ND ND ND ND		ug/l ug/l ug/l	1.8 0.50 0.75	
Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	ND ND ND		ug/l ug/l	0.50 0.75	
1,1,2-Trichloroethane Tetrachloroethene	ND ND ND		ug/l	0.75	
Tetrachloroethene	ND ND				
	ND		ua/l		
Chlorobenzene			ug/i	0.50	
	ND		ug/l	0.50	
Trichlorofluoromethane	שויו		ug/l	2.5	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
Bromoform	ND		ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.75	
Ethylbenzene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	2.5	
Bromomethane	ND		ug/l	1.0	
Vinyl chloride	ND		ug/l	1.0	
Chloroethane	ND		ug/l	1.0	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.75	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	2.5	
1,3-Dichlorobenzene	ND		ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1639882

 Project Number:
 01.0015522.16
 Report Date:
 12/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/14/16 09:47

Parameter	Result	Qualifier (Units	RL	MDL
Volatile Organics by GC/MS - West	borough Lal	b for sample((s): 03	Batch:	WG961283-5
1,4-Dichlorobenzene	ND		ug/l	2.5	
Methyl tert butyl ether	ND		ug/l	1.0	
p/m-Xylene	ND		ug/l	1.0	
o-Xylene	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Dichlorodifluoromethane	ND		ug/l	5.0	
Naphthalene	ND		ug/l	2.5	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1639882

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westboro	ugh Lab Associated	sample(s):	01-02 Batch:	WG960976-3	WG960976-4				
Methylene chloride	100		99		70-130	1		20	
1,1-Dichloroethane	100		100		70-130	0		20	
Chloroform	100		100		70-130	0		20	
Carbon tetrachloride	96		96		63-132	0		20	
1,2-Dichloropropane	93		95		70-130	2		20	
Dibromochloromethane	95		97		63-130	2		20	
1,1,2-Trichloroethane	93		96		70-130	3		20	
2-Chloroethylvinyl ether	64	Q	64	Q	70-130	0		20	
Tetrachloroethene	100		100		70-130	0		20	
Chlorobenzene	100		100		75-130	0		25	
Trichlorofluoromethane	110		110		62-150	0		20	
1,2-Dichloroethane	110		110		70-130	0		20	
1,1,1-Trichloroethane	99		100		67-130	1		20	
Bromodichloromethane	99		100		67-130	1		20	
trans-1,3-Dichloropropene	77		80		70-130	4		20	
cis-1,3-Dichloropropene	84		86		70-130	2		20	
1,1-Dichloropropene	100		100		70-130	0		20	
Bromoform	75		77		54-136	3		20	
1,1,2,2-Tetrachloroethane	91		94		67-130	3		20	
Benzene	100		100		70-130	0		25	
Toluene	100		100		70-130	0		25	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1639882

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-02 Batch:	WG960976-3	WG960976-4			
Ethylbenzene	110		110		70-130	0		20
Chloromethane	96		93		64-130	3		20
Bromomethane	150	Q	140	Q	39-139	7		20
Vinyl chloride	110		110		55-140	0		20
Chloroethane	100		100		55-138	0		20
1,1-Dichloroethene	100		99		61-145	1		25
trans-1,2-Dichloroethene	100		100		70-130	0		20
Trichloroethene	100		100		70-130	0		25
1,2-Dichlorobenzene	100		99		70-130	1		20
1,3-Dichlorobenzene	100		100		70-130	0		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	86		89		63-130	3		20
p/m-Xylene	110		110		70-130	0		20
o-Xylene	105		110		70-130	5		20
cis-1,2-Dichloroethene	100		100		70-130	0		20
Dibromomethane	99		100		70-130	1		20
1,4-Dichlorobutane	97		100		70-130	3		20
Iodomethane	66	Q	72		70-130	9		20
1,2,3-Trichloropropane	92		92		64-130	0		20
Styrene	110		110		70-130	0		20
Dichlorodifluoromethane	120		120		36-147	0		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1639882

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-02 Batch: \	WG960976-3 V	VG960976-4			
Acetone	130		93		58-148	33	Q	20
Carbon disulfide	96		90		51-130	6		20
2-Butanone	100		97		63-138	3		20
Vinyl acetate	91		97		70-130	6		20
4-Methyl-2-pentanone	81		82		59-130	1		20
2-Hexanone	94		95		57-130	1		20
Ethyl methacrylate	81		89		70-130	9		20
Acrolein	83		89		70-130	7		20
Acrylonitrile	100		100		70-130	0		20
Bromochloromethane	100		100		70-130	0		20
Tetrahydrofuran	110		100		58-130	10		20
2,2-Dichloropropane	73		73		63-133	0		20
1,2-Dibromoethane	90		94		70-130	4		20
1,3-Dichloropropane	94		97		70-130	3		20
1,1,1,2-Tetrachloroethane	93		94		64-130	1		20
Bromobenzene	96		98		70-130	2		20
n-Butylbenzene	120		110		53-136	9		20
sec-Butylbenzene	110		110		70-130	0		20
tert-Butylbenzene	110		100		70-130	10		20
o-Chlorotoluene	110		100		70-130	10		20
p-Chlorotoluene	100		100		70-130	0		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1639882

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Wes	tborough Lab Associated	sample(s):	01-02 Batch:	WG960976-3	WG960976-4				
1,2-Dibromo-3-chloropropane	70		71		41-144	1		20	
Hexachlorobutadiene	99		97		63-130	2		20	
Isopropylbenzene	110		110		70-130	0		20	
p-Isopropyltoluene	110		110		70-130	0		20	
Naphthalene	92		92		70-130	0		20	
n-Propylbenzene	110		110		69-130	0		20	
1,2,3-Trichlorobenzene	85		87		70-130	2		20	
1,2,4-Trichlorobenzene	87		87		70-130	0		20	
1,3,5-Trimethylbenzene	110		110		64-130	0		20	
1,3,5-Trichlorobenzene	98		97		70-130	1		20	
1,2,4-Trimethylbenzene	110		110		70-130	0		20	
trans-1,4-Dichloro-2-butene	86		90		70-130	5		20	
Halothane	96		97		70-130	1		20	
Ethyl ether	100		96		59-134	4		20	
Methyl Acetate	100		110		70-130	10		20	
Ethyl Acetate	120		120		70-130	0		20	
Isopropyl Ether	120		120		70-130	0		20	
Cyclohexane	110		110		70-130	0		20	
Tert-Butyl Alcohol	60	Q	72		70-130	18		20	
Ethyl-Tert-Butyl-Ether	85		86		70-130	1		20	
Tertiary-Amyl Methyl Ether	82		82		66-130	0		20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1639882

Report Date:

12/15/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02 Batch:	WG960976-3	WG960976-4			
1,4-Dioxane	100		114		56-162	13		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	110		110		70-130	0		20
Methyl cyclohexane	110		110		70-130	0		20
p-Diethylbenzene	120		120		70-130	0		20
4-Ethyltoluene	110		110		70-130	0		20
1,2,4,5-Tetramethylbenzene	110		110		70-130	0		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery Qual		%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	114		115		70-130	
Toluene-d8	102		102		70-130	
4-Bromofluorobenzene	99		99		70-130	
Dibromofluoromethane	102		103		70-130	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1639882

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s): 03	3 Batch: WG	961283-3	WG961283-4			
Methylene chloride	94		90		70-130	4	20	
1,1-Dichloroethane	94		92		70-130	2	20	
Chloroform	95		91		70-130	4	20	
Carbon tetrachloride	98		95		63-132	3	20	
1,2-Dichloropropane	89		87		70-130	2	20	
Dibromochloromethane	90		87		63-130	3	20	
1,1,2-Trichloroethane	84		84		70-130	0	20	
2-Chloroethylvinyl ether	38	Q	40	Q	70-130	5	20	
Tetrachloroethene	97		93		70-130	4	20	
Chlorobenzene	92		88		75-130	4	25	
Trichlorofluoromethane	94		90		62-150	4	20	
1,2-Dichloroethane	95		92		70-130	3	20	
1,1,1-Trichloroethane	98		96		67-130	2	20	
Bromodichloromethane	92		90		67-130	2	20	
trans-1,3-Dichloropropene	81		79		70-130	3	20	
cis-1,3-Dichloropropene	92		90		70-130	2	20	
1,1-Dichloropropene	97		95		70-130	2	20	
Bromoform	84		81		54-136	4	20	
1,1,2,2-Tetrachloroethane	84		82		67-130	2	20	
Benzene	95		92		70-130	3	25	
Toluene	92		89		70-130	3	25	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1639882

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (3 Batch: WG	961283-3	WG961283-4		
Ethylbenzene	96		92		70-130	4	20
Chloromethane	84		77		64-130	9	20
Bromomethane	64		69		39-139	8	20
Vinyl chloride	90		85		55-140	6	20
Chloroethane	100		95		55-138	5	20
1,1-Dichloroethene	97		94		61-145	3	25
trans-1,2-Dichloroethene	96		93		70-130	3	20
Trichloroethene	94		91		70-130	3	25
1,2-Dichlorobenzene	91		88		70-130	3	20
1,3-Dichlorobenzene	93		90		70-130	3	20
1,4-Dichlorobenzene	91		87		70-130	4	20
Methyl tert butyl ether	95		93		63-130	2	20
p/m-Xylene	100		95		70-130	5	20
o-Xylene	95		95		70-130	0	20
cis-1,2-Dichloroethene	95		92		70-130	3	20
Dibromomethane	90		88		70-130	2	20
1,4-Dichlorobutane	86		84		70-130	2	20
lodomethane	41	Q	45	Q	70-130	9	20
1,2,3-Trichloropropane	88		85		64-130	3	20
Styrene	95		95		70-130	0	20
Dichlorodifluoromethane	98		96		36-147	2	20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1639882

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (3 Batch: WG	961283-3	WG961283-4			
Acetone	100		81		58-148	21	Q	20
Carbon disulfide	98		93		51-130	5		20
2-Butanone	87		80		63-138	8		20
Vinyl acetate	91		89		70-130	2		20
4-Methyl-2-pentanone	70		70		59-130	0		20
2-Hexanone	65		63		57-130	3		20
Ethyl methacrylate	71		73		70-130	3		20
Acrolein	81		80		70-130	1		20
Acrylonitrile	86		86		70-130	0		20
Bromochloromethane	95		93		70-130	2		20
Tetrahydrofuran	84		81		58-130	4		20
2,2-Dichloropropane	110		100		63-133	10		20
1,2-Dibromoethane	89		88		70-130	1		20
1,3-Dichloropropane	89		87		70-130	2		20
1,1,1,2-Tetrachloroethane	93		88		64-130	6		20
Bromobenzene	92		89		70-130	3		20
n-Butylbenzene	99		93		53-136	6		20
sec-Butylbenzene	100		97		70-130	3		20
tert-Butylbenzene	99		94		70-130	5		20
o-Chlorotoluene	98		81		70-130	19		20
p-Chlorotoluene	97		92		70-130	5		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1639882

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	03 Batch: WG9	61283-3	WG961283-4		
1,2-Dibromo-3-chloropropane	68		69		41-144	1	20
Hexachlorobutadiene	96		91		63-130	5	20
Isopropylbenzene	100		98		70-130	2	20
p-Isopropyltoluene	91		86		70-130	6	20
Naphthalene	62	Q	66	Q	70-130	6	20
n-Propylbenzene	100		98		69-130	2	20
1,2,3-Trichlorobenzene	74		78		70-130	5	20
1,2,4-Trichlorobenzene	82		82		70-130	0	20
1,3,5-Trimethylbenzene	100		95		64-130	5	20
1,3,5-Trichlorobenzene	96		92		70-130	4	20
1,2,4-Trimethylbenzene	100		96		70-130	4	20
trans-1,4-Dichloro-2-butene	68	Q	66	Q	70-130	3	20
Halothane	92		89		70-130	3	20
Ethyl ether	89		86		59-134	3	20
Methyl Acetate	84		85		70-130	1	20
Ethyl Acetate	87		90		70-130	3	20
Isopropyl Ether	96		94		70-130	2	20
Cyclohexane	100		99		70-130	1	20
Tert-Butyl Alcohol	90		96		70-130	6	20
Ethyl-Tert-Butyl-Ether	98		97		70-130	1	20
Tertiary-Amyl Methyl Ether	88		87		66-130	1	20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1639882

Report Date:

12/15/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 03	Batch: WG	961283-3	WG961283-4		
1,4-Dioxane	98		114		56-162	15	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	100		100		70-130	0	20
Methyl cyclohexane	99		96		70-130	3	20
p-Diethylbenzene	99		92		70-130	7	20
4-Ethyltoluene	110		100		70-130	10	20
1,2,4,5-Tetramethylbenzene	95		91		70-130	4	20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	104		104		70-130	
Toluene-d8	100		100		70-130	
4-Bromofluorobenzene	100		101		70-130	
Dibromofluoromethane	102		103		70-130	

METALS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1639882

 Project Number:
 01.0015522.16
 Report Date:
 12/15/16

SAMPLE RESULTS

Lab ID: L1639882-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 12/08/16 10:56

Date Received: 12/08/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0325		mg/l	0.0010		1	12/14/16 06:00	12/14/16 11:14	EPA 3005A	1,6020A	AM
Iron, Total	0.765		mg/l	0.050		1	12/14/16 06:00	12/14/16 19:49	EPA 3005A	19,200.7	PS
Lead, Total	0.0044		mg/l	0.0005		1	12/14/16 06:00	12/14/16 11:14	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	12/14/16 06:00	12/14/16 11:14	EPA 3005A	1,6020A	AM
Zinc, Total	0.0562		mg/l	0.0100		1	12/14/16 06:00	12/14/16 11:14	EPA 3005A	1,6020A	AM

 Project Name:
 HP WALTHAM
 Lab Number:
 L1639882

 Project Number:
 01.0015522.16
 Report Date:
 12/15/16

SAMPLE RESULTS

Lab ID: L1639882-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 12/08/16 10:30

Date Received: 12/08/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0033		mg/l	0.0010		1	12/14/16 06:00	12/14/16 11:17	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	12/14/16 06:00	12/14/16 18:33	EPA 3005A	19,200.7	PS
Lead, Total	0.0012		mg/l	0.0005		1	12/14/16 06:00	12/14/16 11:17	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	12/14/16 06:00	12/14/16 11:17	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.0100		1	12/14/16 06:00	12/14/16 11:17	EPA 3005A	1,6020A	AM

L1639882

Project Name:HP WALTHAMLab Number:Project Number:01.0015522.16Report Date:

Report Date: 12/15/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01,03 E	Batch: Wo	G96095	0-1				
Iron, Total	ND	mg/l	0.050		1	12/14/16 06:00	12/14/16 17:40	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter Total Metals - Mansfiel	Result Qualifier	Units	RL atch: W0	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Copper, Total	ND	mg/l	0.0010		1	12/14/16 06:00	12/14/16 10:56	1,6020A	AM
Lead, Total	ND	mg/l	0.0005		1	12/14/16 06:00	12/14/16 10:56	1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	12/14/16 06:00	12/14/16 10:56	1,6020A	AM
Zinc, Total	ND	mg/l	0.0100		1	12/14/16 06:00	12/14/16 10:56	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1639882

Report Date:

12/15/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01,03 Bato	h: WG960	0950-2					
Iron, Total	102		-		85-115	-		
otal Metals - Mansfield Lab Associated sample	(s): 01,03 Bato	h: WG960	0952-2					
Copper, Total	106		-		80-120	-		
Lead, Total	104		-		80-120	-		
Selenium, Total	95		-		80-120	-		
Zinc, Total	92		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1639882

Report Date: 12/15/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
otal Metals - Mansfield Lab	Associated sam	nple(s): 01,03	QC Bat	ch ID: WG9609	950-3	QC Samp	le: L1639882-03	Client ID: EFF		
Iron, Total	ND	1	0.935	94		-	-	75-125	-	20
otal Metals - Mansfield Lab	Associated sam	nple(s): 01,03	QC Bat	ch ID: WG9609	950-7	QC Samp	le: L1640318-01	Client ID: MS	Sample	
Iron, Total	0.495	1	1.42	92		-	-	75-125	-	20
otal Metals - Mansfield Lab	Associated san	nple(s): 01,03	QC Bat	ch ID: WG9609	952-3	QC Samp	le: L1640318-01	Client ID: MS	Sample	
Copper, Total	0.0027	0.25	0.2762	109		-	-	75-125	-	20
Lead, Total	ND	0.51	0.5223	102		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.134	112		-	-	75-125	-	20
Zinc, Total	ND	0.5	0.4999	100		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1639882

Report Date:

12/15/16

Parameter	Native Sample		Duplicate Sample		RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID:	WG960950-4	QC Sample:	L1639882-03	Client ID:	EFF	
Iron, Total	ND		0.066	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID:	WG960950-8	QC Sample:	L1640318-01	Client ID:	DUP Sample)
Iron, Total	0.495		0.510	mg/l	3		20
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID:	WG960952-4	QC Sample:	L1640318-01	Client ID:	DUP Sample)
Copper, Total	0.0027		0.0030	mg/l	10		20
Lead, Total	ND		ND	mg/l	NC		20
Selenium, Total	ND		ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1639882

 Project Number:
 01.0015522.16
 Report Date:
 12/15/16

SAMPLE RESULTS

Lab ID: L1639882-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 12/08/16 10:56

Date Received: 12/08/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared			Analyst
General Chemistry - We	stborough Lab)								
Chloride	500		mg/l	10		10	-	12/10/16 11:04	1,9251	MR

 Project Name:
 HP WALTHAM
 Lab Number:
 L1639882

 Project Number:
 01.0015522.16
 Report Date:
 12/15/16

SAMPLE RESULTS

Lab ID: L1639882-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 12/08/16 10:30

Date Received: 12/08/16
Field Prep: Not Specified

Analytical Method **Dilution** Date Date Factor Prepared Analyzed Result Qualifier Units RL MDL **Parameter** Analyst General Chemistry - Westborough Lab Chloride mg/l 10 10 12/10/16 11:06 1,9251 MR

Project Name: HP WALTHAM Lab Number: L1639882

Project Number: 01.0015522.16 **Report Date:** 12/15/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	,03 Ba	itch: W	G959916-1				
Chloride	ND	ma/l	1.0		1	_	12/10/16 09:45	1.9251	MR

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1639882

Report Date:

12/15/16

Parameter	LCS %Recovery Qua	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01,0	3 Batch: WG9599	16-2					
Chloride	97	-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1639882

Report Date:

12/15/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD Q	RPD _{ual} Limits
General Chemistry - Westboroug	gh Lab Asso	ciated samp	ole(s): 01,03	QC Batch ID	D: WG959916-4	QC Sample: L1639	9879-03 Clien	t ID: MS	Sample
Chloride	260	20	270	50	Q -	-	58-140	-	7

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1639882

Report Date:

12/15/16

Parameter	Native Sam	ple D	uplicate Samp	le Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	Associated sample(s): 01,03	QC Batch ID:	WG959916-3	QC Sample:	L1639879-03	Client ID:	DUP Sample	
Chloride	260		260	mg/l	0		7	

Project Name:

Project Number:

HP WALTHAM

01.0015522.16

Project Name:HP WALTHAMLab Number: L1639882Project Number:01.0015522.16Report Date: 12/15/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg Ċ	Pres	Seal	Analysis(*)
L1639882-01A	Vial HCl preserved	Α	N/A	2.8	Υ	Absent	8260(14)
L1639882-01B	Vial HCl preserved	Α	N/A	2.8	Υ	Absent	8260(14)
L1639882-01C	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	8260(14)
L1639882-01D	Plastic 60ml unpreserved	Α	7	2.8	Υ	Absent	CL-9251(28)
L1639882-01E	Plastic 250ml HNO3 preserved	Α	<2	2.8	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1639882-02A	Vial HCl preserved	Α	N/A	2.8	Υ	Absent	8260(14)
L1639882-02B	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	8260(14)
L1639882-02C	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	8260(14)
L1639882-03A	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	8260(14)
L1639882-03B	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	8260(14)
L1639882-03C	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	8260(14)
L1639882-03D	Plastic 60ml unpreserved	Α	7	2.8	Υ	Absent	CL-9251(28)
L1639882-03E	Plastic 250ml HNO3 preserved	A	<2	2.8	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)

 Project Name:
 HP WALTHAM
 Lab Number:
 L1639882

 Project Number:
 01.0015522.16
 Report Date:
 12/15/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1639882

 Project Number:
 01.0015522.16
 Report Date:
 12/15/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1639882

 Project Number:
 01.0015522.16
 Report Date:
 12/15/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Page 1 of 1

Published Date: 8/5/2016 11:25:56 AM

ID No.:17873

Revision 7

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	CHAIN	OF CUSTO	DY	PAGE	_OF	- Date	Rec'd in	Lab: 12	18116			ALPH	IA Job #:	LJ63988	2
8 Walkup Driv	ve 320 Forbes Blvd	Project Inform				Rep	ort Infor	mation -	Data De	liverab			g Informat		
Westboro, MA Tel: 508-898-	A 01581 Mansfield, MA 02048	Project Name: Project Location:	FP W	altha	Car	ΠA	DEx	Ů EI	MAIL			☐ Same	e as Client in	nfo PO#:	
Client Informat	ion	Project Location:	wa the	con 1	11-	Reg	ulatory I	Requirer	nents &	Pro	ject In	format	ion Requi	rements	
Client: GZ4		Project #: 0/, (015522	,16					nalytical M		SDG2	□ Y	es I No C	T RCP Analytical	Methods
Address: 24d	Vanderbilt Av	Project Manager:				☐ Ye	s 🗆 No G	W1 Stand	ards (Info	Require	d for M	etals & E	EPH with Ta	rgets)	
Nove	wood Mon 0206	ALPHA Quote #	01	4.0/				IPDES RG /Fed Prog					Criteria		
Phone: 781-	Vandrib. 1+ Av word Man 0206 983-1357	Turn-Around	Time		7777		100			11	1	11	11	7 / /	1/4
Email: wdav	Project Information:	Standard Date Due:	□ RUSH (on	ly confirmed if pre-z	approved!)	8260	SVOC: DABN DEZA DEZA BOLI	METALS: DRCRAS DMCP 14 DRCP 15 EPH: DR.	VPH: Changes & Targets C Ranges Only	TPH: DQuant Only	C. F. P. C.	4		SAMPLE Filtration Field Lab to Preservai	do B
ALPHA Lab ID (Lab Use Only)	Sample ID	Date	ollection Time	Sample Matrix	Sampler	, co	SVOC:	METALS EPH: DR	VPH: DR	TPH: DO	C1/5/10			Sample Com	L
39882-01	INF	12/8/1	1056	GL	80	X				X	1				5
92	MID	j	10456	1	1	X				1					3
03	EFF	1	1030an		V	X				2	1				5
Container Type P= Plastic A= Amber glass V= Vial	Preservative A= None B= HCl C= HNO ₃		-		ainer Type	V				P	P				
G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 45 of 45	D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H= Na ₂ S ₂ O ₃ I= Ascorbic Acid J= NH ₄ CI K= Zn Acetate O= Other	Belinguished By		Date (2/8/1)	e/Time 6 1247	145	Rec	ceived By:	are	12/	Date/T	ime 1387	Alpha's Te See rever	es submitted are s erms and Conditio se side)1-01 (rev. 12-Mar-2012	ons.

ANALYTICAL REPORT

Lab Number: L1701299

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.16

Report Date: 01/20/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1701299 **Report Date:** 01/20/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1701299-01	INF	WATER	WALTHAM, MA	01/13/17 10:15	01/13/17
L1701299-02	MID	WATER	WALTHAM, MA	01/13/17 10:20	01/13/17
L1701299-03	EFF	WATER	WALTHAM, MA	01/13/17 10:25	01/13/17

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

Case Narrative (continued)

Report Submission

The project number was provided by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/20/17

Civilin Walker Cristin Walker

ORGANICS

VOLATILES

Project Name: Lab Number: HP WALTHAM L1701299

Project Number: Report Date: 01.0015522.16 01/20/17

SAMPLE RESULTS

Lab ID: L1701299-01 D

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 01/17/17 12:15

Analyst: NL

Date Collected:	01/13/17	10:15

Date Received: 01/13/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	65		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
trans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
trans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	9300		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

100

100

Project Name: HP WALTHAM Lab Number: L1701299

Project Number: 01.0015522.16 **Report Date:** 01/20/17

SAMPLE RESULTS

Lab ID: L1701299-01 D Date Collected: 01/13/17 10:15

ND

ND

Client ID: Date Received: 01/13/17
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab 100 Methyl tert butyl ether ND 100 ug/l ND 100 p/m-Xylene ug/l 100 ND 100 o-Xylene ug/l 100 -cis-1,2-Dichloroethene ND 50 100 ug/l

ug/l

ug/l

500

250

--

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	88	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	103	70-130

Dichlorodifluoromethane

Naphthalene

Project Name: HP WALTHAM

Project Number: 01.0015522.16

SAMPLE RESULTS

Lab Number: L1701299

Report Date: 01/20/17

Lab ID: L1701299-02

Client ID: MID

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 01/17/17 12:47

Analyst: NL Date Collected: 01/13/17 10:20 Date Received: 01/13/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
Methylene chloride	ND		ug/l	3.0		1	
1,1-Dichloroethane	ND		ug/l	0.75		1	
Chloroform	ND		ug/l	0.75		1	
Carbon tetrachloride	ND		ug/l	0.50		1	
1,2-Dichloropropane	ND		ug/l	1.8		1	
Dibromochloromethane	ND		ug/l	0.50		1	
1,1,2-Trichloroethane	ND		ug/l	0.75		1	
Tetrachloroethene	ND		ug/l	0.50		1	
Chlorobenzene	ND		ug/l	0.50		1	
Trichlorofluoromethane	ND		ug/l	2.5		1	
1,2-Dichloroethane	ND		ug/l	0.50		1	
1,1,1-Trichloroethane	ND		ug/l	0.50		1	
Bromodichloromethane	ND		ug/l	0.50		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	0.75		1	
Ethylbenzene	ND		ug/l	0.50		1	
Chloromethane	ND		ug/l	2.5		1	
Bromomethane	ND		ug/l	1.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	0.50		1	
trans-1,2-Dichloroethene	ND		ug/l	0.75		1	
Trichloroethene	1.1		ug/l	0.50		1	
1,2-Dichlorobenzene	ND		ug/l	2.5		1	
1,3-Dichlorobenzene	ND		ug/l	2.5		1	
1,4-Dichlorobenzene	ND		ug/l	2.5		1	

Project Name: HP WALTHAM Lab Number: L1701299

Project Number: 01.0015522.16 **Report Date:** 01/20/17

SAMPLE RESULTS

Lab ID: L1701299-02 Date Collected: 01/13/17 10:20

Client ID: Date Received: 01/13/17
Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	85		70-130				
Toluene-d8	97		70-130				
4-Bromofluorobenzene	96		70-130				
Dibromofluoromethane	99		70-130				

Date Received:

Field Prep:

RL

MDL

L1701299

01/13/17

Not Specified

Dilution Factor

Project Name: Lab Number: HP WALTHAM

Project Number: Report Date: 01.0015522.16 01/20/17

Result

SAMPLE RESULTS

Lab ID: L1701299-03 Date Collected: 01/13/17 10:25

Client ID: **EFF**

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 01/17/17 13:19

Analyst: NL

Parameter

Volatile Organics by GC/MS - We	estborough Lab				
Methylene chloride	ND	ug/l	3.0	 1	
1,1-Dichloroethane	ND	ug/l	0.75	 1	
Chloroform	ND	ug/l	0.75	 1	
Carbon tetrachloride	ND	ug/l	0.50	 1	
1,2-Dichloropropane	ND	ug/l	1.8	 1	
Dibromochloromethane	ND	ug/l	0.50	 1	
1,1,2-Trichloroethane	ND	ug/l	0.75	 1	
Tetrachloroethene	ND	ug/l	0.50	 1	
Chlorobenzene	ND	ug/l	0.50	 1	
Trichlorofluoromethane	ND	ug/l	2.5	 1	
1,2-Dichloroethane	ND	ug/l	0.50	 1	
1,1,1-Trichloroethane	ND	ug/l	0.50	 1	
Bromodichloromethane	ND	ug/l	0.50	 1	
trans-1,3-Dichloropropene	ND	ug/l	0.50	 1	
cis-1,3-Dichloropropene	ND	ug/l	0.50	 1	
Bromoform	ND	ug/l	2.0	 1	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	 1	
Benzene	ND	ug/l	0.50	 1	
Toluene	ND	ug/l	0.75	 1	
Ethylbenzene	ND	ug/l	0.50	 1	
Chloromethane	ND	ug/l	2.5	 1	
Bromomethane	ND	ug/l	1.0	 1	
Vinyl chloride	ND	ug/l	1.0	 1	
Chloroethane	ND	ug/l	1.0	 1	
1,1-Dichloroethene	ND	ug/l	0.50	 1	
trans-1,2-Dichloroethene	ND	ug/l	0.75	 1	
Trichloroethene	ND	ug/l	0.50	 1	
1,2-Dichlorobenzene	ND	ug/l	2.5	 1	
1,3-Dichlorobenzene	ND	ug/l	2.5	 1	
1,4-Dichlorobenzene	ND	ug/l	2.5	 1	

Qualifier

Units

Project Name: HP WALTHAM Lab Number: L1701299

Project Number: 01.0015522.16 **Report Date:** 01/20/17

SAMPLE RESULTS

Lab ID: L1701299-03 Date Collected: 01/13/17 10:25

Client ID: EFF Date Received: 01/13/17
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboro	ugh Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	87		70-130
Toluene-d8	98		70-130
4-Bromofluorobenzene	100		70-130
Dibromofluoromethane	101		70-130

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/17/17 11:43

Analyst: PD

Parameter	Result	Qualifier Unit	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lal	b for sample(s):	01-03 Batch:	WG970441-5
Methylene chloride	ND	ug,	/I 3.0	
1,1-Dichloroethane	ND	ug,	/I 0.75	
Chloroform	ND	ug,	/I 0.75	
Carbon tetrachloride	ND	ug,	/I 0.50	
1,2-Dichloropropane	ND	ug,	/I 1.8	
Dibromochloromethane	ND	ug,	/I 0.50	
1,1,2-Trichloroethane	ND	ug,	/I 0.75	
Tetrachloroethene	ND	ug,	/I 0.50	
Chlorobenzene	ND	ug,	/I 0.50	
Trichlorofluoromethane	ND	ug,	/I 2.5	
1,2-Dichloroethane	ND	ug,	/I 0.50	
1,1,1-Trichloroethane	ND	ug,	/I 0.50	
Bromodichloromethane	ND	ug,	/I 0.50	
trans-1,3-Dichloropropene	ND	ug,	/I 0.50	
cis-1,3-Dichloropropene	ND	ug,	/I 0.50	
Bromoform	ND	ug,	/I 2.0	
1,1,2,2-Tetrachloroethane	ND	ug,	/I 0.50	
Benzene	ND	ug,	/I 0.50	
Toluene	ND	ug,	/I 0.75	
Ethylbenzene	ND	ug,	/I 0.50	
Chloromethane	ND	ug,	/I 2.5	
Bromomethane	ND	ug,	/I 1.0	
Vinyl chloride	ND	ug,	/I 1.0	
Chloroethane	ND	ug,	/I 1.0	
1,1-Dichloroethene	ND	ug,	/I 0.50	
trans-1,2-Dichloroethene	ND	ug	/I 0.75	
Trichloroethene	ND	ug	/I 0.50	
1,2-Dichlorobenzene	ND	ug	/I 2.5	
1,3-Dichlorobenzene	ND	ug	/I 2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/17/17 11:43

Analyst: PD

Parameter	Result	Qualifier Uni	its	RL	MDL
Volatile Organics by GC/MS - West	borough Lat	o for sample(s)	: 01-03	Batch:	WG970441-5
1,4-Dichlorobenzene	ND	uç	g/l	2.5	
Methyl tert butyl ether	ND	uç	g/l	1.0	
p/m-Xylene	ND	uç	g/l	1.0	
o-Xylene	ND	uç	g/l	1.0	
cis-1,2-Dichloroethene	ND	uç	g/l	0.50	
Dichlorodifluoromethane	ND	uç	g/l	5.0	
Naphthalene	ND	uç	g/l	2.5	

			Acceptance					
Surrogate	%Recovery	Qualifier	Criteria					
1,2-Dichloroethane-d4	86		70-130					
Toluene-d8	99		70-130					
4-Bromofluorobenzene	100		70-130					
Dibromofluoromethane	99		70-130					

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1701299

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch: W	/G970441-3	WG970441-4				
Methylene chloride	100		100		70-130	0		20	
1,1-Dichloroethane	88		89		70-130	1		20	
Chloroform	92		92		70-130	0		20	
Carbon tetrachloride	90		92		63-132	2		20	
1,2-Dichloropropane	87		87		70-130	0		20	
Dibromochloromethane	100		100		63-130	0		20	
1,1,2-Trichloroethane	98		97		70-130	1		20	
2-Chloroethylvinyl ether	23	Q	35	Q	70-130	41	Q	20	
Tetrachloroethene	100		100		70-130	0		20	
Chlorobenzene	100		100		75-130	0		25	
Trichlorofluoromethane	93		96		62-150	3		20	
1,2-Dichloroethane	84		84		70-130	0		20	
1,1,1-Trichloroethane	87		87		67-130	0		20	
Bromodichloromethane	93		93		67-130	0		20	
trans-1,3-Dichloropropene	83		83		70-130	0		20	
cis-1,3-Dichloropropene	87		89		70-130	2		20	
1,1-Dichloropropene	85		86		70-130	1		20	
Bromoform	110		110		54-136	0		20	
1,1,2,2-Tetrachloroethane	95		95		67-130	0		20	
Benzene	95		98		70-130	3		25	
Toluene	97		100		70-130	3		25	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1701299

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG970441-3	WG970441-4				
Ethylbenzene	93		96		70-130	3		20	
Chloromethane	89		92		64-130	3		20	
Bromomethane	150	Q	140	Q	39-139	7		20	
Vinyl chloride	90		92		55-140	2		20	
Chloroethane	96		100		55-138	4		20	
1,1-Dichloroethene	99		100		61-145	1		25	
trans-1,2-Dichloroethene	100		100		70-130	0		20	
Trichloroethene	96		96		70-130	0		25	
1,2-Dichlorobenzene	100		110		70-130	10		20	
1,3-Dichlorobenzene	100		110		70-130	10		20	
1,4-Dichlorobenzene	100		110		70-130	10		20	
Methyl tert butyl ether	84		84		63-130	0		20	
p/m-Xylene	100		105		70-130	5		20	
o-Xylene	100		105		70-130	5		20	
cis-1,2-Dichloroethene	100		100		70-130	0		20	
Dibromomethane	98		98		70-130	0		20	
1,4-Dichlorobutane	86		87		70-130	1		20	
Iodomethane	72		99		70-130	32	Q	20	
1,2,3-Trichloropropane	87		88		64-130	1		20	
Styrene	105		110		70-130	5		20	
Dichlorodifluoromethane	77		77		36-147	0		20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1701299

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-03 Batch:	WG970441-3	WG970441-4		
Acetone	87		86		58-148	1	20
Carbon disulfide	87		86		51-130	1	20
2-Butanone	83		88		63-138	6	20
Vinyl acetate	69	Q	71		70-130	3	20
4-Methyl-2-pentanone	79		80		59-130	1	20
2-Hexanone	70		70		57-130	0	20
Ethyl methacrylate	80		83		70-130	4	20
Acrolein	63	Q	69	Q	70-130	9	20
Acrylonitrile	92		95		70-130	3	20
Bromochloromethane	120		120		70-130	0	20
Tetrahydrofuran	81		82		58-130	1	20
2,2-Dichloropropane	79		80		63-133	1	20
1,2-Dibromoethane	93		97		70-130	4	20
1,3-Dichloropropane	89		89		70-130	0	20
1,1,1,2-Tetrachloroethane	100		100		64-130	0	20
Bromobenzene	110		110		70-130	0	20
n-Butylbenzene	94		95		53-136	1	20
sec-Butylbenzene	97		98		70-130	1	20
tert-Butylbenzene	99		100		70-130	1	20
o-Chlorotoluene	98		100		70-130	2	20
p-Chlorotoluene	97		98		70-130	1	20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1701299

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG970441-3	WG970441-4			
1,2-Dibromo-3-chloropropane	86		86		41-144	0	20	
Hexachlorobutadiene	85		91		63-130	7	20	
Isopropylbenzene	99		100		70-130	1	20	
p-Isopropyltoluene	100		100		70-130	0	20	
Naphthalene	79		82		70-130	4	20	
n-Propylbenzene	97		97		69-130	0	20	
1,2,3-Trichlorobenzene	83		85		70-130	2	20	
1,2,4-Trichlorobenzene	87		88		70-130	1	20	
1,3,5-Trimethylbenzene	100		100		64-130	0	20	
1,3,5-Trichlorobenzene	100		100		70-130	0	20	
1,2,4-Trimethylbenzene	100		100		70-130	0	20	
trans-1,4-Dichloro-2-butene	82		83		70-130	1	20	
Halothane	100		100		70-130	0	20	
Ethyl ether	120		110		59-134	9	20	
Methyl Acetate	100		100		70-130	0	20	
Ethyl Acetate	83		87		70-130	5	20	
Isopropyl Ether	86		86		70-130	0	20	
Cyclohexane	84		87		70-130	4	20	
Tert-Butyl Alcohol	90		94		70-130	4	20	
Ethyl-Tert-Butyl-Ether	82		82		70-130	0	20	
Tertiary-Amyl Methyl Ether	80		83		66-130	4	20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1701299

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG970441-3	WG970441-4				
1,4-Dioxane	104		106		56-162	2		20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	100		100		70-130	0		20	
Methyl cyclohexane	97		95		70-130	2		20	
p-Diethylbenzene	93		97		70-130	4		20	
4-Ethyltoluene	100		110		70-130	10		20	
1,2,4,5-Tetramethylbenzene	110		110		70-130	0		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual %Recovery		Qual	Criteria	
1,2-Dichloroethane-d4	84		82		70-130	
Toluene-d8	98		98		70-130	
4-Bromofluorobenzene	95		95		70-130	
Dibromofluoromethane	103		101		70-130	

METALS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

SAMPLE RESULTS

Lab ID: L1701299-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 01/13/17 10:15

Date Received: 01/13/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Total Motale Mai	ionola Lab										
Copper, Total	0.0514		mg/l	0.0010		1	01/17/17 12:2	22 01/18/17 14:51	EPA 3005A	1,6020A	AM
Iron, Total	3.69		mg/l	0.050		1	01/17/17 12:2	22 01/17/17 22:22	EPA 3005A	19,200.7	AB
Lead, Total	0.0253		mg/l	0.0010		1	01/17/17 12:2	22 01/18/17 14:51	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	01/17/17 12:2	22 01/18/17 14:51	EPA 3005A	1,6020A	AM
Zinc, Total	0.0255		mg/l	0.0100		1	01/17/17 12:2	22 01/18/17 14:51	EPA 3005A	1,6020A	AM

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

SAMPLE RESULTS

Lab ID: L1701299-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 01/13/17 10:25

Date Received: 01/13/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0034		mg/l	0.0010		1	01/17/17 12:22	01/18/17 14:57	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	01/17/17 12:22	01/17/17 22:59	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.0010		1	01/17/17 12:22	01/18/17 14:57	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	01/17/17 12:22	01/18/17 14:57	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.0100		1	01/17/17 12:22	01/18/17 14:57	EPA 3005A	1,6020A	AM

1,6020A

AM

01/17/17 12:22 01/18/17 12:10

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01,03 B	atch: WO	397024	2-1				
Copper, Total	ND	mg/l	0.0010		1	01/17/17 12:22	01/18/17 12:10	1,6020A	AM
Lead, Total	ND	mg/l	0.0010		1	01/17/17 12:22	01/18/17 12:10	1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	01/17/17 12:22	01/18/17 12:10	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

0.0100

mg/l

ND

Zinc, Total

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	d Lab for sample(s):	01,03 B	atch: Wo	G97024	1 7-1				
Iron, Total	ND	mg/l	0.050		1	01/17/17 12:22	01/17/17 22:01	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1701299

Report Date:

01/20/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Fotal Metals - Mansfield Lab Associated sample	e(s): 01,03 Bato	ch: WG970)242-2					
Copper, Total	108		-		80-120	-		
Lead, Total	115		-		80-120	-		
Selenium, Total	110		-		80-120	-		
Zinc, Total	105		-		80-120	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01,03 Bato	ch: WG970)247-2					
Iron, Total	85		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number: L1701299

Report Date: 01/20/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab A	Associated sam	nple(s): 01,03	QC Bat	ch ID: WG970	242-3	QC Samp	le: L1701299-01	Client ID: INF			
Copper, Total	0.0514	0.25	0.3320	112		-	-	75-125	-		20
Lead, Total	0.0253	0.51	0.6016	113		-	-	75-125	-		20
Selenium, Total	ND	0.12	0.148	123		-	-	75-125	-		20
Zinc, Total	0.0255	0.5	0.5683	108		-	-	75-125	-		20
Γotal Metals - Mansfield Lab Α	Associated sam	nple(s): 01,03	QC Bat	ch ID: WG970	247-3	QC Samp	le: L1701299-01	Client ID: INF			
Iron, Total	3.69	1	4.49	80		-	-	75-125	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1701299

Report Date:

01/20/17

Parameter	Native Sample D	Ouplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,03	QC Batch ID: WG97024	42-4 QC Sample:	L1701299-01	Client ID:	INF	
Copper, Total	0.0514	0.0522	mg/l	1		20
Lead, Total	0.0253	0.0269	mg/l	6		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.0255	0.0264	mg/l	4		20
Total Metals - Mansfield Lab Associated sample(s): 01,03	QC Batch ID: WG97024	47-4 QC Sample:	L1701299-01	Client ID:	INF	
Iron, Total	3.69	3.77	mg/l	2		20

INORGANICS & MISCELLANEOUS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

SAMPLE RESULTS

Lab ID: L1701299-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 01/13/17 10:15

Date Received: 01/13/17

Field Prep: Not Specified

Parameter	Result Qualif	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab								
Chloride	540	mg/l	10		10	-	01/17/17 20:34	1,9251	ML

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

SAMPLE RESULTS

Lab ID: L1701299-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 01/13/17 10:25

Date Received: 01/13/17
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Chloride	550		mg/l	10		10	-	01/17/17 20:37	1,9251	ML

Project Name: HP WALTHAM
Project Number: 01.0015522.16

Lab Number: L1701299

Report Date: 01/20/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for sam	ple(s): 01	,03 Ba	itch: Wo	G970402-1				
Chloride	ND	mg/l	1.0		1	-	01/17/17 20:49	1,9251	ML

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM Project Number: 01.0015522.16

Lab Number: L1701299

Report Date:

01/20/17

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01,03	Batch: WG970402-	-2					
Chloride	103	-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Lab Number:

L1701299

Report Date:

01/20/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD Q	RPD ual Limits
General Chemistry - Westbo	orough Lab Asso	ciated samp	ole(s): 01,03	QC Batch ID	D: WG970402-4	QC Sample: L170	1412-01 Clier	nt ID: MS	Sample
Chloride	2000	20	2000	0	Q -	-	58-140	-	7

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1701299

Report Date:

01/20/17

Parameter	Native Sam	ple D	uplicate Samp	le Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab As	ssociated sample(s): 01,03	QC Batch ID:	WG970402-3	QC Sample:	L1701412-01	Client ID:	DUP Sample	
Chloride	2000		2000	mg/l	0		7	

Project Name:

Project Number:

HP WALTHAM

01.0015522.16

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1701299-01A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	8260(14)
L1701299-01B	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	8260(14)
L1701299-01C	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	8260(14)
L1701299-01D	Plastic 250ml HNO3 preserved	Α	<2	4.0	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1701299-01E	Plastic 60ml unpreserved	Α	7	4.0	Υ	Absent	CL-9251(28)
L1701299-02A	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	8260(14)
L1701299-02B	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	8260(14)
L1701299-02C	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	8260(14)
L1701299-03A	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	8260(14)
L1701299-03B	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	8260(14)
L1701299-03C	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	8260(14)
L1701299-03D	Plastic 250ml HNO3 preserved	Α	<2	4.0	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1701299-03E	Plastic 60ml unpreserved	Α	7	4.0	Υ	Absent	CL-9251(28)

Project Name:HP WALTHAMLab Number:L1701299Project Number:01.0015522.16Report Date:01/20/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA	CHAIN OF	CUSTODY	PAGE OF	Date Rec'd in Lab:	1/13/17	ALPHA Job #: [/	701299
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92	320 Forbes Blvd 1581 Mansfield, MA 02048 20 Tel: 508-822-9300	Project Information Project Name:	Dalthom	Company of the Compan	on - Data Deliverables	Billing Information Same as Client info	PO #:
	a VorderbH Ave	Project Location: Wald Project #: 15530 Project Manager: John ALPHA Quote #: Turn-Around Time Date Due:	han, MA 16 Calbert confirmed if pre-approved!)	☐ Yes ☐ No MA MC ☐ Yes ☐ No Matrix S ☐ Yes ☐ No GW1 S ☐ Yes ☐ No NPDES ☐ Other State /Fed I	P Analytical Methods Spike Required on this SDG' tandards (Info Required for I S RGP Program Viluage Duly Viluag	Criteria	SAMPLE INFO Filtration Field Lab to do
ALPHA Lab ID (Lab Use Only) U/J99 _ () O-	Sample ID INF MIP EFF	Collection Date Time 1/(3/17 10:15 10:25		NETALS:	EPH: CRANGES & Targes	Sa	Lab to do mple Comments 5
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 39 of 39	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H= Na ₂ S ₂ O ₇ I= Ascorbic Ācid J= NH ₄ CI K= Zn Acetate O= Other	Relinquished By:	Container Type Preservative Date/Time	Received And Andrews	By: Date O AAL 1/13/17 1/13/17	/Time 12-32 All samples subject Alpha's Terms at See reverse side FORM NO: 01-01 (rev	Э.

ANALYTICAL REPORT

Lab Number: L1704019

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Report Date: 02/15/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NH (2003), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1704019 **Report Date:** 02/15/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1704019-01	INF	WATER	WALTHAM, MA	02/08/17 12:05	02/08/17
L1704019-02	MID	WATER	WALTHAM, MA	02/08/17 11:55	02/08/17
L1704019-03	EFF	WATER	WALTHAM, MA	02/08/17 11:48	02/08/17

 Project Name:
 HP WALTHAM
 Lab Number:
 L1704019

 Project Number:
 01.0015522.17
 Report Date:
 02/15/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Project Name:
 HP WALTHAM
 Lab Number:
 L1704019

 Project Number:
 01.0015522.17
 Report Date:
 02/15/17

Case Narrative (continued)

Chloride

The Effluent (L1704019-02) result is greater than the Influent (L1704019-01) result. The sample containers were verified as being labeled correctly by the laboratory.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 02/15/17

ORGANICS

VOLATILES

Project Name: HP WALTHAM Lab Number: L1704019

Project Number: 01.0015522.17 **Report Date:** 02/15/17

SAMPLE RESULTS

Lab ID: L1704019-01 D Date Collected: 02/08/17 12:05

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 02/10/17 12:48

Analyst: NL

Date Received: 02/08/17
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	ND		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
trans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
trans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	8100		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

02/08/17 12:05

Date Collected:

Project Name: HP WALTHAM Lab Number: L1704019

Project Number: 01.0015522.17 **Report Date:** 02/15/17

SAMPLE RESULTS

Lab ID: L1704019-01 D

Client ID: INF Date Received: 02/08/17

Sample Location: WALTHAM, MA Field Prep: Not Specified

Result Qualifier Units RI MDI Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
Methyl tert butyl ether	ND		ug/l	100		100	
p/m-Xylene	ND		ug/l	100		100	
o-Xylene	ND		ug/l	100		100	
cis-1,2-Dichloroethene	ND		ug/l	50		100	
Dichlorodifluoromethane	ND		ug/l	500		100	
Naphthalene	ND		ug/l	250		100	

		Acceptance					
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	107		70-130				
Toluene-d8	93		70-130				
4-Bromofluorobenzene	96		70-130				
Dibromofluoromethane	101		70-130				

Project Name: HP WALTHAM

Project Number: 01.0015522.17

SAMPLE RESULTS

L1704019

Lab Number:

Report Date: 02/15/17

Lab ID: L1704019-02

Client ID: MID

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 02/10/17 13:22

Analyst: NL

Date Collected:	02/08/17 11:55
Date Received:	02/08/17
Field Pren:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	9.8		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

1

1

Project Name: HP WALTHAM Lab Number: L1704019

Project Number: 01.0015522.17 **Report Date:** 02/15/17

SAMPLE RESULTS

Lab ID: Date Collected: 02/08/17 11:55

Client ID: MID Date Received: 02/08/17
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	ıgh Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	

ug/l

ug/l

5.0

2.5

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	109		70-130
Toluene-d8	91		70-130
4-Bromofluorobenzene	97		70-130
Dibromofluoromethane	102		70-130

ND

ND

Dichlorodifluoromethane

Naphthalene

02/08/17

Not Specified

Date Received:

Field Prep:

Project Name: HP WALTHAM Lab Number: L1704019

Project Number: 01.0015522.17 **Report Date:** 02/15/17

SAMPLE RESULTS

Lab ID: L1704019-03 Date Collected: 02/08/17 11:48

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 02/10/17 13:57

Analyst: NL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	1.5		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1704019

Project Number: 01.0015522.17 **Report Date:** 02/15/17

SAMPLE RESULTS

Lab ID: L1704019-03 Date Collected: 02/08/17 11:48

Client ID: EFF Date Received: 02/08/17 Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ua/l	2.5		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	107		70-130
Toluene-d8	92		70-130
4-Bromofluorobenzene	96		70-130
Dibromofluoromethane	102		70-130

 Project Name:
 HP WALTHAM
 Lab Number:
 L1704019

 Project Number:
 01.0015522.17
 Report Date:
 02/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/10/17 12:13

Analyst: PD

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-03 Batch:	WG977246-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l		
Chloroform	ND	ug/l		
Carbon tetrachloride	ND	ug/l		
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l		
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1704019

 Project Number:
 01.0015522.17
 Report Date:
 02/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/10/17 12:13

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - W	estborough Lab	for sample(s):	01-03 Batch:	WG977246-5	
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dichlorodifluoromethane	ND	ug/l	5.0		
Naphthalene	ND	ug/l	2.5		

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	102		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1704019

Report Date: 02/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG977246-3	WG977246-4			
Methylene chloride	94		95		70-130	1		20
1,1-Dichloroethane	100		100		70-130	0		20
Chloroform	100		110		70-130	10		20
Carbon tetrachloride	78		82		63-132	5		20
1,2-Dichloropropane	100		100		70-130	0		20
Dibromochloromethane	80		80		63-130	0		20
1,1,2-Trichloroethane	90		92		70-130	2		20
Tetrachloroethene	85		88		70-130	3		20
Chlorobenzene	94		95		75-130	1		25
Trichlorofluoromethane	84		91		62-150	8		20
1,2-Dichloroethane	110		110		70-130	0		20
1,1,1-Trichloroethane	94		98		67-130	4		20
Bromodichloromethane	99		100		67-130	1		20
trans-1,3-Dichloropropene	72		74		70-130	3		20
cis-1,3-Dichloropropene	89		91		70-130	2		20
Bromoform	70		71		54-136	1		20
1,1,2,2-Tetrachloroethane	87		88		67-130	1		20
Benzene	100		110		70-130	10		25
Toluene	90		92		70-130	2		25
Ethylbenzene	93		95		70-130	2		20
Chloromethane	80		83		64-130	4		20

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1704019

Report Date: 02/15/17

			7011000	very Qual	Limits	RPD	Qual	Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Ba	tch: WG977246-3	3 WG977246-4			
Bromomethane	77		75		39-139	3		20
Vinyl chloride	88		95		55-140	8		20
Chloroethane	93		97		55-138	4		20
1,1-Dichloroethene	86		91		61-145	6		25
trans-1,2-Dichloroethene	90		94		70-130	4		20
Trichloroethene	100		10)	70-130	0		25
1,2-Dichlorobenzene	89		90		70-130	1		20
1,3-Dichlorobenzene	89		91		70-130	2		20
1,4-Dichlorobenzene	89		90		70-130	1		20
Methyl tert butyl ether	100		11)	63-130	10		20
p/m-Xylene	95		10)	70-130	5		20
o-Xylene	95		10)	70-130	5		20
cis-1,2-Dichloroethene	98		10)	70-130	2		20
Dichlorodifluoromethane	70		75		36-147	7		20
Naphthalene	90		86		70-130	5		20

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM Project Number: 01.0015522.17

Lab Number:

L1704019

Report Date:

02/15/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG977246-3 WG977246-4

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	107		107		70-130	
Toluene-d8	92		92		70-130	
4-Bromofluorobenzene	98		98		70-130	
Dibromofluoromethane	104		106		70-130	

METALS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1704019

 Project Number:
 01.0015522.17
 Report Date:
 02/15/17

SAMPLE RESULTS

Lab ID: L1704019-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 02/08/17 12:05 Date Received: 02/08/17

Field Prep: Not Specified

Dilution Date Date Prep **Analytical** Method Factor **Prepared** Analyzed Method **Parameter** Result Qualifier Units RL MDL Analyst Total Metals - Mansfield Lab 0.00777 0.00100 1 Copper, Total mg/l 02/10/17 14:55 02/14/17 14:01 EPA 3005A 1,6020A AMIron, Total 0.058 0.050 1 02/10/17 14:55 02/14/17 16:36 EPA 3005A 19,200.7 AΒ mg/l ND 0.00100 1 1,6020A Lead, Total 02/10/17 14:55 02/14/17 14:01 EPA 3005A AMmg/l 1 02/10/17 14:55 02/14/17 14:01 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.00500 AMZinc, Total ND 0.01000 1 02/10/17 14:55 02/14/17 14:01 EPA 3005A 1,6020A AM mg/l

Project Name: Lab Number: HP WALTHAM L1704019 **Project Number:** 01.0015522.17 **Report Date:** 02/15/17

SAMPLE RESULTS

Lab ID: L1704019-03

Client ID: **EFF**

Sample Location: WALTHAM, MA

Matrix: Water Date Collected: 02/08/17 11:48

Date Received: 02/08/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
rotal motalo mano	noid Edb										
Copper, Total	0.00209		mg/l	0.00100		1	02/10/17 14:55	02/14/17 14:04	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	02/10/17 14:55	5 02/15/17 18:01	EPA 3005A	19,200.7	МС
Lead, Total	ND		mg/l	0.00100		1	02/10/17 14:55	5 02/14/17 14:04	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500		1	02/10/17 14:55	5 02/14/17 14:04	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.01000		1	02/10/17 14:55	5 02/14/17 14:04	EPA 3005A	1,6020A	AM

Project Name: HP WALTHAM
Project Number: 01.0015522.17

Lab Number: L1704019 **Report Date:** 02/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfi	eld Lab for sample(s):	01,03 E	Batch: WC	97691	7-1				
Iron, Total	ND	mg/l	0.050		1	02/10/17 14:55	02/14/17 16:27	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01,03 E	Batch: WG	397692	5-1				
Copper, Total	ND	mg/l	0.00100		1	02/10/17 14:55	02/14/17 13:43	1,6020A	AM
Lead, Total	ND	mg/l	0.00100		1	02/10/17 14:55	02/14/17 13:43	1,6020A	AM
Selenium, Total	ND	mg/l	0.00500		1	02/10/17 14:55	02/14/17 13:43	1,6020A	AM
Zinc, Total	ND	mg/l	0.01000		1	02/10/17 14:55	02/14/17 13:43	3 1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1704019

Report Date: 02/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG97	6917-2					
Iron, Total	92		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG97	6925-2					
Copper, Total	115		-		80-120	-		
Lead, Total	111		-		80-120	-		
Selenium, Total	118		-		80-120	-		
Zinc, Total	114		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1704019

Report Date: 02/15/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery (Recovery Qual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01,03	QC Bato	ch ID: WG9769	17-3	QC Sampl	le: L1704019-01	Client ID: INF		
Iron, Total	0.058	1	0.916	86		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01,03	QC Bato	ch ID: WG9769	17-7	QC Sampl	le: L1704066-01	Client ID: MS	Sample	
Iron, Total	0.897	1	1.80	90		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01,03	QC Bato	ch ID: WG9769	25-3	QC Sampl	le: L1704019-01	Client ID: INF		
Copper, Total	0.00777	0.25	0.2859	111		-	-	75-125	-	20
Lead, Total	ND	0.51	0.5543	109		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.131	109		-	-	75-125	-	20
Zinc, Total	ND	0.5	0.5576	112		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1704019

Report Date:

02/15/17

Parameter	Native Sample	Duplicate Sample	Units	RPD (Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID: WG9	976917-4 QC Sample:	L1704019-01	Client ID: INF	
Iron, Total	0.058	ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID: WG9	976925-4 QC Sample:	L1704019-01	Client ID: INF	-
Copper, Total	0.00777	0.00834	mg/l	7	20
Lead, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Zinc, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1704019

 Project Number:
 01.0015522.17
 Report Date:
 02/15/17

SAMPLE RESULTS

Lab ID: L1704019-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 02/08/17 12:05

Date Received: 02/08/17 Field Prep: Not Specified

Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	/ - Westborough Lab								
Chloride	510	mg/l	10		10	-	02/11/17 16:23	1,9251	MR

 Project Name:
 HP WALTHAM
 Lab Number:
 L1704019

 Project Number:
 01.0015522.17
 Report Date:
 02/15/17

SAMPLE RESULTS

Lab ID: L1704019-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 02/08/17 11:48

Date Received: 02/08/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Chloride	540		mg/l	10		10	-	02/11/17 16:25	1,9251	MR

Project Name: HP WALTHAM

Lab Number: L1704019 **Project Number:** 01.0015522.17

Report Date: 02/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab for samp	ole(s): 01	,03 Ba	tch: W0	G977146-1				
Chloride	ND	ma/l	1.0		1	-	02/11/17 15:54	1.9251	MR

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: 02/15/17

L1704019

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	Associated sample(s)	: 01,03	Batch: WG97714	16-2					
Chloride	97		-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1704019

Report Date:

02/15/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Foun	MSD d %Recovery	Recovery Qual Limits	RPD (RPD Qual Limits
General Chemistry - Westbord	ough Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG977146-	4 QC Sample: L	1704276-02 Clier	nt ID: MS	Sample
Chloride	1200	20	1200	0	Q -	-	58-140	-	7

L1704019

Lab Duplicate Analysis
Batch Quality Control Lab Number:

02/15/17 Report Date:

Parameter	Native Sam	ple	Duplicate Samp	le Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01,03	QC Batch ID	: WG977146-3	QC Sample:	L1704276-02	Client ID:	DUP Sample	
Chloride	1200		1200	mg/l	0		7	

Project Name:

Project Number:

HP WALTHAM

01.0015522.17

 Project Name:
 HP WALTHAM
 Lab Number:
 L1704019

 Project Number:
 01.0015522.17
 Report Date:
 02/15/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1704019-01A	Vial HCl preserved	Α	N/A	3.8	Υ	Absent	8260(14)
L1704019-01B	Vial HCI preserved	Α	N/A	3.8	Υ	Absent	8260(14)
L1704019-01C	Vial HCI preserved	Α	N/A	3.8	Υ	Absent	8260(14)
L1704019-01D	Plastic 250ml HNO3 preserved	Α	<2	3.8	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1704019-01E	Plastic 60ml unpreserved	Α	7	3.8	Υ	Absent	CL-9251(28)
L1704019-02A	Vial HCl preserved	Α	N/A	3.8	Υ	Absent	8260(14)
L1704019-02B	Vial HCl preserved	Α	N/A	3.8	Υ	Absent	8260(14)
L1704019-02C	Vial HCl preserved	Α	N/A	3.8	Υ	Absent	8260(14)
L1704019-03A	Vial HCl preserved	Α	N/A	3.8	Υ	Absent	8260(14)
L1704019-03B	Vial HCI preserved	Α	N/A	3.8	Υ	Absent	8260(14)
L1704019-03C	Vial HCI preserved	Α	N/A	3.8	Υ	Absent	8260(14)
L1704019-03D	Plastic 250ml HNO3 preserved	Α	<2	3.8	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1704019-03E	Plastic 60ml unpreserved	Α	7	3.8	Υ	Absent	CL-9251(28)

Project Name:HP WALTHAMLab Number:L1704019Project Number:01.0015522.17Report Date:02/15/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1704019

 Project Number:
 01.0015522.17
 Report Date:
 02/15/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1704019

 Project Number:
 01.0015522.17
 Report Date:
 02/15/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Azobe

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

III.														oenai_	110.021	01710.43
ALPHA	CHAIN	-			PAGE	OF	Date	e Rec'd i	n Lab:	21	8/19		AL	PHA Jol	b#: /	1704019
8 Walkup Driv Westboro, MA		Project					Re	port Info	ormatio			rables		lling Info		1709015
Tel: 508-898	-9220 Tel: 508-822-9300	Project N	lame:	HP L	ralfh	am		ADEx	_	EMAIL				ame as Cli		PO #:
NAME OF BRIDE OF	New Control of the Co	Project Lo	ocation:	walt	ham	Ma	Reg	gulatory	Requir	ements	&	Projec		nation Re		
GCA	1	Project #:	01.00	11555	2,17		L Ye	s U No	MA MCP	Analytica	al Mothe	de	r	714	CHICAGON S	And a second of the second
Address: 249	Vanderbilt Ave.	Project Ma	anager:	J. C	1/her	-	U 16	5 110	GVV I Stal	idards (II	iired on nfo Red	this SD uired fo	IT/ INON	uired for N & EPH with	ICD I	
NOVWOOD	Vanderbilt Ave. 1 Mar. 02062	ALPHA C	Quote #:	0.			4 16	SUNO	NPDES F	GP						
78/-	-785-1357		round Ti	me				2	7	1	1 1	1	1 1	Criteria		 _
	Vis @ 9 29. (Om Project Information:	Date Du		□ RUSH (onl	y confirmed if pre-	approved!)	ANALYSIC	1 ABN D PAH	METALS: URCRAS UNCP 14 URC	VPH: DRanges & Targets D PP13	C PEST Ranges On	Metals	Set le Se E.			SAMPLE INF Filtration Field Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	ection Time	Sample Matrix	Sample	2 S	SVOC. DABN	FTALS:	PH: CRa	PCB PH: DO	charles	2005	////		Preservation ☐ Lab to do
4019 -01	INF	2	1/8/12	1205 ph		BD		/ 4	- 4	/ 2/0	J/F	Z	4	11	Sa	mple Comments
-02	MID			1155 am	1	00	1					XX				
70]	EFF				1	1	N.									
				1148an	W	V	X	+				XX	1			
								-								
																ŧ.
ntainer Type Plastic Amber glass	Preservative A= None				Contair	ner Type	V					o p				
Vial Glass Bacteria cup	B≈ HCI C= HNO ₃ D= H ₂ SO ₄				Pres	ervative	1+4				14	103			-	
Cube Other Encore	E= NaOH F= MeOH G= NaHSO4	Relinquishe	d By:		Date/	Time	7,	Rece	eived By:	_	11/	Date/	Time		I	
ncore	$H = Na_2S_2O_3$	(1)/12	> 1		2/8/12	145	to	. / 1	-	AAL :	2/0/	Date	Time	All com	plac autom	itted are subject

ANALYTICAL REPORT

Lab Number: L1707342

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Report Date: 03/15/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1707342 **Report Date:** 03/15/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1707342-01	INF	WATER	WALTHAM, MA	03/09/17 10:10	03/09/17
L1707342-02	MID	WATER	WALTHAM, MA	03/09/17 09:55	03/09/17
L1707342-03	EFF	WATER	WALTHAM, MA	03/09/17 09:45	03/09/17

Project Name:HP WALTHAMLab Number:L1707342Project Number:01.0015522.17Report Date:03/15/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

•	lease	Contact	Ciletit Se	i vices at	000-024-3	JZZU WILII	arry que	Stions.	

Places contact Client Services at 800 624 9220 with any questions

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 03/15/17

ORGANICS

VOLATILES

03/09/17

Not Specified

Date Received:

Field Prep:

Project Name: HP WALTHAM Lab Number: L1707342

Project Number: 01.0015522.17 **Report Date:** 03/15/17

SAMPLE RESULTS

Lab ID: L1707342-01 D Date Collected: 03/09/17 10:10

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 03/14/17 11:05

Analyst: PD

Carbon tetrachloride	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/l 75 100 Chloroform ND ug/l 75 100 Carbon tetrachloride ND ug/l 50 100 1,2-Dichloropropane ND ug/l 50 100 Dibromochloromethane ND ug/l 50 100 Tetrachloroethane ND ug/l 50 100 Tetrachloroethane ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 Trichlorofloromethane ND ug/l 50 100 Romodichloromethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloropropene ND ug/l 50 100 <td>Volatile Organics by GC/MS - West</td> <td>borough Lab</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Volatile Organics by GC/MS - West	borough Lab					
1,1-Dichloroethane ND ug/l 75 100 Chloroform ND ug/l 75 100 Carbon tetrachloride ND ug/l 50 100 1,2-Dichloropropane ND ug/l 50 100 Dibromochloromethane ND ug/l 50 100 Tetrachloroethane ND ug/l 50 100 Tetrachloroethane ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 Trichlorofloromethane ND ug/l 50 100 Romodichloromethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloropropene ND ug/l 50 100 <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>				_			
Chloroform ND ug/l 75 100 Carbon tetrachloride ND ug/l 50 100 1,2-Dichloropropane ND ug/l 180 100 Dibromochloromethane ND ug/l 50 100 1,1,2-Trichloroethane ND ug/l 50 100 Tetrachloroethane ND ug/l 50 100 Tetrachloroethane ND ug/l 50 100 Trichlorofluoromethane ND ug/l 50 100 1,1,1-Trichloroethane ND ug/l 50 100 Bromofichloromethane ND ug/l 50 100 Bromofichloropropene ND ug/l 50 100 Bromofichloropropene ND ug/l 50 100 Bromofichloropropene ND ug/l 50							
Carbon tetrachloride							
1,2-Dichloropropane ND Ug/l 1880 100 100 1,1,2-Trichloroethane ND Ug/l 50 100 100 1,1,2-Trichloroethane ND Ug/l 50 100 100 1,1,2-Trichloroethane ND Ug/l 50 100	Chloroform			ug/l			
ND	Carbon tetrachloride			ug/l			
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	180		100
ND	Dibromochloromethane	ND		ug/l	50		100
ND	1,1,2-Trichloroethane	ND		ug/l	75		100
Trichlorofluoromethane	Tetrachloroethene	ND		ug/l	50		100
1,2-Dichloroethane ND ug/l 50 100 1,1,1-Trichloroethane ND ug/l 50 100 100 1,1,1-Trichloroethane ND ug/l 50 100 1	Chlorobenzene	ND		ug/l	50		100
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	250		100
ND	1,2-Dichloroethane	ND		ug/l	50		100
trans-1,3-Dichloropropene ND ug/l 50 100 cis-1,3-Dichloropropene ND ug/l 50 100 Bromoform ND ug/l 200 100 Bromoform ND ug/l 50 100 Benzene ND ug/l 50 100 Benzene ND ug/l 50 100 Toluene ND ug/l 75 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 250 100 Bromomethane ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloroethane ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene<	1,1,1-Trichloroethane	ND		ug/l	50		100
ND	Bromodichloromethane	ND		ug/l	50		100
ND	trans-1,3-Dichloropropene	ND		ug/l	50		100
1,1,2,2-Tetrachloroethane	cis-1,3-Dichloropropene	ND		ug/l	50		100
ND	Bromoform	ND		ug/l	200		100
Toluene ND ug/l 75 100	1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 250 100 Bromomethane ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 6400 ug/l 50 100	Benzene	ND		ug/l	50		100
Chloromethane ND ug/l 250 100 Bromomethane ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 6400 ug/l 50 100	Toluene	ND		ug/l	75		100
Bromomethane ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 6400 ug/l 50 100	Ethylbenzene	ND		ug/l	50		100
Vinyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 6400 ug/l 50 100	Chloromethane	ND		ug/l	250		100
Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 6400 ug/l 50 100	Bromomethane	ND		ug/l	100		100
Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 6400 ug/l 50 100	Vinyl chloride	ND		ug/l	100		100
1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 6400 ug/l 50 100	Chloroethane	ND			100		100
trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 6400 ug/l 50 100	1,1-Dichloroethene	ND			50		100
Trichloroethene 6400 ug/l 50 100	trans-1,2-Dichloroethene	ND			75		100
	Trichloroethene	6400			50		100
	1,2-Dichlorobenzene	ND		ug/l	250		100

ND

ND

100

100

250

250

ug/l

ug/l

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Project Name: HP WALTHAM Lab Number: L1707342

Project Number: 01.0015522.17 **Report Date:** 03/15/17

SAMPLE RESULTS

Lab ID: L1707342-01 D

Client ID: INF

Sample Location: WALTHAM, MA

Date Collected: 03/09/17 10:10

Date Received: 03/09/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough	Lab						
Methyl tert butyl ether	ND		ug/l	100		100	
p/m-Xylene	ND		ug/l	100		100	
o-Xylene	ND		ug/l	100		100	
cis-1,2-Dichloroethene	ND		ug/l	50		100	
Dichlorodifluoromethane	ND		ug/l	500		100	
Naphthalene	ND		ug/l	250		100	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	104		70-130	

L1707342

Project Name: HP WALTHAM Lab Number:

Project Number: 01.0015522.17 **Report Date:** 03/15/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/09/17 09:55

Client ID: MID

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 03/14/17 11:33

Analyst: PD

Date Concetta.	00/00/17 00:00
Date Received:	03/09/17
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	1.9		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

--

Project Name: Lab Number: **HP WALTHAM** L1707342

Project Number: 01.0015522.17 **Report Date:** 03/15/17

SAMPLE RESULTS

Lab ID: L1707342-02 Date Collected: 03/09/17 09:55

Client ID: Date Received: 03/09/17 MID Field Prep: Sample Location: WALTHAM, MA Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 1.0 ug/l 1 ND 1 p/m-Xylene ug/l 1.0 ND 1 o-Xylene ug/l 1.0 -cis-1,2-Dichloroethene ND 0.50 1 ug/l ND Dichlorodifluoromethane ug/l 5.0 1 Naphthalene ND 2.5 1

ug/l

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	104		70-130	

03/09/17

Not Specified

Date Received:

Field Prep:

Project Name:HP WALTHAMLab Number:L1707342

Project Number: 01.0015522.17 **Report Date:** 03/15/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/09/17 09:45

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 03/14/17 12:00

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	3.0		1	
1,1-Dichloroethane	ND		ug/l	0.75		1	
Chloroform	ND		ug/l	0.75		1	
Carbon tetrachloride	ND		ug/l	0.50		1	
1,2-Dichloropropane	ND		ug/l	1.8		1	
Dibromochloromethane	ND		ug/l	0.50		1	
1,1,2-Trichloroethane	ND		ug/l	0.75		1	
Tetrachloroethene	ND		ug/l	0.50		1	
Chlorobenzene	ND		ug/l	0.50		1	
Trichlorofluoromethane	ND		ug/l	2.5		1	
1,2-Dichloroethane	ND		ug/l	0.50		1	
1,1,1-Trichloroethane	ND		ug/l	0.50		1	
Bromodichloromethane	ND		ug/l	0.50		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	0.75		1	
Ethylbenzene	ND		ug/l	0.50		1	
Chloromethane	ND		ug/l	2.5		1	
Bromomethane	ND		ug/l	1.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	0.50		1	
trans-1,2-Dichloroethene	ND		ug/l	0.75		1	
Trichloroethene	0.62		ug/l	0.50		1	
1,2-Dichlorobenzene	ND		ug/l	2.5		1	
1,3-Dichlorobenzene	ND		ug/l	2.5		1	

ug/l

2.5

ND

1

1,4-Dichlorobenzene

Project Name: HP WALTHAM Lab Number: L1707342

Project Number: 01.0015522.17 **Report Date:** 03/15/17

SAMPLE RESULTS

Lab ID: L1707342-03 Date Collected: 03/09/17 09:45

Client ID: EFF Date Received: 03/09/17 Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	106		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1707342

 Project Number:
 01.0015522.17
 Report Date:
 03/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/14/17 08:18

Analyst: PD

Parameter	Result	Qualifier Units	RL RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03 Batch:	WG985397-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l		
Chloroform	ND	ug/l		
Carbon tetrachloride	ND	ug/l		
1,2-Dichloropropane	ND	ug/l		
Dibromochloromethane	ND	ug/l		
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

Project Name: HP WALTHAM Lab Number: L1707342

Project Number: 01.0015522.17 **Report Date:** 03/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/14/17 08:18

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - W	estborough Lab	o for sample(s): 0	01-03 Batch:	WG985397-5	
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dichlorodifluoromethane	ND	ug/l	5.0		
Naphthalene	ND	ug/l	2.5		

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	101		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1707342

Report Date: 03/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG985397-3	WG985397-4			
Methylene chloride	110		100		70-130	10		20
1,1-Dichloroethane	100		100		70-130	0		20
Chloroform	100		100		70-130	0		20
Carbon tetrachloride	98		98		63-132	0		20
1,2-Dichloropropane	100		100		70-130	0		20
Dibromochloromethane	91		94		63-130	3		20
1,1,2-Trichloroethane	96		96		70-130	0		20
Tetrachloroethene	95		96		70-130	1		20
Chlorobenzene	98		98		75-130	0		25
Trichlorofluoromethane	97		96		62-150	1		20
1,2-Dichloroethane	98		100		70-130	2		20
1,1,1-Trichloroethane	100		100		67-130	0		20
Bromodichloromethane	100		100		67-130	0		20
trans-1,3-Dichloropropene	92		93		70-130	1		20
cis-1,3-Dichloropropene	100		100		70-130	0		20
Bromoform	85		90		54-136	6		20
1,1,2,2-Tetrachloroethane	91		95		67-130	4		20
Benzene	110		110		70-130	0		25
Toluene	99		99		70-130	0		25
Ethylbenzene	100		100		70-130	0		20
Chloromethane	110		110		64-130	0		20

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1707342

Report Date: 03/15/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - West	borough Lab Associated sa	mple(s): 0	01-03 Batch:	WG985397-3	WG985397-4				
Bromomethane	110		110		39-139	0		20	
Vinyl chloride	100		100		55-140	0		20	
Chloroethane	100		100		55-138	0		20	
1,1-Dichloroethene	100		100		61-145	0		25	
trans-1,2-Dichloroethene	110		110		70-130	0		20	
Trichloroethene	100		110		70-130	10		25	
1,2-Dichlorobenzene	93		98		70-130	5		20	
1,3-Dichlorobenzene	96		100		70-130	4		20	
1,4-Dichlorobenzene	94		98		70-130	4		20	
Methyl tert butyl ether	97		100		63-130	3		20	
p/m-Xylene	105		105		70-130	0		20	
o-Xylene	105		105		70-130	0		20	
cis-1,2-Dichloroethene	110		100		70-130	10		20	
Dichlorodifluoromethane	96		95		36-147	1		20	
Naphthalene	91		96		70-130	5		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1707342

Report Date:

03/15/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG985397-3 WG985397-4

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	94		93		70-130	
Toluene-d8	98		96		70-130	
4-Bromofluorobenzene	98		100		70-130	
Dibromofluoromethane	101		98		70-130	

METALS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1707342

 Project Number:
 01.0015522.17
 Report Date:
 03/15/17

SAMPLE RESULTS

Lab ID: L1707342-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 03/09/17 10:10

Date Received: 03/09/17

Field Prep: Not Specified

Danamatan	Dogult	0	Unita	DI	MDI	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	A = l = 4
Parameter	Result	Qualifier	Units	RL	MDL	1 40101	Tropurou	Analyzea	- Incured		Analyst
Total Metals - Mar	sfield Lab										
Copper, Total	0.01674		mg/l	0.00100		1	03/13/17 11:1	0 03/14/17 08:32	EPA 3005A	1,6020A	AM
Iron, Total	0.538		mg/l	0.050		1	03/13/17 11:1	0 03/13/17 21:27	EPA 3005A	19,200.7	AB
Lead, Total	0.00160		mg/l	0.00100		1	03/13/17 11:1	0 03/14/17 08:32	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500		1	03/13/17 11:1	0 03/14/17 08:32	EPA 3005A	1,6020A	AM
Zinc, Total	0.04314		mg/l	0.01000		1	03/13/17 11:1	0 03/14/17 08:32	EPA 3005A	1,6020A	AM

Project Name: Lab Number: HP WALTHAM L1707342 **Project Number:** 01.0015522.17 **Report Date:** 03/15/17

SAMPLE RESULTS

Lab ID: L1707342-03

Client ID: **EFF**

Sample Location: WALTHAM, MA

Matrix: Water Date Collected: 03/09/17 09:45

> Date Received: 03/09/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	ND		mg/l	0.00100		1	03/13/17 11:10	0 03/14/17 08:42	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	03/13/17 11:10	0 03/13/17 22:28	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.00100		1	03/13/17 11:10	0 03/14/17 08:42	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500		1	03/13/17 11:10	0 03/14/17 08:42	EPA 3005A	1,6020A	AM
Zinc, Total	0.02189		mg/l	0.01000		1	03/13/17 11:10	0 03/14/17 08:42	EPA 3005A	1,6020A	AM

Project Name:HP WALTHAMLab Number:Project Number:01.0015522.17Report Date:

Lab Number: L1707342 **Report Date:** 03/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01,03	Batch: W0	G98505	9-1				
Copper, Total	ND	mg/l	0.00100		1	03/13/17 11:10	03/14/17 08:11	1,6020A	AM
Lead, Total	ND	mg/l	0.00100		1	03/13/17 11:10	03/14/17 08:11	1,6020A	AM
Selenium, Total	ND	mg/l	0.00500		1	03/13/17 11:10	03/14/17 08:11	1,6020A	AM
Zinc, Total	ND	mg/l	0.01000		1	03/13/17 11:10	03/14/17 08:11	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01,03 B	atch: Wo	G98506	3-1				
Iron, Total	ND	mg/l	0.050		1	03/13/17 11:10	03/13/17 20:57	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1707342

Report Date:

03/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bato	h: WG985	5059-2					
Copper, Total	103		-		80-120	-		
Lead, Total	100		-		80-120	-		
Selenium, Total	108		-		80-120	-		
Zinc, Total	101		-		80-120	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Batc	h: WG985	5063-2					
Iron, Total	104		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1707342

Report Date: 03/15/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RF Qual Lin	PD nits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01,03	QC Bato	ch ID: WG9850	059-3	QC Samp	le: L1707342-01	Client ID: INF			
Copper, Total	0.01674	0.25	0.2748	103		-	-	75-125	-		20
Lead, Total	0.00160	0.51	0.5289	103		-	-	75-125	-		20
Selenium, Total	ND	0.12	0.130	108		-	-	75-125	-		20
Zinc, Total	0.04314	0.5	0.5478	101		-	-	75-125	-		20
otal Metals - Mansfield Lab	Associated sam	nple(s): 01,03	QC Bato	ch ID: WG9850	063-3	QC Samp	le: L1707342-01	Client ID: INF			
Iron, Total	0.538	1	1.53	99		-	-	75-125	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1707342

Report Date:

03/15/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,03	3 QC Batch ID: WC	G985059-4 QC Sample:	L1707342-01	Client ID:	INF	
Copper, Total	0.01674	0.01686	mg/l	1		20
Lead, Total	0.00160	0.00157	mg/l	2		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.04314	0.04026	mg/l	7		20
Total Metals - Mansfield Lab Associated sample(s): 01,03	3 QC Batch ID: WC	G985063-4 QC Sample:	L1707342-01	Client ID:	INF	
Iron, Total	0.538	0.525	mg/l	2		20

INORGANICS & MISCELLANEOUS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1707342

 Project Number:
 01.0015522.17
 Report Date:
 03/15/17

SAMPLE RESULTS

Lab ID: L1707342-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 03/09/17 10:10

Date Received: 03/09/17
Field Prep: Not Specified

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Chloride	540		mg/l	10		10	-	03/10/17 18:48	1,9251	MR

 Project Name:
 HP WALTHAM
 Lab Number:
 L1707342

 Project Number:
 01.0015522.17
 Report Date:
 03/15/17

SAMPLE RESULTS

Lab ID: L1707342-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 03/09/17 09:45

Date Received: 03/09/17
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Chloride	540		mg/l	10		10	-	03/10/17 18:50	1,9251	MR

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Lab Number: L1707342

Report Date: 03/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for sam	ple(s): 01	,03 Ba	atch: Wo	G984654-1				
Chloride	ND	mg/l	1.0		1	-	03/10/17 17:58	1,9251	MR

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1707342

Report Date:

03/15/17

Parameter	LCS %Recovery Qua	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01,0	3 Batch: WG9846	54-2					
Chloride	97	-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1707342

Report Date:

03/15/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD Qu	RPD al Limits
General Chemistry - Westboro	ugh Lab Asso	ciated samp	ole(s): 01,03	QC Batch ID	D: WG984654-4	QC Sample: L170	7241-01 Clien	t ID: MS S	ample
Chloride	380	20	390	50	Q -	-	58-140	-	7

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1707342

Report Date:

03/15/17

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Asso	ociated sample(s): 01,03 QC Ba	atch ID: WG984654-3	QC Sample: L1	707241-01	Client ID:	DUP Sample
Chloride	380	380	mg/l	0		7

Project Name:

Project Number:

HP WALTHAM

01.0015522.17

 Project Name:
 HP WALTHAM
 Lab Number:
 L1707342

 Project Number:
 01.0015522.17
 Report Date:
 03/15/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1707342-01A	Vial HCl preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1707342-01B	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1707342-01C	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1707342-01D	Plastic 250ml HNO3 preserved	Α	<2	3.7	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1707342-01E	Plastic 60ml unpreserved	Α	7	3.7	Υ	Absent	CL-9251(28)
L1707342-02A	Vial HCl preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1707342-02B	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1707342-02C	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1707342-03A	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1707342-03B	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1707342-03C	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1707342-03D	Plastic 250ml HNO3 preserved	Α	<2	3.7	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1707342-03E	Plastic 60ml unpreserved	Α	7	3.7	Υ	Absent	CL-9251(28)

Project Name: Lab Number: **HP WALTHAM** L1707342 **Project Number:** 01.0015522.17 **Report Date:** 03/15/17

GLOSSARY

Acronyms

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of LFB

analytes or a material containing known and verified amounts of analytes.

MDI. - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound TIC

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:HP WALTHAMLab Number:L1707342Project Number:01.0015522.17Report Date:03/15/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1707342

 Project Number:
 01.0015522.17
 Report Date:
 03/15/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

A PHA	CHAIN O	F CUSTO	DY P	AGE	OF	Date	e Rec'd	in Lab:	3/4	1/17			ALPHA	Job #:	1170	734	3
8 Walkup Drive	320 Forbes Blvd	Project Informa	tion			Re	port Inf	ormati	ion - Da	ta Deliv	erabl		Billing I				
Westboro, MA 0 Tel: 508-898-92	1581 Mansfield, MA 02048	Project Name:	P Wa	rlthe	in	ا ت	ADEx		EMAII				☐ Same a	s Client in	fo PO#		
Client Informatio	n	Project Location:	Walt	ham	Mes		-				_	ect In	formation				
Client: G2A		Project #: Q/	001552	2.17					CP Analy Spike Re			SDG?			T RCP Ana norganics)	alytical Method	ls
Address: 249	Vanderbilt Aug and Mar 02062 187-1357	Project Manager:	J. CA	lber	+	□ Ye		GW1 S	Standards				etals & EPI				
Now	and Mar 02062	ALPHA Quote #:							Program				Cr	iteria			
Phone: 741-9	187-1357	Turn-Around Ti	me				01.	1	ORCP 15	2/3/	4		11/1	/ /	///		
	roject Information:	Date Due:	RUSH (only	confirmed if pre-ap	provedl)	100	D ABN D 524.2	METALS: UMCP 13 UMCP	EPH: DRanges & Tarms DRCR48 DRCP 15	C PCB C PECS C Ranges Only	W. DQuant Only C.	S C. Ph E	wide of fish is		Fil	AMPLE INFO tration Field Lab to do eservation Lab to do	TOTAL # BOTTL
ALPHA Lab ID (Lab Use Only)	Sample ID	Col Date	lection Time	Sample Matrix	Sampler	, , , , ,	SVOC.	METAL	EPH: C	D PCB	Ha	70	1//	///		e Comments	E
67342-01	INF	3/9/17	[0:10mg	Ga	30	X					7	1					5
02	MID		9:55	GL	130	X											3
03	EFP	V	914504	GU	130	X					X	X					5
				l Sr													
Container Type P≅ Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄			Pre	iner Type	V Her					P						
C= Cube O= Other E= Encore D= BOD Bottle	E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Åcid J = NH ₄ CI K= Zn Acetate O= Other	Relinquished By:	3	3/9/	77 (36 1900)	本	MM	Receive	d Blv:	top!	-	Date/T	7/01/0	Alpha's Te See rever	es submitte erms and C se side 11-01 (rev. 12-1		to

ANALYTICAL REPORT

Lab Number: L1710935

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Report Date: 04/14/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1710935 **Report Date:** 04/14/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1710935-01	INF	WATER	WALTHAM, MA	04/07/17 10:15	04/07/17
L1710935-02	MID	WATER	WALTHAM, MA	04/07/17 10:05	04/07/17
L1710935-03	EFF	WATER	WALTHAM, MA	04/07/17 09:50	04/07/17

Project Name:HP WALTHAMLab Number:L1710935Project Number:01.0015522.17Report Date:04/14/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Clien	t Services	at 800-624-9220	with any	questions.
----------------------	------------	-----------------	----------	------------

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/14/17

Melissa Cripps Melissa Cripps

ANALYTICA

ORGANICS

VOLATILES

04/07/17

Not Specified

Date Received:

Field Prep:

Project Name: HP WALTHAM Lab Number: L1710935

Project Number: 01.0015522.17 **Report Date:** 04/14/17

SAMPLE RESULTS

Lab ID: L1710935-01 D Date Collected: 04/07/17 10:15

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 04/13/17 21:09

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	55		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
trans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
trans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	7300		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

Project Name: HP WALTHAM Lab Number: L1710935

Project Number: 01.0015522.17 **Report Date:** 04/14/17

SAMPLE RESULTS

Lab ID: L1710935-01 D Date Collected: 04/07/17 10:15

Client ID: Date Received: 04/07/17
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 100 100 ug/l ND 100 p/m-Xylene ug/l 100 ND 100 100 o-Xylene ug/l -cis-1,2-Dichloroethene ND 50 100 ug/l ND Dichlorodifluoromethane ug/l 500 100 Naphthalene ND 250 100 ug/l --

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	97		70-130	

Project Name: HP WALTHAM Lab Number: L1710935

Project Number: 01.0015522.17 **Report Date:** 04/14/17

SAMPLE RESULTS

Lab ID: L1710935-02 Date Collected: 04/07/17 10:05

Client ID: MID

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 04/13/17 21:45

Analyst: PD

Date Collected.	04/07/17 10.03
Date Received:	04/07/17
Field Pren:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	3.6		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

1

2.5

--

ug/l

Project Name: HP WALTHAM Lab Number: L1710935

Project Number: 01.0015522.17 **Report Date:** 04/14/17

SAMPLE RESULTS

Lab ID: L1710935-02 Date Collected: 04/07/17 10:05

Client ID: Date Received: 04/07/17
Sample Location: WALTHAM, MA Date Received: 04/07/17
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbor	ough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	99		70-130	

ND

Naphthalene

Project Name: HP WALTHAM

Project Number: 01.0015522.17

SAMPLE RESULTS

Lab Number: L1710935

Report Date: 04/14/17

Lab ID: L1710935-03 Date Collected: 04/07/17 09:50

Client ID: **EFF**

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 04/13/17 22:20

Analyst: PD

	0 1/01/11 00100
Date Received:	04/07/17
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	1.2		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

1

1

1

Project Name: HP WALTHAM Lab Number: L1710935

Project Number: 01.0015522.17 **Report Date:** 04/14/17

SAMPLE RESULTS

Lab ID: L1710935-03 Date Collected: 04/07/17 09:50

ND

ND

ND

Client ID: EFF Date Received: 04/07/17 Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 1.0 1 ug/l ND 1 p/m-Xylene ug/l 1.0 ND 1 o-Xylene ug/l 1.0 --

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	99		70-130	

ug/l

ug/l

ug/l

0.50

5.0

2.5

--

cis-1,2-Dichloroethene

Naphthalene

Dichlorodifluoromethane

 Project Name:
 HP WALTHAM
 Lab Number:
 L1710935

 Project Number:
 01.0015522.17
 Report Date:
 04/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/13/17 20:34

Analyst: NL

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03 Batch:	WG994299-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l		
Chloroform	ND	ug/l		
Carbon tetrachloride	ND	ug/l		
1,2-Dichloropropane	ND	ug/l		
Dibromochloromethane	ND	ug/l		
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1710935

 Project Number:
 01.0015522.17
 Report Date:
 04/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/13/17 20:34

Analyst: NL

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	01-03 Batch:	WG994299-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.5	

			Acceptance				
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	106		70-130				
Toluene-d8	100		70-130				
4-Bromofluorobenzene	100		70-130				
Dibromofluoromethane	99		70-130				

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1710935

Report Date: 04/14/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch:	WG994299-3	WG994299-4			
Methylene chloride	100		100		70-130	0		20
1,1-Dichloroethane	110		110		70-130	0		20
Chloroform	110		100		70-130	10		20
Carbon tetrachloride	86		88		63-132	2		20
1,2-Dichloropropane	100		100		70-130	0		20
Dibromochloromethane	85		90		63-130	6		20
1,1,2-Trichloroethane	100		100		70-130	0		20
Tetrachloroethene	110		110		70-130	0		20
Chlorobenzene	110		110		75-130	0		25
Trichlorofluoromethane	100		100		62-150	0		20
1,2-Dichloroethane	110		110		70-130	0		20
1,1,1-Trichloroethane	97		100		67-130	3		20
Bromodichloromethane	100		100		67-130	0		20
trans-1,3-Dichloropropene	79		83		70-130	5		20
cis-1,3-Dichloropropene	90		94		70-130	4		20
Bromoform	75		78		54-136	4		20
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20
Benzene	110		110		70-130	0		25
Toluene	110		110		70-130	0		25
Ethylbenzene	110		110		70-130	0		20
Chloromethane	93		88		64-130	6		20

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1710935

Report Date: 04/14/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG994299-3	WG994299-4			
Bromomethane	61		61		39-139	0		20
Vinyl chloride	110		110		55-140	0		20
Chloroethane	110		110		55-138	0		20
1,1-Dichloroethene	100		99		61-145	1		25
trans-1,2-Dichloroethene	100		100		70-130	0		20
Trichloroethene	110		110		70-130	0		25
1,2-Dichlorobenzene	100		110		70-130	10		20
1,3-Dichlorobenzene	100		110		70-130	10		20
1,4-Dichlorobenzene	100		110		70-130	10		20
Methyl tert butyl ether	100		110		63-130	10		20
p/m-Xylene	115		115		70-130	0		20
o-Xylene	115		115		70-130	0		20
cis-1,2-Dichloroethene	110		110		70-130	0		20
Dichlorodifluoromethane	100		100		36-147	0		20
Naphthalene	99		100		70-130	1		20

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1710935

Report Date:

04/14/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG994299-3 WG994299-4

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	102		102		70-130	
Toluene-d8	101		100		70-130	
4-Bromofluorobenzene	98		101		70-130	
Dibromofluoromethane	99		99		70-130	

METALS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1710935

 Project Number:
 01.0015522.17
 Report Date:
 04/14/17

SAMPLE RESULTS

Lab ID: L1710935-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 04/07/17 10:15

Date Received: 04/07/17

Field Prep: Not Specified

	5 "	o ""				Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	
Parameter	Result	Qualifier	Units	RL	MDL	1 actor	ricparcu	Analyzeu	Wictioa		Analyst
Total Metals - Man	sfield Lab										
Copper, Total	0.00939		mg/l	0.00100		1	04/11/17 11:04	4 04/13/17 13:28	EPA 3005A	1,6020A	BV
Iron, Total	0.494		mg/l	0.050		1	04/11/17 11:04	4 04/13/17 02:21	EPA 3005A	19,200.7	AM
Lead, Total	ND		mg/l	0.00100		1	04/11/17 11:04	4 04/13/17 13:28	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500		1	04/11/17 11:04	4 04/13/17 13:28	EPA 3005A	1,6020A	BV
Zinc, Total	0.01295		mg/l	0.01000		1	04/11/17 11:04	4 04/13/17 13:28	EPA 3005A	1,6020A	BV

 Project Name:
 HP WALTHAM
 Lab Number:
 L1710935

 Project Number:
 01.0015522.17
 Report Date:
 04/14/17

SAMPLE RESULTS

Lab ID: L1710935-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 04/07/17 09:50

Date Received: 04/07/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Copper, Total	0.00227		mg/l	0.00100		1	04/11/17 11:0	4 04/13/17 13:31	EPA 3005A	1,6020A	BV
Iron, Total	ND		mg/l	0.050		1	04/11/17 11:0	4 04/13/17 02:25	EPA 3005A	19,200.7	AM
Lead, Total	ND		mg/l	0.00100		1	04/11/17 11:0	4 04/13/17 13:31	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500		1	04/11/17 11:0	4 04/13/17 13:31	EPA 3005A	1,6020A	BV
Zinc, Total	ND		mg/l	0.01000		1	04/11/17 11:0	4 04/13/17 13:31	EPA 3005A	1,6020A	BV

Project Name: HP WALTHAM
Project Number: 01.0015522.17

Lab Number: L1710935 **Report Date:** 04/14/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01,03 B	Batch: WO	399302	5-1				
Copper, Total	ND	mg/l	0.00100		1	04/11/17 11:04	04/13/17 11:22	1,6020A	BV
Lead, Total	ND	mg/l	0.00050		1	04/11/17 11:04	04/13/17 11:22	1,6020A	BV
Selenium, Total	ND	mg/l	0.00500		1	04/11/17 11:04	04/13/17 11:22	1,6020A	BV
Zinc, Total	ND	mg/l	0.01000		1	04/11/17 11:04	04/13/17 11:22	1,6020A	BV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01,03 B	Batch: WO	G99302	8-1				
Iron, Total	ND	mg/l	0.050		1	04/11/17 11:04	04/13/17 01:11	19,200.7	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1710935

Report Date:

04/14/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bato	h: WG993	3025-2					
Copper, Total	96		-		80-120	-		
Lead, Total	94		-		80-120	-		
Selenium, Total	103		-		80-120	-		
Zinc, Total	98		-		80-120	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bato	h: WG993	3028-2					
Iron, Total	104		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1710935

Report Date: 04/14/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01,03	QC Bate	ch ID: WG9930	025-3	QC Samp	le: L1710924-01	Client ID: MS	Sample	
Copper, Total	ND	0.25	0.2334	93		-	-	75-125	-	20
Lead, Total	0.00098	0.51	0.4276	84		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.118	98		-	-	75-125	-	20
Zinc, Total	ND	0.5	0.4939	99		-	-	75-125	-	20
otal Metals - Mansfield Lab	Associated sam	nple(s): 01,03	QC Bate	ch ID: WG9930	028-3	QC Samp	le: L1710924-01	Client ID: MS	Sample	
Iron, Total	18.0	1	18.8	80		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1710935

Report Date: 04/14/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID: WG	993025-4 QC Sample:	L1710924-01	Client ID:	DUP Sample	Э
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	0.00098	0.00098	mg/l	0		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID: WG	993028-4 QC Sample:	L1710924-01	Client ID:	DUP Sample	Э
Iron, Total	18.0	18.4	mg/l	2		20

INORGANICS & MISCELLANEOUS

04/12/17 18:27

1,9251

ML

Project Name: HP WALTHAM Lab Number: L1710935

Project Number: 01.0015522.17 **Report Date:** 04/14/17

SAMPLE RESULTS

Lab ID: L1710935-01 Date Collected: 04/07/17 10:15

Client ID: INF Date Received: 04/07/17

10

mg/l

Sample Location: WALTHAM, MA Field Prep: Not Specified Matrix: Water

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Analyst

General Chemistry - Westborough Lab

10

Chloride

Project Name: HP WALTHAM Lab Number: L1710935

Project Number: 01.0015522.17 **Report Date:** 04/14/17

SAMPLE RESULTS

Lab ID: L1710935-03 Date Collected: 04/07/17 09:50

Client ID: EFF Date Received: 04/07/17

Sample Location: WALTHAM, MA Field Prep: Not Specified Matrix: Water

Dilution Data Avalutical

Analytical Method **Dilution** Date Date Factor Prepared Analyzed Result Qualifier Units RL MDL **Parameter** Analyst General Chemistry - Westborough Lab Chloride mg/l 10 10 04/12/17 18:29 1,9251 ML

Project Name: HP WALTHAM

Lab Number: L1710935 **Project Number:** 01.0015522.17

Report Date: 04/14/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for sam	ple(s): 01	,03 Ba	tch: W0	3993629-1				
Chloride	ND	mg/l	1.0		1	-	04/12/17 18:23	1,9251	ML

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM Project Number: 01.0015522.17

Lab Number: L1710935

Report Date:

04/14/17

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	Associated sample(s): 01,03	Batch: WG993629	-2					
Chloride	93	-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1710935

Report Date:

04/14/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery ual Limits	RPD C	RPD Qual Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG993629-4	QC Sample: L171	1136-01 Clier	t ID: MS	Sample
Chloride	820	20	810	0	Q -	-	58-140	-	7

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1710935

Report Date:

04/14/17

Parameter	Native Sam	ple D	uplicate Samp	le Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	Associated sample(s): 01,03	QC Batch ID:	WG993629-3	QC Sample: L	1711136-01	Client ID:	DUP Sample	
Chloride	820		810	mg/l	1		7	

Project Name:

Project Number:

HP WALTHAM

01.0015522.17

 Project Name:
 HP WALTHAM
 Lab Number:
 L1710935

 Project Number:
 01.0015522.17
 Report Date:
 04/14/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1710935-01A	Vial HCl preserved	Α	N/A	5.4	Υ	Absent	8260(14)
L1710935-01B	Vial HCI preserved	Α	N/A	5.4	Υ	Absent	8260(14)
L1710935-01C	Vial HCI preserved	Α	N/A	5.4	Υ	Absent	8260(14)
L1710935-01D	Plastic 250ml HNO3 preserved	Α	<2	5.4	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1710935-01E	Plastic 60ml unpreserved	Α	7	5.4	Υ	Absent	CL-9251(28)
L1710935-02A	Vial HCl preserved	Α	N/A	5.4	Υ	Absent	8260(14)
L1710935-02B	Vial HCI preserved	Α	N/A	5.4	Υ	Absent	8260(14)
L1710935-02C	Vial HCI preserved	Α	N/A	5.4	Υ	Absent	8260(14)
L1710935-03A	Vial HCI preserved	Α	N/A	5.4	Υ	Absent	8260(14)
L1710935-03B	Vial HCI preserved	Α	N/A	5.4	Υ	Absent	8260(14)
L1710935-03C	Vial HCI preserved	Α	N/A	5.4	Υ	Absent	8260(14)
L1710935-03D	Plastic 250ml HNO3 preserved	А	<2	5.4	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1710935-03E	Plastic 60ml unpreserved	Α	7	5.4	Υ	Absent	CL-9251(28)

Project Name:HP WALTHAMLab Number:L1710935Project Number:01.0015522.17Report Date:04/14/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1710935

 Project Number:
 01.0015522.17
 Report Date:
 04/14/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1710935

 Project Number:
 01.0015522.17
 Report Date:
 04/14/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

APHA	CHAIN O	F CUSTO	DY	PAGE	OF	Date	Rec'd in	n Lab:	417	117			ALPH	IA Job i	#: [[*	710935	
8 Walkup Drive	e 320 Forbes Blvd	Project Inform	ation			Rep	ort Info	ormation	- Data	Deliv	erabl			g Inform		(0 (*)	
Westboro, MA Tel: 508-898-	01581 Mansfield, MA 02048	Project Name:	17 Wa	116	960		DEx	A	EMAIL				□ Sam	e as Clien	t info P	O #:	
Client Informati	on	Project Location:	wali	Hem	- Ma	Reg						ect In		ion Requ			
	ZA	Project #: 01.0				□ Ye		MA MCP Matrix Sp				SDG?	☐ Y (Requir	es 🗆 No ed for MC	CT RCP	Analytical Metholics)	ods
Address: 249	Vandribilt Ac	Project Manager:			_	☐ Ye	s 🗆 No	GW1 Sta NPDES F	ndards	(Info Re	quire	for M	etals & E	EPH with	Targets)		
Norm	Vandribilt Ac nad Ma. 92062 1-983-1357	ALPHA Quote #:						/Fed Pr						Criteria_			
Phone: 78	1-983-1357	Turn-Around T	ime				6		73 25	13/	4	1	11	11	11		
100000000000000000000000000000000000000	Project Information:	Date Due:	□ RUSH (anly	confirmed if pre-a	pproved!)	8260	D 48N D PALL	METALS: DROP13 DMCP14 DESCRIPTIONS	VPH: CIP.	D PCB D PEST	n: Douant only Ca	. C Serprint	LERIEZ,			SAMPLE INFO Filtration Field Lab to do Preservation	TOTAL # BOTTL
ALPHA Lab ID (Lab Use Only)	Sample ID	Co	lection Time	Sample Matrix	Sampler	Š.	SVOC.	METALS	WPH: D	D PCB	o to	in in			Sar	□ Lab to do	E
10935-01	INF	4/7/1	1015an	GL	BD	X					X	V			Juli	npio commente	5
02	MID		1005,	1	80	X	JIE.										3
03	EFF	1	950	-	BD	X					X	X					5
			Cra		150	1					1	1					
Container Type P= Plastic A= Amber glass	Preservative A= None			Conta	iner Type	V					P.	P					
V= Vial G= Glass B= Bacteria cup	B= HCI C= HNO ₃ D= H ₂ SO ₄	2.0-1		Pre	eservative	HCL					/	4M3					
C= Cube O= Other E= Encore D= BOD Bottle	E= NaOH F= MeOH G= NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate O= Other	Relinquished By	J-	Date (4/7/15)	7/30 1750	a	Ret	eceived B	y: / V A	DL.	1/7	Date/Ti	me /3 25 732	Alpha's See rev	Terms and erse side.	nitted are subject d Conditions.	at to

ANALYTICAL REPORT

Lab Number: L1714341

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Report Date: 05/12/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714341 **Report Date:** 05/12/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1714341-01	INF	WATER	WALTHAM, MA	05/04/17 11:55	05/04/17
L1714341-02	MID	WATER	WALTHAM, MA	05/04/17 11:40	05/04/17
L1714341-03	EFF	WATER	WALTHAM, MA	05/04/17 11:10	05/04/17

Project Name:HP WALTHAMLab Number:L1714341Project Number:01.0015522.17Report Date:05/12/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/12/17

6004 Sew Tow Kelly Stenstrom

ANALYTICA

ORGANICS

VOLATILES

05/04/17

Date Received:

Project Name:HP WALTHAMLab Number:L1714341

Project Number: 01.0015522.17 **Report Date:** 05/12/17

SAMPLE RESULTS

Lab ID: L1714341-01 D Date Collected: 05/04/17 11:55

Client ID: INF

Sample Location: WALTHAM, MA Field Prep: Not Specified

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/12/17 06:31

Analyst: PK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	150		50
1,1-Dichloroethane	ND		ug/l	38		50
Chloroform	ND		ug/l	38		50
Carbon tetrachloride	ND		ug/l	25		50
1,2-Dichloropropane	ND		ug/l	88		50
Dibromochloromethane	ND		ug/l	25		50
1,1,2-Trichloroethane	ND		ug/l	38		50
Tetrachloroethene	59		ug/l	25		50
Chlorobenzene	ND		ug/l	25		50
Trichlorofluoromethane	ND		ug/l	120		50
1,2-Dichloroethane	ND		ug/l	25		50
1,1,1-Trichloroethane	ND		ug/l	25		50
Bromodichloromethane	ND		ug/l	25		50
trans-1,3-Dichloropropene	ND		ug/l	25		50
cis-1,3-Dichloropropene	ND		ug/l	25		50
Bromoform	ND		ug/l	100		50
1,1,2,2-Tetrachloroethane	ND		ug/l	25		50
Benzene	ND		ug/l	25		50
Toluene	ND		ug/l	38		50
Ethylbenzene	ND		ug/l	25		50
Chloromethane	ND		ug/l	120		50
Bromomethane	ND		ug/l	50		50
Vinyl chloride	ND		ug/l	50		50
Chloroethane	ND		ug/l	50		50
1,1-Dichloroethene	ND		ug/l	25		50
trans-1,2-Dichloroethene	ND		ug/l	38		50
Trichloroethene	7400		ug/l	25		50
1,2-Dichlorobenzene	ND		ug/l	120		50
1,3-Dichlorobenzene	ND		ug/l	120		50
1,4-Dichlorobenzene	ND		ug/l	120		50

Project Name: HP WALTHAM Lab Number: L1714341

Project Number: 01.0015522.17 **Report Date:** 05/12/17

SAMPLE RESULTS

Lab ID: L1714341-01 D Date Collected: 05/04/17 11:55

Client ID: INF Date Received: 05/04/17 Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methyl tert butyl ether	ND		ug/l	50		50	
p/m-Xylene	ND		ug/l	50		50	
o-Xylene	ND		ug/l	50		50	
cis-1,2-Dichloroethene	ND		ug/l	25		50	
Dichlorodifluoromethane	ND		ug/l	250		50	
Naphthalene	ND		ug/l	120		50	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	98	70-130	

05/04/17

Not Specified

Project Name: HP WALTHAM

Project Number: 01.0015522.17

SAMPLE RESULTS

Lab Number: L1714341

Report Date: 05/12/17

Date Received:

Field Prep:

Lab ID: L1714341-02 Date Collected: 05/04/17 11:40

Client ID: MID

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

05/12/17 04:47 Analytical Date:

Analyst: PΚ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	5.6		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1714341

Project Number: 01.0015522.17 **Report Date:** 05/12/17

SAMPLE RESULTS

Lab ID: L1714341-02 Date Collected: 05/04/17 11:40

Client ID: MID Date Received: 05/04/17
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ua/l	2.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	99	70-130	

05/04/17 11:10

Not Specified

05/04/17

Project Name: HP WALTHAM

Project Number: 01.0015522.17

SAMPLE RESULTS

Lab Number: L1714341

Report Date: 05/12/17

Date Received:

Field Prep:

Lab ID: L1714341-03 Date Collected:

Client ID: **EFF**

Sample Location: WALTHAM, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 05/12/17 05:22

Analyst: PΚ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	1.0		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HP WALTHAM Lab Number: L1714341

Project Number: 01.0015522.17 **Report Date:** 05/12/17

SAMPLE RESULTS

Lab ID: L1714341-03 Date Collected: 05/04/17 11:10

Client ID: EFF Date Received: 05/04/17 Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	97	70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714341

 Project Number:
 01.0015522.17
 Report Date:
 05/12/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/11/17 21:51

Analyst: PK

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS	- Westborough Lab	for sample(s): 0	1-03 Batch:	WG1002907-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714341

 Project Number:
 01.0015522.17
 Report Date:
 05/12/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/11/17 21:51

Analyst: PK

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 0°	1-03 Batch:	WG1002907-5	
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dichlorodifluoromethane	ND	ug/l	5.0		
Naphthalene	ND	ug/l	2.5		

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	98		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714341

Report Date: 05/12/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - W	estborough Lab Associated	sample(s):	01-03 Batch: V	VG1002907-3	WG1002907-4				
Methylene chloride	97		97		70-130	0		20	
1,1-Dichloroethane	99		98		70-130	1		20	
Chloroform	99		100		70-130	1		20	
Carbon tetrachloride	92		90		63-132	2		20	
1,2-Dichloropropane	100		100		70-130	0		20	
Dibromochloromethane	94		94		63-130	0		20	
1,1,2-Trichloroethane	100		100		70-130	0		20	
Tetrachloroethene	96		97		70-130	1		20	
Chlorobenzene	100		100		75-130	0		25	
Trichlorofluoromethane	80		79		62-150	1		20	
1,2-Dichloroethane	98		100		70-130	2		20	
1,1,1-Trichloroethane	93		94		67-130	1		20	
Bromodichloromethane	98		98		67-130	0		20	
trans-1,3-Dichloropropene	75		78		70-130	4		20	
cis-1,3-Dichloropropene	98		100		70-130	2		20	
Bromoform	86		91		54-136	6		20	
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20	
Benzene	100		100		70-130	0		25	
Toluene	100		100		70-130	0		25	
Ethylbenzene	110		110		70-130	0		20	
Chloromethane	74		64		64-130	14		20	
Bromomethane	67		50		39-139	29	Q	20	
Vinyl chloride	67		68		55-140	1		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714341

Report Date: 05/12/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-03 Batch:	WG1002907-3	WG1002907-4			
Chloroethane	90		60		55-138	40	Q	20
1,1-Dichloroethene	86		84		61-145	2		25
trans-1,2-Dichloroethene	99		96		70-130	3		20
Trichloroethene	99		98		70-130	1		25
1,2-Dichlorobenzene	100		100		70-130	0		20
1,3-Dichlorobenzene	100		100		70-130	0		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	96		100		63-130	4		20
p/m-Xylene	110		110		70-130	0		20
o-Xylene	110		110		70-130	0		20
cis-1,2-Dichloroethene	100		99		70-130	1		20
Dichlorodifluoromethane	40		39		36-147	3		20
Naphthalene	99		110		70-130	11		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	98	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	101	101	70-130
Dibromofluoromethane	97	97	70-130

METALS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714341

 Project Number:
 01.0015522.17
 Report Date:
 05/12/17

SAMPLE RESULTS

Lab ID: L1714341-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 05/04/17 11:55

Date Received: 05/04/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Copper, Total	0.00656		mg/l	0.00100		1	05/05/17 11:1	8 05/06/17 17:58	EPA 3005A	1,6020A	BV
Iron, Total	0.095		mg/l	0.050		1	05/05/17 11:1	8 05/05/17 18:37	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00050		1	05/05/17 11:1	8 05/06/17 17:58	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500		1	05/05/17 11:1	8 05/06/17 17:58	EPA 3005A	1,6020A	BV
Zinc, Total	0.01127		mg/l	0.01000		1	05/05/17 11:1	8 05/06/17 17:58	EPA 3005A	1,6020A	BV

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714341

 Project Number:
 01.0015522.17
 Report Date:
 05/12/17

SAMPLE RESULTS

Lab ID: L1714341-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 05/04/17 11:10

Date Received: 05/04/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Copper, Total	0.00108		mg/l	0.00100		1	05/05/17 11:1	8 05/06/17 17:21	EPA 3005A	1,6020A	BV
Iron, Total	ND		mg/l	0.050		1	05/05/17 11:1	8 05/05/17 20:11	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00050		1	05/05/17 11:1	8 05/06/17 17:21	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500		1	05/05/17 11:1	8 05/06/17 17:21	EPA 3005A	1,6020A	BV
Zinc, Total	ND		mg/l	0.01000		1	05/05/17 11:1	8 05/06/17 17:21	EPA 3005A	1,6020A	BV

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714341 **Report Date:** 05/12/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01,03 B	Batch: WC	310006	54-1				
Iron, Total	ND	mg/l	0.050		1	05/05/17 11:18	05/05/17 18:29	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter Total Metals - Mansfield	Result Qualifier	Units 01,03 B	RL Batch: WO	MDL 310006	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Copper, Total	ND	mg/l	0.00100		1	05/05/17 11:18	05/06/17 17:17	7 1,6020A	BV
Lead, Total	ND	mg/l	0.00050		1	05/05/17 11:18	05/06/17 17:17	7 1,6020A	BV
Selenium, Total	ND	mg/l	0.00500		1	05/05/17 11:18	05/06/17 17:17	7 1,6020A	BV
Zinc, Total	ND	mg/l	0.01000		1	05/05/17 11:18	05/06/17 17:17	7 1,6020A	BV

Prep Information

Digestion Method: EPA 3005A

05/12/17

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM

Lab Number: L1714341

Report Date:

Project Number:	01.0015522.17
-----------------	---------------

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bato	h: WG100	0654-2					
Iron, Total	97		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bato	ch: WG100	0665-2					
Copper, Total	100		-		80-120	-		
Lead, Total	102		-		80-120	-		
Selenium, Total	102		-		80-120	-		
Zinc, Total	99		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714341

Report Date: 05/12/17

ameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qual	RPD Limits
tal Metals - Mansfield L	_ab Associated sam	ple(s): 01,03	QC Bat	ch ID: WG100	0654-3	QC Sam	nple: L1714327-01	Client ID: MS	Sample	
ron, Total	3.73	1	4.31	58	Q	-	-	75-125	-	20
tal Metals - Mansfield L	_ab Associated sam	ple(s): 01,03	QC Bat	ch ID: WG100	0654-7	QC Sam	nple: L1714341-01	Client ID: INF	=	
ron, Total	0.095	1	1.01	92		-	-	75-125	-	20
tal Metals - Mansfield L	_ab Associated sam	ple(s): 01,03	QC Bat	ch ID: WG100	0665-3	QC Sam	nple: L1714341-01	Client ID: INF	=	
Copper, Total	0.00656	0.25	0.2584	101		-	-	75-125	-	20
Lead, Total	ND	0.51	0.5298	104		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.116	97		-	-	75-125	-	20
Zinc, Total	0.01127	0.5	0.4932	96		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1714341

Report Date:

05/12/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,0	O3 QC Batch ID:	WG1000654-4 QC Sample:	L1714327-01	Client ID:	DUP Sampl	le
Iron, Total	3.73	3.39	mg/l	10		20
Total Metals - Mansfield Lab Associated sample(s): 01,0	O3 QC Batch ID:	WG1000654-8 QC Sample:	L1714341-01	Client ID:	INF	
Iron, Total	0.095	0.090	mg/l	5		20
Total Metals - Mansfield Lab Associated sample(s): 01,0	O3 QC Batch ID:	WG1000665-4 QC Sample:	L1714341-01	Client ID:	INF	
Copper, Total	0.00656	0.00697	mg/l	6		20
Lead, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01127	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: HP WALTHAM

L1714341 **Project Number:** 01.0015522.17

Report Date: 05/12/17

Lab Number:

SAMPLE RESULTS

Lab ID: L1714341-01

INF Client ID:

WALTHAM, MA Sample Location:

Matrix: Water Date Collected: 05/04/17 11:55

Date Received: 05/04/17

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Chloride	560		mg/l	10		10	-	05/09/17 19:05	1,9251	ML

L1714341

Project Name: HP WALTHAM

Project Number: 01.0015522.17 Report Date:

05/12/17

Lab Number:

SAMPLE RESULTS

Lab ID: L1714341-03

EFF Client ID:

Sample Location: WALTHAM, MA

Matrix: Water Date Collected: 05/04/17 11:10

Date Received: 05/04/17

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
Chloride	560		mg/l	10		10	-	05/09/17 19:07	1,9251	ML

L1714341

Project Name: HP WALTHAM Lab Number:

Project Number: 01.0015522.17 **Report Date:** 05/12/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	,03 Ba	tch: Wo	G1001751-1				
Chloride	ND	mg/l	1.0		1	-	05/09/17 18:59	1,9251	ML

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714341

Report Date:

05/12/17

Parameter	LCS %Recovery Qua	LCSD I %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	Associated sample(s): 01,	3 Batch: WG1001	751-2					
Chloride	97	-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1714341

Report Date:

05/12/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery ual Limits		RPD Qual Limits
General Chemistry - Westboro	ugh Lab Asso	ciated samp	ole(s): 01,03	QC Batch ID	D: WG1001751-4	QC Sample: L17	'14463-06 Cli	ient ID:	MS Sample
Chloride	1.4	20	21	98	-	-	58-140	-	7

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1714341

Report Date:

05/12/17

Parameter	Native Sam	ple D	ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03	QC Batch ID:	WG1001751-3	QC Sample:	L1714463-05	Client ID:	DUP Sample
Chloride	21		21	mg/l	0		7

Project Name:

Project Number:

HP WALTHAM

01.0015522.17

Project Name:HP WALTHAMLab Number:L1714341Project Number:01.0015522.17Report Date:05/12/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1714341-01A	Plastic 250ml HNO3 preserved	Α	<2	3.7	Υ	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1714341-01B	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1714341-01C	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1714341-01D	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1714341-01E	Plastic 60ml unpreserved	Α	7	3.7	Υ	Absent	CL-9251(28)
L1714341-02B	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1714341-02C	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1714341-02D	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1714341-03A	Plastic 250ml HNO3 preserved	Α	<2	3.7	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1714341-03B	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1714341-03C	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1714341-03D	Vial HCI preserved	Α	N/A	3.7	Υ	Absent	8260(14)
L1714341-03E	Plastic 60ml unpreserved	Α	7	3.7	Υ	Absent	CL-9251(28)

Project Name: Lab Number: **HP WALTHAM** L1714341 **Project Number:** 01.0015522.17 **Report Date:** 05/12/17

GLOSSARY

Acronvms

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of LFB

analytes or a material containing known and verified amounts of analytes.

MDI. - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound TIC

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:HP WALTHAMLab Number:L1714341Project Number:01.0015522.17Report Date:05/12/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714341

 Project Number:
 01.0015522.17
 Report Date:
 05/12/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

ALPHA	CHAIN O	F CUSTO	DY PAC	GE	OF _	- Date I	Rec'd in L	ab:	5/4	17	ALPI	HA Job #:	L17/434	1/
8 Walkup Drive	320 Forbes Blyd	Project Informat	ion			Repo	ort Inform	nation -	Data Deliv	erabl		ng Informa		
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project Name: H	P Wal	thom		□ AE	Ex	EN	IAIL		□ San	ne as Client i	nfo PO#:	
Client Information	on	Project Location:	Valth.	- M	en.	Regu	ılatory R	equirem	ents &	Proj	ect Informa	tion Requi	rements	
Client: G2A		Project #: () [, QC	15522.	17		☐ Yes	□ No Ma	A MCP An	alytical Meth	ods	DG? (Requi	Yes □ No C	CT RCP Analytical Me	ethods
Address: 24a	Vanderb. lt AR d No. 02062 283-1357	Project Manager:				☐ Yes	□ No GV	V1 Standa	ards (Info Re		for Metals &			
Narware	d Ma. 02062	ALPHA Quote #:				A Professional Contraction	□ No NF er State /F	ed Progr	am			Criteria		
Phone: 781-6	783-1757	Turn-Around Tir	ne				(ve)	15	10/2/	1	111	11	///	
Email: wda	Project Information:	Date Due:	I RUSH (only cor	ofirmed if pre-appi	roved!)	ANALYSIS	: DABN DPAH LS: DMC. DPAH	METALS: DRCRAS DRCP14 DRCP15	VPH: Changes & Targets C Ranges Only The C PES C PESCO	Quant Only Cr.	Meta/S. M. 24 Fe S.	3///	SAMPLE IN Filtration Field Lab to do	£ #
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle	ection	Sample Matrix	Sampler Initials	, So.	METALS	METALS EPH: CH	VPH: DR	0 :	ne fals		Sample Comme	L E
14341-01	INF	5/4/17		GW	BO	X				X	X		Sample Comme	5
03	MIO	1	1140an	1	1	X								3
03	EFF	4	tlion	4	1	X				X	Х			5
								\$						
Container Type P= Plastic A= Amber glass V= Vial	Preservative A= None B= HCI				ner Type	V				p	P Harton			
Page 35 of 35	C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₃ CI K= Zn Acetate O= Other	Relinquished By:		Date/ 5/4/17	Time Tillym TYT	M.SI	Rece	eived By:		-	Date/Time	Alpha's T	es submitted are sub erms and Conditions rse side. 01-01 (rev. 12-Mar-2012)	

ANALYTICAL REPORT

Lab Number: L1714337

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Report Date: 06/14/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337 **Report Date:** 06/14/17

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L1714337-01 INF WATER WALTHAM, MA 05/04/17 12:15 05/04/17

Project Name:HP WALTHAMLab Number:L1714337Project Number:01.0015522.17Report Date:06/14/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 80	0-624-9220) with	any	questions.	

Project Name:HP WALTHAMLab Number:L1714337Project Number:01.0015522.17Report Date:06/14/17

Case Narrative (continued)

Report Submission

This report replaces the report May 17, 2017, and includes the results of the Hardness analysis.

A previously-issued final report replaced the partial report issued May 15, 2017, and included the results of all requested analyses.

The analysis of ethanol was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1714337-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Volatile Organics by SIM

L1714337-01: The sample has an elevated detection limit due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Semivolatile Organics

The WG1001142-2 LCS recovery, associated with L1714337-01, is below the acceptance criteria for benzidine (8%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

Metals

The WG1000583-3 MS recovery for hardness (36%), performed on L1714337-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/14/17

Molusa Cripps Melissa Cripps

ALPHA

ORGANICS

VOLATILES

05/04/17

Date Received:

Project Name: Lab Number: HP WALTHAM L1714337

Project Number: Report Date: 01.0015522.17 06/14/17

SAMPLE RESULTS

Lab ID: L1714337-01 Date Collected: 05/04/17 12:15

Client ID: INF

Sample Location: Field Prep: WALTHAM, MA Not Specified

Extraction Method: EPA 504.1 Matrix: Water Extraction Date: 05/09/17 15:14

Analytical Method: 14,504.1 Analytical Date: 05/09/17 21:03

Analyst: SL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010	0.004	1	Α

05/04/17

Date Received:

Project Name: HP WALTHAM Lab Number: L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

SAMPLE RESULTS

Lab ID: L1714337-01 D Date Collected: 05/04/17 12:15

Client ID: INF

Sample Location: WALTHAM, MA Field Prep: Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 05/12/17 07:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	300	68.	100
1,1-Dichloroethane	ND		ug/l	75	21.	100
Chloroform	ND		ug/l	75	16.	100
Carbon tetrachloride	ND		ug/l	50	13.	100
1,2-Dichloropropane	ND		ug/l	180	14.	100
Dibromochloromethane	ND		ug/l	50	15.	100
1,1,2-Trichloroethane	ND		ug/l	75	14.	100
Tetrachloroethene	57		ug/l	50	18.	100
Chlorobenzene	ND		ug/l	50	18.	100
Trichlorofluoromethane	ND		ug/l	250	16.	100
1,2-Dichloroethane	ND		ug/l	50	13.	100
1,1,1-Trichloroethane	ND		ug/l	50	16.	100
Bromodichloromethane	ND		ug/l	50	19.	100
trans-1,3-Dichloropropene	ND		ug/l	50	16.	100
cis-1,3-Dichloropropene	ND		ug/l	50	14.	100
1,1-Dichloropropene	ND		ug/l	250	17.	100
Bromoform	ND		ug/l	200	25.	100
1,1,2,2-Tetrachloroethane	ND		ug/l	50	17.	100
Benzene	ND		ug/l	50	16.	100
Toluene	ND		ug/l	75	16.	100
Ethylbenzene	ND		ug/l	50	17.	100
Chloromethane	ND		ug/l	250	18.	100
Bromomethane	ND		ug/l	100	26.	100
Vinyl chloride	ND		ug/l	100	7.1	100
Chloroethane	ND		ug/l	100	13.	100
1,1-Dichloroethene	ND		ug/l	50	17.	100
trans-1,2-Dichloroethene	ND		ug/l	75	16.	100
Trichloroethene	7200		ug/l	50	18.	100
1,2-Dichlorobenzene	ND		ug/l	250	18.	100
1,3-Dichlorobenzene	ND		ug/l	250	19.	100

Project Name: HP WALTHAM Lab Number: L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

SAMPLE RESULTS

Lab ID: L1714337-01 D Date Collected: 05/04/17 12:15

Client ID: Date Received: 05/04/17
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab 1,4-Dichlorobenzene ND 250 19. 100 ug/l Methyl tert butyl ether ND ug/l 100 17. 100 p/m-Xylene ND ug/l 100 33. 100 o-Xylene ND 100 33. 100 ug/l Xylenes, Total ND 100 33. 100 ug/l J cis-1,2-Dichloroethene 25 50 19. 100 ug/l Dibromomethane ND 500 36. 100 ug/l 1,4-Dichlorobutane ND 500 46. 100 ug/l 1,2,3-Trichloropropane ND 500 18. 100 ug/l Styrene ND 100 36. 100 ug/l Dichlorodifluoromethane ND ug/l 500 24. 100 Acetone ND 500 150 100 ug/l Carbon disulfide ND 500 30. 100 ug/l ND 2-Butanone ug/l 500 190 100 ND 500 31. 100 Vinyl acetate ug/l 4-Methyl-2-pentanone ND 500 42. 100 ug/l ND 500 100 2-Hexanone ug/l 52. Ethyl methacrylate ND 500 61. 100 ug/l Acrylonitrile ND 500 43. 100 ug/l Bromochloromethane ND 250 15. 100 ug/l Tetrahydrofuran ND 500 83. 100 ug/l 2,2-Dichloropropane ND ug/l 250 20. 100 ND 200 19. 100 1,2-Dibromoethane ug/l 1,3-Dichloropropane ND 250 21. 100 ug/l 1,1,1,2-Tetrachloroethane ND 50 16. 100 ug/l Bromobenzene ND 250 15. 100 ug/l n-Butylbenzene ND ug/l 50 19. 100 sec-Butylbenzene ND ug/l 50 18. 100 ND tert-Butylbenzene 250 18. 100 ug/l o-Chlorotoluene ND ug/l 250 17. 100 p-Chlorotoluene ND ug/l 250 18. 100 ND 250 35. 100 1,2-Dibromo-3-chloropropane ug/l Hexachlorobutadiene ND ug/l 50 22. 100 ND Isopropylbenzene ug/l 50 19. 100 p-Isopropyltoluene ND 50 19. 100 ug/l Naphthalene ND 250 22. 100 ug/l ND 50 17. 100 n-Propylbenzene ug/l ND 23. 1,2,3-Trichlorobenzene 250 100 ug/l

ND

ug/l

250

22.

100

1,2,4-Trichlorobenzene

Project Name: HP WALTHAM Lab Number: L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

SAMPLE RESULTS

Lab ID: L1714337-01 D Date Collected: 05/04/17 12:15

Client ID: Date Received: 05/04/17
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	250	17.	100	
1,2,4-Trimethylbenzene	ND		ug/l	250	19.	100	
trans-1,4-Dichloro-2-butene	ND		ug/l	250	18.	100	
Ethyl ether	ND		ug/l	250	16.	100	
Tert-Butyl Alcohol	ND		ug/l	1000	140	100	
Tertiary-Amyl Methyl Ether	ND		ug/l	200	28.	100	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	89	70-130
Toluene-d8	111	70-130
4-Bromofluorobenzene	123	70-130
Dibromofluoromethane	91	70-130

05/04/17 12:15

Project Name: HP WALTHAM Lab Number: L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

SAMPLE RESULTS

AMPLE RESULTS

Date Collected:

Lab ID: L1714337-01 D

Client ID: INF Date Received: 05/04/17 Sample Location: WALTHAM, MA Field Prep: Not Specified

Matrix: Water
Analytical Method: 1,8260C

Analytical Date: 05/12/17 16:24

Analyst: MAB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Ethanol	ND		ug/l	25000	1400	100	
_					Acce	eptance	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	89		70-130
Toluene-d8	100		70-130
4-Bromofluorobenzene	101		70-130
Dibromofluoromethane	98		70-130

Project Name: Lab Number: HP WALTHAM L1714337

Project Number: Report Date: 01.0015522.17 06/14/17

SAMPLE RESULTS

Lab ID: L1714337-01 D Date Collected: 05/04/17 12:15

Client ID: INF

Date Received: 05/04/17 Sample Location: Field Prep: WALTHAM, MA Not Specified

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 05/12/17 07:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westbor	ough Lab					
1,4-Dioxane	ND		ug/l	300	76.	100

Project Name:HP WALTHAMLab Number:L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 05/09/17 19:47 Extraction Date: 05/09/17 15:14
Analyst: SL

Parameter Result Qualifier Units RL MDL

Microextractables by GC - Westborough Lab for sample(s): 01 Batch: WG1001729-1

ug/l

0.010

0.004

Α

ND

1,2-Dibromoethane

Project Name:HP WALTHAMLab Number:L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 05/12/17 06:28

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for sa	ample(s):	01	Batch:	WG1002892-5	
1,4-Dioxane	ND		ug/l		3.0	0.76	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714337

 Project Number:
 01.0015522.17
 Report Date:
 06/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/17 06:28

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lal	b for sample	e(s): 01	Batch:	WG1002896-5
Methylene chloride	ND		ug/l	3.0	0.68
1,1-Dichloroethane	ND		ug/l	0.75	0.21
Chloroform	ND		ug/l	0.75	0.16
Carbon tetrachloride	ND		ug/l	0.50	0.13
1,2-Dichloropropane	ND		ug/l	1.8	0.14
Dibromochloromethane	ND		ug/l	0.50	0.15
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	0.50	0.18
Trichlorofluoromethane	ND		ug/l	2.5	0.16
1,2-Dichloroethane	ND		ug/l	0.50	0.13
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
1,1-Dichloropropene	ND		ug/l	2.5	0.17
Bromoform	ND		ug/l	2.0	0.25
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	0.75	0.16
Ethylbenzene	ND		ug/l	0.50	0.17
Chloromethane	ND		ug/l	2.5	0.18
Bromomethane	ND		ug/l	1.0	0.26
Vinyl chloride	ND		ug/l	1.0	0.07
Chloroethane	ND		ug/l	1.0	0.13
1,1-Dichloroethene	ND		ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND		ug/l	0.75	0.16
Trichloroethene	ND		ug/l	0.50	0.18
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714337

 Project Number:
 01.0015522.17
 Report Date:
 06/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/17 06:28

Parameter	Result	Qualifier (Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample((s): 01	Batch:	WG1002896-5
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19
1,4-Dichlorobenzene	ND		ug/l	2.5	0.19
Methyl tert butyl ether	ND		ug/l	1.0	0.17
p/m-Xylene	ND		ug/l	1.0	0.33
o-Xylene	ND		ug/l	1.0	0.33
Xylenes, Total	ND		ug/l	1.0	0.33
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19
Dibromomethane	ND		ug/l	5.0	0.36
1,4-Dichlorobutane	ND		ug/l	5.0	0.46
1,2,3-Trichloropropane	ND		ug/l	5.0	0.18
Styrene	ND		ug/l	1.0	0.36
Dichlorodifluoromethane	ND		ug/l	5.0	0.24
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	0.30
2-Butanone	ND		ug/l	5.0	1.9
Vinyl acetate	ND		ug/l	5.0	0.31
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42
2-Hexanone	ND		ug/l	5.0	0.52
Ethyl methacrylate	ND		ug/l	5.0	0.61
Acrylonitrile	ND		ug/l	5.0	0.43
Bromochloromethane	ND		ug/l	2.5	0.15
Tetrahydrofuran	ND		ug/l	5.0	0.83
2,2-Dichloropropane	ND		ug/l	2.5	0.20
1,2-Dibromoethane	ND		ug/l	2.0	0.19
1,3-Dichloropropane	ND		ug/l	2.5	0.21
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16
Bromobenzene	ND		ug/l	2.5	0.15
n-Butylbenzene	ND		ug/l	0.50	0.19
sec-Butylbenzene	ND		ug/l	0.50	0.18

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714337

 Project Number:
 01.0015522.17
 Report Date:
 06/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/17 06:28

Analyst: MM

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	o for sample(s): 01	Batch:	WG1002896-5
tert-Butylbenzene	ND	ug/l	2.5	0.18
o-Chlorotoluene	ND	ug/l	2.5	0.17
p-Chlorotoluene	ND	ug/l	2.5	0.18
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.35
Hexachlorobutadiene	ND	ug/l	0.50	0.22
Isopropylbenzene	ND	ug/l	0.50	0.19
p-Isopropyltoluene	ND	ug/l	0.50	0.19
Naphthalene	ND	ug/l	2.5	0.22
n-Propylbenzene	ND	ug/l	0.50	0.17
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.23
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.22
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.17
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.19
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.18
Ethyl ether	ND	ug/l	2.5	0.16
Tert-Butyl Alcohol	ND	ug/l	10	1.4
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	0.28

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
1,2-Dichloroethane-d4	87	70-130
Toluene-d8	112	70-130
4-Bromofluorobenzene	115	70-130
Dibromofluoromethane	85	70-130

Project Name: HP WALTHAM Lab Number: L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/17 13:36

Analyst: PK

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - \	Westborough Lab	o for sampl	e(s): 01	Batch:	WG1003068-5	
Ethyl Alcohol	ND		ug/l	250	14.	

		Acceptance	
Surrogate	%Recovery Qual	ifier Criteria	
4.0 Dishlare the see 44	00	70.400	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	100	70-130	

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1714337

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column	
Microextractables by GC - Westborough Lab Associated sample(s): 01 Batch: WG1001729-2										
1.2-Dibromoethane	104		_		70-130	_			Α	

Project Name: HP WALTHAM Project Number: 01.0015522.17

Lab Number: L1714337

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS-SIM - V	Vestborough Lab Associated sample(s)	: 01 Batch:	WG1002892-3	WG1002892-4			
1,4-Dioxane	110	100		70-130	10	25	

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
/olatile Organics by GC/MS - Westbor	ough Lab Associated	sample(s): 0	1 Batch: WG1	002896-3	WG1002896-4		
Methylene chloride	100		110		70-130	10	20
1,1-Dichloroethane	110		100		70-130	10	20
Chloroform	94		95		70-130	1	20
Carbon tetrachloride	73		74		63-132	1	20
1,2-Dichloropropane	100		100		70-130	0	20
Dibromochloromethane	84		88		63-130	5	20
1,1,2-Trichloroethane	110		110		70-130	0	20
Tetrachloroethene	96		100		70-130	4	20
Chlorobenzene	98		98		75-130	0	25
Trichlorofluoromethane	87		84		62-150	4	20
1,2-Dichloroethane	84		85		70-130	1	20
1,1,1-Trichloroethane	82		82		67-130	0	20
Bromodichloromethane	90		87		67-130	3	20
trans-1,3-Dichloropropene	100		110		70-130	10	20
cis-1,3-Dichloropropene	98		99		70-130	1	20
1,1-Dichloropropene	100		100		70-130	0	20
Bromoform	92		88		54-136	4	20
1,1,2,2-Tetrachloroethane	110		110		67-130	0	20
Benzene	100		110		70-130	10	25
Toluene	110		110		70-130	0	25
Ethylbenzene	110		110		70-130	0	20
Chloromethane	96		97		64-130	1	20
Bromomethane	87		85		39-139	2	20

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westbord	ough Lab Associated	sample(s): 01	1 Batch: WG10	002896-3	WG1002896-4				
Vinyl chloride	110		110		55-140	0		20	
Chloroethane	110		110		55-138	0		20	
1,1-Dichloroethene	100		100		61-145	0		25	
trans-1,2-Dichloroethene	100		100		70-130	0		20	
Trichloroethene	88		91		70-130	3		25	
1,2-Dichlorobenzene	94		97		70-130	3		20	
1,3-Dichlorobenzene	95		94		70-130	1		20	
1,4-Dichlorobenzene	94		95		70-130	1		20	
Methyl tert butyl ether	97		100		63-130	3		20	
p/m-Xylene	105		100		70-130	5		20	
o-Xylene	105		105		70-130	0		20	
cis-1,2-Dichloroethene	98		94		70-130	4		20	
Dibromomethane	90		92		70-130	2		20	
1,4-Dichlorobutane	100		110		70-130	10		20	
1,2,3-Trichloropropane	100		110		64-130	10		20	
Styrene	105		105		70-130	0		20	
Dichlorodifluoromethane	97		97		36-147	0		20	
Acetone	84		76		58-148	10		20	
Carbon disulfide	110		110		51-130	0		20	
2-Butanone	87		75		63-138	15		20	
Vinyl acetate	81		87		70-130	7		20	
4-Methyl-2-pentanone	100		110		59-130	10		20	
2-Hexanone	83		83		57-130	0		20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westbor	rough Lab Associated	sample(s): 0	1 Batch: WG10	002896-3	WG1002896-4			
Ethyl methacrylate	120		120		70-130	0		20
Acrylonitrile	94		94		70-130	0		20
Bromochloromethane	85		89		70-130	5		20
Tetrahydrofuran	76		82		58-130	8		20
2,2-Dichloropropane	87		87		63-133	0		20
1,2-Dibromoethane	100		100		70-130	0		20
1,3-Dichloropropane	120		120		70-130	0		20
1,1,1,2-Tetrachloroethane	87		90		64-130	3		20
Bromobenzene	93		92		70-130	1		20
n-Butylbenzene	120		120		53-136	0		20
sec-Butylbenzene	95		94		70-130	1		20
tert-Butylbenzene	90		92		70-130	2		20
o-Chlorotoluene	100		100		70-130	0		20
p-Chlorotoluene	100		110		70-130	10		20
1,2-Dibromo-3-chloropropane	94		98		41-144	4		20
Hexachlorobutadiene	110		110		63-130	0		20
Isopropylbenzene	94		96		70-130	2		20
p-Isopropyltoluene	94		90		70-130	4		20
Naphthalene	88		86		70-130	2		20
n-Propylbenzene	100		100		69-130	0		20
1,2,3-Trichlorobenzene	95		97		70-130	2		20
1,2,4-Trichlorobenzene	90		94		70-130	4		20
1,3,5-Trimethylbenzene	95		96		64-130	1		20

06/14/17

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM

Lab Number: L1714337

Report Date:

Project Number: 01.0015522.17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch: WG	1002896-3	WG1002896-4				
1,2,4-Trimethylbenzene	98		95		70-130	3		20	
trans-1,4-Dichloro-2-butene	140	Q	100		70-130	33	Q	20	
Ethyl ether	120		130		59-134	8		20	
Tert-Butyl Alcohol	90		96		70-130	6		20	
Tertiary-Amyl Methyl Ether	97		99		66-130	2		20	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
Surrogate	/anecovery Quar	Mecovery Quar	
1,2-Dichloroethane-d4	86	89	70-130
Toluene-d8	110	112	70-130
4-Bromofluorobenzene	110	107	70-130
Dibromofluoromethane	88	89	70-130

Project Name: HP WALTHAM Project Number:

Lab Number:

L1714337 06/14/17

01.0015522.17

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): (01 Batch: WG1	1003068-3	WG1003068-4				
Ethyl Alcohol	82		90		70-130	9		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	91	94	70-130
Toluene-d8	102	100	70-130
4-Bromofluorobenzene	101	101	70-130
Dibromofluoromethane	97	97	70-130

Matrix Spike Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.17

Lab Number:

L1714337

Report Date:

	Native	MS	MS	MS		MSD	MSD	ı	Recovery		R	PD	
Parameter	Sample	Added	Found %	6Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual Li	mits	<u>Column</u>
Microextractables by GC -	Westborough Lab	Associate	ed sample(s): 01	QC Batch	ID: WG10	01729-3	QC Sample:	L171413	30-01 Clie	nt ID: N	/IS Sample		
1,2-Dibromoethane	ND	0.252	0.268	106		-	-		65-135	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.252	0.232	92		-	-		65-135	-		20	Α

SEMIVOLATILES

Date Received:

L1714337

05/04/17

Project Name: HP WALTHAM Lab Number:

Project Number: 01.0015522.17 **Report Date:** 06/14/17

SAMPLE RESULTS

Lab ID: L1714337-01 Date Collected: 05/04/17 12:15

Client ID: INF

Sample Location: WALTHAM, MA Field Prep: Not Specified Extraction Method: EPA 3510C

Matrix: Water Extraction Date: 05/07/17 23:02

Analytical Method: 1,8270D
Analytical Date: 05/09/17 06:36

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	orough Lab					
Benzidine	ND		ug/l	20	8.1	1
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.69	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
Azobenzene	ND		ug/l	2.0	0.75	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	1.3	J	ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
Aniline	ND		ug/l	2.0	0.65	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.2	1

Project Name:HP WALTHAMLab Number:L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

SAMPLE RESULTS

Lab ID: L1714337-01 Date Collected: 05/04/17 12:15

Client ID: Date Received: 05/04/17
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
4-Nitroaniline	ND		ug/l	5.0	1.3	1			
Dibenzofuran	ND		ug/l	2.0	0.66	1			
n-Nitrosodimethylamine	ND		ug/l	2.0	0.67	1			
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1			
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1			
2-Chlorophenol	ND		ug/l	2.0	0.63	1			
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1			
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1			
2-Nitrophenol	ND		ug/l	10	1.5	1			
4-Nitrophenol	ND		ug/l	10	1.8	1			
2,4-Dinitrophenol	ND		ug/l	20	5.5	1			
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1			
Phenol	ND		ug/l	5.0	1.9	1			
2-Methylphenol	ND		ug/l	5.0	1.0	1			
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1			
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1			
Benzoic Acid	ND		ug/l	50	13.	1			
Benzyl Alcohol	ND		ug/l	2.0	0.72	1			
Carbazole	ND		ug/l	2.0	0.63	1			
Pyridine	ND		ug/l	3.5	1.9	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	50	21-120	
Phenol-d6	36	10-120	
Nitrobenzene-d5	77	23-120	
2-Fluorobiphenyl	73	15-120	
2,4,6-Tribromophenol	46	10-120	
4-Terphenyl-d14	69	41-149	

Project Name: HP WALTHAM Lab Number: L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

SAMPLE RESULTS

Lab ID: L1714337-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 05/10/17 17:32

Analyst: KL

Date Collected: 05/04/17 12:15
Date Received: 05/04/17
Field Prep: Not Specified
Extraction Method:EPA 3510C

Extraction Date: 05/07/17 23:07

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM	Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10	0.04	1			
	ND ND								
2-Chloronaphthalene			ug/l	0.20	0.04	1			
Fluoranthene	ND		ug/l	0.20	0.04	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1			
Naphthalene	ND		ug/l	0.20	0.04	1			
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1			
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1			
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1			
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1			
Chrysene	ND		ug/l	0.20	0.04	1			
Acenaphthylene	ND		ug/l	0.20	0.04	1			
Anthracene	ND		ug/l	0.20	0.04	1			
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1			
Fluorene	ND		ug/l	0.20	0.04	1			
Phenanthrene	ND		ug/l	0.20	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1			
Pyrene	ND		ug/l	0.20	0.04	1			
1-Methylnaphthalene	ND		ug/l	0.20	0.04	1			
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1			
Pentachlorophenol	ND		ug/l	0.80	0.22	1			
Hexachlorobenzene	ND		ug/l	0.80	0.03	1			
Hexachloroethane	ND		ug/l	0.80	0.03	1			

Project Name: HP WALTHAM Lab Number: L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/04/17 12:15

Client ID: Date Received: 05/04/17
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	41	21-120
Phenol-d6	30	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	75	10-120
4-Terphenyl-d14	65	41-149

L1714337

Project Name: HP WALTHAM Project Number:

01.0015522.17 Report Date:

06/14/17

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/09/17 20:52

Analyst: СВ Extraction Method: EPA 3510C 05/07/17 23:02 Extraction Date:

arameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1001142-1	
Acenaphthene	ND		ug/l		2.0	0.59	
Benzidine	ND		ug/l		20	8.1	
1,2,4-Trichlorobenzene	ND		ug/l		5.0	0.66	_
Hexachlorobenzene	ND		ug/l		2.0	0.58	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.67	
2-Chloronaphthalene	ND		ug/l		2.0	0.64	
1,2-Dichlorobenzene	ND		ug/l		2.0	0.73	
1,3-Dichlorobenzene	ND		ug/l		2.0	0.69	
1,4-Dichlorobenzene	ND		ug/l		2.0	0.71	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.4	
2,4-Dinitrotoluene	ND		ug/l		5.0	0.84	
2,6-Dinitrotoluene	ND		ug/l		5.0	1.1	
Azobenzene	ND		ug/l		2.0	0.75	
Fluoranthene	ND		ug/l		2.0	0.57	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.62	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.73	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.70	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.63	
Hexachlorobutadiene	ND		ug/l		2.0	0.72	
Hexachlorocyclopentadiene	ND		ug/l		20	7.8	
Hexachloroethane	ND		ug/l		2.0	0.68	
Isophorone	ND		ug/l		5.0	0.60	
Naphthalene	ND		ug/l		2.0	0.68	
Nitrobenzene	ND		ug/l		2.0	0.75	
NDPA/DPA	ND		ug/l		2.0	0.64	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.70	
Bis(2-ethylhexyl)phthalate	1.5	J	ug/l		3.0	0.91	
Butyl benzyl phthalate	ND		ug/l		5.0	1.3	
Di-n-butylphthalate	ND		ug/l		5.0	0.69	

Project Name: HP WALTHAM
Project Number: 01.0015522.17

Lab Number: L1714337 **Report Date:** 06/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/09/17 20:52

Analyst: CB

Extraction Method: EPA 3510C Extraction Date: 05/07/17 23:02

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1001142-1
Di-n-octylphthalate	ND		ug/l		5.0	1.1
Diethyl phthalate	ND		ug/l		5.0	0.63
Dimethyl phthalate	ND		ug/l		5.0	0.65
Benzo(a)anthracene	ND		ug/l		2.0	0.61
Benzo(a)pyrene	ND		ug/l		2.0	0.54
Benzo(b)fluoranthene	ND		ug/l		2.0	0.64
Benzo(k)fluoranthene	ND		ug/l		2.0	0.60
Chrysene	ND		ug/l		2.0	0.54
Acenaphthylene	ND		ug/l		2.0	0.66
Anthracene	ND		ug/l		2.0	0.64
Benzo(ghi)perylene	ND		ug/l		2.0	0.61
Fluorene	ND		ug/l		2.0	0.62
Phenanthrene	ND		ug/l		2.0	0.61
Dibenzo(a,h)anthracene	ND		ug/l		2.0	0.55
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	0.71
Pyrene	ND		ug/l		2.0	0.57
Biphenyl	ND		ug/l		2.0	0.76
Aniline	ND		ug/l		2.0	0.65
4-Chloroaniline	ND		ug/l		5.0	0.63
1-Methylnaphthalene	ND		ug/l		2.0	0.67
2-Nitroaniline	ND		ug/l		5.0	1.1
3-Nitroaniline	ND		ug/l		5.0	1.2
4-Nitroaniline	ND		ug/l		5.0	1.3
Dibenzofuran	ND		ug/l		2.0	0.66
2-Methylnaphthalene	ND		ug/l		2.0	0.72
n-Nitrosodimethylamine	ND		ug/l		2.0	0.67
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.68
p-Chloro-m-cresol	ND		ug/l		2.0	0.62
2-Chlorophenol	ND		ug/l		2.0	0.63

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Lab Number:

L1714337

Report Date:

06/14/17

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8270D

Analytical Date: 05/09/17 20:52

Analyst:

СВ

Extraction Method: EPA 3510C Extraction Date: 05/07/17 23:02

Qualifier RL MDL Result **Units Parameter** Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1001142-1 2,4-Dichlorophenol ND 5.0 0.77 ug/l ND 2,4-Dimethylphenol ug/l 5.0 1.6 2-Nitrophenol ND ug/l 10 1.5 ND 1.8 4-Nitrophenol 10 ug/l ND 5.5 2,4-Dinitrophenol ug/l 20 4,6-Dinitro-o-cresol ND 10 2.1 ug/l Pentachlorophenol ND ug/l 10 3.4 Phenol ND 5.0 1.9 ug/l ND 1.0 2-Methylphenol 5.0 ug/l 3-Methylphenol/4-Methylphenol ND 1.1 ug/l 5.0 2,4,5-Trichlorophenol ND 5.0 0.72 ug/l Benzoic Acid ND ug/l 50 13. Benzyl Alcohol ND ug/l 2.0 0.72 Carbazole ND 2.0 ug/l 0.63 Pyridine ND ug/l 3.5 1.9

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name: HP WALTHAM Lab Number: L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 05/09/17 20:52 Extraction Date: 05/07/17 23:02

Analyst: CB

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	01	Batch:	WG1001142-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	44	21-120
Phenol-d6	31	10-120
Nitrobenzene-d5	72	23-120
2-Fluorobiphenyl	66	15-120
2,4,6-Tribromophenol	69	10-120
4-Terphenyl-d14	64	41-149

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Lab Number: L1714337

Report Date: 06/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 05/10/17 16:13

Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 05/07/17 23:07

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/N	IS-SIM - Westbo	rough Lab	for sample	e(s): 01	Batch: W	G1001143-1
Acenaphthene	ND		ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	ND		ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	ND		ug/l	0.20	0.04	1
Benzo(a)anthracene	ND		ug/l	0.20	0.02	2
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	2
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	ND		ug/l	0.20	0.04	1
Acenaphthylene	ND		ug/l	0.20	0.04	1
Anthracene	ND		ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	ND		ug/l	0.20	0.04	1
Phenanthrene	ND		ug/l	0.20	0.02	2
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	ND		ug/l	0.20	0.04	1
1-Methylnaphthalene	ND		ug/l	0.20	0.04	1
2-Methylnaphthalene	ND		ug/l	0.20	0.05	5
Pentachlorophenol	ND		ug/l	0.80	0.22	2
Hexachlorobenzene	ND		ug/l	0.80	0.03	3
Hexachloroethane	ND		ug/l	0.80	0.03	3

Project Name: HP WALTHAM Lab Number: L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 05/10/17 16:13 Extraction Date: 05/07/17 23:07

Analyst: KL

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s):
 01
 Batch:
 WG1001143-1

Surrogate	%Recovery Qual	Acceptance ifier Criteria	
			-
2-Fluorophenol	44	21-120	
Phenol-d6	31	10-120	
Nitrobenzene-d5	72	23-120	
2-Fluorobiphenyl	69	15-120	
2,4,6-Tribromophenol	75	10-120	
4-Terphenyl-d14	70	41-149	

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

Parameter	LCS %Recovery	Qual	LCSD %Recovery		ecovery imits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Assoc	iated sample(s):	01 Batch:	WG1001142-2 W	/G1001142-3			
Acenaphthene	64		60	37	7-111	6		30
Benzidine	8	Q	15	10	0-75	59	Q	30
1,2,4-Trichlorobenzene	68		60	3	9-98	13		30
Hexachlorobenzene	70		66	40)-140	6		30
Bis(2-chloroethyl)ether	66		63	40)-140	5		30
2-Chloronaphthalene	69		65	40)-140	6		30
1,2-Dichlorobenzene	62		59	40)-140	5		30
1,3-Dichlorobenzene	60		57	40)-140	5		30
1,4-Dichlorobenzene	60		57	3	6-97	5		30
3,3'-Dichlorobenzidine	52		50	40)-140	4		30
2,4-Dinitrotoluene	71		67	48	3-143	6		30
2,6-Dinitrotoluene	76		72	40)-140	5		30
Azobenzene	66		62	40)-140	6		30
Fluoranthene	66		62	40)-140	6		30
4-Chlorophenyl phenyl ether	67		64	40)-140	5		30
4-Bromophenyl phenyl ether	70		66	40)-140	6		30
Bis(2-chloroisopropyl)ether	70		71	40)-140	1		30
Bis(2-chloroethoxy)methane	72		66	40)-140	9		30
Hexachlorobutadiene	64		61	40)-140	5		30
Hexachlorocyclopentadiene	64		59	40)-140	8		30
Hexachloroethane	60		57	40)-140	5		30
Isophorone	73		67	40)-140	9		30
Naphthalene	62		59	40)-140	5		30

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	ated sample(s):	01 Batch:	WG1001142-2	2 WG1001142-3			
Nitrobenzene	70		67		40-140	4		30
NDPA/DPA	67		63		40-140	6		30
n-Nitrosodi-n-propylamine	70		70		29-132	0		30
Bis(2-ethylhexyl)phthalate	72		67		40-140	7		30
Butyl benzyl phthalate	68		64		40-140	6		30
Di-n-butylphthalate	67		64		40-140	5		30
Di-n-octylphthalate	71		67		40-140	6		30
Diethyl phthalate	68		64		40-140	6		30
Dimethyl phthalate	74		71		40-140	4		30
Benzo(a)anthracene	66		62		40-140	6		30
Benzo(a)pyrene	68		65		40-140	5		30
Benzo(b)fluoranthene	68		66		40-140	3		30
Benzo(k)fluoranthene	69		64		40-140	8		30
Chrysene	66		62		40-140	6		30
Acenaphthylene	71		68		45-123	4		30
Anthracene	66		61		40-140	8		30
Benzo(ghi)perylene	67		63		40-140	6		30
Fluorene	65		62		40-140	5		30
Phenanthrene	64		60		40-140	6		30
Dibenzo(a,h)anthracene	68		63		40-140	8		30
Indeno(1,2,3-cd)pyrene	68		64		40-140	6		30
Pyrene	66		62		26-127	6		30
Biphenyl	72		69		40-140	4		30

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Assoc	iated sample(s):	01 Batch:	WG1001142-2	WG1001142-3		
Aniline	44		45		40-140	2	30
4-Chloroaniline	54		56		40-140	4	30
1-Methylnaphthalene	70		66		41-103	6	30
2-Nitroaniline	74		70		52-143	6	30
3-Nitroaniline	50		50		25-145	0	30
4-Nitroaniline	65		61		51-143	6	30
Dibenzofuran	66		63		40-140	5	30
2-Methylnaphthalene	66		62		40-140	6	30
n-Nitrosodimethylamine	40		37		22-74	8	30
2,4,6-Trichlorophenol	77		73		30-130	5	30
p-Chloro-m-cresol	72		69		23-97	4	30
2-Chlorophenol	66		64		27-123	3	30
2,4-Dichlorophenol	76		68		30-130	11	30
2,4-Dimethylphenol	68		64		30-130	6	30
2-Nitrophenol	71		65		30-130	9	30
4-Nitrophenol	56		48		10-80	15	30
2,4-Dinitrophenol	67		65		20-130	3	30
4,6-Dinitro-o-cresol	66		63		20-164	5	30
Pentachlorophenol	58		56		9-103	4	30
Phenol	32		32		12-110	0	30
2-Methylphenol	61		59		30-130	3	30
3-Methylphenol/4-Methylphenol	60		58		30-130	3	30
2,4,5-Trichlorophenol	76		72		30-130	5	30

06/14/17

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

Report Date:

Para	ameter	LCS %Recovery	Qual	LCSD %Recover		%Recovery Limits	RPD	Qual	RPD Limits	
Sem	nivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	ated sample(s):	: 01 Bato	h: WG1001142-	2 WG1001142-3	3			
	Benzoic Acid	25		27		10-164	8		30	
	Benzyl Alcohol	63		62		26-116	2		30	
	Carbazole	65		62		55-144	5		30	
	Pyridine	33		31		10-66	6		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
2-Fluorophenol	48	44	21-120
Phenol-d6	34	33	10-120
Nitrobenzene-d5	69	68	23-120
2-Fluorobiphenyl	68	66	15-120
2,4,6-Tribromophenol	72	69	10-120
4-Terphenyl-d14	66	62	41-149

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

Parameter	LCS %Recovery G	LCSD Jual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM -	Westborough Lab Associ	ated sample(s): 01 Batch:	WG1001143-2 WG1001	143-3	
Acenaphthene	49	69	37-111	34	40
2-Chloronaphthalene	53	74	40-140	33	40
Fluoranthene	55	77	40-140	33	40
Hexachlorobutadiene	47	67	40-140	35	40
Naphthalene	48	69	40-140	36	40
Benzo(a)anthracene	54	74	40-140	31	40
Benzo(a)pyrene	59	81	40-140	31	40
Benzo(b)fluoranthene	58	79	40-140	31	40
Benzo(k)fluoranthene	57	76	40-140	29	40
Chrysene	48	65	40-140	30	40
Acenaphthylene	56	79	40-140	34	40
Anthracene	53	74	40-140	33	40
Benzo(ghi)perylene	59	81	40-140	31	40
Fluorene	52	73	40-140	34	40
Phenanthrene	48	68	40-140	34	40
Dibenzo(a,h)anthracene	61	84	40-140	32	40
Indeno(1,2,3-cd)pyrene	58	82	40-140	34	40
Pyrene	54	76	26-127	34	40
1-Methylnaphthalene	52	73	40-140	34	40
2-Methylnaphthalene	53	75	40-140	34	40
Pentachlorophenol	56	79	9-103	34	40
Hexachlorobenzene	50	69	40-140	32	40
Hexachloroethane	45	66	40-140	38	40

Project Name: HP WALTHAM

Lab Number:

L1714337

Project Number: 01.0015522.17

Report Date:

06/14/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1001143-2 WG1001143-3

LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
34	48	21-120
25	35	10-120
56	79	23-120
52	73	15-120
56	76	10-120
56	76	41-149
	%Recovery Qual 34 25 56 52 56	%Recovery Qual %Recovery Qual 34 48 25 35 56 79 73 76 52 73 76

PCBS

Project Name: HP WALTHAM Lab Number: L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/04/17 12:15

Client ID: Date Received: 05/04/17

Sample Location: WALTHAM, MA Field Prep: Not Specified

Extraction Method:EPA 608

Matrix: Water Extraction Date: 05/08/17 05:17
Analytical Method: 5,608 Cleanup Method: EPA 3665A

Analytical Date: 05/09/17 00:04 Cleanup Date: 05/08/17
Analyst: HT Cleanup Method: EPA 3660B

Cleanup Date: 05/08/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	- Westborough Lab						
Aroclor 1016	ND		ug/l	0.250	0.042	1	Α
Aroclor 1221	ND		ug/l	0.250	0.056	1	Α
Aroclor 1232	ND		ug/l	0.250	0.024	1	Α
Aroclor 1242	ND		ug/l	0.250	0.028	1	Α
Aroclor 1248	ND		ug/l	0.250	0.028	1	А
Aroclor 1254	0.101	J	ug/l	0.250	0.043	1	А
Aroclor 1260	ND		ug/l	0.200	0.045	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		30-150	Α
Decachlorobiphenyl	86		30-150	Α

Project Name: HP WALTHAM Lab Number: L1714337

Project Number: 01.0015522.17 **Report Date:** 06/14/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 05/09/17 00:29

Analyst: JW

Extraction Method: EPA 608
Extraction Date: 05/08/17 05:17
Cleanup Method: EPA 3665A
Cleanup Date: 05/08/17
Cleanup Method: EPA 3660B

Cleanup Date:

05/08/17

Column Result Qualifier Units RL MDL **Parameter** Polychlorinated Biphenyls by GC - Westborough Lab for sample(s): 01 Batch: WG1001153-1 Aroclor 1016 ND ug/l 0.250 0.042 Α Aroclor 1221 ND 0.250 0.056 ug/l Α Aroclor 1232 ND ug/l 0.250 0.024 Α Aroclor 1242 ND 0.250 0.028 Α ug/l Aroclor 1248 ND ug/l 0.250 0.028 Α Aroclor 1254 ND ug/l 0.250 0.043 Α Aroclor 1260 Α ND ug/l 0.200 0.045

Surrogate	%Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68	Quantiti	30-150	Α
Decachlorobiphenyl	89		30-150	Α

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1714337

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab Associa	ted sample(s):	01 Batch:	WG1001153	-2				
Aroclor 1016	85		-		30-150	-		30	Α
Aroclor 1260	96		-		30-150	-		30	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	64 84				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.17

Lab Number:

L1714337

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recove	rv Qual	Recovery Limits	RPD Qua	RPD I Limits (Column
Polychlorinated Biphenyls by 0					QC Batch ID			,	: L1714670-0	TAI D	MS Sample	
Aroclor 1016	ND	3.12	3.05	98		-	-		40-126	-	30	Α
Aroclor 1260	ND	3.12	2.88	92		-	-		40-127	-	30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	79		30-150	A
Decachlorobiphenyl	63		30-150	Α

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1714337

Report Date:

Parameter	Native Sample Duplicate Sample Ur			RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID:	WG1001153-4	QC Sample:	L1714670-03	Client ID:	: DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	0.033J	0.055J	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	0.052J	0.099J	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

			Acceptance	
Surrogate	%Recovery Qualific	er %Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74	73	30-150	Α
Decachlorobiphenyl	59	56	30-150	Α

METALS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714337

 Project Number:
 01.0015522.17
 Report Date:
 06/14/17

SAMPLE RESULTS

Lab ID: L1714337-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 05/04/17 12:15

Date Received: 05/04/17

05/05/17 11:59

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400	0.00042	1	05/05/17 07:55	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00022	J	mg/l	0.00100	0.00016	1	05/05/17 07:55	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00033	J	mg/l	0.00100	0.00005	1	05/05/17 07:55	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Chromium, Total	0.00164		mg/l	0.00100	0.00017	1	05/05/17 07:55	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Copper, Total	0.00516		mg/l	0.00100	0.00038	1	05/05/17 07:55	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Iron, Total	0.107		mg/l	0.050	0.009	1	05/05/17 07:55	5 05/08/17 10:44	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00050	0.00034	1	05/05/17 07:55	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/05/17 14:09	05/05/17 19:10	EPA 245.1	3,245.1	EA
Nickel, Total	0.00488		mg/l	0.00200	0.00055	1	05/05/17 07:55	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/05/17 07:55	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00100	0.00026	1	05/05/17 07:55	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Zinc, Total	0.00673	J	mg/l	0.0100	0.00341	1	05/05/17 07:55	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	3 - Mansfiel	d Lab								
Hardness	447		mg/l	0.660	NA	1	05/05/17 07:55	5 05/08/17 10:44	EPA 3005A	19,200.7	PS
General Chemistry	- Mansfiel	d Lab									

0.010

mg/l

0.010

1

107,-

NA

Chromium, Trivalent

ND

Project Name:HP WALTHAMLabProject Number:01.0015522.17Report

Lab Number: L1714337 **Report Date:** 06/14/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s)	: 01 Batc	h: WG10	00580-	1				
Antimony, Total	ND	mg/l	0.00400	0.00042	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Arsenic, Total	ND	mg/l	0.0010	0.0002	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00100	0.00005	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100	0.00017	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Copper, Total	ND	mg/l	0.00100	0.00038	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Lead, Total	ND	mg/l	0.0005	0.0003	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200	0.00055	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Selenium, Total	ND	mg/l	0.0050	0.0017	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Silver, Total	ND	mg/l	0.00100	0.00026	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000	0.00341	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfi	eld Lab for sample(s):	01 Batch	n: WG10	000583-	1				
Iron, Total	ND	mg/l	0.050	0.009	1	05/05/17 07:55	05/08/17 10:36	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by SM 2	340B - Mansfield Lab	for samp	ole(s): 01	l Bato	h: WG100	0583-1			
Hardness	ND	mg/l	0.660	NA	1	05/05/17 07:55	05/08/17 10:36	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Serial_No:06141712:06

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Reference of the project Number of Nu

Lab Number: L1714337 **Report Date:** 06/14/17

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier Units** RLMDL **Factor Prepared** Analyzed Batch: WG1000753-1 Total Metals - Mansfield Lab for sample(s): 01 Mercury, Total ND mg/l 0.0002 0.0001 1 05/05/17 18:44 3,245.1 EΑ 05/05/17 14:09

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

Report Date: 06/14/17

Parameter	LCS %Recovery	LCSD Qual %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	VG1000580-2				
Antimony, Total	102	-	85-115	-		
Arsenic, Total	110	•	85-115	-		
Cadmium, Total	113	•	85-115	-		
Chromium, Total	100	•	85-115	-		
Copper, Total	99	-	85-115	-		
Lead, Total	104	-	85-115	-		
Nickel, Total	100	-	85-115	-		
Selenium, Total	106	-	85-115	-		
Silver, Total	102	-	85-115	-		
Zinc, Total	107	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	VG1000583-2				
Iron, Total	109	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01 Batch: WG1000583-2				
Hardness	105	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	VG1000753-2				
Mercury, Total	114		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

Report Date: 06/14/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield L	Lab Associated sam	nple(s): 01	QC Batch I	D: WG100058	0-3	QC Sample:	L1714337-01	Clien	t ID: INF			
Antimony, Total	ND	0.5	0.5456	109		-	-		70-130	-		20
Arsenic, Total	0.00022J	0.12	0.1316	110		-	-		70-130	-		20
Cadmium, Total	0.00033J	0.051	0.05451	107		-	-		70-130	-		20
Chromium, Total	0.00164	0.2	0.2007	100		-	-		70-130	-		20
Copper, Total	0.00516	0.25	0.2448	96		-	-		70-130	-		20
Lead, Total	ND	0.51	0.5364	105		-	-		70-130	-		20
Nickel, Total	0.00488	0.5	0.4896	97		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1356	113		-	-		70-130	-		20
Silver, Total	ND	0.05	0.04842	97		-	-		70-130	-		20
Zinc, Total	0.00673J	0.5	0.5224	104		-	-		70-130	-		20
otal Metals - Mansfield L	Lab Associated sam	nple(s): 01	QC Batch I	D: WG100058	3-3	QC Sample:	L1714337-01	Clien	t ID: INF			
Iron, Total	0.107	1	1.12	101		-	-		75-125	-		20
otal Hardness by SM 23	340B - Mansfield La	b Associate	ed sample(s):	01 QC Bato	ch ID: V	VG1000583	-3 QC Samp	ole: L17	14337-01	Client I	D: INF	-
Hardness	447.	66.2	471	36	Q	-	-		75-125	-		20
otal Metals - Mansfield L	Lab Associated sam	nple(s): 01	QC Batch I	D: WG100075	3-3	QC Sample:	L1714406-01	Clien	t ID: MS Sa	ample		
Mercury, Total	ND	0.005	0.0055	110		-	-		70-130	-		20
otal Metals - Mansfield L	_ab Associated sam	nple(s): 01	QC Batch I	D: WG100075	3-5	QC Sample:	L1714413-01	Clien	t ID: MS Sa	ample		
Mercury, Total	ND	0.005	0.0052	104		-	-		70-130	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337 **Report Date:** 06/14/17

arameter	Native Sample Dup	olicate Sample	Units	RPD	Qual RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1000580-4	QC Sample:	L1714337-01	Client ID: IN	IF
Antimony, Total	ND	0.00062J	mg/l	NC	20
Arsenic, Total	0.00022J	0.0003J	mg/l	NC	20
Cadmium, Total	0.00033J	0.00032J	mg/l	NC	20
Chromium, Total	0.00164	0.00167	mg/l	2	20
Copper, Total	0.00516	0.00535	mg/l	4	20
Lead, Total	ND	ND	mg/l	NC	20
Nickel, Total	0.00488	0.00486	mg/l	0	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.00673J	0.00465J	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1000583-4	QC Sample:	L1714337-01	Client ID: IN	IF
Iron, Total	0.107	0.110	mg/l	3	20
otal Hardness by SM 2340B - Mansfield Lab Associate	d sample(s): 01 QC Batch IE): WG1000583	-4 QC Sample	e: L1714337	7-01 Client ID: INF
Hardness	447.	439	mg/l	2	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1000753-4	QC Sample:	L1714406-01	Client ID: D	UP Sample
Mercury, Total	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1000753-6	QC Sample:	L1714413-01	Client ID: D	UP Sample
Mercury, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Serial_No:06141712:06

Project Name:HP WALTHAMLab Number:L1714337Project Number:01.0015522.17Report Date:06/14/17

SAMPLE RESULTS

Lab ID: L1714337-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 05/04/17 12:15

Date Received: 05/04/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/06/17 01:33	121,2540D	VB
Cyanide, Total	ND		mg/l	0.005	0.001	1	05/08/17 10:30	05/08/17 14:46	121,4500CN-CE	LK
Chlorine, Total Residual	ND		mg/l	0.02	0.01	1	-	05/04/17 22:30	121,4500CL-D	AS
Nitrogen, Ammonia	0.303		mg/l	0.075	0.022	1	05/09/17 13:39	05/09/17 21:21	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00	1.24	1	05/08/17 16:30	05/08/17 21:30	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030	0.010	1	05/09/17 15:21	05/10/17 14:59	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	05/05/17 01:30	05/05/17 02:23	1,7196A	JT
Anions by Ion Chromato	graphy - West	borough	Lab							
Chloride	608.		mg/l	25.0	4.20	50	-	05/07/17 01:47	44,300.0	JC

Serial_No:06141712:06

Project Name: HP WALTHAM
Project Number: 01.0015522.17

Lab Number: L1714337 **Report Date:** 06/14/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG10	00488-1				
Chlorine, Total Residual	ND		mg/l	0.02	0.01	1	-	05/04/17 22:30	121,4500CL-D	AS
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG10	00505-1				
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	05/05/17 01:30	05/05/17 02:16	1,7196A	JT
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG10	00902-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/06/17 01:33	121,2540D	VB
Anions by Ion Chror	matography - Westb	orough	Lab for sar	mple(s):	01 B	atch: WG1	001110-1			
Chloride	ND		mg/l	0.500	0.083	1	-	05/06/17 19:46	44,300.0	JC
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG10	01236-1				
Cyanide, Total	ND		mg/l	0.005	0.001	1	05/08/17 10:30	05/08/17 14:38	121,4500CN-CE	E LK
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG10	01399-1				
TPH, SGT-HEM	ND		mg/l	4.00	1.24	1	05/08/17 16:30	05/08/17 21:30	74,1664A	ML
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG10	01579-1				
Nitrogen, Ammonia	0.032	J	mg/l	0.075	0.022	1	05/09/17 13:39	05/09/17 21:08	121,4500NH3-B	н ат
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG10	01732-1				
Phenolics, Total	ND		mg/l	0.030	0.010	1	05/09/17 15:21	05/10/17 14:56	4,420.1	AW

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

Report Date: 06/14/17

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1000488-2	2			
Chlorine, Total Residual	105	-	90-110	-		
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1000505-2	2			
Chromium, Hexavalent	96	-	85-115	-		20
Anions by Ion Chromatography - Westbo	rough Lab Associated sa	ample(s): 01 Batch: W	G1001110-2			
Chloride	105	-	90-110	-		
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1001236-2	2			
Cyanide, Total	92	-	90-110	-		
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1001399-2	2			
TPH	94	-	64-132	-		34
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1001579-2)			
Nitrogen, Ammonia	94	-	80-120	-		20
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1001732-2				
Phenolics, Total	92	-	70-130	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714337

Report Date: 06/14/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found		Recovery Limits R		RPD _imits
General Chemistry - Westborou	igh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1000488-4	QC Sample: L1714337-	01 Client ID:	INF	
Chlorine, Total Residual	ND	0.248	0.25	101	-	-	80-120	-	20
General Chemistry - Westborou	igh Lab Assoc	ciated samp	le(s): 01	QC Batch ID: V	VG1000505-4	QC Sample: L1714337-	01 Client ID:	INF	
Chromium, Hexavalent	ND	0.1	0.103	103	-	-	85-115	-	20
Anions by Ion Chromatography Sample	- Westboroug	gh Lab Asso	ciated san	nple(s): 01 Q0	C Batch ID: WG1	001110-3 QC Sample	: L1714286-01	1 Client ID:	MS
Chloride	18.1	4	21.6	89	Q -	-	90-110	-	18
General Chemistry - Westborou	igh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1001236-4	QC Sample: L1714448-	02 Client ID:	MS Sample)
Cyanide, Total	0.003J	0.2	0.196	98	-	-	90-110	-	30
General Chemistry - Westborou	igh Lab Assoc	ciated samp	le(s): 01	QC Batch ID: V	VG1001399-4	QC Sample: L1714569-	01 Client ID:	MS Sample)
TPH	ND	25	21.2	85	-	-	64-132	-	34
General Chemistry - Westborou	igh Lab Assoc	ciated samp	le(s): 01	QC Batch ID: V	VG1001579-4	QC Sample: L1713948-	01 Client ID:	MS Sample)
Nitrogen, Ammonia	0.027J	4	3.84	96	-	-	80-120	-	20
General Chemistry - Westborou	igh Lab Assoc	ciated samp	le(s): 01	QC Batch ID: V	VG1001732-4	QC Sample: L1714337-	01 Client ID:	INF	
Phenolics, Total	ND	0.4	0.40	101	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1714337

Report Date:

06/14/17

Parameter	Nati	ve Sar	nple	Duplicate Sam	ple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 C	QC Batch ID:	WG1000488-3	QC Sample:	L1714337-01	Client ID:	INF
Chlorine, Total Residual		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 0	QC Batch ID:	WG1000505-3	QC Sample:	L1714337-01	Client ID:	INF
Chromium, Hexavalent		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 0	QC Batch ID:	WG1000902-2	QC Sample:	L1714322-01	Client ID:	DUP Sample
Solids, Total Suspended		520		470	mg/l	10		29
Anions by Ion Chromatography - Westbo Sample Chloride	orough Lab Associated	18.1	le(s): 01 Q	C Batch ID: WG	1001110-4 (<u> </u>	1714286-0	1 Client ID: DUP
General Chemistry - Westborough Lab	Associated sample(s):	01 0	QC Batch ID:	WG1001236-3	QC Sample:	L1714432-08	Client ID:	DUP Sample
Cyanide, Total		ND		0.001J	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s):	01 0	QC Batch ID:	WG1001399-3	QC Sample:	L1714569-02	Client ID:	DUP Sample
TPH		ND		ND	mg/l	NC		34
General Chemistry - Westborough Lab	Associated sample(s):	01 0	QC Batch ID:	WG1001579-3	QC Sample:	L1713948-01	Client ID:	DUP Sample
Nitrogen, Ammonia		0.027J		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 0	QC Batch ID:	WG1001732-3	QC Sample:	L1714337-01	Client ID:	INF
Phenolics, Total								

Serial_No:06141712:06

Project Name: Lab Number: L1714337 **HP WALTHAM Project Number:** 01.0015522.17

Report Date: 06/14/17

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Container Information

Custody Seal Cooler

Α Absent

Container into	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН		Pres	Seal	Date/Time	Analysis(*)
L1714337-01A	Plastic 250ml HNO3 preserved	A	<2	<2	3.7	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG-U(28),SE- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
L1714337-01B	Amber 1000ml Na2S2O3	Α	7	7	3.7	Υ	Absent		PCB-608(7)
L1714337-01C	Amber 1000ml Na2S2O3	Α	7	7	3.7	Υ	Absent		PCB-608(7)
L1714337-01D	Amber 1000ml unpreserved	Α	7	7	3.7	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1714337-01E	Amber 1000ml unpreserved	Α	7	7	3.7	Υ	Absent		8270TCL(7),8270TCL-SIM(7),504(14)
L1714337-01F	Vial unpreserved	Α	N/A	N/A	3.7	Υ	Absent		SUB-ETHANOL(14)
L1714337-01G	Vial unpreserved	Α	N/A	N/A	3.7	Υ	Absent		SUB-ETHANOL(14)
L1714337-01H	Vial Na2S2O3 preserved split	Α	N/A	N/A	3.7	Υ	Absent		504(14)
L1714337-01I	Vial Na2S2O3 preserved split	Α	N/A	N/A	3.7	Υ	Absent		504(14)
L1714337-01J	Vial HCl preserved	Α	N/A	N/A	3.7	Υ	Absent		8260-SIM(14),8260(14)
L1714337-01K	Vial HCl preserved	Α	N/A	N/A	3.7	Υ	Absent		8260-SIM(14),8260(14)
L1714337-01L	Vial HCl preserved	Α	N/A	N/A	3.7	Υ	Absent		8260-SIM(14),8260(14)
L1714337-01M	Plastic 950ml unpreserved	Α	7	7	3.7	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
L1714337-01N	Plastic 950ml unpreserved	Α	7	7	3.7	Υ	Absent		TSS-2540(7)
L1714337-01O	Plastic 250ml NaOH preserved	Α	>12	>12	3.7	Υ	Absent		TCN-4500(14)
L1714337-01P	Amber 1000ml HCl preserved	Α	N/A	N/A	3.7	Υ	Absent		TPH-1664(28)
L1714337-01Q	Amber 1000ml HCl preserved	Α	N/A	N/A	3.7	Υ	Absent		TPH-1664(28)
L1714337-01R	Amber 950ml H2SO4 preserved	Α	<2	<2	3.7	Υ	Absent		TPHENOL-420(28)
L1714337-01T	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.7	Υ	Absent		NH3-4500(28)

Project Name:HP WALTHAMLab Number:L1714337Project Number:01.0015522.17Report Date:06/14/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Project Name:HP WALTHAMLab Number:L1714337Project Number:01.0015522.17Report Date:06/14/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:HP WALTHAMLab Number:L1714337Project Number:01.0015522.17Report Date:06/14/17

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:06141712:06

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

ALPHA	CHAIN O	F CU	STO)Y P/	AGE	OF	Dat	te Rec'd	in Lab:		5/4	1/17	A	LPHA	Job#	#: 21714337
Word Cass Chamara	320 Forbes Blvd	Projec	t Informati	on			Re	port In	format	ion - D	ata Deli	/erable	s I	Billing	Inform	ation
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project i	Name: [+	Ph	alth	cas	0	ADEx		E MA	L			Same	as Client	t info PO#:
lient Information	on	Project	Location:	wa Itl	sam	Ma		-					ct Info			uirements
lient: G3	A	Project :	#: Ol. O.	215527	2.17						tical Met		DG? (R			CT RCP Analytical Methods P Inorganics)
Address: 24a	Vandarbilt Are	, Project I	Manager: J	· Cal	bart		DY	es □ N	GW1	Standard	ls (Info R					
Narn	rand Ma 0206	Z ALPHA	Quote #:					es □ No Other Sta			n				criteria _	3
hone: 781-	783-1357	Turn-	Around Tin	ne					1	15 75	野	4	//		//	
imail: wda	vi's @ 929. com	Stan	dard D	RUSH (anly a	onfirmed if pro ar	annue III	1	0	200	2 4	¥1/	es Only	Srint C	30	0	
A -1 -11-11 1 D		Date	Due: Hex	chre	n h	= 5	ANAIL	524.2	55.7	7 2		000	Print 2		120	
Additional P	roject information:	4	24	hour	hold	time	3		TAS TO		Targets [OK IT	5	2	12	SAMPLE INFO
lease 1	Project Information: report with	deta	ction	lim	15	ih	7	0	Z 2	10	Targ	t: Dowant Only DFin	3	200	19	│
actordas	nce with	The	2017	RPF	,			\$2560 15-48-W	DIMCP 13	3	9es &	INFO TO	27	19		□ Lab to do
requirem	lak.						. /	2 6	13.		PCB Der	Domo C	المراد	E I	2	reservation ☐ Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	ction Time	Sample Matrix	Sampler	الم في	(S)	METALS:	# :	A PCB	Ha	171	12	23	Sample Comments
4337-01	INF		5/4/17		GW	BO	X	X	X	X	X	X	XX	+	XX	VOC'5-826K
				- /				4								14-0:0xane 820 5
					-											82700/8274051M 5
					-											Ammania } 5m 450
								- 1 =								Chloride smusal
						1							1			
			1													155-5M 2540
																TSS- 5M 2540 TRC-5M4500
																TRC-SMUSOO
																TRC-SMUSOO Hex Chrom 7190
																TRC-SMUSOO Hex Chrom 7196 Cyanide - 5M 4500 Total Phenol - 420
Container Type	Preservative				Conta	iner Type	V	A	ρ	P	A		PA	Δ	P 1/	TRC-SMUSOO Hex Chrom 7196 Cyanide - 5M 4500 Total Phenol - 420
= Plastic = Amber glass = Vial	A= None B= HCI C= HNO ₃					iner Type	V	A	P	P	A		P A	A	PV	TRC-SM4500 Hex Chrem 7196 Cyanide-SM4500 Total Phenol-420, TPH-1664 PCB-608 PPI3 Metals-602
= Plastic = Amber glass = Vial = Glass = Bacteria cup = Cube	A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH	Reling	ished By:		Pre		V Hec	/	P kwg		A Na2 (20)		P A HG	A Hay (P V	TRC-SM4500 Hex Chrom 7196 Eyanide-SM4500 Total Phenol-420, TPH-1664 PCB-608 PPI3 Metg(s-602) Ethanal 504
= Plastic = Amber glass = Vial = Glass = Bacteria cup	A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH	Reling	ished By:		Pre	servative	v Hec	/	3					е	Alpha's	TRC-SM4500 Hex Chrem 7196 Cyanide-SM4500 Total Phenol-420, TPH-1664 PCB-608 PPI3 Metals-602

	CHAIN OI	CUSTO	DY	PAGE 1 OF	1	Da	te Rec'd	in Lab					AL	PHA	Job	#- 17	714337
ALPH	A	Project Information Project Name:				Re	port I	nform	nation	Data D	eliver	ables				natio	
Westborough, MA TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA TEL: 508-822-9300	1.13		*			FAX ADEx			☐ EM/	AIL		_			ent info	PO#:
Client Informat	FAX: 508-822-3288	Project Location	on: MA							ments/	Repor	t Limi	ts.	in programme			
Client: Alpha Anal		Project #:	JII. 190 1				te/Fed F		1	•			Crit	eria			
Address: 8 Walku		Project Manag	er: Nichole E	lunt					IPTIV.	E CERT	AÍNTY	-CT R	EAS	ONAE	RIEC	ONE	DENCE PROTOCO
Westborough, Ma		ALPHA Quote		iuiit			Yes		☐ No	1	re MCP	Analytic	cal Met	hodş R	equired	1?	DENCE PROTOCO
Phone: 508-898-9	U 9 11 = 20 1	Turn-Aroun		-					□ No	I	re CT R	CP (Re	asonab	le Cont	fidence	Protoc	ols) Required?
Fax:				Push your year			IALYS	IS						1	-	-	SAMPLE HANDLING Filtration
Email: subreports	@alphalab.com	Ø otandard	<u></u>	Rush (ONLY IF P	RE-APPROVED)												Filtration
	e been Previously analyzed by Alpha	Due Date:	Time:								11	1					☐ Done ☐ Not Needed
Please reference /	ner Project Specific Requirements/Comments/Detection Limits: ase reference Alpha Job #L1714337 on this report. Report data to MDL					ETHANOL-Method 1671											☐ Lab to do Preservation ☐ Lab to do (Please specify below)
ALPHA Lab ID	Sample ID	Coll	ection	Sample	Sampler's	ğ											
(Lab Use Only)		Date	Time	Matrix	Initials	ETHA											Sample Specific Comments
•	INF	5/4/17	12:15	GW		x											,,,,
																	0
						2	1				1						1
													1				
											+		1		+	100	-
						1					+	+			-	-	
											+-				-	-	
*											-	-			-		
1																	
PLEASE ANSWER	QUESTIONS ABOVE!				V												
					ntainer Type Preservative	V N/A	7	3 / 1	-			1-	1	7.		2	Please print clearly, legibly
SYOUR	PROJECT		Reline		reservative		ate/Time				1		•	-	2.4	(8)	and completely Samples of not be logged in and
	or CT RCP?				Ua	ale/ i line			Kec	eived By				Date/Tir	ne	turnaround time clock will in start until any ambiguities a resolved. All samples submitted are subject to Alpha's Payment Terms	

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Alpha Analytical, Inc. 145 Flanders Road Westborough MA 01581

Report Date: May 17, 2017

Project: L1714337

Submittal Date: 05/06/2017 Group Number: 1798347 PO Number: L1714337 State of Sample Origin: MA

> Lancaster Labs (LL) # 8980336

<u>Client Sample Description</u> INF Groundwater Sample

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To Alpha Analytical, Inc.
Electronic Copy To Alpha Analytical, Inc.

Attn: Sublab Contact

Bornie Stadelmann

Attn: Nichole Hunt

Respectfully Submitted,

Bonnie Stadelmann Senior Project Manager

(312) 590-3133

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: INF Groundwater Sample

L1714337

LL Sample # WW 8980336 LL Group # 1798347 Account # 09847

Project Name: L1714337

Collected: 05/04/2017 12:15

Alpha Analytical, Inc. 145 Flanders Road Westborough MA 01581

Submitted: 05/06/2017 09:00 Reported: 05/17/2017 16:25

14337

CAT Analysis Name No.

CAS Number

Result

Method Detection Limit Dilution Factor

GC Miscellaneous 02366 ethanol

EPA 1671 Rev A

ug/l N.D. ug/l

670

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

Analysis Name CAT

Method

Trial# Batch#

Analysis Date and Time Analyst

Dilution Factor

02366 EPA 1671 VOCs

EPA 1671 Rev A

171300041A

05/11/2017 00:04 Tyler O Griffin

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Alpha Analytical, Inc. Group Number: 1798347

Reported: 05/17/2017 16:25

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

 Analysis Name
 Result
 MDL

 ug/l
 ug/l

 Batch number: 171300041A
 Sample number(s): 8980336 ethanol
 8080336 ethanol

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 171300041A	Sample number	c(s): 8980	336						
ethanol	4000	3979.35	4000	3876.82	99	97	70-132	3	30

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 171300041A ethanol	Sample numb	er(s): 8980 4000	336 UNSPI 4005.41	K: 8980336 4000	4119.95	100	103	70-132	3	30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EPA 1671 VOCs Batch number: 171300041A

	Amyl Alcohol	
8980336	104	_
Blank	108	
LCS	111	

^{*-} Outside of specification

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Alpha Analytical, Inc. Group Number: 1798347

Reported: 05/17/2017 16:25

Surrogate Quality Control

Analysis Name: EPA 1671 VOCs Batch number: 171300041A

	Amyl Alcohol	
LCSD	113	_
MS	114	
MSD	115	
Timita:	E2 144	

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

SUB-UPS: E	urofins- Lancaster PA	9847/	, 17983	347 /	8980	336	9										
	urofins- Lancaster PA CHAIN OF	CUSTC	DY	PAGE 1 OF	1	Date I	Rec'd in L	ab:					ALP	HA J	lob #: L	.1714337	
- ALPHANALYTE	CAL	Project Info	rmation		•			rmatior			verab	oles ·					
	ansfield, MA EL: 508-822-9300	Project Name:				■ □ F.					eliverab	.1	□ s	Same a	s Client ir	nfo PO#:	710
FAX: 508-898-9193 F	AX: 508-822-3288				100			Requir							1	•	
Client Informatio	n	Project Location	on: MA	***			Fed Prog		annentk	S/INE	port L		Criter	ia			
Client: Alpha Analytical Lab Project #:			NPDES RGP														
_Address: 8 Walkup I	Drive	Project Manag	er: Nichole Hı	unt	- All					l .						FIDENCE PROT	OCOLS
Westborough, Ma 0	1581	ALPHA Quote				☐ Ye		□ No				nalytical ^o (Reaso				tocols) Required?	
Phone: 508-898-922	20	Turn-Around	d Time		1		LYSIS					(0 01	201100 1 10	(Cools) (Coquica)	T O
Fax:	Title West to the State of Sta	_ 🛛 Standard	□R	ush (ONLY IF P	RE-APPROVED)					71.6			****			SAMPLE HANDL	
Email: subreports@a	alphalab.com	_														Filtration ☐ Done	L
	een Previously analyzed by Alpha	Due Date:	Time:] =										☐ Not Needed☐ Lab to do	#
I .	cific Requirements/Comments		its:			167										Preservation	Ö
Please reference Alp	oha Job #L1714337 on this repor	t.														☐ Lab to do (Please specify	Ĭ
Report data	to MDL					Meth										below)	E S
ALPHA Lab ID	Sample ID	Coll	ection	Sample	Sampler's	립											
(Lab Use Only)	330,20.2	Date	Time	Matrix	Initials	ETHANOL-Method										Sample Specific Comments	
•	INF	5/4/17	12:15	GW		X											2
- assess#1		7/41												***			
							_										
				***									_				

1										-		-	-				
•												-					_
								-			-						
				721.3							!						
PLEASE ANSWER Q	LIESTIONS ADOVE																OUR COMPANY OF THE COMPANY
I LEAGE ANGWER Q	OLGHONG ADOVE!				ntainer Type	V -	- -	-	-	-	-	-		-	- -	Please print clearly	/, legibly
IS YOUR	PROJECT		Reling	uished By:	Preservative		/Time			oocivi	od Bur	•	-		to (Time	and completely. S not be logged in ar	amples can id
	r CT RCP?			/ / S		5/5/1			К	eceive	su By:			Da	ate/Time	turnaround time cid start until any ambi resolved. All samp	iguities are
FORM NO: 01-01(f) (rev. 30-JUL-07) Page 74 of 76	or Nor:							1					$\overline{}$	_		submitted are subject Alipha's Payment T	ect to
Page 74 of 76		· Comment		Page 5	of 7		1/1/	da	T			10	7/1	7 910			

Sample Administration Receipt Documentation Log

Serial_No:06141712:06 Doc Log ID: 182997

Group Number(s): 1798347

Client: Alpha Analytical

Delivery and Receipt Information

Delivery Method: <u>UPS</u> Arrival Timestamp: <u>05/06/2017 9:00</u>

Number of Packages: 1 Number of Projects: 1

Arrival Condition Summary

Shipping Container Sealed: Yes Sample IDs on COC match Containers: Yes

Custody Seal Present: No Sample Date/Times match COC: Yes

Samples Chilled: Yes VOA Vial Headspace ≥ 6mm: N/A

Paperwork Enclosed: Yes Total Trip Blank Qty: 0

Samples Intact: Yes Air Quality Samples Present: No

Missing Samples: No

Extra Samples: No

Discrepancy in Container Qty on COC: No

Unpacked by Nia Smith (12375) at 12:52 on 05/06/2017

Samples Chilled Details

Thermometer Types: DT = Digital (Temp. Bottle) IR = Infrared (Surface Temp) All Temperatures in °C.

 Cooler #
 Thermometer ID
 Corrected Temp
 Therm. Type
 Ice Type
 Ice Present?
 Ice Container
 Elevated Temp?

 1
 DT146
 5.0
 DT
 Wet
 Y
 Loose/Bag
 N

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

BMQL	Below Minimum Quantitation Level degrees Celsius	mg	milligram(s)
C		mL	milliliter(s)
cfu	colony forming units	MPN	Most Probable Number
CP Units F	cobalt-chloroplatinate units degrees Fahrenheit	N.D. ng	none detected nanogram(s)
g	gram(s)	NTU	nephelometric turbidity units picogram/liter
IU	International Units	pg/L	
kg	kilogram(s)	RL	Reporting Limit Too Numerous To Count
I	liter(s)	TNTC	
lb.	pound(s)	μg	microgram(s)
m3	cubic meter(s)	μL	microliter(s)
meq	milliequivalents	umhos/cm	micromhos/cm

< less than

> greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight basisResults printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Laboratory Data Qualifiers:

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

W - The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ANALYTICAL REPORT

Lab Number: L1719082

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Report Date: 06/15/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1719082 **Report Date:** 06/15/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1719082-01	INF	WATER	WALTHAM, MA	06/08/17 10:40	06/08/17
L1719082-02	MID	WATER	WALTHAM, MA	06/08/17 10:27	06/08/17
L1719082-03	EFF	WATER	WALTHAM, MA	06/08/17 10:20	06/08/17

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

Case Narrative (continued)

Metals

The WG1012633-4 Laboratory Duplicate RPD, performed on L1719082-01, is above the acceptance criteria for iron (23%); however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/15/17

Custen Walker Cristin Walker

ORGANICS

VOLATILES

06/08/17

Date Received:

Project Name: HP WALTHAM Lab Number: L1719082

Project Number: 01.0015522.17 **Report Date:** 06/15/17

SAMPLE RESULTS

Lab ID: L1719082-01 D Date Collected: 06/08/17 10:40

Client ID: INF

Sample Location: WALTHAM, MA Field Prep: Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 06/13/17 13:31

Analyst: KD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ugh Lab					
Methylene chloride	ND		ug/l	150		50
1,1-Dichloroethane	ND		ug/l	38		50
Chloroform	ND		ug/l	38		50
Carbon tetrachloride	ND		ug/l	25		50
1,2-Dichloropropane	ND		ug/l	88		50
Dibromochloromethane	ND		ug/l	25		50
1,1,2-Trichloroethane	ND		ug/l	38		50
Tetrachloroethene	47		ug/l	25		50
Chlorobenzene	ND		ug/l	25		50
Trichlorofluoromethane	ND		ug/l	120		50
1,2-Dichloroethane	ND		ug/l	25		50
1,1,1-Trichloroethane	ND		ug/l	25		50
Bromodichloromethane	ND		ug/l	25		50
trans-1,3-Dichloropropene	ND		ug/l	25		50
cis-1,3-Dichloropropene	ND		ug/l	25		50
Bromoform	ND		ug/l	100		50
1,1,2,2-Tetrachloroethane	ND		ug/l	25		50
Benzene	ND		ug/l	25		50
Toluene	ND		ug/l	38		50
Ethylbenzene	ND		ug/l	25		50
Chloromethane	ND		ug/l	120		50
Bromomethane	ND		ug/l	50		50
Vinyl chloride	ND		ug/l	50		50
Chloroethane	ND		ug/l	50		50
1,1-Dichloroethene	ND		ug/l	25		50
trans-1,2-Dichloroethene	ND		ug/l	38		50
Trichloroethene	7400		ug/l	25		50
1,2-Dichlorobenzene	ND		ug/l	120		50
1,3-Dichlorobenzene	ND		ug/l	120		50
1,4-Dichlorobenzene	ND		ug/l	120		50

Project Name: HP WALTHAM Lab Number: L1719082

Project Number: 01.0015522.17 **Report Date:** 06/15/17

SAMPLE RESULTS

Lab ID: L1719082-01 D Date Collected: 06/08/17 10:40

Client ID: INF Date Received: 06/08/17 Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methyl tert butyl ether	ND		ug/l	50		50	
p/m-Xylene	ND		ug/l	50		50	
o-Xylene	ND		ug/l	50		50	
cis-1,2-Dichloroethene	ND		ug/l	25		50	
Dichlorodifluoromethane	ND		ug/l	250		50	
Naphthalene	ND		ug/l	120		50	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	98	70-130	

Project Name: Lab Number: HP WALTHAM L1719082

Project Number: Report Date: 01.0015522.17 06/15/17

SAMPLE RESULTS

Lab ID: L1719082-02 Date Collected: 06/08/17 10:27

Client ID: MID

Date Received: 06/08/17 Sample Location: Field Prep: WALTHAM, MA Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 06/13/17 14:07

Analyst: KD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Methylene chloride	ND		ug/l	3.0		1				
1,1-Dichloroethane	ND		ug/l	0.75		1				
Chloroform	ND		ug/l	0.75		1				
Carbon tetrachloride	ND		ug/l	0.50		1				
1,2-Dichloropropane	ND		ug/l	1.8		1				
Dibromochloromethane	ND		ug/l	0.50		1				
1,1,2-Trichloroethane	ND		ug/l	0.75		1				
Tetrachloroethene	ND		ug/l	0.50		1				
Chlorobenzene	ND		ug/l	0.50		1				
Trichlorofluoromethane	ND		ug/l	2.5		1				
1,2-Dichloroethane	ND		ug/l	0.50		1				
1,1,1-Trichloroethane	ND		ug/l	0.50		1				
Bromodichloromethane	ND		ug/l	0.50		1				
trans-1,3-Dichloropropene	ND		ug/l	0.50		1				
cis-1,3-Dichloropropene	ND		ug/l	0.50		1				
Bromoform	ND		ug/l	2.0		1				
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1				
Benzene	ND		ug/l	0.50		1				
Toluene	ND		ug/l	0.75		1				
Ethylbenzene	ND		ug/l	0.50		1				
Chloromethane	ND		ug/l	2.5		1				
Bromomethane	ND		ug/l	1.0		1				
Vinyl chloride	ND		ug/l	1.0		1				
Chloroethane	ND		ug/l	1.0		1				
1,1-Dichloroethene	ND		ug/l	0.50		1				
trans-1,2-Dichloroethene	ND		ug/l	0.75		1				
Trichloroethene	14		ug/l	0.50		1				
1,2-Dichlorobenzene	ND		ug/l	2.5		1				
1,3-Dichlorobenzene	ND		ug/l	2.5		1				
1,4-Dichlorobenzene	ND		ug/l	2.5		1				

Project Name: HP WALTHAM Lab Number: L1719082

Project Number: 01.0015522.17 **Report Date:** 06/15/17

SAMPLE RESULTS

Lab ID: L1719082-02 Date Collected: 06/08/17 10:27

Client ID: MID Date Received: 06/08/17
Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Volatile Organics by GC/MS - Westborough Lab											
Methyl tert butyl ether	ND		ug/l	1.0		1					
p/m-Xylene	ND		ug/l	1.0		1					
o-Xylene	ND		ug/l	1.0		1					
cis-1,2-Dichloroethene	ND		ug/l	0.50		1					
Dichlorodifluoromethane	ND		ug/l	5.0		1					
Naphthalene	ND		ua/l	2.5		1					

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	100	70-130	

Project Name: HP WALTHAM Lab Number:

L1719082

Project Number: 01.0015522.17 Report Date:

06/15/17

Lab ID:

Date Collected:

06/08/17 10:20

Client ID:

L1719082-03

Date Received:

06/08/17

Sample Location:

EFF

WALTHAM, MA

Field Prep:

Not Specified

Matrix: Analytical Method: Water 1,8260C

Analytical Date:

06/13/17 14:43

Analyst:

KD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	3.2		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

SAMPLE RESULTS

Project Name: HP WALTHAM Lab Number: L1719082

Project Number: 01.0015522.17 **Report Date:** 06/15/17

SAMPLE RESULTS

Lab ID: Date Collected: 06/08/17 10:20

Client ID: EFF Date Received: 06/08/17 Sample Location: WALTHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	98	70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/13/17 09:56

Analyst: PD

Parameter	Result	Qualifier Units	RL RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03 Batch:	WG1012763-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/13/17 09:56

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 01-03	Batch:	WG1012763-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.5	

		Acceptance	
Surrogate	%Recovery Qua	lifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	98	70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1719082

Report Date: 06/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	RP Qual Lim	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG1012763-3	WG1012763-4			
Methylene chloride	98		100		70-130	2	20)
1,1-Dichloroethane	100		110		70-130	10	20)
Chloroform	110		120		70-130	9	20)
Carbon tetrachloride	120		120		63-132	0	20)
1,2-Dichloropropane	120		120		70-130	0	20)
Dibromochloromethane	110		120		63-130	9	20)
1,1,2-Trichloroethane	120		120		70-130	0	20)
Tetrachloroethene	110		110		70-130	0	20)
Chlorobenzene	110		120		75-130	9	25	j
Trichlorofluoromethane	92		96		62-150	4	20)
1,2-Dichloroethane	120		120		70-130	0	20)
1,1,1-Trichloroethane	110		120		67-130	9	20)
Bromodichloromethane	120		120		67-130	0	20)
trans-1,3-Dichloropropene	98		100		70-130	2	20)
cis-1,3-Dichloropropene	120		130		70-130	8	20)
Bromoform	110		120		54-136	9	20)
1,1,2,2-Tetrachloroethane	120		120		67-130	0	20)
Benzene	110		120		70-130	9	25	j
Toluene	110		110		70-130	0	25	j
Ethylbenzene	120		120		70-130	0	20)
Chloromethane	150	Q	160	Q	64-130	6	20)
Bromomethane	84		92		39-139	9	20)
Vinyl chloride	120		120		55-140	0	20)

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1719082

Report Date: 06/15/17

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - We	estborough Lab Associated s	ample(s): 01	I-03 Batch:	WG1012763-3	WG1012763-4			
Chloroethane	98		100		55-138	2		20
1,1-Dichloroethene	92		98		61-145	6		25
trans-1,2-Dichloroethene	100		110		70-130	10		20
Trichloroethene	110		120		70-130	9		25
1,2-Dichlorobenzene	110		120		70-130	9		20
1,3-Dichlorobenzene	110		120		70-130	9		20
1,4-Dichlorobenzene	110		120		70-130	9		20
Methyl tert butyl ether	120		130		63-130	8		20
p/m-Xylene	120		125		70-130	4		20
o-Xylene	120		130		70-130	8		20
cis-1,2-Dichloroethene	110		110		70-130	0		20
Dichlorodifluoromethane	100		110		36-147	10		20
Naphthalene	130		140	Q	70-130	7		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	105	70-130
Toluene-d8	97	97	70-130
4-Bromofluorobenzene	99	99	70-130
Dibromofluoromethane	100	100	70-130

METALS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

SAMPLE RESULTS

Lab ID: L1719082-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 06/08/17 10:40

Date Received: 06/08/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Copper, Total	0.00795		mg/l	0.00100		1	06/13/17 14:3	5 06/14/17 11:46	EPA 3005A	1,6020A	AM
Iron, Total	0.116		mg/l	0.050		1	06/13/17 14:3	5 06/15/17 00:45	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00100		1	06/13/17 14:3	5 06/14/17 11:46	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500		1	06/13/17 14:3	5 06/14/17 11:46	EPA 3005A	1,6020A	AM
Zinc, Total	0.01627		mg/l	0.01000		1	06/13/17 14:3	5 06/14/17 11:46	EPA 3005A	1,6020A	AM

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

SAMPLE RESULTS

Lab ID: L1719082-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 06/08/17 10:20

Date Received: 06/08/17

Field Prep: Not Specified

	.					Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	
Parameter	Result	Qualifier	Units	RL	MDL	1 actor	Перагеа	Analyzeu	Wictioa		Analyst
Total Matala Mana	field Lob										
Total Metals - Mans	sileid Lab										
Copper, Total	0.00202		mg/l	0.00100		1	06/13/17 14:35	5 06/14/17 12:34	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	06/13/17 14:35	5 06/15/17 01:34	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00100		1	06/13/17 14:35	5 06/14/17 12:34	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500		1	06/13/17 14:35	5 06/14/17 12:34	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.01000		1	06/13/17 14:35	5 06/14/17 12:34	EPA 3005A	1,6020A	AM

Project Name: HP WALTHAM
Project Number: 01.0015522.17

Lab Number: L1719082 **Report Date:** 06/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Man	sfield Lab for sample(s):	01,03 E	Batch: WO	G10126	33-1				
Iron, Total	ND	mg/l	0.050		1	06/13/17 14:35	06/14/17 23:32	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01,03 B	atch: WG	310126	36-1				
Copper, Total	ND	mg/l	0.00100		1	06/13/17 14:35	06/14/17 11:30	1,6020A	AM
Lead, Total	ND	mg/l	0.00100		1	06/13/17 14:35	06/14/17 11:30	1,6020A	AM
Selenium, Total	ND	mg/l	0.00500		1	06/13/17 14:35	06/14/17 11:30	1,6020A	AM
Zinc, Total	ND	mg/l	0.01000		1	06/13/17 14:35	06/14/17 11:30	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1719082

Report Date: 06/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	le(s): 01,03 Batc	ch: WG1012	633-2					
Iron, Total	102		-		85-115	-		
Total Metals - Mansfield Lab Associated samp	le(s): 01,03 Bato	ch: WG1012	636-2		80-120			
Lead, Total	107		-		80-120	-		
Selenium, Total	100		-		80-120	-		
Zinc, Total	105		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1719082

Report Date: 06/15/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qu	RPD _{Ial} Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01,03	QC Bato	ch ID: WG1012	2633-3	QC Sam	ple: L1719082-0	1 Client ID: INF		
Iron, Total	0.116	1	1.10	98		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01,03	QC Bato	ch ID: WG1012	2636-3	QC Sam	ple: L1719082-0	1 Client ID: INF	•	
Copper, Total	0.00795	0.25	0.2634	102		-	-	75-125	-	20
Lead, Total	ND	0.51	0.5329	104		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.130	108		-	-	75-125	-	20
Zinc, Total	0.01627	0.5	0.5388	104		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1719082

Report Date:

06/15/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,0	QC Batch ID:	WG1012633-4 QC Sample:	L1719082-01	Client ID:	INF	
Iron, Total	0.116	0.092	mg/l	23	Q	20
Total Metals - Mansfield Lab Associated sample(s): 01,0	QC Batch ID:	WG1012636-4 QC Sample:	L1719082-01	Client ID:	INF	
Copper, Total	0.00795	0.00782	mg/l	2		20
Lead, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01627	0.01631	mg/l	0		20

INORGANICS & MISCELLANEOUS

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

SAMPLE RESULTS

Lab ID: L1719082-01

Client ID: INF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 06/08/17 10:40

Date Received: 06/08/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Chloride	580		mg/l	10		10	-	06/10/17 18:25	1,9251	MR

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

SAMPLE RESULTS

Lab ID: L1719082-03

Client ID: EFF

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 06/08/17 10:20

Date Received: 06/08/17
Field Prep: Not Specified

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab								
Chloride	580	mg/l	10		10	-	06/10/17 18:27	1,9251	MR

Project Name:HP WALTHAMLab Number:L1719082

Project Number: 01.0015522.17 **Report Date:** 06/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab for sam	ple(s): 01	,03 Ba	tch: W	G1011944-1				
Chloride	ND	mg/l	1.0		1	_	06/10/17 17:37	1,9251	MR

L1719082

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

Report Date: 06/15/17

Parameter	LCS %Recovery Qual	LCSD %Recovery Qua	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,0	Batch: WG1011944-2				
Chloride	97	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1719082

Report Date:

06/15/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery C	Recovery Qual Limits	/ RPD	RPD Qual Limits
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01,03	QC Batch ID	D: WG1011944-4	QC Sample: L1	719238-02 C	lient ID:	MS Sample
Chloride	190	20	210	100	-	-	58-140	-	7

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1719082

Report Date:

06/15/17

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03	QC Batch ID:	WG1011944-3	QC Sample:	L1719238-02	Client ID:	DUP Sample
Chloride	190		190	mg/l	0		7

Project Name:

Project Number:

HP WALTHAM

01.0015522.17

Lab Number: L1719082

Report Date: 06/15/17

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1719082-01A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		8260(14)
L1719082-01B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		8260(14)
L1719082-01C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		8260(14)
L1719082-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	5.6	Υ	Absent		SE-6020T(180),CU-6020T(180),ZN- 6020T(180),FE-UI(180),PB-6020T(180)
L1719082-01E	Plastic 60ml unpreserved	Α	7	7	5.6	Υ	Absent		CL-9251(28)
L1719082-02A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		8260(14)
L1719082-02B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		8260(14)
L1719082-02C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		8260(14)
L1719082-03A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		8260(14)
L1719082-03B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		8260(14)
L1719082-03C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		8260(14)
L1719082-03D	Plastic 250ml HNO3 preserved	Α	<2	<2	5.6	Υ	Absent		SE-6020T(180),CU-6020T(180),ZN-6020T(180),FE-UI(180),PB-6020T(180)
L1719082-03E	Plastic 60ml unpreserved	Α	7	7	5.6	Υ	Absent		CL-9251(28)

Project Name:HP WALTHAMLab Number:L1719082Project Number:01.0015522.17Report Date:06/15/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Maria	CHAIN O	F CUSTOI	DY P	AGE	OF _	Date Rec'	d in Lab:	618	117		ALPH	A Job #:	L1719085	2
8 Walkup Drive	320 Forbes Blvd	Project Informat				Report I	nformatio		Deliver	ables		g Informati		
Westboro, MA 0 Tel: 508-898-92	1581 Mansfield, MA 02048	Project Name:	PL	altho.	~	□ ADEx	Ů,	EMAIL			☐ Same	e as Client in	fo PO #:	
Client Informatio	n	Project Location:	two 14	Lacon	Ma.		-					ion Requir		
Client: G24		Project #: Q/. 0				☐ Yes ☐ N						es D No C ed for MCP I	T RCP Analytical Me norganics)	∍thods
	Vanderbilf Ave	Project Manager:	J. Cal	bert			No GW1 St	andards (I				EPH with Tar		
Norwas	ad Ma 02062	ALPHA Quote #:				Other S	tate /Fed F	rogram _				Criteria		
Phone: 781-	Vanderbilt Ave ad Ma 02062 987-1357	Turn-Around Tir	ne				180	13	3/2		///			
Email: wdav	roject Information:	1	RUSH (only.	confirmed if pre-ap	proved!)	AREGO DOSA DSA R	METALS: DINCP 13 DINCP 14	EPH: CRanges & Targets C Rock 15 VPH: CIR.	D PCB D PEST TPH: DO	Cuant Only OFinger	Kicke Ph Se, 2		SAMPLE II Filtration Field Lab to do Preservatio	0 B
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle Date	ection Time	Sample Matrix	Sampler Initials	1,0c;	METALS	EPH: C	D PCB	Chi	Me tr		Sample Comme	
19082-01	INF	6/8/17	1040gm	GW	BD	X				X.	X			Ŝ
02	MIO	1	1027an	1	1	X								3
03	EPF	1	1020am	V	V	X				X	X			5
											* 4 4 1			
											5			
Container Type P= Plastic A= Amber glass	Preservative A= None B= HCl		-	- 5	iner Type	100				P	P			
V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 36 of 36	C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate O= Other	Relinquished By:	14/2/	Date	eservative e/Time - 100,m	john S	Received		cle/	17	ate/Time 12:15 117 135	Alpha's T See reve	es submitted are su erms and Condition rse side. 01-01 (rev. 12-Mar-2012)	

APPENDIX D

RECEIVING WATER LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number: L1714338

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Report Date: 05/10/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1714338

Report Date: 05/10/17

Alpha Sample ID

Client ID

Matrix

Sample Location Collection Date/Time

Receive Date

L1714338-01

SW

WATER WALTHAM, MA

05/04/17 12:40

05/04/17

Serial No:05101714:00

Project Name:HP WALTHAMLab Number:L1714338Project Number:01.0015522.17Report Date:05/10/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

۲	lease	contact	Client	Services	at 800	-624-92	220 with	n any	questions	٠.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 05/10/17

METALS

Serial_No:05101714:00

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714338

 Project Number:
 01.0015522.17
 Report Date:
 05/10/17

SAMPLE RESULTS

Lab ID: L1714338-01

Client ID: SW

Sample Location: WALTHAM, MA

Matrix: Water

Date Collected: 05/04/17 12:40

Date Received: 05/04/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	99.4		mg/l	0.660	NA	1	05/05/17 11:1	8 05/05/17 20:07	EPA 3005A	19,200.7	PS

Serial_No:05101714:00

Project Name: Lab Number: **HP WALTHAM** L1714338 **Project Number:** 01.0015522.17

Report Date: 05/10/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	340B - Mansfield Lal	o for sam	ple(s): 0	1 Bato	h: WG100	0654-1			
Hardness	ND	mg/l	0.660	NA	1	05/05/17 11:18	05/05/17 18:29	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714338

Report Date:

05/10/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	e(s): 01	Batch: WG100065	4-2					
Hardness	98		-		85-115	-			

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1714338

Report Date: 05/10/17

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qu	RPD al Limits
Total Hardness by SM	2340B - Mansfield Lab	Associate	d sample(s): 0	01 QC Batc	h ID: V	VG1000654-3	QC Sampl	e: L1714327-01	Client ID:	MS Sample
Hardness	86.0	66.2	144	88		-	-	75-125	-	20
Total Hardness by SM	2340B - Mansfield Lab	Associate	d sample(s): 0)1 QC Batc	h ID: V	VG1000654-7	QC Sampl	e: L1714341-01	Client ID:	MS Sample
Hardness	423	66.2	452	44	Q	-	-	75-125	-	20

INORGANICS & MISCELLANEOUS

Serial_No:05101714:00

Project Name: Lab Number: **HP WALTHAM** L1714338 **Project Number:** 01.0015522.17

Report Date: 05/10/17

SAMPLE RESULTS

Lab ID: Date Collected: L1714338-01 05/04/17 12:40

SW Client ID: Date Received: 05/04/17

WALTHAM, MA Not Specified Sample Location: Field Prep: Matrix: Water

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Nitrogen, Ammonia mg/l 0.075 1 05/05/17 15:01 05/08/17 21:18 121,4500NH3-BH ΑT

Serial_No:05101714:00

Project Name: HP WALTHAM
Project Number: 01.0015522.17

Lab Number: L1714338

Report Date: 05/10/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sar	mple(s): 01	Batch:	WG10	000607-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	05/05/17 15:01	05/08/17 21:11	121,4500NH3-E	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM Project Number: 01.0015522.17

Lab Number: L1714338

Report Date:

05/10/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s)	: 01 Ba	atch: WG1000607	2					
Nitrogen, Ammonia	95		-		80-120	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number:

L1714338

Report Date:

05/10/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD Q	RPD ual Limits
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	NG1000607-4	QC Sample: L17137	'22-01 Client	ID: MSS	ample
Nitrogen, Ammonia	ND	4	3.88	97	-	-	80-120	-	20

20

Lab Duplicate Analysis
Batch Quality Control

ND

Lab Number: L1714338 Report Date: 05/10/17

mg/l

NC

Parameter Native Sample Duplicate Sample Units **RPD** Qual **RPD Limits** General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1000607-3 QC Sample: L1713722-01 Client ID: DUP Sample Nitrogen, Ammonia

ND

Project Name:

Project Number:

HP WALTHAM

01.0015522.17

Serial_No:05101714:00

Project Name:HP WALTHAMLab Number: L1714338Project Number:01.0015522.17Report Date: 05/10/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Information								
	Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
	L1714338-01A	Plastic 250ml HNO3 preserved	Α	<2	3.7	Υ	Absent	HARDU(180)
	L1714338-01B	Plastic 500ml H2SO4 preserved	Α	<2	3.7	Υ	Absent	NH3-4500(28)

Project Name:HP WALTHAMLab Number:L1714338Project Number:01.0015522.17Report Date:05/10/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:HP WALTHAMLab Number:L1714338Project Number:01.0015522.17Report Date:05/10/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:05101714:00

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714338

 Project Number:
 01.0015522.17
 Report Date:
 05/10/17

REFERENCES

19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05101714:00

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ALPHA	CHAIN O	F CU	STO	DY ,	PAGE	OF _	Date R	ec'd in L	ab:	5	14/1	7	ALPH	IA Job #:	217143	38
8 Walkup Drive	e 320 Forbes Blvd		Informa				Repo	rt Inforn	nation	Data De	livera	bles	The same of the sa	g Informati		
Westboro, MA Tel: 508-898-	01581 Mansfield, MA 02048	Project I	Name:	P W.	= Ithas	2	□ AD	Ex	EN	AIL			□ Sam	e as Client in	fo PO#:	
Client Informati	ion	Project l	ocation: (~~ (44	com I	Ma	Regul	atory R	equirem	ents &	k Pr	oject I	nformat	ion Requir	ements	
Client: GZA Address: 249	ord Mu 02062	Project #	#: 01.0	J. C.	2.17		☐ Yes	□ No Ma □ No GV	V1 Standa	Required rds (Info	on this	SDG?	(Requir	es I No Coed for MCP In EPH with Tar		al Methods
Nora	and Mrs 02062	ALPHA	Quote #:				100000000000000000000000000000000000000		PDES RGI ed Progr					Criteria		
Phone: 78(-	989-1757	The second second	Around Ti	me					7	1 7	1	1 1	77		111	
Email: Wolcev. Additional I	Project Information: report with a	Date I	Due:	RUSH (only		pproved ⁽⁾	78260	METALS: DAGN D PAH	WETALS: DRCRAS DMCP 14 DRCP 15	VPH: Changes & Targets C Ranges Only C PCB	D PEST SU Ranges Only	en H. DFingerprint	mania Minger	obs,	SAMPI Filtratic □ Field □ Lab Presen □ Lab	to do vation #
ALPHA Lab ID (Lab Use Only)	Sample ID		Coll	lection Time	Sample Matrix	Sampler	VOC.	ETAL	PH: C	PH: C	PH:	107	<u>{</u>	///		L
19338 -0(SW		5/4/17	1240pm	Sir	PO					2				Sample Cor	2
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 20 of 20	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	Relingu	ished By:	F	Pre	eservative e/Time 17 ('10)	m LC	Rece	eived By:		je j	0 P 0 3 % Date/	Time 7 /3/07	Alpha's Te	es submitted are irms and Condit se side 1-01 (rev. 12-Mar-20	tions.

APPENDIX ECALCULATION SHEETS FOR EFFLUENT LIMITATIONS

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
447	C_d = Enter influent hardness in mg/L CaCO ₃
99.4	C _c = Enter receiving water hardness in mg/L CaCO ₂

Enter receiving water concentrations in the units specified

\downarrow	_
7.1	pH in Standard Units
25	Temperature in °C
0	Ammonia in mg/L
99.4	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in µg/L
0	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
0	Iron in μg/L
0	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
0	Zinc in µg/L

Enter influent concentrations in the units specified

\downarrow	<u>-</u>
0	TRC in µg/L
0.303	Ammonia in mg/L
0	Antimony in µg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
54.2	Copper in µg/L
2295	Iron in μg/L
15.4	Lead in µg/L
0	Mercury in µg/L
4.88	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
68.7	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
69	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in µg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salinity\ required\ for\ saltwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is > 1 Enter 0 if non-detect or testing not required

if>1 sample, enter maximum if>10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required **Dilution Factor** 1.0

Dilution Factor	1.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	if bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	11	μg/L	50	μg/L
Total Suspended Solids	30	mg/L		r-6 –		P-8-
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L μg/L	10	μg/L μg/L		
Cadmium	10.2		0.8207			
Chromium III		μg/L	293.8	μg/L		
	323	μg/L		μg/L		
Chromium VI	323	μg/L	11.4	μg/L		
Copper	242	$\mu g/L$	33.5	μg/L		
Iron	5000	$\mu g/L$	1000	μg/L		
Lead	160	$\mu g/L$	21.40	$\mu g/L$		
Mercury	0.739	$\mu g/L$	0.91	$\mu g/L$		
Nickel	1450	μg/L	185.1	μg/L		
Selenium	235.8	μg/L	5.0	μg/L		
Silver	35.1	μg/L	49.7	μg/L		
Zinc	420	μg/L	426.1	μg/L		
Cyanide	178	mg/L	5.2	μg/L		μg/L
B. Non-Halogenated VOCs	170	mg/L	3.2	μg/ L		μg/L
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	$\mu g/L$				
Phenol	1,080	$\mu g/L$	300	$\mu g/L$		
C. Halogenated VOCs						
Carbon Tetrachloride	4.4	$\mu g/L$	1.6	μg/L		
1,2 Dichlorobenzene	600	μg/L				
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		$\mu g/L$				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L	2.2	/T		
Tetrachloroethylene	5.0	μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene	70	μg/L				
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	$\mu g/L$		$\mu g/L$		
Diethylhexyl phthalate	101	$\mu g/L$	2.2	μg/L		

Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L		μ g/L
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L		μ g/L
Chrysene	1.0	μg/L	0.0038	μg/L		μ g/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L		μ g/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L		μ g/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

APPENDIX F

ACEC AND FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS EVALUATION

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 20, 2017

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2017)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman

Supervisor

New England Field Office

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

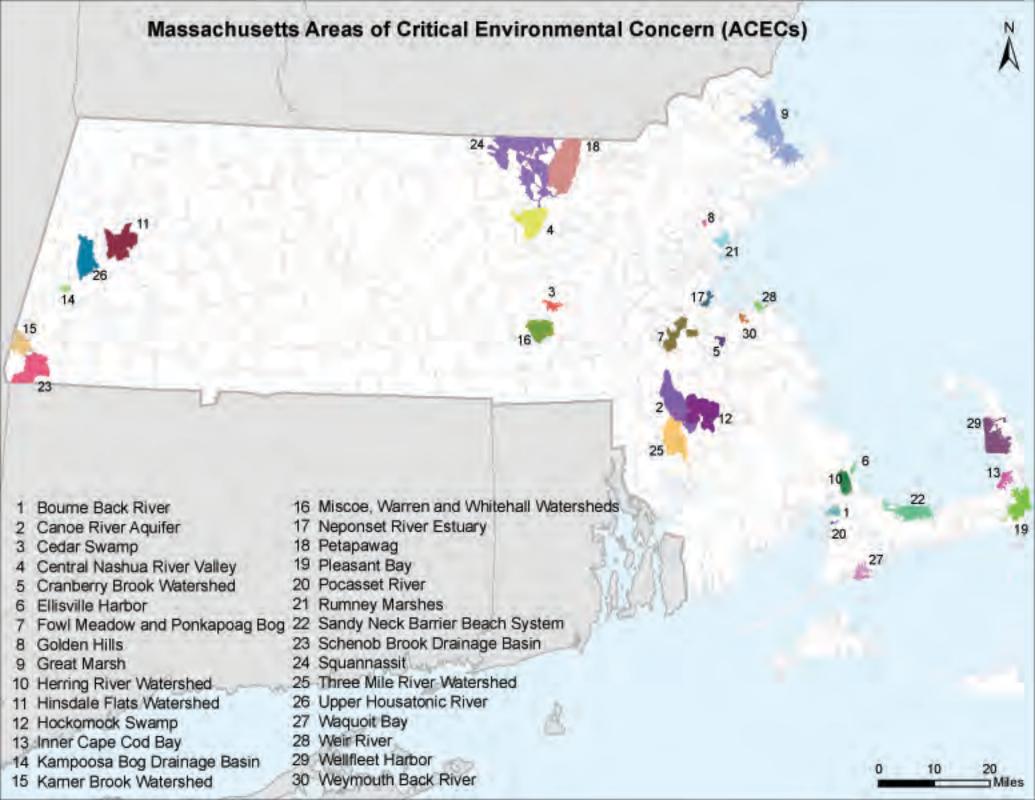
Weir River

(950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor

(12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River


(800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

November 2010

TOWIIS WILL	II ACECS WITHIN THEIR DOUNGAINES	•	NOVEITIBET 2010
TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag	ŭ	Schenob Brook
,	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River		Pleasant Bay
	Bourne Back River	Pepperell	Petapawag
	Herring River Watershed		Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp		Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay		Golden Hills
	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer		Fowl Meadow and Ponkapoag Bog
	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley	Squannassit
Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
Falmouth	Waquoit Bay	Taunton	Hockomock Swamp
Foxborough	Canoe River Aquifer		Canoe River Aquifer
Gloucester	Great Marsh	_	Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
•	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley	\\\	Watersheds
I I a modela	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River	Mallflaat	Upper Housatonic River
I Paradala	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale Holbrook	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp Cedar Swamp
	Cranberry Brook Watershed	Westborough Westwood	Fowl Meadow and Ponkapoag Bog
Hopkinton	Miscoe-Warren-Whitehall Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River	wintinop	numiney Marshes
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
Lancaster	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
LGG	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Fowl Meadow and Ponkapoag Bog		
	Neponset River Estuary		

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
2611	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Suffolk	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

⁻Eastern cougar and gray wolf are considered extirpated in Massachusetts.

⁻Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

⁻Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

ATTACHMENT

Evaluation of Long-Eared Bat Habitat

175 Wyman Street

Waltham, Massachusetts

The northern long-eared bat (*Myotis septentrionalis*) has a federal status of Threatened and a state status of Endangered within Massachusetts.

The northern long-eared bat is a migratory species which utilizes a variety of habitats during the year depending on the season. Between early November and April, this species hibernates in crevices in portions of caves and abandoned mine shafts which have high humidity, constant temperatures, and little air flow. Individuals tend to return to the same hibernaculum from year to year although they are also known to sometimes use other hibernacula. Hibernacula are generally located within approximately 35 miles of summer foraging habitat. Between April and October, northern long-eared bats roost and forage in forested areas. Preferred roost sites include clusters of large, live or dead, hardwood trees with cavities or peeling bark. Preferred foraging sites include wooded areas around vernal pools or small ponds or along streams. Thus, transitional zones between forested uplands and wetlands represent prime summer roosting and foraging habitat.

The 175 Wyman Street property and the properties associated with the discharge system is located within developed areas, including a major highway system. There are some trees and a wetland area on 175 Wyman Street property that might provide habitat, but the discharge system has no impact on those potential habitat areas. The constant noise disturbances from traffic along the highway and adjoining roads make this area marginal habitat for northern long-eared bats, therefore it is unlikely that this species utilizes this area.

APPENDIX GMACRIS SEARCH RESULTS

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Waltham; Street No: 175; Street Name: Wyman St; Resource Type(s): Area;

Inv. No. Property Name Street Town Year

Wednesday, June 21, 2017 Page 1 of 1