
Junior problems

J271. Find all positive integers n with the following property: if a, b, c are integers such that n divides
ab+ bc+ ca+ 1, then n divides abc(a+ b+ c+ abc).

Proposed by Titu Andreescu, University of Texas at Dallas and Gabriel Dospinescu, Ecole Polytechnique,
Lyon, France

Solution by the authors
We will prove that all positive divisors of 720 are solutions of the problem. If n is a solution, then by

choosing a = 3, b = 5, c = −2 (for which ab+ bc+ ca+ 1 = 0) we obtain n|720. Conversely, let d be a divisor
of 720 and suppose that d divides ab+ bc+ ca+ 1. We want to prove that d divides abc(a+ b+ c+ abc). We
may assume that d is a power of a prime. The key ingredient is the following identity

(a2 − 1)(b2 − 1)(c2 − 1) = (a+ b+ c+ abc)2 − (ab+ bc+ ca+ 1)2.

This follows easily by multiplying the equalities

(a+ 1)(b+ 1)(c+ 1) = abc+ a+ b+ c+ ab+ bc+ ca+ 1

and
(a− 1)(b− 1)(c− 1) = abc+ a+ b+ c− (ab+ bc+ ca+ 1).

Define f(a, b, c) = a2b2c2(a2 − 1)(b2 − 1)(c2 − 1). If at least two of the numbers a, b, c are odd, then
f(a, b, c) is a multiple of 4 · 64 = 256. Hence if 2k divides ab + bc + ca + 1 and 1 ≤ k ≤ 4, then at least
two of the numbers a, b, c are odd and the previous discussion yields 22k|a2b2c2(a + b + c + abc)2, hence
2k|abc(a+ b+ c+ abc). A similar argument shows that if 3k|ab+ bc+ ca+ 1 and 1 ≤ k ≤ 2, then 27 divides
f(a, b, c), hence 32k−1 divides (abc(a+ b+ c+ abc))2 and then 3k|abc(a+ b+ c+ abc). Finally, suppose that
5 divides ab+ bc+ ca+ 1 and 5 does not divide abc(a+ b+ c+ abc). The previous identity shows that a, b, c
are each congruent to 2 or 3 mod 5 and one can easily check that this contradicts the fact that 5 divides
ab+ bc+ ca+ 1.

Also solved by Polyahedra, Polk State College, FL, USA.
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J272. Let ABC be a triangle with centroid G and circumcenter O. Prove that if BC is its greatest side, then
G lies in the interior of the circle of diameter AO.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Ercole Suppa, Teramo, Italy

A

B C

G

O

D

M

Let a = BC, b = CA, c = AB, letM the midpoint of BC, let D be the second intersection point between
AM and the circumcircle of 4ABC.

By the Power of Point theorem, we have AM ·MD = BM ·MC. Thus, we get

AD = AM +MD = ma +
a
2 ·

a
2

ma
=

4m2
a + a2

4ma
=

2b2 + 2c2

4ma
=
b2 + c2

2ma

Now, taking into account that the circle of diameter AO is the locus of midpoints of chords of (O) that
that pass through A, we have that G lies in the interior of the circle of diameter AO if and only if AG < AD/2
or equivalently

2

3
ma <

1

2
· b

2 + c2

2ma
⇔ 8m2

a < 3
(
b2 + c2

)
⇔ b2 + c2 < 2a2

Since BC is the greatest side of 4ABC, the last inequality holds, so we are done.

Also solved by YoungSoo Kwon, St. Andrew’s School, Delaware, USA; Daniel Lasaosa, Universidad
Pública de Navarra, Spain; Polyahedra, Polk State College, FL, USA.
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J273. Let a, b, c be real numbers greater than or equal to 1. Prove that

a3 + 2

b2 − b+ 1
+

b3 + 2

c2 − c+ 1
+

c3 + 2

a2 − a+ 1
≥ 9.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain
Note first that a3 + 2 ≥ 3(a2 − a + 1) is equivalent to a3 − 3a2 + 3a − 1 = (a − 1)3 ≥ 0, clearly true by
hypothesis and with equality iff a = 1. Analogous inequalities hold for b, c. Therefore, application of the
AM-GM produces

a3 + 2

b2 − b+ 1
+

b3 + 2

c2 − c+ 1
+

c3 + 2

a2 − a+ 1
≥

≥ 3
3

√
a3 + 2

a2 − a+ 1
· b3 + 2

b2 − b+ 1
· c3 + 2

c2 − c+ 1
≥ 3

3
√

33 = 9.

The conclusion follows, and the necessary condition for equality a = b = c = 1 is clearly also sufficient.

Also solved by Zarif Ibragimov, SamSU, Samarkand, Uzbekistan; Polyahedra, Polk State College, FL,
USA; f; Arber Igrishta, Eqrem Qabej, Vushtrri, Kosovo; Arkady Alt , San Jose ,California, USA; Ercole
Suppa, Teramo, Italy; Mathematical Group “Galaktika shqiptare“, Albania; Harun Immanuel, ITS Surabaya;
Jonathan Luke Lottes, The College at Brockport, State University of New York; Prithwijit De, HBCSE,
Mumbai, India; Sayan Das, Indian Statistical Institute, Kolkata; Paolo Perfetti, Università degli studi di Tor
Vergata Roma, Roma, Italy; Shivang Jindal, Jaipur, India; Alessandro Ventullo, Milan, Italy; Ioan Viorel
Codreanu, Satulung, Maramures, Romania.

Mathematical Reflections 4 (2013) 3



J274. Let p be a prime and let k be a nonnegative integer. Find all positive integer solutions (x, y, z) to the
equation

xk(y − z) + yk(z − x) + zk(x− y) = p.

Proposed by Alessandro Ventullo, Milan, Italy

First solution by Polyahedra, Polk State College, USA
Let Ak = xk(y − z) + yk(z − x) + zk(x− y). Then for k = 0, 1, Ak ≡ 0, so no solution exists. Suppose that
k ≥ 2. Then

Ak = (y − z)
(
xk − yk

)
+ (x− y)

(
zk − yk

)
= (x− y)(y − z)

k−1∑
i=1

(
xi − zi

)
yk−1−i

= (x− y)(y − z)(x− z)Bk,

where

Bk =
k−1∑
i=1

 i−1∑
j=0

xjzi−1−j

 yk−1−i =
∑

i+j+l=k−2
xiyjzl.

Now for k ≥ 3, Bk is an integer greater than 2, so no solution to Ak = p is possible. Finally, for k = 2,
Ak = (x − y)(y − z)(x − z) = p if and only if p = 2 and (x, y, z) = (n + 2, n + 1, n), (n, n + 2, n + 1), or
(n+ 1, n, n+ 2) for n ≥ 1.

Second solution by Polyahedra, Polk State College, USA
Note that

Ak = xk(y − z) + yk(z − x) + zk(x− y) = −

∣∣∣∣∣∣
x xk 1
y yk 1
z zk 1

∣∣∣∣∣∣ ,
which is twice the area of 4XY Z, where X = (x, xk), Y = (y, yk), Z = (z, zk), and XY Z is in the
clockwise orientation. Clearly, Ak ≡ 0 for k = 0, 1. Assume that k ≥ 2 and x > y > z. By Pick’s theorem,
Ak = 2(Ik− 1

2B−1), where Ik and B are the numbers of lattice points in the interior and on the boundary of
4XY Z, respectively. Since the slopes of XY , Y Z, and ZX are integers, it is easy to see that B = 2(x− z),
thus Ak = 2(Ik + x − z − 1). Therefore, for Ak = p, we must have p = 2, x − z = 2, and Ik = 0. Now
1
2

[
(z + 2)k + zk

]
≥ (z + 1)k + 1, with equality if and only if k = 2. So W = (y, yk + 1) is an interior point

of 4XY Z for k ≥ 3. Finally, it is easy to see that when k = 2, the solutions are (x, y, z) = (n+ 2, n+ 1, n),
(n, n+ 2, n+ 1), or (n+ 1, n, n+ 2) for n ≥ 1.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain.
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J275. Let ABCD be a rectangle and let point E lie on side AB. The circle through A, B, and the orthogonal
projection of E onto CD intersects AD and BC at X and Y . Prove that XY passes through the
orthocenter of triangle CDE.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Ercole Suppa, Teramo, Italy

* EF pe

Inoltre

* x=EDH

* DKE=

Pertanto

A B

CD

E

F

X Y
H

K

Let F be the orthogonal projection of E onto CD, let H = EF ∩XY , K = DH ∩ CE.

Clearly XY ‖ AB so DXHF is cyclic. Thus a simple angle chasing gives

∠EDH = ∠EDC − ∠HDC = ∠FAB − ∠HDC =

= ∠FXB − ∠FXY = ∠Y XB (1)

From cyclic quadrilaterals ABFX and EBCF we get

∠DEF = ∠DAF = ∠XAF = ∠XBF (2)

∠FEC = ∠FBC (3)

By using (1),(2),(3) we obtain

∠DKE = 180◦ − ∠EDK − ∠DEK =

= 180◦ − ∠EDH − ∠DEF − ∠FEC =

= 180◦ − ∠Y XB − ∠XBF − ∠FBC =

= 180◦ − ∠Y XB − ∠XBY =

= ∠XY B = 90◦

Therefore DK ⊥ EC. Since EF ⊥ DC and H = DK ∩ EF , it follows that H is the orthocenter of
4CDE, as we wanted to prove.

Second solution by Cosmin Pohoata, Princeton University, USA As in the previous solution, let F be
the orthogonal projection of E onto CD and let H be the intersection of EF with XY . It is well-known
that the reflections of the orthocenter of a triangle across is sidelines lie on the circumcircle of the triangle.
Thus, H is the orthocenter of CDE if and onl only if FC · FD = FE · FH. But as before XY ‖AB, so
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FC · FD = XH · HY . On the other hand, if F ′ is the second intersection of FE with the circumcircle
of FAB, the power of H with respect to (FAB) yields F ′H · FH = XH · XY ; hence, it follows that
FC · FD = F ′H · FH. However, FE = F ′H, by symmetry, so, we get FC · FD = FE · FH, as desired.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain; YoungSoo Kwon, St. Andrew’s
School, Delaware, USA; Polyahedra, Polk State College, USA.
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J276. Find all positive integers m and n such that

10n − 6m = 4n2.

Proposed by Tigran Akopyan, Vanadzor, Armenia

Solution by Alessandro Ventullo, Milan, Italy
It is easy to see that if n = 1, then m = 1 and (1, 1) is a solution to the given equation. We prove that

this is the only solution. Assume that n > 1 and n odd. Then, 10n − 6m ≡ −6m (mod 8) and 4n2 ≡ 4
(mod 8) and it is clear that −6m ≡ 4 (mod 8) if and only if m = 2. But 10n > 36 + 4n2 for all positive
integers n > 1, therefore there are no solutions when n is odd. Let n be an even number, i.e. n = 2k for
some k ∈ Z+. Hence,

(10k − 4k)(10k + 4k) = 6m.

Since there are no solutions for k = 1, 2, let us assume that k > 2. Clearly m ≥ 4 and simplifying by 2, we
get

(2k−2 · 5k − k)(2k−2 · 5k + k) = 2m−4 · 3m. (1)

If k is odd, then m = 4. But 2k−2 · 5k + k ≥ 2 · 53 + 3 > 34, contradiction. Therefore, k must be even.
Assume that k = 2αh, where α, h ∈ Z+ and h is odd. If α ≥ k−2, then 2k−2|k, which implies that 2k−2 ≤ k.
This gives k = 3, 4 and an easy check shows that there are no solutions for this values. If α < k − 2, then
equation (1) becomes

22α(2k−2−α · 5k − h)(2k−2−α · 5k + h) = 2m−4 · 3m,

and by unique factorizaton we have 2α = m − 4. Therefore, from the inequality k > α + 2, we obtain
n > 2α + 4 = m. But this implies that 10n = 6m + 4n2 < 6n + 4n2, which is false for all integers n > 1.
Hence, there are no solutions for n even and the statement follows.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain;Polyahedra, Polk State College,
USA; Arbër Avdullahu,Mehmet Akif College,Kosovo; David Xu; G. C. Greubel, Newport News, VA; Math-
ematical Group “Galaktika shqiptare“, Albania; Harun Immanuel, ITS Surabaya; Toan Pham Quang, Dang
Thai Mai Secondary School, Vinh, Vietnam; Tony Morse and Oiza Ochi, College at Brockport, State Uni-
versity of New York.
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Senior problems

S271. Determine if there is an n× n square with all entries cubes of pairwise distinct positive integers such
that the product of entries on each of the n rows, n columns, and two diagonals is 20132013.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Li Zhou, Polk State College, USA
Shown below is De Morgan’s 11× 11 additive magic square, where the sum of entries on each of the 11

rows, 11 columns, and two diagonals is (1 + 2 + · · ·+ 121)/11 = 671.

56 117 46 107 36 97 26 87 16 77 6

7 57 118 47 108 37 98 27 88 17 67

68 8 58 119 48 109 38 99 28 78 18

19 69 9 59 120 49 110 39 89 29 79

80 20 70 10 60 121 50 100 40 90 30

31 81 21 71 11 61 111 51 101 41 91

92 32 82 22 72 1 62 112 52 102 42

43 93 33 83 12 73 2 63 113 53 103

104 44 94 23 84 13 74 3 64 114 54

55 105 34 95 24 85 14 75 4 65 115

116 45 106 35 96 25 86 15 76 5 66

Raising 20133 to each entry of the the table, we obtain an 11× 11 multiplicative magic square satisfying the
requirements.
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S272. Let A1, A2, . . . , A2n be a polygon inscribed in a circle C(O,R). Diagonals A1An+1, A2An+2, . . . , AnA2n

intersect at point P . Let G be the centroid of the polygon. Prove that ∠OPG is acute.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Li Zhou, Polk State College, USA

C'
C Mn

M2
M1

An+1

P
O

An

A2n

A2

An+2

A1

For 1 ≤ i ≤ n, let Mi be the midpoint of AiAn+i. Then OMi ⊥ AiAn+i, so the n-gon M1M2 · · ·Mn is
circumscribed by the circle C ′ of diameter OP . Since G is also the centroid of M1M2 · · ·Mn, it must be in
the interior of C ′. Hence, ∠OPG is acute.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain.
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S273. Let a, b, c be positive integers such that a ≥ b ≥ c and a−c
2 is a prime. Prove that if

a2 + b2 + c2 − 2(ab+ bc+ ca) = b,

then b is either a prime or a perfect square.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Stephanie Lash and Jessica Schuler, College at Brockport, State University of New York
We rewrite the equation as (a− c)2 = b(1− b+ 2a+ 2c), from which we have immediately that b|(a− c)2,

i.e. b|4
(
a−c
2

)2.
We will consider two cases. First, suppose a−c

2 = 2. This means that b|16 and so b ∈ {1, 2, 4, 8, 16}. To
complete the problem in this case we need to show that b 6= 8. Suppose that b = 8. The rewritten equation
becomes 16 = 8(1 − 8 + 2a + 2c) iff 2 = 2a + 2c − 7, which is a contradiction because the left hand side is
even while the right hand side is odd. Now, suppose that a−c

2 is an odd prime. Among other things this
implies that a− c 6= 0 and it is possible to cancel it if needed. The divisors of 4

(
a−c
2

)2 are

1, 2, 4,
a− c

2
, a− c, 2(a− c), (a− c)2

4
,
(a− c)2

2
, (a− c)2.

To complete the problem in this case we need to show that

b /∈
{
a− c, 2(a− c), (a− c)2

2

}
.

Suppose that b = a− c. The rewritten equation becomes

(a− c)2 = (a− c)(1− a+ c+ 2a+ 2c) ⇐⇒ a− c = 1 + a+ 3c ⇐⇒ 0 = 1 + 3c,

a contradiction. Suppose that b = 2(a− c). Then

(a− c)2 = 2(a− c)(1− 2a+ 2c+ 2a+ 2c) ⇐⇒ a− c = 2 + 8c ⇐⇒ a = 2 + 9c.

In the same time, b = 2(a − c) = 4 + 16c > 2 + 9c = a, which is a contradiction. Finally, suppose that
b = (a−c)2

2 . Then, since a− c is even, b is also even and

(a− c)2 =
(a− c)2

2
(1− b+ 2a+ 2c) ⇐⇒ 1 =

1

2
(1− b+ 2a+ 2b) ⇐⇒ 1 = 2a+ 2c− b

which is a contradiction because the left hand side is odd while the right hand side is even. This completes
the proof.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain; Li Zhou, Polk State College,
USA; Alessandro Ventullo, Milan, Italy.
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S274. Let a, b, c be positive real numbers such that abc = 1. Prove that

a

ca+ 1
+

b

ab+ 1
+

c

bc+ 1
≤ 1

2

(
a2 + b2 + c2

)
.

Proposed by Sayan Das, Kolkata, India

Solution by Ercole Suppa, Teramo, Italy
We make the well-known substitution a = x

y , b = y
z and c = z

x , where x, y, z > 0. The original inequality
becomes:

2x

y + z
+

2y

z + x
+

2z

x+ y
≤ x2

y2
+
y2

z2
+
z2

x2
(*)

According to AM-GM inequality we get

x2

y2
+
y2

z2
+
z2

x2
=

1

2

(
x2

y2
+
y2

z2

)
+

1

2

(
y2

z2
+
z2

x2

)
+

1

2

(
z2

x2
+
x2

y2

)
≥ x

z
+
y

x
+
z

y
(1)

From AM-GM and Cauchy Schwarz inequalities we obtain

x2

y2
+
y2

z2
+
z2

x2
=

√
x2

y2
+
y2

z2
+
z2

x2
·

√
x2

y2
+
y2

z2
+
z2

x2

≥
√

3 ·

√
x2

y2
+
y2

z2
+
z2

x2
≥ x

y
+
y

z
+
z

x
(2)

Summing up the inequalities (1),(2) we deduce that

x2

y2
+
y2

z2
+
z2

x2
≥ 1

2

(
x

y
+
x

z

)
+

1

2

(y
x

+
y

z

)
+

1

2

(
z

x
+
z

y

)
(3)

Applying the AM-HM inequality for two numbers, we obtain

1

2

(
x

y
+
x

z

)
+

1

2

(y
x

+
y

z

)
+

1

2

(
z

x
+
z

y

)
≥ 2
y + z

x

+
2

x+ z

y

+
2

x+ y

z

=

=
2x

y + z
+

2y

x+ z
+

2z

x+ y
(4)

Finally, from (3) and (4), we get (*) which is exactly the desired result.

Also solved by Georgios Batzolis, Mandoulides High School, Thessaloniki, Greece; Daniel Lasaosa, Uni-
versidad Pública de Navarra, Spain; AN- anduud Problem Solving Group, Ulaanbaatar, Mongolia; Ioan Viorel
Codreanu, Satulung, Maramures, Romania; Li Zhou, Polk State College, USA; Arkady Alt , San Jose ,Cal-
ifornia, USA; Mathematical Group “Galaktika shqiptare“, Albania; Paolo Perfetti, Università degli studi di
Tor Vergata Roma, Roma, Italy; Zarif Ibragimov, SamSU, Samarkand, Uzbekistan.
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S275. Let ABC be a triangle with incircle I and incenter I. Let A′, B′, C ′ be the intersections of I with the
segments AI,BI,CI, respectively. Prove that

AB

A′B′
+

BC

B′C ′
+

CA

C ′A′
≥ 12− 4

(
sin

A

2
+ sin

B

2
+ sin

C

2

)
.

Proposed by Marius Stanean, Zalau, Romania

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain
Lemma:
Clearly,

∠A′IB′ = ∠AIB = 180◦ − A+B

2
= 90◦ +

C

2
,

or ∠A′C ′B′ = 45◦ + C
4 , and applying the Sine Law, and that r = 4R sin A

2 sin B
2 sin C

2 , where r,R are
respectively the inradius and circunradius of ABC, we find

A′B′

AB
=

r

R

sin
(
45◦ + C

4

)
sinC

= 2 sin
A

2
sin

B

2

sin
(
45◦ + C

4

)
cos C2

.

Now,

2 sin
A

2
sin

B

2
= cos

A−B
2
− cos

A+B

2
≤ 1− sin

C

2
,

with equality iff A = B, or denoting γ = C
4 + 45◦, we have sin C

2 = − cos
(
C
2 + 90◦

)
= − cos(2γ), cos C2 =

sin
(
C
2 + 90◦

)
= sin(2γ), and

A′B′

AB
≤ (1 + cos(2γ))

sin γ

sin(2γ)
= cos γ,

with equality iff A = B. Analogous relations may be found for the other terms in the LHS, defining
α = A

4 + 45◦ and β = B
4 + 45◦, yielding

AB

A′B′
+

BC

B′C ′
+

CA

C ′A′
≥ 1

cosα
+

1

cosβ
+

1

cos γ
,

and using the definition of α, β, γ in the RHS of the proposed inequality, it suffices to show that

1

cosα
+

1

cosβ
+

1

cos γ
≥ 8

(
cos2 α+ cos2 β + cos2 γ

)
.

Note furthermore that, since 0 < A < 180◦, we have 45◦ < α < 90◦, or α, β, γ are the angles of an acute
triangle, or all cosines are positive reals. It is also well-known (or easily provable using the Cosine Law) that
cos2 α+ cos2 β + cos2 γ + 2 cosα cosβ cos γ = 1, or it suffices to show that

1

cosα
+

1

cosβ
+

1

cos γ
+ 16 cosα cosβ cos γ ≥ 8,

clearly true after applying the AM-GM inequality to the sum in the LHS, and with equality iff α = β = γ =
60◦, ie iff ABC is equilateral, which is also clearly necessary and sufficient for the proposed inequality to
become an equality. The conclusion follows.

Also solved by Stephanie Lash and Jessica Schuler, College at Brockport, State University of New York;
Arkady Alt , San Jose ,California, USA; Li Zhou, Polk State College, USA.
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S276. Let a, b, c be real numbers such that

2

a2 + 1
+

2

b2 + 1
+

2

c2 + 1
≥ 3.

Prove that (a− 2)2 + (b− 2)2 + (c− 2)2 ≥ 3.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Arkady Alt , San Jose ,California, USA
Notice that ∑

cyc

2

a2 + 1
≥ 3 ⇐⇒

∑
cyc

(
2

a2 + 1
− 1

)
≥ 0 ⇐⇒

∑
cyc

1− a2

1 + a2
≥ 0.

Now, the key part is to see that

(a− 2)2 − 2

a2 + 1
=

a4 − 4a3 + 5a2 − 4a+ 2

a2 + 1
=
a4 − 4a3 + 6a2 − 4a+ 1 +

(
1− a2

)
a2 + 1

=
(a− 2)4

a2 + 1
+

1− a2

1 + a2
.

It follows that ∑
cyc

(a− 2)2 =
∑
cyc

2

a2 + 1
+
∑
cyc

(a− 2)4

a2 + 1
+
∑
cyc

1− a2

1 + a2
≥
∑
cyc

2

a2 + 1
≥ 3.

Also solved by Zarif Ibragimov, SamSU, Samarkand, Uzbekistan; Mathematical Group “Galaktika shqiptare“,
Albania; Daniel Lasaosa, Universidad Pública de Navarra, Spain; AN-anduud Problem Solving Group, Ulaan-
baatar,Mongolia; Li Zhou, Polk State College, USA.
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Undergraduate problems

U271. Let a > b be positive real numbers and let n be a positive integer. Prove that(
an+1 − bn+1

)n−1
(an − bn)n

>
n

(n+ 1)2
· e

a− b
,

where e is the Euler number.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by AN-anduud Problem Solving Group, Ulaanbaatar,Mongolia
Let us consider following function

f(x) = (n− 1) log(xn + xn−1 + · · ·+ 1)− n log(xn−1 + xn−2 + · · ·+ 1)

Taking the derivative respect with x, we have

f ′(x) =
(n− 1)(nxn−1 + (n− 1)xn−2 + · · ·+ 1)

xn + xn−1 + · · ·+ 1
−
n
(
(n− 1)xn−2 + (n− 2)xn−3 + · · ·+ 1

)
xn−1 + xn−2 + · · ·+ 1

.

If we prove following inequality

(n− 1)

(
n∑
k=1

kxk−1

)
·

(
n∑
k=1

xk−1

)
≥ n

(
n−1∑
k=1

kxk−1

)
· (
n+1∑
k=1

xk−1) (∗)

then for any x with x > 1 we have f ′(x) > 0. Hence f(x) is increasing on the open interval (0,∞).

∀x > 1 : f(x) > f(1)⇔ log
(xn + xn−1 + · · ·+ 1)n−1

(xn−1 + xn−2 + · · ·+ 1)n
≥ log

(n+ 1)n−1

nn

(xn + xn−1 + · · ·+ 1)n−1

(xn−1 + xn−2 + · · ·+ 1)n
≥ (n+ 1)n−1

nn

Thus (1) inequality is proved. Now we will prove (∗).

(∗)⇔ (n− 1)

(
n∑
k=1

kxk−1

)
(xn − 1) ≥ n

(
n−1∑
k=1

kxk−1

)
(xn+1 − 1)

⇔ (n− 1)

n∑
k=1

kxn+k−1 + n

n−1∑
k=1

kxk−1 ≥ n
n−1∑
k=1

kxn+k + (n− 1)

n∑
k=1

kxk−1

⇔
n−1∑
k=1

(n− k)xn−1+k +

n−1∑
k=1

≥ (n− 1)nxn−1 (∗∗)
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Now we will use AM-GM inequality for (n− 1)n numbers.Then (∗∗) is proved, so our lemma is proved.�
Let us solve the posed problem using our lemma.

(an+1 − bn+1)n−1

(an − bn)n
=

(a− b)n−1(an + an−1b+ · · ·+ bn)n−1

(a− b)n(an−1 + an−2b+ · · ·+ bn−1)n

=
1

a− b
·
((

a
b

)n
+ (ab )n−1 + · · ·+ 1

)n−1((
a
b

)n−1
+
(
a
b

)n−2
+ · · ·+ 1

)n
a
b
=x>1
=

1

a− b
· (xn + xn−1 + · · ·+ 1)n−1

(xn−1 + xn−2 + · · ·+ 1)n

by the lemma

≥ 1

a− b
· (n+ 1)n−1

nn
=

n

(n+ 1)2
· 1

a− b
·
(

1 +
1

n

)n+1

using well known inequality
(

1 +
1

n

)n+1

> e

>
n

(n+ 1)2
· e

a− b
.

Hence our desired inequality is proved.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain; Arkady Alt , San Jose ,Califor-
nia, USA; Paolo Perfetti, Università degli studi di Tor Vergata Roma, Roma, Italy; Jedrzej Garnek, Adam
Mickiewicz University, Poznan, Poland.
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U272. Let a be a positive real number and let (an)n≥0 be the sequence defined by a0 =
√
a, an+1 =

√
an + a,

for all positive integers n. Prove that there are infinitely many irrational numbers among the terms of
the sequence.

Proposed by Marius Cavachi, Constanţa, Romania

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain
Assume that the result is false. Then, either all terms in the sequence are rational, or there is a last
irrational term aN , and aN+1, aN+2, . . . are all rational. If two consecutive terms aN+1, aN+2 are rational,
then a = aN+2

2− aN+1 must clearly be rational. Therefore, if aN is irrational, aN+1
2 = aN + a is irrational,

and so is aN+1, or if the proposed result is false, then a is rational, and so is every term in the sequence.

From the previous argument, assuming that the proposed result is false, a positive rational a exists such
each an is rational for all n ≥ 0. Clearly a1 =

√
a+
√
a >

√
a = a0, and if an > an−1, then an+1 =√

a+ an >
√
a+ an−1 = an, or by trivial induction the sequence is strictly increasing. Moreover, if

√
a = u

v
for u, v coprime, an increasing sequence of integers un exists such that u0 = u, and un+1 =

√
u2 + unv.

Indeed, with such a definition it follows that if an = un
v , then an+1 = un+1

v . Moreover, since an+1 is rational,
if un is an integer, then un+1 is rational and at the same time the square root of an integer, hence an integer
too, or since u0 is an integer, then by trivial induction so is every un = van, or the un’s are a strictly
increasing sequence of positive integers, hence unbounded. Or for sufficiently large n, un will be as large as
we desire, and at some point we will have an = vun >

1+
√
1+4a
2 . Then,

a <
(2an − 1)2 − 1

4
= an

2 − an, an+1 =
√
a+ an <

√
an2 = an,

and the sequence would decrease, contradiction, hence the proposed result cannot be false. The conclusion
follows.
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U273. Let Φn be the nth cyclotomic polynomial, defined by

Φn(X) =
∏

1≤m≤n,gcd(m,n)=1

(
X − e

2iπm
n

)
.

a) Let k and n be positive integers with k even and n > 1. Prove that

πkϕ(n) ·
∏
p

Φn

(
1

pk

)
∈ Q,

where the product is taken over all primes and ϕ is the Euler totient function.

b) Prove that ∏
p

(
1− 1

p2
+

1

p6
− 1

p8
+

1

p10
− 1

p14
+

1

p16

)
=

192090682746473135625

3446336510402π16
.

Proposed by Albert Stadler, Herrliberg, Switzerland

Solution by Konstantinos Tsouvalas, University of Athens, Athens, Greece
a)We will use induction. First of all, we will use the following formula:

ζ (2n) = (−1)n+1B2n (2π)2n

2 (2n)!

where ζ denotes Riemann’s function and B2n the 2n-nth Bernoulli number.
For the cuclotomic polynomial it is known that:

Φn (X) = (−1)
∑
d|n µ(n/d)

∏
d|n

(
1−Xd

)µ(n/d)
=
∏
d|n

(
1−Xd

)µ(n/d)
∏
d|n

(
1−Xd

)µ(n/d)
We also have:

n =
∑
d|n

φ (d)

hence from Mobius inversion formula:

φ (n) =
∑
d|n

µ
(n
d

)
d

Then:

πkφ(n)
∏
p

Φn

(
p−k
)

= πkφ(n)
∏
d|n

(∏
p

(
1− 1

pkd

))µ(n/d)

=
∏
d|n

(
πkd

∏
p

(
1− 1

pkd

))µ(n/d)

=
∏
d|n

(
(kd)!

(−1)kd/2+1Bkd2kd−1

)µ(n/d)
∈ Q
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b)We oserve that:

Φ15

(
p−2
) (1− p−30) (1− p−2)

(1− p−6) (1− p−10)
.

Finally we have:

π16
∏
p

Φ15

(
p−2
)

=
ζ(10)ζ(6)

ζ(2)ζ(30)

which is the desired number.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain; Jedrzej Garnek, Adam Mickiewicz
University, Poznan, Poland.
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U274. Let A1, . . . , Am ∈ Mn(C) satisfying A1 + · · · + Am = mIn and A1
2 = · · · = Am

2 = In. Prove that
A1 = · · · = Am.

Proposed by Marius Cavachi, Constanţa, Romania

Solution by Jedrzej Garnek, Adam Mickiewicz University, Poznan, Poland Note that since A2
i = In, the

eigenvalues of Ai satisfy equation λ2 = 1, i.e. all eigenvalues of Ai are equal to ±1. Thus, since trace of a
matrix is sum of its eigenvalues, tr Ai ≤ n, with equality iff all eigenvalues are equal to 1.
On the other hand: mn = tr mIn = tr (A1 + . . .+Am) = tr A1 + . . .+ tr Am ≤ n+ . . .+ n = mn. Thus for
all i all eigenvalues of Ai are equal to 1.

Finally, since A2
i − In = 0, the minimal polynomial of Ai divides x2 − 1, and has no multiple roots, so

that Ai is diagonalizable. But the only diagonalizable n × n matrix with all eigenvalues equal to 1 is the
identity matrix – thus Ai = In for all i.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain; Nikolaos Zarifis, National Techni-
cal University of Athens, Athens, Greece; Moubinool Omarjee, Lycée Henri IV, Paris, France; Konstantinos
Tsouvalas, University of Athens, Athens, Greece.
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U275. Let m and n be positive integers and let (ak)k≥1 be real numbers. Prove that∑
d|m,e|n,g| gcd(d,e)

µ(g)

g
de · ade/g =

∑
k|mn

kak.

Here, µ is the usual Möbius function.

Proposed by Darij Grinberg, Massachusetts Institute of Technology, USA

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain
Since the result is proposed for any sequence of real numbers, and ak only appears in the sum in the LHS
when de

g = k, then the proposed result is equivalently formulated as follows: given any positive integer k, for
any pair of positive integers m,n such that mn is a multiple of k, we have∑

d|m,e|n, de
k
| gcd(d,e)

µ

(
de

k

)
= 1.

We prove the proposed result, expressed in this latter form, by induction on the number of distinct primes
that divide simultaneously m and n.

If m,n are coprime, then so are d, e, and gcd(d, e) = 1, or de
k = 1, ie, there is exactly one term in the

sum, occurring when d = gcd(k,m) and e = gcd(k, n), for which µ
(
de
k

)
= µ(1) = 1, and the result clearly

follows in this case.
Let p be a prime that divides m,n, with respective multiplicities U, V ≥ 1. Let t, u, v the multiplicities

with which p divides k, d, e, where clearly u ∈ {0, 1, . . . , U} and v ∈ {0, 1, . . . , V }. The multiplicities of
p in de

k and gcd(d, e) are respectively u + v − t and min(u, v). Since k must divide de, but at the same
time a nonzero contribution to the sum will happen iff de

k is square-free, we must have u + v − t ∈ {0, 1}
for all nonzero contributions to the sum, while at the same time, since de

k divides gcd(d, e), we must have
u+ v− t ≤ min(u, v), or equivalently t ≥ max(u, v). The set of values that the pair (u, v) can take therefore
satisfies max(0, t−V ) ≤ u ≤ min(t, U)} and v = t−u, or max(1, t+1−V ) ≤ u ≤ min(t, U)} and u = t+1−V .
Note therefore that there is always exactly one more pair (u, v) such that u+ v− t = 0, than pairs such that
u+ v − t = 1.

Denote now by m′, n′, d′, e′, k′ the respective results of removing all factors p from m,n, d, e, k. For each
set (m′, n′, d′, e′, k′), consider all possible pairs (u, v) as described above. For the pairs of the first kind,
we have µ

(
de
k

)
= µ

(
d′e′

k′

)
, since p does not appear in de

k , while for the pairs of the second kind, we have

µ
(
de
k

)
= µ

(
pd

′e′

k′

)
= −µ

(
d′e′

k′

)
, since p appears with multiplicity 1 in de

k , but does not appear in d′e′

k′ .

Therefore, the net contribution to the sum of all possible pairs (u, v) given m′, n′, d′, e′, k′ is µ
(
d′e′

k′

)
. In

other words, adding one more distinct prime factor to m,n, k does not change the value of the sum, or after
trivial induction, the proposed result follows.
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U276. Let K be a finite field. Find all polynomials f ∈ K[X] such that f(X) = f(aX) for all a ∈ K∗.

Proposed by Mihai Piticari, Campulung Moldovenesc, Romania

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain
It is well known that, if K is a finite field, then there exists a prime p such that the characteristic of K is p,
the order of K is pn for some positive integer n, and this finite field is unique up to isomorphism. Moreover,
the multiplicative group of this finite field (ie, the group with respect to multiplication of K∗), has order
pn − 1 and ϕ(pn − 1) primitive generators g, such that K∗ =

{
g, g2, . . . , gp

n−1 = 1
}
, where 1 denotes the

unit of the multiplication operation.
Moreover, for all a ∈ K∗, we can take X = 1, or f(1) = f(a) for all a ∈ K∗. Therefore, any such

polynomial takes a certain value b for all a ∈ K∗, and a certain value (not necessarily distinct) c for 0 (where
0 denotes the unit of the sum operation). Thus, any such polynomial f can be written as f(X) = dXpn−1+c,
where c = f(0) and d = b− c = f(1)−f(0) = f(a)−f(0) for all a ∈ K∗. Any other polynomial that satisfies
the conditions given in the problem statement can be written equivalently in the proposed form.
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Olympiad problems

O271. Let (an)n≥0 be the sequence given by a0 = 0, a1 = 2 and an+2 = 6an+1 − an for n ≥ 0. Let f(n) be
the highest power of 2 that divides n. Prove that f(an) = f(2n) for all n ≥ 0.

Proposed by Albert Stadler, Herrliberg, Switzerland

Solution by G. C. Greubel, Newport News, VA
First consider the difference equation

an+2 = 6an+1 − an (2)

where a0 = 0 and a1 = 2. The solution of the difference equation can be obtained by making the approxi-
mation am = rm for which r must satisfy the quadratic equation r2− 6r+ 1 = 0. It is seen that r = 3± 2

√
2

and leads to the general form

an = A(3 + 2
√

2)n +B(3− 2
√

2)n. (3)

The values of A and B can be obtained from the initial values and leads to

an =
1

2
√

2

[
(3 + 2

√
2)n − (3− 2

√
2)n
]
. (4)

Since 3 + 2
√

2 = (1 +
√

2)2 and 3− 2
√

2 = (1−
√

2)2 then an becomes

an =
(1 +

√
2)2n − (1−

√
2)2n

(1 +
√

2)− (1−
√

2)
. (5)

This last form can readily be seen as the Pell numbers of even values, namely, an = P2n.
The function f(n) is the highest power of 2 that divides n. This works as follows: f(0) = 0, f(1) = 0,

f(2) = 1, f(3) = 0, f(4) = 2, f(5) = 0, and so on. The function f(n) is the set

f(n) ∈ {0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, · · · }

and is the sequence A007814 of the On-line Encyclopedia of Integers Sequences. The following table defines,
for each n value the corresponding P2n, f(2n) and f(P2n) values.

n P2n f(2n) f(P2n)

0 0 0 0
1 2 1 1
2 12 2 2
3 70 1 1
4 408 3 3
5 2378 1 1
6 13860 2 2
· · · · · · · · · · · ·

Indeed it is seen that f(P2n) = f(2n) and thus the requirement of the problem is shown.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain; AN- anduud Problem Solving
Group, Ulaanbaatar, Mongolia; Li Zhou, Polk State College, USA.
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O272. Let ABC be an acute triangle with orthocenter H and let X be a point in its plane. Let Xa, Xb, Xc

be the reflections of X across AH,BH,CH, respectively. Prove that the circumcenters of triangles
AHXa, BHXb, CHXc are collinear.

Proposed by Michal Rolinek, Institute of Science and Technology, Vienna and Josef Tkadlec, Charles
University, Prague

Solution by Sebastiano Mosca, Pescara, Italy and Ercole Suppa, Teramo, Italy

A

B
C

H

X Xa
Xb

Xc

Vb

Wa
Va

Wb

Wc

Vc

C1 B1

A1

Let Va, Vb, Vc be the circumcenters of triangles AHXa, BXHb, CXHc and let Wa, Wb, Wc be the
reflections of Va, Vb, Vc across AH, BH, CH, respectively; let `a, `b, `c be the perpendicular bisectors of
AH, BH, CH and denote A1 = `b ∩ `c, B1 = `a ∩ `c, C1 = `a ∩ `b, as shown in figure.

Observe that the circles (Va) ≡ �(AHXa), (Vb) ≡ �(BHXb), (Vc) ≡ �(CHXc) are respectively congru-
ent to (Wa) ≡ �(AHX), (Wb) ≡ �(BHX), (Wc) ≡ �(CHX).

The points Wa, Wb, Wc belong to the perpendicular bisector of HX. Thus by applying the Menelaus’
theorem to the triangle A1, B1, C1 and to the transversal WaWbWc we get

A1Wc

WcB1
· B1Wa

WaC1
· C1Wb

WbA1
= −1 (1)

Because of the symmetry clearly we have

A1Wc = B1Vc , B1Wa = C1VA , C1Wb = A1Vb (2)
WcB1 = VcA1 , WaC1 = VaB1 , WbA1 = VbC1 (3)

From (1),(2),(3) it follows that
A1Vb
VbC1

· C1Va
VaB1

· B1Vc
VcA1

=
A1Wc

WcB1
· B1Wa

WaC1
· C1Wb

WbA1
= −1

so, by converse of Menelaus’ theorem, the points Va, Vb, Vc are collinears, as required.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain; Georgios Batzolis, Mandoulides
High School, Thessaloniki, Greece; Li Zhou, Polk State College, USA.
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O273. Let P be a polygon with perimeter L. For a point X, denote by f(X) the sum of the distances to the
vertices of P . Prove that for any point X in the interior of P , f(X) < n−1

2 L.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain
Claim: It suffices to show the proposed result for convex polygons.

Proof: If the polygon is concave, a sequence of consecutive vertices V1, V2, . . . , Vk with k ≥ 3 exists such
that line V1Vk leaves all the polygon on the same half-plane, and the region determined by V1, V2, . . . , Vk
is outside the given polygon. Let W2,W3, . . . ,Wk−1 be the symmetric of V2, V3, . . . , Vk−1 with respect to
line V1Vk. Note that for any point X inside the original polygon, XWi > XVi for i = 2, 3, . . . , k − 1,
while the perimeter of the polygon resulting from deleting vertices V2, V3, . . . , Vk−1 and substituting them
by vertices W2,W3, . . . ,Wk−1 is the same as the perimeter of the original polygon. After a finite number of
these transformations, we will obtain a convex polygon, and if the result is true for it, it will also be true for
the original concave polygon. The Claim follows.

The proposed result is true for any triangle ABC and any point X inside it. Indeed, consider the ellipse
with foci B,C through A. This ellipse contains X inside it, or BX +CX < AB+CA, and similarly for the
result of cyclically permuting A,B,C. Adding all such inequalities and dividing by 2 we obtain

f(X) = AX +BX + CX < AB +BC + CA =
3− 1

2
L.

Assume now that the result is true for any convex polygon with n sides. Note that, when polygon P
has n + 1 sides, there are always three consecutive vertices that we can denote Vn, Vn+1, V1 such that X
is outside or on the perimeter of triangle VnVn+1V1. Denote by P ′ the polygon V1V2 . . . Vn (which clearly
holds X inside it or on its perimeter), by f ′(X) the sum of distances from X to the vertices of P ′, and
by L′ the perimeter of V1V2 . . . Vn. Then, f(X) = f ′(X) + XVn+1, while by the triangle inequality, L =

L′ + VnVn+1 + Vn+1V1 − VnV1 > L′. Now, by hypothesis of induction, f ′(X) < n−1
2 L′ < (n+1)−2

2 L, or it
suffices to show that XVn+1 ≤ L

2 . Now, line XVn+1 intersects the perimeter of P at a second point Y , such
that XVn+1 < Y Vn+1. When we move around the perimeter of P from Y to Vn+1, there is one direction in
which the distance traveled is at most L

2 , and by the triangle inequality Y Vn+1 <
L
2 . The conclusion follows.

Also solved by Li Zhou, Polk State College, USA.
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O274. Let a, b, c be positive integers such that a and b are relatively prime. Find the number of lattice points
in

D = {(x, y)|x, y ≥ 0, bx+ ay ≤ abc} .

Proposed by Arkady Alt, San Jose, California, USA

Solution by Li Zhou, Polk State College, USA
Let X = (ac, 0) and Y = (0, bc). Since the equation of XY is y = b

(
c− x

a

)
and a, b are relatively prime,

y is an integer if and only if a|x. Hence, the number of lattice points in the interior of segment XY is c− 1.
Then it is easy to see that the number of lattice points on the boundary of D is B = ac+ bc+ c. Let I be
the the number of lattice points in the interior of D. By Pick’s theorem, I + 1

2B − 1 equals the area of D,
which is 1

2abc
2. Therefore, the number of lattice points in D is

I +B =
1

2
(abc2 +B) + 1 =

c(abc+ a+ b+ 1)

2
+ 1.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain.

Mathematical Reflections 4 (2013) 25



O275. Let ABC be a triangle with circumcircle Γ(O) and let ` be a line in the plane which intersects the
lines BC,CA,AB at X,Y, Z, respectively. Let `A, `B, `C be the reflections of ` across BC,CA,AB,
respectively. Furthermore, let M be the Miquel point of triangle ABC with respect to line `.

a) Prove that lines `A, `B, `C determine a triangle whose incenter lies on the circumcircle of triangle ABC.

b) If S is the incenter from (a) and Oa, Ob, Oc denote the circumcenters of triangles AY Z,BZX,CXY ,
respectively, prove that the circumcircles of triangles SOOa, SOOb, SOOc are concurrent at a second
point, which lies on Γ.

Proposed by Cosmin Pohoata, Princeton University, USA

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain
a) Let A′ = `B ∩ `C , B′ = `C ∩ `A and C ′ = `A ∩ `B. Note first that Y is the point where `, `B, AC

concur, or since `, `B are symmetric around AC, they are also symmetric around the perpendicular to AC
at Y , and we have ∠ZY A′ = 180◦ − 2∠AY Z, and similarly ∠Y ZA′ = 180◦ − 2∠AZY , hence

∠Y A′Z = 2(∠AY Z + ∠AZY )− 180◦ = 180◦ − 2∠Y AZ = 180◦ − ∠Y OaZ,

hence Y OaZA′ is cyclic. Moreover,

∠Y OaA
′ = ∠Y ZA′ = 180◦ − 2∠AZY = 180◦ − ∠AOaY,

hence A,Oa, A′ are collinear. Finally, ∠Y A′A = ∠Y A′Oa = ∠Y ZOa, and similarly ∠ZA′A = ∠ZY Oa,
hence AA′ is the angle bisector of ∠Y A′Z, hence of ∠B′A′C ′. Or the incenter of A′B′C ′ is the point where
AOa, BOb, COc concur.

Let Sa, Sb be the points where AOa, BOb meet the circumcircle of ABC for the second time. Clearly,

∠CASa = ∠Y AOa = 90◦ − 1

2
∠AOaY = 90◦ − ∠AZY,

and similarly ∠CBSb = 90◦ − ∠BZX. But ∠AZY = ∠BZX since it is the angle between ` and AB, or
Sa = Sb. Similarly, Sb = Sc, or AOa, BOb, COc meet at a point S = Sa = Sb = Sc on the circumcircle of
ABC, which is also the incenter of A′B′C ′. The conclusion to part a) follows.

Note: The previous argument breaks down when ABC is obtuse because some of the angles cannot be
added or subtracted as needed. Indeed, in this case, we can draw triangles ABC for which the statement
proposed in part a) is not true, and the incenter of A′B′C ′ may be inside triangle ABC and not on its
circumcircle.

b) It is well known that the Miquel point for X ∈ BC, Y ∈ CA, Z ∈ AB such that X,Y, Z are collinear,
is on the circumcircle of ABC, henceM is on the circumcircle of ABC. Assume wlog (since we may cyclically
permute the vertices of ABC without altering the problem) that M is on the arc AB that does not contain
C. Since M is on the circumcircle of AY Z, the perpendicular bisector of AM passes through O,Oa. At
the same time, denoting by T the point diametrally opposite S in the circumcircle of ABC, we have, if for
example ∠SAM is acute and ∠SBM is obtuse,

∠OSM = 90◦ − ∠STM = 90◦ − ∠SAM = 90◦ − ∠OaAM =
1

2
∠AOaM = 180◦ − ∠MOaO,

and M,O,Oa, S are concyclic, while at the same time

∠OSM = 90◦ − ∠STM = ∠SBM − 90◦ = 90◦ − ∠ObBM =
1

2
∠BObM = ∠MObO,

and again M,O,Ob, S are concyclic. Similarly, since ∠SCM is either acute or obtuse, we have one of these
two cases, and M,O,Oc, S are also concyclic. Hence the circumcircles of SOOa, SOOb, SOOc all meet again
at M , which is a point on the circumcircle of ABC. The conclusion to part b) follows.
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O276. For a prime p, let S1(p) = {(a, b, c) ∈ Z3, p|a2b2 + b2c2 + c2a2 + 1} and S2(p) = {(a, b, c) ∈
Z3, p|a2b2c2(a2 + b2 + c2 + a2b2c2)}. Find all p for which S1(p) ⊂ S2(p).

Proposed by Titu Andreescu, University of Texas at Dallas and Gabriel Dospinescu, Ecole Polytechnique,
Lyon, France

Solution by the authors
The answer is 2, 3, 5, 13 and 17. From now on we will work in Z/pZ and consider X1(p) = {(a, b, c) ∈

(Z/pZ)3, a2b2 + b2c2 + c2a2 + 1 = 0} and X2(p) = {(a, b, c) ∈ (Z/pZ)3, a2b2c2(a2 + b2 + c2 + a2b2c2) = 0}.
The condition S1(p) ⊂ S2(p) is equivalent to X1(p) ⊂ X2(p).

First, we prove that 2, 3, 5, 13 and 17 are solutions of the problem. Suppose that p is one of these primes,
that (a, b, c) ∈ X1(p) and that (a, b, c) /∈ X2(p). In particular, a2b2c2 6= 0. If one of a2, b2, c2 equals 1 or
−1, then a2b2 + b2c2 + c2a2 + 1 and a2 + b2 + c2 + a2b2c2 are equal or opposite, a contradiction. Hence
a2, b2, c2 /∈ {0,±1}, which already settles the cases p = 2, p = 3 and p = 5. If p = 13, the squares
mod p are 0,±1,±3,±4, hence a2, b2, c2 ∈ {±3,±4} which means that two of them add up to 0, say
a2 + b2 = 0. This readily yields (a, b, c) ∈ X2(p), a contradiction. Finally, suppose that p = 17, so that
the squares mod p are 0,±1,±2,±4,±8 and a2, b2, c2 ∈ {±2,±4,±8}. Moreover, no two of a2, b2, c2 add up
to 0 (same argument as before), and no two of them have product −1. Hence up to permutation we have
(a2, b2, c2) ∈ {(2,±4,−8), (−2,±4, 8)}, contradicting the fact that (a, b, c) ∈ X1(p).

Next, we prove that if p > 3 is of the form 4k+3, then X1(p) is nonempty and disjoint from X2(p), hence
p is not a solution of the problem. Pick c ∈ Z/pZ such that c2 /∈ {0, 1} (such c exists, since p > 3). We will
constantly use the fact that if x, y ∈ Z/pZ satisfy x2 + y2 = 0, then x = y = 0. This implies that the map

f : {0, 1, ..., p− 1

2
} → Z/pZ, f(a) = −a

2c2 + 1

a2 + c2

is well-defined and we claim that f is injective. Indeed, if f(a) = f(a1), then an easy computation gives
(a2 − a21)(c

4 − 1) = 0, hence a = a1 (because c2 6= ±1). Since f is injective and since there are p+1
2

quadratic residues mod p, it follows that there are a, b ∈ Z/pZ such that f(a) = b2, which is equivalent to
(a, b, c) ∈ X1(p). Hence X1(p) 6= ∅. Suppose that (a, b, c) ∈ X1(p) ∩X2(p). Since p ≡ 3 (mod 4), we have
abc 6= 0, hence a2(b2c2 + 1) + b2 + c2 = 0 and a2(b2 + c2) + b2c2 + 1 = 0. This yields (a4 − 1)(b2 + c2) = 0,
then a2 = 1 and finally (1 + b2)(1 + c2) = 0, a contradiction.

Suppose now that p ≡ 1 (mod 4) and p > 17. We will construct an element of X1(p) which is not in
X2(p), finishing the solution. Since p ≡ 1 (mod 4), there exists x ∈ Z/pZ such that x2 + 1 = 0. We will
need the following

Lemma. The equation a2 + ab+ b2 = x has at least p− 1 solutions (a, b) ∈ Z/pZ× Z/pZ.

Proof. Write the equation as (2a+b)2+3b2 = 4x. So it is enough to prove that the equation u2+3v2 = t has at
least p−1 solutions in Z/pZ×Z/pZ, when t 6= 0. For each v ∈ Z/pZ, the equation u2 = t−3v2 has 1+

(
t−3v2
p

)
solutions, where

(
·
p

)
is Legendre’s symbol. Hence the number of solutions (u, v) is p +

∑
v∈Z/pZ

(
t−3v2
p

)
.

It is not difficult to check that
∑

v∈Z/pZ

(
t−3v2
p

)
equals ±1, according to whether −3 is a quadratic residue

mod p or not. This finishes the prof of the lemma.

Now let S be the set of solutions of the previous equation. For each (a, b) ∈ S we have an element (a, b, c)
of X1(p), where c = −a− b. Indeed,

a2b2 + b2c2 + c2a2 + 1 = (ab+ bc+ ca)2 + 1 = (a2 + ab+ b2)2 + 1 = x2 + 1 = 0,

hence (a, b, c) ∈ X1(p). Suppose that (a, b, c) ∈ X2(p). If a = 0, then b2 = x and (a, b) takes at most two
values. Similarly the cases b = 0 and c = 0 yield each at most 2 values for (a, b), hence we have at most 6
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solutions missed until now. Suppose that a2 + b2 + c2 + a2b2c2 = 0. Since a2 + b2 + c2 = 2(a2 + b2 + ab) = 2x
and a2c2 = (a(a+ b))2 = (x− b2)2, we obtain 2x+ b2(x− b2)2 = 0. This equation has at most 6 solutions in
Z/pZ and for each solution b we loose at most two solutions (a, b). Hence we loose at most 12 solutions of
the equation a2 + ab+ b2 = x if a2 + b2 + c2 + a2b2c2 = 0, and in total we loose at most 18 solutions. Since
p > 17 and p ≡ 1 (mod 4), we still have one solution (a, b) and this yields an element of X1(p) which is not
in X2(p).
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