Comparing this equation with the standard form, we see that it is the equation sphere with center $(-2,3,-1)$ and radius $\sqrt{8}=2 \sqrt{2}$.

EXAMPIE 7 What region in \mathbb{R}^{3} is represented by the following inequalities

$$
1 \leqslant x^{2}+y^{2}+z^{2} \leqslant 4 \quad z \leqslant 0
$$

SOLUTION The inequalities

$$
1 \leqslant x^{2}+y^{2}+z^{2} \leqslant 4
$$

can be rewritten as

$$
1 \leqslant \sqrt{x^{2}+y^{2}+z^{2}} \leqslant 2
$$

so they represent the points (x, y, z) whose distance from the origin is at least 1 and as most 2. But we are also given that $z \leqslant 0$, so the points lie on or below the $x y$-planie. Thus the given inequalities represent the region that lies between (or on) the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ and beneath (or on) the $x y$-plane. It is sketcife in Figure 13.
(b) Find t

FIGURE 13

Ind 解 ec points ${ }^{2}$,
27. Find
(a) the $x y$
22. Find an e is contain 4H Descri ons or inequ 3. $x=5$定. $y<8$ 7. $0 \leqslant 2 \leqslant$

12.1 Exercises

1. Suppose you start at the origin, move along the x-axis a distance of 4 units in the positive direction, and then move downward a distance of 3 units. What are the coordinates of your position?
2 Sketch the points $(0,5,2),(4,0,-1),(2,4,6)$, and $(1,-1,2)$ on a single set of coordinate axes.
2. Which of the points $A(-4,0,-1), B(3,1,-5)$, and $C(2,4,6)$ is closest to the $y z$-plane? Which point lies in the $x z$-plane?
3. What are the projections of the point $(2,3,5)$ on the $x y-, y z$-, and $x z$-planes? Draw a rectangular box with the origin and $(2,3,5)$ as opposite vertices and with its faces parallel to the coordinate planes. Label all vertices of the box. Find the length of the diagonal of the box.
4. Describe and sketch the surface in \mathbb{R}^{3} represented by the equation $x+y=2$.
5. (a) What does the equation $x=4$ represent in \mathbb{R}^{2} ? What does it represent in \mathbb{R}^{3} ? Illustrate with sketches.
(b) What does the equation $y=3$ represent in \mathbb{R}^{3} ? What does $z=5$ represent? What does the pair of equations $y=3$, $z=5$ represent? In other words, describe the set of points (x, y, z) such that $y=3$ and $z=5$. Illustrate with a sketch.

7-8 Find the lengths of the sides of the triangle $P Q R$. Is it a right triangle? Is it an isosceles triangle?
7. $P(3,-2,-3), Q(7,0,1), \quad R(1,2,1)$
8. $P(2,-1,0), \quad Q(4,1,1), \quad R(4,-5,4)$
9. Determine whether the points lie on straight line.
(a) $A(2,4,2), \quad B(3,7,-2), \quad C(1,3,3)$
(b) $D(0,-5,5), \quad E(1,-2,4), \quad F(3,4,2)$
10. Find the distance from $(4,-2,6)$ to each of the followimis
(a) The $x y$-plane
(b) The $y z$-plane
(c) The $x z$-plane
(d) The x-axis
(e) The y-axis
(f) The z-axis
11. Find an equation of the sphere with center $(-3,2,5)$ and radius 4. What is the intersection of this sphere with thẻ $y z$-plane?
12. Find an equation of the sphere with center $(2,-6,4)$ and radius 5 . Describe its intersection with each of the coordin planes.
13. Find an equation of the sphere that passes through the poin $(4,3,-1)$ and has center $(3,8,1)$.
14. Find an equation of the sphere that passes through the origin and whose center is $(1,2,3)$.

15-18 Show that the equation represents a sphere, and find itsi center and radius.
15. $x^{2}+y^{2}+z^{2}-2 x-4 y+8 z=15$
16. $x^{2}+y^{2}+z^{2}+8 x-6 y+2 z+17=0$
17. $2 x^{2}+2 y^{2}+2 z^{2}=8 x-24 z+1$
18. $3 x^{2}+3 y^{2}+3 z^{2}=10+6 y+12 z$

5-38 Writ
35. The req
35. The so!
or abov fabius
31. The re

Fiphere
39. The sc at the
39. the fi

Whict
24. $x^{2}+y^{2}$
31. $x^{2}+y^{2}$
33. $x^{2}+z^{2}$ ET
the points on L_{2} are directly beneath, or above, the points on L_{1}.)
(a) Find the coordinates of the point P on the line L_{1}.
(b) Locate on the diagram the points A, B, and C, where the line L_{1} intersects the $x y$-plane, the $y z$-plane, and the $x z$-plane, respectively.

40. Consider the points P such that the distance from P to $A(-1,5,3)$ is twice the distance from P to $B(6,2,-2)$. Show that the set of all such points is a sphere, and find its center and radius.
41. Find an equation of the set of all points equidistant from the points $A(-1,5,3)$ and $B(6,2,-2)$. Describe the set.
42. Find the volume of the solid that lies inside both of the spheres

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}+4 x-2 y+4 z+5=0 \\
x^{2}+y^{2}+z^{2}=4
\end{gathered}
$$

and
43. Find the distance between the spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=4 x+4 y+4 z-11$.
44. Describe and sketch a solid with the following properties. When illuminated by rays parallel to the z-axis, its shadow is a circular disk. If the rays are parallel to the y-axis, its shadow is a square. If the rays are parallel to the x-axis, its shadow is an isosceles triangle.

Vectors

figure 1
Equivalent vectors

The term vector is used by scientists to indicate a quantity (such as displacement or velo ity or force) that has both magnitude and direction. A vector is often represented by arrow or a directed line segment. The length of the arrow represents the magnitude of t vector and the arrow points in the direction of the vector. We denote a vector by printing letter in boldface (v) or by putting an arrow above the letter (\vec{v}).

For instance, suppose a particle moves along a line segment from point A to point The corresponding displacement vector v , shown in Figure 1, has initial point A (the t: and terminal point B (the tip) and we indicate this by writing $v=\overrightarrow{A B}$. Notice that the v

Equating components, we get

$$
\begin{aligned}
-\left|\mathbf{T}_{1}\right| \cos 50^{\circ}+\left|\mathbf{T}_{2}\right| \cos 32^{\circ} & =0 \\
\left|\mathbf{T}_{1}\right| \sin 50^{\circ}+\left|\mathbf{T}_{2}\right| \sin 32^{\circ} & =100
\end{aligned}
$$

Solving the first of these equations for $\left|T_{2}\right|$ and substituting into the second we get

$$
\left|\mathbf{T}_{1}\right| \sin 50^{\circ}+\frac{\left|\mathbf{T}_{1}\right| \cos 50^{\circ}}{\cos 32^{\circ}} \sin 32^{\circ}=100
$$

So the magnitudes of the tensions are
and

$$
\begin{gathered}
\left|\mathrm{T}_{1}\right|=\frac{100}{\sin 50^{\circ}+\tan 32^{\circ} \cos 50^{\circ}} \approx 85.64 \mathrm{lb} \\
\left|\mathrm{~T}_{2}\right|=\frac{\left|\mathrm{T}_{1}\right| \cos 50^{\circ}}{\cos 32^{\circ}} \approx 64.91 \mathrm{lb}
\end{gathered}
$$

Substituting these values in 5 and 6, we obtain the tension vectors

$$
\mathbf{T}_{1} \approx-55.05 \mathbf{i}+65.60 \mathbf{j} \quad \mathbf{T}_{2} \approx 55.05 \mathbf{i}+34.40 \mathbf{j}
$$

1. Are the following quantities vectors or scalars? Explain.
(a) The cost of a theater ticket
(b) The current in a river
(c) The initial flight path from Houston to Dallas
(d) The population of the world
2. What is the relationship between the point $(4,7)$ and the vector $\langle 4,7\rangle$? Illustrate with a sketch.
3. Name all the equal vectors in the parallelogram shown.

4. Write each combination of vectors as a single vector.
(a) $\overrightarrow{A B}+\overrightarrow{B C}$
(b) $\overrightarrow{C D}+\overrightarrow{D B}$
(c) $\overrightarrow{D B}-\overrightarrow{A B}$
(d) $\overrightarrow{D C}+\overrightarrow{C A}+\overrightarrow{A B}$
5. Copy the vectors in the figure and use them to draw the following vectors.
(a) $\mathbf{u}+\mathbf{v}$
(b) $\mathbf{u}+\mathbf{w}$
(c) $\mathbf{v}+\mathbf{w}$
(d) $\mathbf{u}-\mathbf{v}$
(e) $\mathbf{v}+\mathbf{u}+\mathbf{w}$
(f) $\mathbf{u}-\mathbf{w}-\mathbf{v}$

6. Copy the vectors in the figure and use them to draw the following vectors.
(a) $\mathbf{a}+\mathbf{b}$
(b) $a-b$
(c) $\frac{1}{2} a$
(d) $-3 b$
(e) $\mathbf{a}+2 \mathbf{b}$
(f) $2 \mathbf{b}-\mathbf{a}$

7. In the figure, the tip of \mathbf{c} and the tail of \mathbf{d} are both the midpofi of $Q R$. Express \mathbf{c} and \mathbf{d} in terms of \mathbf{a} and \mathbf{b}.

1 bithe vectors in the figure satisfy $|\mathbf{u}|=|\mathbf{v}|=1$ and $1 w+w=0, w h a t$ is $|w|$?

H Find a vector a with representation given by the directed line Fpont $\overrightarrow{A B}$. Draw $\overrightarrow{A B}$ and the equivalent representation starting at Wougin.
$B(-1,1), B(3,2)$
10. $A(-4,-1), \quad B(1,2)$
Bit $A(-1,3), B(2,2)$
12. $A(2,1), B(0,6)$
is $A(0,3,1), \quad B(2,3,-1)$
14. $A(4,0,-2), \quad B(4,2,1)$

F-18 Find the sum of the given vectors and illustrate winemically.
\& $\langle-1,4\rangle,\langle 6,-2\rangle$
16. $\langle 3,-1\rangle,\langle-1,5\rangle$
[
18. $\langle 1,3,-2\rangle,\langle 0,0,6\rangle$
$11-22$ Find $\mathbf{a}+\mathbf{b}, \mathbf{2 a}+3 \mathbf{b},|\mathbf{a}|$, and $|\mathbf{a}-\mathbf{b}|$.
II $\mathbf{a}=\langle 5,-12\rangle, \quad b=\langle-3,-6\rangle$
ข. $a=4 \mathbf{i}+\mathbf{j}, \quad b=\mathbf{i}-2 \mathbf{j}$
2. $a=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}, \quad b=-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$

2 $\mathbf{a}=2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k}, \quad \mathbf{b}=2 \mathbf{j}-\mathbf{k}$

20-25 Find a unit vector that has the same direction as the given vector.
23. $-3 \mathbf{i}+7 \mathbf{j}$
24. $\langle-4,2,4\rangle$
25. $8 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$
26. Find a vector that has the same direction as $\langle-2,4,2\rangle$ but has length 6.
${ }^{27-28}$ What is the angle between the given vector and the positive direction of the x-axis?
27. $\mathbf{i}+\sqrt{3} \mathbf{j}$
28. $8 \mathbf{i}+6 \mathbf{j}$
29. If v lies in the furst quadrant and makes an angle $\pi / 3$ with the positive x-axis and $|v|=4$, find v in component form.
30. If a child pulls a sled through the snow on a level path with a force of 50 N exerted at an angle of 38° above the horizontal, find the horizontal and vertical components of the force.
31. A quarterback throws a football with angle of elevation 40° and speed $60 \mathrm{ft} / \mathrm{s}$. Find the horizontal and vertical components of the velocity vector.

32-33 Find the magnitude of the resultant force and the angle it makes with the positive x-axis.
32.

33.

34. The magnitude of a velocity vector is called speed. Suppose that a wind is blowing from the direction $\mathrm{N} 45^{\circ} \mathrm{W}$ at a speed of $50 \mathrm{~km} / \mathrm{h}$. (This means that the direction from which the wind blows is 45° west of the northerly direction.) A pilot is steering a plane in the direction $\mathrm{N} 60^{\circ} \mathrm{E}$ at an airspeed (speed in still air) of $250 \mathrm{~km} / \mathrm{h}$. The true course, or track, of the plane is the direction of the resultant of the velocity vectors of the plane and the wind. The ground speed of the plane is the magnitude of the resultant. Find the true course and the ground speed of the plane.
35. A woman walks due west on the deck of a ship at $3 \mathrm{mi} / \mathrm{h}$. The ship is moving north at a speed of $22 \mathrm{mi} / \mathrm{h}$. Find the speed and direction of the woman relative to the surface of the water.
36. Ropes 3 m and 5 m in length are fastened to a holiday decoration that is suspended over a town square. The decoration has a mass of 5 kg . The ropes, fastened at different heights, make angles of 52° and 40° with the horizontal. Find the tension in each wire and the magnitude of each tension.

37. A clothesline is tied between two poles, 8 m apart. The line is quite taut and has negligible sag. When a wet shirt with a mass of 0.8 kg is hung at the middle of the line, the midpoint is pulled down 8 cm . Find the tension in each half of the clothesline.
38. The tension \mathbf{T} at each end of the chain has magnitude 25 N (see the figure). What is the weight of the chain?

39. A boatman wants to cross a canal that is 3 km wide and wants to land at a point 2 km upstream from his starting point. The current in the canal flows at $3.5 \mathrm{~km} / \mathrm{h}$ and the speed of his boat is $13 \mathrm{~km} / \mathrm{h}$.
(a) In what direction should he steer?
(b) How long will the trip take?
40. Three forces act on an object. Two of the forces are at an angle of 100° to each other and have magnitudes 25 N and 12 N . The third is perpendicular to the plane of these two forces and has magnitude 4 N . Calculate the magnitude of the force that would exactly counterbalance these three forces.
41. Find the unit vectors that are parallel to the tangent line to the parabola $y=x^{2}$ at the point $(2,4)$.
42. (a) Find the unit vectors that are parallel to the tangent line to the curve $y=2 \sin x$ at the point $(\pi / 6,1)$.
(b) Find the unit vectors that are perpendicular to the tangent line.
(c) Sketch the curve $y=2 \sin x$ and the vectors in parts (a) and (b), all starting at ($\pi / 6,1$).
43. If A, B, and C are the vertices of a triangle, find $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}$.
44. Let C be the point on the line segment $A B$ that is twice as far from B as it is from A. If $\mathbf{a}=\overrightarrow{O A}, \mathbf{b}=\overrightarrow{O B}$, and $\mathbf{c}=\overrightarrow{O C}$, show that $\mathbf{c}=\frac{2}{3} \mathbf{a}+\frac{1}{3} \mathbf{b}$.
45. (a) Draw the vectors $\mathbf{a}=\langle 3,2\rangle, \mathbf{b}=\langle 2,-1\rangle$, and $c=\langle 7,1\rangle$.
(b) Show, by means of a sketch, that there are scalars s and t such that $\mathbf{c}=s \mathbf{a}+t \mathbf{b}$.
(c) Use the sketch to estimate the values of s and t.
(d) Find the exact values of s and t.
46. Suppose that \mathbf{a} and \mathbf{b} are nonzero vectors that are not parallel and \mathbf{c} is any vector in the plane determined by a and \mathbf{b}. Give a geometric argument to show that \mathbf{c} can be written as $\mathbf{c}=s \mathbf{a}+t \mathbf{b}$ for suitable scalars s and t. Then give an argument using components.
47. If $\mathbf{r}=\langle x, y, z\rangle$ and $\mathbf{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, describe the set of all points (x, y, z) such that $\left|\mathbf{r}-\mathbf{r}_{0}\right|=1$.
48. If $\mathbf{r}=\langle x, y\rangle, \mathbf{r}_{1}=\left\langle x_{1}, y_{1}\right\rangle$, and $\mathbf{r}_{2}=\left\langle x_{2}, y_{2}\right\rangle$, describe ! set of all points (x, y) such that $\left|\mathbf{r}-\mathbf{r}_{1}\right|+\left|\mathbf{r}-\mathbf{r}_{2}\right|=\frac{1}{6}$ where $k>\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$.
49. Figure 16 gives a geometric demonstration of Property 2 vectors. Use components to give an algebraic prooflif thit fact for the case $n=2$.
50. Prove Property 5 of vectors algebraically for the case $n=$ Then use similar triangles to give a geometric prodit
51. Use vectors to prove that the line joining the midpoin of two sides of a triangle is parallel to the third side and, hall its length.
52. Suppose the three coordinate planes are all mirrorell andia light ray given by the vector $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ first strikes the $x z$-plane, as shown in the figure. Use the fact that the angre of incidence equals the angle of reflection to show that the dina tion of the reflected ray is given by $\mathbf{b}=\left\langle a_{1},-a_{2,}, a_{3}\right\rangle$. Deth that, after being reflected by all three mutually perpendij: mirrors, the resulting ray is parallel to the initial ray. (Americi space scientists used this principle, together with laser beams and an array of corner mirrors on the moon, to calculatid ver precisely the distance from the earth to the moon.)

So far we have added two vectors and multiplied a vector by a scalar. The question arise Is it possible to multiply two vectors so that their product is a useful quantity? One suc爵 product is the dot product, whose definition follows. Another is the cross product, which is discussed in the next section.

Definition If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the dot product of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Thus, to find the dot product of \mathbf{a} and \mathbf{b}, we multiply corresponding components, and add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the dof product is sometimes called the scalar product (or inner product). Although Definitio 1 is given for three-dimensional vectors, the dot product of two-dimensional vectors is defines in a similar fashion:

$$
\left\langle a_{1}, a_{2}\right\rangle \cdot\left\langle b_{1}, b_{2}\right\rangle=a_{1} b_{1}+a_{2} b_{2}
$$

12.3 Exercises

1. Which of the following expressions are meaningful? Which are meaningless? Explain.
(a) (a•b) $\cdot \mathbf{c}$
(b) $(a \cdot b) c$
(c) $|a|(b \cdot c)$
(d) $\mathbf{a} \cdot(\mathrm{b}+\mathrm{c})$
(e) $a \cdot b+c$
(f) $|\mathbf{a}| \cdot(\mathbf{b}+\mathbf{c})$

2-10 Find $\mathbf{a} \cdot \mathrm{b}$.
2. $\mathbf{a}=\langle-2,3\rangle, \quad \mathbf{b}=\langle 0.7,1.2\rangle$
3. $\mathbf{a}=\left\langle-2, \frac{1}{3}\right\rangle, \quad \mathbf{b}=\langle-5,12\rangle$
4. $\mathbf{a}=\langle 6,-2,3\rangle, \quad \mathbf{b}=\langle 2,5,-1\rangle$
5. $\mathbf{a}=\left\langle 4,1, \frac{1}{4}\right\rangle, \quad \mathbf{b}=\langle 6,-3,-8\rangle$
6. $\mathbf{a}=\langle p,-p, 2 p\rangle, \quad \mathbf{b}=\langle 2 q, q,-q\rangle$
7. $\mathbf{a}=2 \mathbf{i}+\mathbf{j}, \quad b=\mathbf{i}-\mathbf{j}+\mathbf{k}$
8. $\mathbf{a}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}, \quad \mathbf{b}=4 \mathbf{i}+5 \mathbf{k}$
9. $|\mathbf{a}|=6,|\mathbf{b}|=5$, the angle between \mathbf{a} and \mathbf{b} is $2 \pi / 3$
10. $|\mathbf{a}|=3,|b|=\sqrt{6}$, the angle between \mathbf{a} and \mathbf{b} is 45°

11-12 If \mathbf{u} is a unit vector, find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$.
11.

12.

13. (a) Show that $\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=\mathbf{0}$.
(b) Show that $\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=\mathbf{1}$.
14. A street vendor sells a hamburgers, b hot dogs, and c soft drinks on a given day. He charges $\$ 2$ for a hamburger, $\$ 1.50$ for a hot dog, and $\$ 1$ for a soft drink. If $\mathbf{A}=\langle a, b, c\rangle$ and $\mathbf{P}=\langle 2,1.5,1\rangle$, what is the meaning of the dot product $\mathbf{A} \cdot \mathbf{P}$?

15-20 Find the angle between the vectors. (First find an exact expression and then approximate to the nearest degree.)
15. $\mathbf{a}=\langle 4,3\rangle, \quad \mathbf{b}=\langle 2,-1\rangle$
16. $\mathbf{a}=\langle-2,5\rangle, \quad \mathbf{b}=\langle 5,12\rangle$
17. $\mathbf{a}=\langle 3,-1,5\rangle, \quad \mathbf{b}=\langle-2,4,3\rangle$
18. $\mathbf{a}=\langle 4,0,2\rangle, \quad \mathbf{b}=\langle 2,-1,0\rangle$
19. $\mathbf{a}=4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \quad \mathbf{b}=2 \mathbf{i}-\mathbf{k}$
20. $\mathbf{a}=\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}, \quad \mathbf{b}=4 \mathbf{i}-3 \mathbf{k}$

21-22 Find, correct to the nearest degree, the three angle of in triangle with the given vertices.
21. $P(2,0), \quad Q(0,3), \quad R(3,4)$
22. $A(1,0,-1), \quad B(3,-2,0), \quad C(1,3,3)$

23-24 Determine whether the given vectors are orthogo.is: parallel, or neither.
23. (a) $\mathbf{a}=\langle-5,3,7\rangle, \quad \mathbf{b}=\langle 6,-8,2\rangle$
(b) $\mathbf{a}=\langle 4,6\rangle, \quad \mathbf{b}=\langle-3,2\rangle$
(c) $\mathbf{a}=-\mathbf{i}+2 \mathbf{j}+5 \mathbf{k}, \quad \mathbf{b}=3 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$
(d) $\mathbf{a}=2 \mathbf{i}+6 \mathbf{j}-4 \mathbf{k}, \quad \mathbf{b}=-3 \mathbf{i}-9 \mathbf{j}+6 \mathbf{k}$
24. (a) $\mathbf{u}=\langle-3,9,6\rangle, \quad \mathbf{v}=\langle 4,-12,-8\rangle$
(b) $\mathbf{u}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}, \quad \mathbf{v}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}$
(c) $\mathbf{u}=\langle a, b, c\rangle, \quad \mathbf{v}=\langle-b, a, 0\rangle$
25. Use vectors to decide whether the triangle with verticik $P(1,-3,-2), Q(2,0,-4)$, and $R(6,-2,-5)$ is right-ange .
26. Find the values of x such that the angle between the vectors $\langle 2,1,-1\rangle$, and $\langle 1, x, 0\rangle$ is 45°.
27. Find a unit vector that is orthogonal to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{i}+k$
28. Find two unit vectors that make an angle of 60° with $v=\langle 3,4\rangle$.

29-30 Find the acute angle between the lines.
29. $2 x-y=3, \quad 3 x+y=7$
30. $x+2 y=7, \quad 5 x-y=2$

31-32 Find the acute angles between the curves at their point of intersection. (The angle between two curves is the angle betwee their tangent lines at the point of intersection.)
31. $y=x^{2}, \quad y=x^{3}$
32. $y=\sin x, \quad y=\cos x, \quad 0 \leqslant x \leqslant \pi / 2$

33-37 Find the direction cosines and direction angles of the vectid (Give the direction angles correct to the nearest degree.)
33. $\langle 2,1,2\rangle$
34. $\langle 6,3,-2\rangle$
35. $\mathbf{i}-2 \mathbf{j}-3 \mathrm{k}$
36. $\frac{1}{2} \mathbf{i}+\mathbf{j}+\mathbf{k}$
37. $\langle\dot{c}, c, c\rangle$, where $c>0$
38. If a vector has direction angles $\alpha=\pi / 4$ and $\beta=\pi / 3$, find thĕ third direction angle γ.

[^0]7 4 Find the scalar and vector projections of b onto a.
, $a=\langle-5,12\rangle, \quad b=\langle 4,6\rangle$
$a \mathbf{a}=\langle 1,4\rangle, \quad b=\langle 2,3\rangle$
$\boldsymbol{H}=\langle 3,6,-2\rangle, \quad \mathbf{b}=\langle 1,2,3\rangle$
$a:=\langle-2,3,-6\rangle, \quad b=\langle 5,-1,4\rangle$
$\mathbf{k}=2 \mathbf{i}-\mathbf{j}+4 k, \quad b=\mathbf{j}+\frac{1}{2} \mathbf{k}$
4
15. Show that the vector orth $\mathbf{b}=\mathbf{b}-\operatorname{proj}_{\mathbf{a}} b$ is orthogonal to a. (it is called an orthogonal projection of \mathbf{b}.)

- For the vectors in Exercise 40, find orth ${ }_{a} b$ and illustrate by frowing the vectors \mathbf{a}, b, proj $_{\mathbf{a}} \mathrm{b}$, and orth a .
n. $1 f a=\langle 3,0,-1\rangle$, find a vector b such that $\operatorname{comp}_{\mathrm{a}} \mathrm{b}=2$.
- Suppose that a and b are nonzero vectors.
(a) Under what circumstances is comp ${ }_{\mathrm{a}} \mathrm{b}=\operatorname{comp}_{\mathrm{b}} \mathrm{a}$?
(b) Under what circumstances is $\operatorname{proj}_{\mathrm{a}} \mathrm{b}=\operatorname{proj}_{\mathrm{b}} \mathbf{a}$?

6. Find the work done by a force $\mathbf{F}=8 \mathbf{i}-6 \mathbf{j}+9 \mathbf{k}$ that moves an object from the point $(0,10,8)$ to the point $(6,12,20)$ along a straight line. The distance is measured in meters and the force in newtons.
7. A tow truck drags a stalled car along a road. The chain makes an angle of 30° with the road and the tension in the chain is 1500 N. How much work is done by the truck in pulling the car 1 km ?
8. A sled is pulled along a level path through snow by a rope. A $30-\mathrm{lb}$ force acting at an angle of 40° above the horizontal moves the sled 80 ft . Find the work done by the force.

12 A boat sails south with the help of a wind blowing in the direction $S 36^{\circ} \mathrm{E}$ with magnitude 400 lb . Find the work done by the wind as the boat moves 120 ft .
5. Use a scalar projection to show that the distance from a point $P_{1}\left(x_{1}, y_{1}\right)$ to the line $a x+b y+c=0$ is

$$
\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

Use this formula to find the distance from the point $(-2,3)$ to the line $3 x-4 y+5=0$.
54. If $\mathrm{r}=\langle x, y, z\rangle, \mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, show that the vector equation $(\mathbf{r}-\mathbf{a}) \cdot(\mathbf{r}-\mathbf{b})=0$ represents a sphere, and find its center and radius.
55. Find the angle between a diagonal of a cube and one of its edges.
56. Find the angle between a diagonal of a cube and a diagonal of one of its faces.
57. A molecule of methane, CH_{4}, is structured with the four hydrogen atoms at the vertices of a regular tetrahedron and the carbon atom at the centroid. The bond angle is the angle formed by the H-C-H combination; it is the angle between the lines that join the carbon atom to two of the hydrogen atoms. Show that the bond angle is about 109.5°. [Hint: Take the vertices of the tetrahedron to be the points $(1,0,0),(0,1,0)$, $(0,0,1)$, and $(1,1,1)$, as shown in the figure. Then the centroid is $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.]

58. If $\mathbf{c}=|\mathbf{a}| \mathbf{b}+|\mathbf{b}| \mathbf{a}$, where \mathbf{a}, \mathbf{b}, and \mathbf{c} are all nonzero vectors, show that \mathbf{c} bisects the angle between \mathbf{a} and b .
53. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).
60. Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.
61. Use Theorem 3 to prove the Cauchy-Schwarz Inequality:

$$
|a \cdot b| \leqslant|a||b|
$$

62. The Triangle Inequality for vectors is

$$
|a+b| \leqslant|a|+|b|
$$

(a) Give a geometric interpretation of the Triangle Inequality.
(b) Use the Cauchy-Schwarz Inequality from Exercise 61 to prove the Triangle Inequality. [Hint: Use the fact that $|a+b|^{2}=(a+b) \cdot(a+b)$ and use Property 3 of the dot producl.]
63. The Parallelogram Law states that

$$
|a+b|^{2}+|a-b|^{2}=2|a|^{2}+2|b|^{2}
$$

(a) Give a geometric interpretation of the Parallelogram Law.
(b) Prove the Parallelogram Law. (See the hint in Exercise 62.)
64. Show that if $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-v$ are orthogonal, then the vectors \mathbf{u} and \mathbf{v} must have the same length.

FIGURE 5
where θ is the angle between the position and force vectors. Observe that the onls ponent of \mathbf{F} that can cause a rotation is the one perpendicular to \mathbf{r}, that is, $\mid \sin \theta$. magnitude of the torque is equal to the area of the parallelogram determine by r unt

EXAMPLE 6 A bolt is tightened by applying a $40-\mathrm{N}$ force to a $0.25-\mathrm{m}$ wrencipes shoin Figure 5. Find the magnitude of the torque about the center of the boit.

SOLUTION The magnitude of the torque vector is

$$
\begin{aligned}
|\tau| & =|\mathbf{r} \times \mathbf{F}|=|\mathbf{r}||\mathbf{F}| \sin 75^{\circ}=(0.25)(40) \sin 75^{\circ} \\
& =10 \sin 75^{\circ} \approx 9.66 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

If the bolt is right-threaded, then the torque vector itself is

$$
\tau=|\tau| n \approx 9.66 n
$$

where \mathbf{n} is a unit vector directed down into the page.

12.4 Exercises

1-7 Find the cross product $\mathbf{a} \times \mathbf{b}$ and verify that it is orthogonal to both \mathbf{a} and \mathbf{b}.

1. $\mathbf{a}=\langle 6,0,-2\rangle, \quad \mathbf{b}=\langle 0,8,0\rangle$
$\mathbf{2} \mathbf{a}=\langle 1,1,-1\rangle, \quad \mathbf{b}=\langle 2,4,6\rangle$
2. $\mathbf{a}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}, \quad \mathbf{b}=-\mathbf{i}+5 \mathbf{k}$
3. $\mathbf{a}=\mathbf{j}+7 \mathbf{k}, \quad \mathbf{b}=2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$
4. $\mathbf{a}=\mathbf{i}-\mathbf{j}-\mathbf{k}, \quad \mathbf{b}=\frac{1}{2} \mathbf{i}+\mathbf{j}+\frac{1}{2} \mathbf{k}$
5. $\mathbf{a}=t \mathbf{i}+\cos t \mathbf{j}+\sin t \mathbf{k}, \quad \mathbf{b}=\mathbf{i}-\sin t \mathbf{j}+\cos t \mathbf{k}$
6. $\mathbf{a}=\langle t, 1,1 / t\rangle, \quad \mathbf{b}=\left\langle t^{2}, t^{2}, 1\right\rangle$
7. If $\mathbf{a}=\mathbf{i}-2 \mathbf{k}$ and $\mathbf{b}=\mathbf{j}+\mathbf{k}$, find $\mathbf{a} \times \mathbf{b}$. Sketch \mathbf{a}, \mathbf{b}, and $\mathbf{a} \times \mathbf{b}$ as vectors starting at the origin.

9-12 Find the vector, not with determinants, but by using properties of cross products.
9. $(\mathbf{i} \times \mathbf{j}) \times \mathbf{k}$
10. $\mathbf{k} \times(\mathbf{i}-2 \mathbf{j})$
11. $(\mathbf{j}-\mathbf{k}) \times(\mathbf{k}-\mathbf{i})$
12. $(\mathbf{i}+\mathbf{j}) \times(\mathbf{i}-\mathbf{j})$
13. State whether each expression is meaningful. If not, explain why. If so, state whether it is a vector or a scalar.
(a) $\mathbf{a} \cdot(\mathbf{b} \times \mathrm{c})$
(b) $\mathbf{a} \times(\mathrm{b} \cdot \mathrm{c})$
(c) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$
(d) $\mathbf{a} \cdot(\mathrm{b} \cdot \mathrm{c})$
(e) $(\mathbf{a} \cdot \mathrm{b}) \times(\mathbf{c} \cdot \mathbf{d})$
(f) $(\mathbf{a} \times \mathrm{b}) \cdot(\mathbf{c} \times \mathbf{d})$

14-15 Find $|\mathbf{u} \times \mathbf{v}|$ and determine whether $\mathbf{u} \times \mathbf{v}$ is directean inio the page or out of the page.
14.

16. The figure shows a vector \mathbf{a} in the $x y$-plane and a vectorid b in the direction of \mathbf{k}. Their lengths are $|\mathbf{a}|=3$ and $|\mathbf{b}|=2$
(a) Find $|\mathbf{a} \times \mathbf{b}|$.
(b) Use the right-hand rule to decide whether the componipe of $\mathbf{a} \times \mathbf{b}$ are positive, negative, or 0 .

17. If $\mathbf{a}=\langle 2,-1,3\rangle$ and $\mathbf{b}=\langle 4,2,1\rangle$, find $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$.
18. If $\mathbf{a}=\langle 1,0,1\rangle, \mathbf{b}=\langle 2,1,-1\rangle$, and $\mathbf{c}=\langle 0,1,3\rangle$, show, thale $\mathbf{a} \times(b \times c) \neq(\mathbf{a} \times b) \times c$.
19. Find two unit vectors orthogonal to both $\langle 3,2,1\rangle$ and $\langle-1,1,0\rangle$.
(3) Fiod two unit vectors orthogonal to both $\mathbf{j}-\mathbf{k}$ and $\mathbf{i}+\mathbf{j}$.
14. Show that $0 \times \mathbf{a}=\mathbf{0}=\mathbf{a} \times 0$ for any vector \mathbf{a} in V_{3}.
20.0w that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b}=0$ for all vectors \mathbf{a} and \mathbf{b} in V_{3}.

It Prove Property 1 of Theorem 11.
2 . 3 Property 2 of Theorem 11.
Strove Property 3 of Theorem 11.
A Miove Property 4 of Theorem 11.
n. Find the area of the parallelogram with vertices $A(-2,1)$, $B(0,4), C(4,2)$, and $D(2,-1)$.
4 . 4 ind the area of the parallelogram with vertices $K(1,2,3)$, $41,3,6), M(3,8,6)$, and $N(3,7,3)$.

44-32 (a) Find a nonzero vector orthogonal to the plane through ©e points P, Q, and R, and (b) find the area of triangle $P Q R$.
af($1,0,1), Q(-2,1,3), \quad R(4,2,5)$
m $F(0,0,-3), \quad Q(4,2,0), \quad R(3,3,1)$
H. $F(0,-2,0), \quad Q(4,1,-2), \quad R(5,3,1)$
: $(-1,3,1), Q(0,5,2), \quad R(4,3,-1)$

5-34 Find the volume of the parallelepiped determined by the ctors a, b, and c .
3n $\mathrm{a}=(1,2,3\rangle, \quad \mathrm{b}=\langle-1,1,2\rangle, \quad \mathrm{c}=\langle 2,1,4\rangle$
$\mathbf{i}=\mathbf{i}+\mathbf{j}, \quad \mathbf{b}=\mathbf{j}+\mathbf{k}, \quad \mathbf{c}=\mathbf{i}+\mathbf{j}+\mathbf{k}$
8-36 Find the volume of the parallelepiped with adjacent edges
W. $P(-2,1,0), \quad Q(2,3,2), \quad R(1,4,-1), \quad S(3,6,1)$
$P(3,0,1), \quad Q(-1,2,5), \quad R(5,1,-1), \quad S(0,4,2)$
गJ. Use the scalar triple product to verify that the vectors
$\mathbf{u}=\mathbf{i}+5 \mathbf{j}-2 \mathbf{k}, \mathbf{v}=3 \mathbf{i}-\mathbf{j}$, and $\mathbf{w}=5 \mathbf{i}+9 \mathbf{j}-4 \mathbf{k}$
are coplanar,
3. Use the scalar triple product to determine whether the points $A(1,3,2), B(3,-1,6), C(5,2,0)$, and $D(3,6,-4)$ lie in the same plane.
39. A bicycle pedal is pushed by a foot with a $60-\mathrm{N}$ force as shown. The shaft of the pedal is 18 cm long. Find the magnitude of the torque about P.

40. Find the magnitude of the torque about P if a $36-\mathrm{lb}$ force is applied as shown.

41. A wrench 30 cm long lies along the positive y-axis and grips a boit at the origin. A force is applied in the direction $\langle 0,3,-4\rangle$ at the end of the wrench. Find the magnitude of the force needed to supply $100 \mathrm{~N} \cdot \mathrm{~m}$ of torque to the bolt.
42. Let $\mathbf{v}=5 \mathbf{j}$ and let \mathbf{u} be a vector with length 3 that starts at the origin and rotates in the $x y$-plane. Find the maximum and minimum values of the length of the vector $u \times v$. In what direction does $\mathbf{u} \times v$ point?
43. If $\mathbf{a} \cdot \mathbf{b}=\sqrt{3}$ and $\mathbf{a} \times \mathbf{b}=\langle 1,2,2\rangle$, find the angle between \mathbf{a} and b.
44. (a) Find all vectors v such that

$$
\langle 1,2,1\rangle \times v=\langle 3,1,-5\rangle
$$

(b) Explain why there is no vector y such that

$$
\langle 1,2,1\rangle \times \mathbf{v}=\langle 3,1,5\rangle
$$

45. (a) Let P be a point not on the line L that passes through the points Q and R. Show that the distance d from the point P to the line L is

$$
d=\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}
$$

where $\mathbf{a}=\overrightarrow{Q R}$ and $\mathbf{b}=\overrightarrow{Q P}$.
(b) Use the formula in part (a) to find the distance from the point $P(1,1,1)$ to the line through $Q(0,6,8)$ and $R(-1,4,7)$.
46. (a) Let P be a point not on the plane that passes through the points Q, R, and S. Show that the distance d from P to the plane is

$$
d=\frac{|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|}{|\mathbf{a} \times \mathbf{b}|}
$$

where $\mathbf{a}=\overrightarrow{Q R}, \mathbf{b}=\overrightarrow{Q S}$, and $\mathbf{c}=\overrightarrow{Q P}$.
(b) Use the formula in part (a) to find the distance from the point $P(2,1,4)$ to the plane through the points $Q(1,0,0)$, $R(0,2,0)$, and $S(0,0,3)$.
47. Show that $|a \times b|^{2}=|a|^{2}|b|^{2}-(a \cdot b)^{2}$.
48. If $a+b+c=0$, show that

$$
\mathbf{a} \times \mathbf{b}=\mathbf{b} \times \mathbf{c}=\mathbf{c} \times \mathbf{a}
$$

49. Prove that $(\mathbf{a}-\mathbf{b}) \times(\mathbf{a}+\mathbf{b})=2(\mathbf{a} \times \mathbf{b})$.
50. Prove Property 6 of Theorem 11, that is,

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \dot{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}
$$

51. Use Exercise 50 to prove that

$$
a \times(b \times c)+b \times(c \times a)+c \times(a \times b)=0
$$

52. Prove that

$$
(\mathbf{a} \times b) \cdot(\mathbf{c} \times \mathbf{d})=\left\lvert\, \begin{array}{ll}
a \cdot c & b \cdot c \\
a \cdot d & b \cdot d
\end{array}\right.
$$

53. Suppose that $\mathbf{a} \neq 0$.
(a) If $\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}$, does it follow that $\mathbf{b}=\mathbf{c}$?
(b) If $\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c}$, does it follow that $\mathbf{b}=\mathbf{c}$?
(c) If $\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}$ and $\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c}$, does it follow that $\mathbf{b}=\mathbf{c}$?
54. If $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are noncoplanar vectors, let

$$
\begin{gathered}
\mathbf{k}_{1}=\frac{\mathbf{v}_{2} \times \mathbf{v}_{3}}{\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)} \quad \mathbf{k}_{2}=\frac{\mathbf{v}_{3} \times \mathbf{v}}{\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2}^{+} \times \mathbf{v}_{4}\right)} \\
\mathbf{k}_{3}=\frac{\mathbf{v}_{1} \times \mathbf{v}_{2}}{\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)}
\end{gathered}
$$

(These vectors occur in the study of crystallograpis: Vector of the form $n_{1} \mathbf{v}_{1}+n_{2} \mathbf{v}_{2}+n_{3} \mathbf{v}_{3}$, where each n_{i} is anininteger, form a lattice for a crystal. Vectors written similar in temmy $\mathbf{k}_{1}, \mathbf{k}_{2}$, and \mathbf{k}_{3} form the reciprocal lattice.)
(a) Show that \mathbf{k}_{i} is perpendicular to \mathbf{v}_{j} if $i \neq j$.
(b) Show that $\mathbf{k}_{i} \cdot \mathbf{v}_{i}=1$ for $i=1,2,3$.
(c) Show that $\mathbf{k}_{1} \cdot\left(\mathbf{k}_{2} \times \mathbf{k}_{3}\right)=\frac{1}{\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)}$.

A tetrahedron is a solid with four vertices, P, Q, R, and S, and four triangular faces, as shovian in the figure.

1. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, and \mathbf{v}_{4} be vectors with lengths equal to the areas of the faces opposive the vertices P, Q, R, and S, respectively, and directions perpendicular to the respection faces anp pointing outward. Show that

$$
\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}+\mathbf{v}_{4}=\mathbf{0}
$$

2. The volume V of a tetrahedron is one-third the distance from a vertex to the opposite face, times the area of that face.
(a) Find a formula for the volume of a tetrahedron in terms of the coordinates of its vertices P, Q, R, and S.
(b) Find the volume of the tetrahedron whose vertices are $P(1,1,1), Q(1,2,3), R(1,1,2)_{F}$ and $S(3,-1,2)$.
3. Suppose the tetrahedron in the figure has a trirectangular vertex S. (This means that the three angles at S are all right angles.) Let A, B, and C be the areas of the three faces thay meet at S, and let D be the area of the opposite face $P Q R$. Using the result of Problem 1 or otherwise, show that

$$
D^{2}=A^{2}+B^{2}+C^{2}
$$

(This is a three-dimensional version of the Pythagorean Theorem.)

12.5 Equations of Lines and Planes

A line in the $x y$-plane is determined when a point on the line and the direction of the linge (its slope or angle of inclination) are given. The equation of the line can then be written using the point-slope form.

Likewise, a line L in three-dimensional space is determined when we know a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on L and the direction of L. In three dimensions the direction of a line is cont veniently described by a vector, so we let v be a vector parallel to L. Let $P(x, y, z)$ be an arbitrary point on L and let \mathbf{r}_{0} and \mathbf{r} be the position vectors of P_{0} and P (that is, they have

12.5 Exercises

1. Determine whether each statement is true or false.
(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
(i) Two planes either intersect or are parallel.
(j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

2-5 Find a vector equation and parametric equations for the line.
2. The line through the point $(6,-5,2)$ and parallel to the vector $\left\langle 1,3,-\frac{2}{3}\right\rangle$
3. The line through the point $(2,2.4,3.5)$ and parallel to the vector $3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$
4. The line through the point $(0,14,-10)$ and parallel to the line $x=-1+2 t, y=6-3 t, z=3+9 t$
5. The line through the point $(1,0,6)$ and perpendicular to the plane $x+3 y+z=5$

6-12 Find parametric equations and symmetric equations for the line.
6. The line through the origin and the point $(4,3,-1)$
7. The line through the points $\left(0, \frac{1}{2}, 1\right)$ and $(2,1,-3)$
8. The line through the points $(1.0,2.4,4.6)$ and $(2.6,1.2,0.3)$
9. The line through the points $(-8,1,4)$ and $(3,-2,4)$
10. The line through ($2,1,0$) and perpendicular to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{j}+\mathbf{k}$
11. The line through $(1,-1,1)$ and parallel to the line $x+2=\frac{1}{2} y=z-3$
12. The line of intersection of the planes $x+2 y+3 z=1$ and $x-y+z=1$
13. Is the line through $(-4,-6,1)$ and $(-2,0,-3)$ parallel to the line through $(10,18,4)$ and $(5,3,14)$?
14. Is the line through $(-2,4,0)$ and $(1,1,1)$ perpendicular to the line through $(2,3,4)$ and $(3,-1,-8)$?
15. (a) Find symmetric equations for the line that passes through the point $(1,-5,6)$ and is parallel to the vector $\langle-1,2,-3\rangle$.
(b) Find the points in which the required line in part (a) intersects the coordinate planes.
16. (a) Find parametric equations for the line througi $(2,4,6)$ t is perpendicular to the plane $x-y+3 z=7$
(b) In what points does this line intersect the coordimin planes?
17. Find a vector equation for the line segment from $(2,-1,4)$ to $(4,6,1)$.
18. Find parametric equations for the line segment froidid $(10,1$. to $(5,6,-3)$.

19-22 Determine whether the lines L_{1} and L_{2} are paralle sketi, 1 intersecting. If they intersect, find the point of intersectivit.
19. $L_{1}: x=3+2 t, \quad y=4-t, \quad z=1+3 t$
$L_{2}: x=1+4 s, \quad y=3-2 s, \quad z=4+5 s$
20. $L_{1}: x=5-12 t, \quad y=3+9 t, \quad z=1-3 t$
$L_{2}: x=3+8 s, \quad y=-6 s, \quad z=7+2 s$
21. $L_{1}: \frac{x-2}{1}=\frac{y-3}{-2}=\frac{z-1}{-3}$
$L_{2}: \frac{x-3}{1}=\frac{y+4}{3}=\frac{z-2}{-7}$
22. $L_{1}: \frac{x}{1}=\frac{y-1}{-1}=\frac{z-2}{3}$
$L_{2}: \frac{x-2}{2}=\frac{y-3}{-2}=\frac{z}{7}$

23-40 Find an equation of the plane.
23. The plane through the origin and perpendicular to the vector $(1,-2,5$)
24. The plane through the point $(5,3,5)$ and with normal vector $2 \mathbf{i}+\mathbf{j}-\mathbf{k}$
25. The plane through the point $\left(-1, \frac{1}{2}, 3\right)$ and with normal vector $\mathbf{i}+4 \mathbf{j}+\mathbf{k}$
26. The plane through the point $(2,0,1)$ and perpendicular to the line $x=3 t, y=2-t, z=3+4 t$
27. The plane through the point $(1,-1,-1)$ and parallel to the plane $5 x-y-z=6$
28. The plane through the point $(2,4,6)$ and parallel to the plañ $z=x+y$
29. The plane through the point $\left(1, \frac{1}{2}, \frac{1}{3}\right)$ and parallel to the plan $x+y+z=0$
30. The plane that contains the line $x=1+t, y=2-t$, $z=4-3 t$ and is parallel to the plane $5 x+2 y+z=1$
31. The plane through the points $(0,1,1),(1,0,1)$, and $(1,1,0)$
32. The plane through the origin and the points $(2,-4,6)$ and $(5,1,3)$
n. The plane through the points $(3,-1,2),(8,2,4)$, and $(-1,-2,-3)$
9. The plane that passes through the point $(1,2,3)$ and contains the line $x=3 t, y=1+t, z=2-t$
J. The plane that passes through the point $(6,0,-2)$ and contains the line $x=4-2 t, y=3+5 t, z=7+4 t$
36. The plane that passes through the point $(1,-1,1)$ and contains the line with symmetric equations $x=2 y=3 z$
3. The plane that passes through the point $(-1,2,1)$ and contains the line of intersection of the planes $x+y-z=2$ and $2 x-y+3 z=1$
38. The plane that passes through the points $(0,-2,5)$ and $(-1,3,1)$ and is perpendicular to the plane $2 z=5 x+4 y$
39. The plane that passes through the point $(1,5,1)$ and is perpendicular to the planes $2 x+y-2 z=2$ and $x+3 z=4$
40. The plane that passes through the line of intersection of the planes $x-z=1$ and $y+2 z=3$ and is perpendicular to the plane $x+y-2 z=1$

41-44 Use intercepts to help sketch the plane.
41. $2 x+5 y+z=10$
42. $3 x+y+2 z=6$
43. $6 x-3 y+4 z=6$
44. $6 x+5 y-3 z=15$

45-47 Find the point at which the line intersects the given plane.
45. $x=3-t, y=2+t, z=5 t ; \quad x-y+2 z=9$
46. $x=1+2 t, y=4 t, z=2-3 t ; x+2 y-z+1=0$
47. $x=y-1=2 z ; \quad 4 x-y+3 z=8$
48. Where does the line through $(1,0,1)$ and $(4,-2,2)$ intersect the plane $x+y+z=6$?
49. Find direction numbers for the line of intersection of the planes $x+y+z=1$ and $x+z=0$.
50. Find the cosine of the angle between the planes $x+y+z=0$ and $x+2 y+3 z=1$.

51-56 Determine whether the planes are parallel, perpendicular, or neither. If neither, find the angle between them.
51. $x+4 y-3 z=1, \quad-3 x+6 y+7 z=0$
52. $2 z=4 y-x, \quad 3 x-12 y+6 z=1$
53. $x+y+z=1, \quad x-y+z=1$
54. $2 x-3 y+4 z=5, \quad x+6 y+4 z=3$
55. $x=4 y-2 z, \quad 8 y=1+2 x+4 z$
5. $x+2 y+2 z=1,2 x-y+2 z=1$

57-58 (a) Find parametric equations for the line of intersection of the planes and (b) find the angle between the planes.
57. $x+y+z=1, \quad x+2 y+2 z=1$
58. $3 x-2 y+z=1, \quad 2 x+y-3 z=3$

59-60 Find symmetric equations for the line of intersection of the planes.
59. $5 x-2 y-2 z=1, \quad 4 x+y+z=6$
60. $z=2 x-y-5, z=4 x+3 y-5$
61. Find an equation for the plane consisting of all points that are equidistant from the points $(1,0,-2)$ and $(3,4,0)$.
62. Find an equation for the plane consisting of all points that are equidistant from the points $(2,5,5)$ and $(-6,3,1)$.
63. Find an equation of the plane with x-intercept a, y-intercept b, and z-intercept c.
64. (a) Find the point at which the given lines intersect:

$$
\begin{aligned}
& \mathbf{r}=\langle 1,1,0\rangle+\boldsymbol{1}\langle 1,-1,2\rangle \\
& \mathbf{r}=\langle 2,0,2\rangle+s\langle-1,1,0\rangle
\end{aligned}
$$

(b) Find an equation of the plane that contains these lines.
65. Find parametric equations for the line through the point $(0,1,2)$ that is parallel to the plane $x+y+z=2$ and perpendicular to the line $x=1+t, y=1-t, z=2 t$.
66. Find parametric equations for the line through the point $(0,1,2)$ that is perpendicular to the line $x=1+t$, $y=1-t, z=2 t$ and intersects this line.
67. Which of the following four planes are parallel? Are any of them identical?

$$
\begin{array}{ll}
P_{1}: 3 x+6 y-3 z=6 & P_{2}: 4 x-12 y+8 z=5 \\
P_{3}: 9 y=1+3 x+6 z & P_{4}: z=x+2 y-2
\end{array}
$$

68. Which of the following four lines are parallei? Are any of them identical?

$$
\begin{aligned}
& L_{1}: x=1+6 t, \quad y=1-3 t, \quad z=12 t+5 \\
& L_{2}: x=1+2 t, \quad y=t, \quad z=1+4 t \\
& L_{3}: 2 x-2=4-4 y=z+1 \\
& L_{4}: \mathbf{r}=\langle 3,1,5\rangle+t(4,2,8\rangle^{*}
\end{aligned}
$$

69-70 Use the formula in Exercise 45 in Section 12.4 to find the distance from the point to the given line.
69. $(4,1,-2) ; x=1+t, y=3-2 t, z=4-3 t$
70. $(0,1,3) ; x=2 t, y=6-2 t, z=3+t$

71-72 Find the distance from the point to the given plane.
71. $(1,-2,4), \quad 3 x+2 y+6 z=5$
72. $(-6,3,5), \quad x-2 y-4 z=8$

73-74 Find the distance between the given parallel planes.
73. $2 x-3 y+z=4, \quad 4 x-6 y+2 z=3$
74. $6 z=4 y-2 x, \quad 9 z=1-3 x+6 y$
75. Show that the distance between the parallel planes $a x+b y+c z+d_{1}=0$ and $a x+b y+c z+d_{2}=0$ is

$$
D=\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

76. Find equations of the planes that are parallel to the plane $x+2 y-2 z=1$ and two units away from it.
77. Show that the lines with symmetric equations $x=y=z$ and $x+1=y / 2=z / 3$ are skew, and find the distance between these lines.
78. Find the distance between the skew lines with parametric equations $x=1+t, y=1+6 t, z=2 t$, and $x=1+2$ $y=5+15 s, z=-2+6 s$.
79. Let L_{1} be the line through the origin and the point $(2,0,-1)$ Let L_{2} be the line through the points $(1,-1,1)$ and $(4,1,3)$. Find the distance between L_{1} and L_{2}.
80. Let L_{1} be the line through the points $(1,2,6)$ and $(2,4,8) \frac{1}{5}$ Let L_{2} be the line of intersection of the planes π_{1} andid π_{2}. where π_{1} is the plane $x-y+2 z+1=0$ and π_{2} is theे plajic through the points $(3,2,-1),(0,0,1)$, and $(1,2,1)$. Calculate the distance berween L_{1} and L_{2}.
81. If a, b, and c are not all 0 , show that the equation $a x+b y+c z+d=0$ represents a plane and $\langle a, b, c\rangle$ is a normal vector to the plane.

Hint: Suppose $a \neq 0$ and rewrite the equation in the form

$$
a\left(x+\frac{d}{a}\right)+b(y-0)+c(z-0)=0
$$

82. Give a geometric description of each family of planes,
(a) $x+y+z=c$
(b) $x+y+c z=1$
(c) $y \cos \theta+z \sin \theta=1$

LABORATORY PROJECT PUTTING 3D IN PERSPECTIVE

Computer graphics programmers face the same challenge as the great painters of the pasthow to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screensis a canvas). To create the illusion of perspective, in which closer objects appear larger than those farther away, three-dimensional objects in the computer's memory are projected onto a recter angular screen window from a viewpoint where the eye, or camera, is located. The viewing volume-the portion of space that will be visible-is the region contained by the four planest that pass through the viewpoint and an edge of the screen window. If objects in the scene extend beyond these four planes, they must be truncated before pixel data are sent to the screen. The planes are therefore called clipping planes.

1. Suppose the screen is represented by a rectangle in the $y z$-plane with vertices $(0, \pm 400,0$ and $(0, \pm 400,600)$, and the camera is placed at $(1000,0,0)$. A line L in the scene passes through the points $(230,-285,102)$ and $(860,105,264)$. At what points should L be clippes by the clipping planes?
2. If the clipped line segment is projected on the screen window, identify the resulting line segment.
3. Use parametric equations to plot the edges of the screen window, the clipped line segmet and its projection on the screen window. Then add sight lines connecting the viewpoint each end of the clipped segments to verify that the projection is correct.
4. A rectangle with vertices $(621,-147,206),(563,31,242),(657,-111,86)$, and $(599,67,122)$ is added to the scene. The line L intersects this rectangle. To make the recfer angle appear opaque, a programmer can use hidden line rendering, which removes portions of objects that are behind other objects. Identify the portion of L that should be removed

Applications of Quadric Surfaces

Examples of quadric surfaces can be found in the world around us. In fact the word is a good example. Although the earth is commonly modeled as a sphere; a morich acan= model is an ellipsoid because the earth's rotation has caused a flattening at them polef in Exercise 47.)

Circular paraboloids, obtained by rotating a parabola about its axis, are useil to colle and reflect light, sound, and radio and television signals. In a radio telescope for instam signals from distant stars that strike the bowl are all reflected to the receiver at the focus. are therefore amplified. (The idea is explained in Problem 20 on page 271.) The samer yo ciple applies to microphones and satellite dishes in the shape of paraboloids:

Cooling towers for nuclear reactors are usually designed in the shape of hyperboloidsse one sheet for reasons of structural stability. Pairs of hyperboloids are used to transuili rot tional motion between skew axes. (The cogs of the gears are the generating lines of hyperboloids. See Exercise 49.)

A satellite dish reflects signals to the focus of a paraboloid.

Nuclear reactors have cooling towers in the shape of hyperboloids.

Hyperboloids produce gear transmission.

12.6

Exercises

1. (a) What does the equation $y=x^{2}$ represent as a curve in \mathbb{R}^{2} ?
(b) What does it represent as a surface in \mathbb{R}^{3} ?
(c) What does the equation $z=y^{2}$ represent?
2. (a) Sketch the graph of $y=e^{x}$ as a curve in \mathbb{R}^{2}.
(b) Sketch the graph of $y=e^{x}$ as a surface in \mathbb{R}^{3}.
(c) Describe and sketch the surface $z=e^{y}$.

3-8 Describe and sketch the surface.
3. $x^{2}+z^{2}=1$
4. $4 x^{2}+y^{2}=4$
5. $z=1-y^{2}$
6. $y=z^{2}$
7. $x y=1$
8. $z=\sin y$
(a) Find and identify the traces of the quadric surface $-x^{2}-y^{2}+z^{2}=1$ and explain why the graph looks like the graph of the hyperboloid of two sheets in Table 1.
(b) If the equation in part (a) is changed to $x^{2}-y^{2}-z^{2}=1$, what happens to the graph? Sketch the new graph.

11-20 Use traces to sketch and identify the surface.

ึ1. $x=y^{2}+4 z^{2}$

1. $x^{1}=y^{2}+4 z^{2}$

15 $-x^{2}+4 y^{2}-z^{2}=4$
17. $36 x^{2}+y^{2}+36 z^{2}=36$
n $y=z^{2}-x^{2}$
12. $9 x^{2}-y^{2}+z^{2}=0$
14. $25 x^{2}+4 y^{2}+z^{2}=100$
16. $4 x^{2}+9 y^{2}+z=0$
18. $4 x^{2}-16 y^{2}+z^{2}=16$
20. $x=y^{2}-z^{2}$

2-28 Match the equation with its graph (labeled I-VIII). Give masons for your choice.
2. $x^{2}+4 y^{2}+9 z^{2}=1$
2. $x^{2}-y^{2}+z^{2}=1$
8. $y=2 x^{2}+z^{2}$
27. $x^{2}+2 z^{2}=1$
22. $9 x^{2}+4 y^{2}+z^{2}=1$
24. $-x^{2}+y^{2}-z^{2}=1$
26. $y^{2}=x^{2}+2 z^{2}$
28. $y=x^{2}-z^{2}$

29-36 Reduce the equation to one of the standard forms, classify the surface, and sketch it.
29. $y^{2}=x^{2}+\frac{1}{9} z^{2}$
30. $4 x^{2}-y+2 z^{2}=0$
31. $x^{2}+2 y-2 x^{2}=0$
32. $y^{2}=x^{2}+4 z^{2}+4$
33. $4 x^{2}+y^{2}+4 z^{2}-4 y-24 z+36=0$
34. $4 y^{2}+z^{2}-x-16 y-4 z+20=0$
35. $x^{2}-y^{2}+z^{2}-4 x-2 y-2 z+4=0$
36. $x^{2}-y^{2}+z^{2}-2 x+2 y+4 z+2=0$

37-40 Use a computer with three-dimensional graphing software to graph the surface. Experiment with viewpoints and with domains for the variables until you get a good view of the surface.
37. $-4 x^{2}-y^{2}+z^{2}=1$
38. $x^{2}-y^{2}-z=0$
39. $-4 x^{2}-y^{2}+z^{2}=0$
40. $x^{2}-6 x+4 y^{2}-z=0$
41. Sketch the region bounded by the surfaces $z=\sqrt{x^{2}+y^{2}}$ and $x^{2}+y^{2}=1$ for $1 \leqslant z \leqslant 2$.
42. Sketch the region bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=2-x^{2}-y^{2}$.
43. Find an equation for the surface obtained by rotating the parabola $y=x^{2}$ about the y-axis.
44. Find an equation for the surface obtained by rotating the line $x=3 y$ about the x-axis.
45. Find an equation for the surface consisting of all points that are equidistant from the point $(-1,0,0)$ and the plane $x=1$. Identify the surface.
46. Find an equation for the surface consisting of all points P for which the distance from P to the x-axis is twice the distance from P to the $y z$-plane. Identify the surface.
47. Traditionally, the earth's surface has been modeled as a sphere, but the World Geodetic System of 1984 (WGS-84) uses an ellipsoid as a more accurate model. It places the center of the earth at the origin and the north pole on the positive 2 -axis. The distance from the center to the poles is 6356.523 km and the distance to a point on the equator is 6378.137 km .
(a) Find an equation of the earth's surface as used by WGS-84.
(b) Curves of equal latitude are traces in the planes $z=k$. What is the shape of these curves?
(c) Meridians (curves of equal longitude) are traces in planes of the form $y=m x$. What is the shape of these meridians?
48. A cooling tower for a nuclear reactor is to be constructed in the shape of a hyperboloid of one sheet (see the photo on page 832). The diameter at the base is 280 m and the minimum
diameter, 500 m above the base, is 200 m . Find an equation for the tower.
49. Show that if the point (a, b, c) lies on the hyperbolic paraboloid $z=y^{2}-x^{2}$, then the lines with parametric equations $x=a+t, y=b+t, z=c+2(b-a) t$ and $x=a+t$, $y=b-t, z=c-2(b+a) t$ both lie entirely on this paraboloid. (This shows that the hyperbolic paraboloid is what is called a ruled surface; that is, it can be generated by the motion of a straight line. In fact, this exercise shows that through each point on the hyperbolic paraboloid there are two
generating lines. The only other quadric surfaces thatiare nit surfaces are cylinders, cones, and hyperboloids of one sherí
50. Show that the curve of intersection of the surfaces $x^{2}+2 y^{2}-z^{2}+3 x=1$ and $2 x^{2}+4 y^{2}-2 z^{2}-5 y=0$ lies in a plane.
51. Graph the surfaces $z=x^{2}+y^{2}$ and $z=1-y^{z}$ on a comum screen using the domain $|x| \leqslant 1.2,|y| \leqslant 1.2$ and observe (iis curve of intersection of these surfaces. Sbow that the projectio of this curve onto the $x y$-plane is an ellipse.

12 Review

Concept Check

1. What is the difference between a vector and a scalar?
2. How do you add two vectors geometrically? How do you add them algebraically?
3. If \mathbf{a} is a vector and c is a scalar, how is ca related to a geometrically? How do you find ca algebraically?
4. How do you find the vector from one point to another?
5. How do you find the dot product $\mathbf{a} \cdot \mathbf{b}$ of two vectors if you know their lengths and the angle between them? What if you know their components?
6. How are dot products useful?
7. Write expressions for the scalar and vector projections of \mathbf{b} onto a. Illustrate with diagrams:
8. How do you find the cross product $\mathbf{a} \times \mathbf{b}$ of two vectors if you know their lengths and the angle between them? What if you know their components?
9. How are cross products useful?
10. (a) How do you find the area of the parallelogram determined by a and b ?
(b) How do you find the volume of the parallelepiped determined by \mathbf{a}, \mathbf{b}, and \mathbf{c} ?
11. How do you find a vector perpendicular to a plane?
12. How do you find the angle between two intersecting planes?
13. Write a vector equation, parametric equations, and symmetric equations for a line.
14. Write a vector equation and a scalar equation for a plane
15. (a) How do you tell if two vectors are parallel?
(b) How do you tell if two vectors are perpendicular?
(c) How do you tell if two planes are parallel?
16. (a) Describe a method for determining whether three point P, Q, and R lie on the same line.
(b) Describe a method for determining whether four points P, Q, R, and S lie in the same plane.
17. (a) How do you find the distance from a point to a line?
(b) How do you find the distance from a point to a plane?
(c) How do you find the distance between two lines?
18. What are the traces of a surface? How do you find them?
19. Write equations in standard form of the six types of quadivi surfaces.

True-False Quiz

Determine whether the statement is true or faise. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.

1. If $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$, then $\mathbf{u} \cdot \mathbf{v}=\left\langle\mu_{1} v_{1}, \mu_{2} v_{2}\right\rangle$.
2. For any vectors \mathbf{u} and \mathbf{v} in $V_{3},|\mathbf{u}+\mathbf{v}|=|\mathbf{u}|+|\mathbf{v}|$.
3. For any vectors \mathbf{u} and \mathbf{v} in $V_{3},|\mathbf{u} \cdot \mathbf{v}|=|\mathbf{u}||\mathbf{v}|$.
4. For any vectors \mathbf{u} and \mathbf{v} in $V_{3},|\mathbf{u} \times \mathbf{v}|=|\mathbf{u} \| \mathbf{v}|$.
5. For any vectors \mathbf{u} and \mathbf{v} in $V_{3}, \mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$.
6. For any vectors \mathbf{u} and \mathbf{v} in $V_{3}, \mathbf{u} \times \mathbf{v}=\mathbf{v} \times \mathbf{u}$.
7. For any vectors \mathbf{u} and \mathbf{v} in $V_{3},|\mathbf{u} \times \mathbf{v}|=|\mathbf{v} \times \mathbf{u}|$.
8. For any vectors \mathbf{u} and \mathbf{v} in V_{3} and any scalar k, $k(\mathbf{u} \cdot \mathbf{v})=(k \mathbf{u}) \cdot \mathbf{v}$.
9. For any vectors \mathbf{u} and \mathbf{v} in V_{3} and any scalar k, $k(\mathbf{u} \times \mathbf{v})=(k \mathbf{u}) \times \mathbf{v}$.
10. For any vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V_{3}, $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=\mathbf{u} \times \mathbf{w}+\mathbf{v} \times \mathbf{w}$.

[^0]: 1. Homework Hints available at stewartcalculus.com
