
 

	
Author's	address:	Kristian	Bjerke-Gulstuen,	Rolfsbuktveien	2,	1364	Fornebu,	Norway;	email:	k.bjerke-gulstuen@accenture.com	
Second	author's	address:	Daniela	Soares	Cruzes,	SINTEF,	NO-7465	Trondheim,	Norway;	email:	daniela.s.cruzes@sintef.no	
Copyright	2020	is	held	by	the	author(s).	

System	Integration	Testing	in	Large	Scale	Agile:	dealing	with	
challenges	and	pitfalls	
KRISTIAN	BJERKE-GULSTUEN,	ACCENTURE	
DANIELA	SOARES	CRUZES,	SINTEF	

Imagine	 driving	 your	 car	 to	work	 every	 day.	During	 a	 normal	 day	 you	 pass	 several	 toll	 gates,	 nothing	 out	 of	 the	 ordinary	 on	 roads	 in	
Norway.	Now	imagine	that	a	couple	of	weeks	later	when	you	check	your	invoices	from	these	toll	gates,	you	notice	that	you	were	charged	
double	the	usual	cost.	The	Autosys	platform	is	a	complex	system	of	systems	(SoS)	that	forms	the	foundation	for	all	transactions	involving	
motor	 vehicles	 in	 Norway.	 The	 end-user	 experience	 consists	 of	 value-chain-functionality	 that	 integrates	 more	 than	 twenty	 systems	
developed	and	operated	by	different	government	departments	and	agencies.	System	integration	testing	 is	of	high	 importance.	However,	
the	project	experienced	challenges	regarding	unaligned	SoS	development	plans,	uncomplete	SoS	integration	designs	and	SoS	integration	
test	scenarios	and	insufficient	test	automation	coverage.	In	this	experience	report	we	describe	how	the	Autosys	project	dealt	with	these	
challenges.	

1. INTRODUCTION	

Modern	software	applications	and	systems	are	rapidly	evolving	 to	become	more	sophisticated	with	complex	
multi-directional	 dependencies	 to	 several	 other	 integrated	 systems.	 The	 components,	 once	 developed,	 are	
integrated	 and	 ultimately	 tested	 in	 the	 deployment	 environment.	 System	 Integration	 (SI)	 is	 concerned	with	
forming	a	coherent	whole	from	component	subsystems,	including	humans,	to	create	a	mission	capability	that	
satisfies	the	needs	of	various	stakeholders	[1].	There	are	different	forms	of	SI.	Historically,	vertical	integration	
occurs	when	components	of	a	system	developed	by	a	single	acquisition	program	are	integrated	to	produce	the	
desired	 capability.	 Currently,	 vertical	 integration	 has	 a	 broader	 meaning	 which	 covers	 both	 a	 single	
organization	and	joint	organizations	which	have	multiple	acquisition	programs	over	time	that	contribute	to	the	
creation	and	enhancement	of	a	mission	capability.	Horizontal	 integration	occurs	when	systems	developed	by	
different	 acquisition	programs,	often	 for	different	 customers	and	purposes,	 are	brought	 together	 to	 create	a	
new	 capability.	 A	 key	 goal	 of	 SI	 is	 to	 ensure	 that	 semantic	 and	 syntactic	 interfaces	 between	 component	
elements	 of	 the	 system	 perform	 as	 specified	 by	 “contracts”	 between	 the	 elements.	 A	 companion	 goal	 is	 to	
ensure	that	the	interfaces	can	be	adapted	in	well-understood	ways	with	relatively	modest	effort.	Almost	all	SI	
failures	occur	at	the	interface	level	primarily	due	to	incomplete,	inconsistent,	or	misunderstood	specifications.	
Invariably,	the	root	causes	of	failure	tend	to	be	ad	hoc	integration	and	failure	to	develop	and	adhere	to	formally	
defined	semantic	concepts	and	relationships	[1].	

A	system	of	systems	(SoS)	is	a	collection	of	systems	originally	designed	as	stand-alone	systems	for	specific	
and	different	purposes	but	that	have	been	brought	together	within	the	SoS	umbrella	to	create	a	new	capability	
needed	for	a	particular	mission	[2].	An	SoS	may	be	formed	dynamically	to	perform	a	given	mission	and	then	
reorganized	as	needed	for	other	missions	including	those	that	have	not	yet	been	envisioned.	A	good	SoS	design	
might	have	modules	that	are	not	as	good	as	their	stand-alone	counterparts	 that	perform	the	same	functions.	
System	of	Systems	integration	(SoSI)	takes	on	a	new	meaning	that	comes	with	a	host	of	new	challenges.	Once	
the	component	systems	are	developed,	they	are	incrementally	integrated	and	tested	and,	ultimately,	deployed	
in	the	operational	environment.		

In	this	experience	report	we	describe	SoS	integration	testing	challenges	and	pitfalls	as	experienced	by	the	
Autosys	project.	The	Autosys	platform	is	a	horizontal	SoS	where	end-user	experience	consists	of	value-chain-
functionality	that	integrates	more	than	twenty	systems	developed	and	operated	by	different	private	and	public	
departments	and	agencies.	According	to	the	Systems	Engineering	Guide	for	SoS	[3,4],	an	SoS	can	be	classified	
according	to	the	way	it	is	managed	and	its	openness	to	change	and	new	capabilities.	The	form	and	rigor	of	SoS	
is	 directly	 related	 to	 SoS	 type.	 The	 Autosys	 platform	 can	 be	 categorized	 as	 an	 Acknowledged	 SoS:	 having	
recognized	 objectives,	 a	 designated	 manager	 and	 resources.	 Its	 constituent	 systems	 retain	 independent	



System	Integration	Testing	in	Large	Scale	Agile:	dealing	with	challenges	and	pitfalls:	Page	-	2	
 

ownership,	 objectives	 funding,	 development	 and	 sustainment.	 Changes	 in	 the	 system	 are	 based	 on	
collaboration	 between	 the	 SoS	 and	 the	 system.	 The	 Autosys	 project	 experienced	 delayed	 availability	 of	
complete	 and	 testable	 value	 chains	 (E2E-testing),	 resulting	 in	 late	 identification	 of	 defects	 and	 unidentified	
dependencies.	This	caused	a	growing	 lack	of	 trust	 in	 the	new	system	and	stressed	 the	project	as	 the	release	
deadline	approached.	Important	success	factors	were	to	support	the	Scrum	teams	by	establishing	a	dedicated	
SoS	integration	team	responsible	for	the	follow	up	on	dependencies	and	delivery	plans	from	all	systems	in	the	
SoS,	 early	 involvement	of	 testers	with	 extensive	use	of	 the	 testers	mindset	during	 integration	design	and	 to	
increase	our	focus	on	automated	verification	of	data	used	in	the	different	value	chains.	

Kristian	Bjerke-Gulstuen	is	an	experienced	test	manager	in	Accenture.	He	has	been	responsible	for	planning	
and	executing	testing	in	several	large-scale	projects,	using	both	traditional	and	agile	development	methods.	In	
the	 Autosys	 Project	 Kristian	 is	 the	 test	manager	 from	 Accenture,	 responsible	 for	 defining	 the	 project’s	 test	
processes	and	the	management,	planning	and	execution	of	all	quality	engineering	and	test	activities	performed	
by	Accenture.	Kristian	is	part	of	the	project	management	team	and	has	been	with	the	project	since	2016.	His	
experience	from	the	project	has	been	discussed	with	researcher	Daniela	Soares	Cruzes	from	SINTEF	who	has	a	
focus	on	testing,	quality	assurance	and	agile	development.	

The	 remainder	 of	 this	 report	 is	 organized	 as	 follows:	 Chapter	 2	 describes	 the	 project	 context	 and	
background.	Chapter	3	describes	the	main	SoS	integration	testing	challenges	and	how	the	project	collectively	
dealt	with	 the	 challenges.	 Chapter	 4	 summarizes	 the	 key	 learning	 points	 and	 provides	 recommendations	 to	
other	projects	doing	SoS	integration	testing.	

2. BACKGROUND	

The	Autosys	Project	is	a	large-scale	agile	digitalization	project	that	is	managed	by	The	Norwegian	Public	Roads	
Administration	 (NPRA).	 NPRA	 is	 a	 Norwegian	 government	 agency	 responsible	 for	 the	 construction	 and	
maintenance	 of	 highways	 and	 county	 roads,	 including	 the	 supervision	 and	 administration	 of	 registered	
vehicles	 and	 certifications.	 The	 project’s	 main	
objective	 is	 the	 digitalization	 of	 business	 processes	
related	to	vehicles	and	to	replace	the	legacy	Autosys	
automotive	 register	 with	 the	 new	 Autosys	 vehicle	
application	 platform.	 The	 Autosys	 platform	 is	
considered	 critical	 to	 the	 Norwegian	 society	 as	 it	
operates	 the	 formal	 approval,	 by	 law,	 of	 vehicles,	
registration	 and	 change	 of	 ownership,	 reseller	
solutions,	 and	 distribution	 of	 data	 to	 other	 public	
administrations	 and	 selected	 private	 partners.	
Autosys	 is	 an	 SoS	 where	 end-user	 experience	
consists	 of	 value-chain-functionality	 that	 spans	
several	systems	that	are	developed	and	operated	by	
different	 government	 departments	 and	 agencies	
(such	 as	 the	 police,	 Norwegian	 tax	 authorities,	
insurance	 companies	 and	 road	 toll	 companies).	 The	
new	platform	is	managing	11	million	vehicles	and	is	
the	core	of	an	immensely	complex	ecosystem	with	an	
annual	turnover	of	300	billion	NOK.	

When	 developing	 the	 new	 Autosys	 platform,	
modifications	 to	 more	 than	 twenty	 of	 the	 existing	
integrated	 systems	 were	 required.	 These	 changes	 were	 necessary	 as	 the	 integration	 technology	 and	
architecture	 would	 change	 in	 the	 new	 platform.	 Figure	 1	 illustrates	 Autosys	 and	 its	 horizontal	 system	
integration	landscape.	In	order	to	complete	the	many	functional	value-chains,	Autosys	distributes	transaction	
data	 related	 to	 vehicles	 to	 several	 systems.	 Relevant	 changes	 in	 data	 are	 received	 by	 several	 internal	 and	
external	systems,	transactions	are	processed	and,	in	many	situations,	fed	back	to	Autosys	for	the	completion	of	
a	 business	 process.	 Changes	 in	 data	 may	 be	 consecutively	 reporting	 on	 updates	 in	 the	 vehicle	 register,	 i.e.	
change	of	 ownership	 or	 temporary	deregistration,	 emission	data	 and	much	more.	Other	 integrations	 can	be	
data	look-up	(single	and	bulk)	of	vehicles	to	provide	information	on	selected	technical	data	at	a	given	time,	i.e.	
additional	information	such	as	historical	data	(ownership,	number	plates,	and	registration	statuses).	

Figure	1.	Illustration	of	the	Autosys	platform	as	a	horizontal	SoS	



System	Integration	Testing	in	Large	Scale	Agile:	dealing	with	challenges	and	pitfalls:	Page	-	3	
 

The	Autosys	project	planning	phase	started	in	the	summer	of	2014	and	the	project	was	initiated	together	
with	Accenture	as	the	selected	IT-partner	in	August	2016.	Accenture	is	responsible	for	development	of	the	core	
part	 of	 the	 system	 (the	 inner	 circle	 in	 Figure	 1).	 Approximately	 120	 people	 are	 daily	 involved	 in	 the	
development	process	of	the	solutions.	The	project	is	scheduled	to	be	completed	in	2021.	

2.1 Autosys	delivery	model	and	approach	to	agile	development	and	testing	
The	project	uses	a	PRINCE2-based	model	and	the	development	phase	uses	a	hybrid	agile/Scrum	development	
model	(based	on	PS2000	SOL).	The	following	Scrum	practices	are	used	in	full	or	partial	by	the	project:	unit	and	
integration	 testing,	 continuous	 integration	 (CI)	 and	 continuous	 testing,	weekly	 and	daily	 stand	up	meetings,	
incremental	design,	daily	deployment,	 test	driven	development,	 test	automation,	customer	side	 involvement,	
planning	 poker,	 negotiated	 scope	 contract,	 retrospective,	 epics	 and	 user	 stories,	 fixed	 cycles	 and	 team	
continuity.	Epics	and	user	stories	were	defined	by	NPRA.	Acceptance	criteria	were	specified	at	user	story	level	
during	the	initial	and	continuous	solution	design	phase.	If	necessary,	new	user	stories	and	acceptance	criteria	
could	be	added	during	the	sprints.		

A	“big	bang”	transition	to	the	new	system	was	considered	undesirable,	hence	the	delivery	plan	prepared	for	
agile	development	with	a	 staged	phase-out	of	 the	 legacy	 system.	The	planned	 replacement	process	 included	
seven	main	deliverables	and	two	main	deliverables	deployed	to	production	per	year.	Maintenance	releases	are	
developed	in	parallel	and	deployed	when	needed.	The	development	phase	for	a	main	release	consisted	of	7-12	
sprints,	of	three	weeks	each.		

Quality	 engineering	 and	 testing	had	 a	 high	priority	 in	 the	project,	 and	with	 extensive	 focus	 on	 “shift-left	
testing”.	 The	 following	 quality	 engineering	 practices	 were	 incorporated	 in	 the	 different	 project	 phases:	
automated	and	continuous	testing,	manual	and	structured	testing,	exploratory	testing,	static	analysis	and	static	
testing,	test	driven	development,	experimentation,	learning	and	demos.	Non-functional	testing	such	as	security,	
performance	 and	 operations	 testing	was	 done	 both	 during	 the	 sprints	 and	 as	 part	 of	 the	 system-	 and	 user	
acceptance	 (UAT)	 testing.	 Our	 process	 for	
quality	 engineering	 and	 testing	 evolved	
constantly,	 however	 the	basics	 in	 terms	of	 test	
phases,	 test	activities	and	test	organization	has	
been	consistent	and	as	illustrated	in	Figure	2.		

The	 IEEE	 defines	 integration	 testing	 as	
testing	 in	 which	 software	 components	 are	
combined	and	tested	to	evaluate	the	interaction	
between	 them	 [5].	 Integration	 testing	 was	 an	
important	 part	 of	 our	 testing	 process.	 At	 the	
Autosys	project	 integration	testing	consisted	of	
low	level	and	high	level	integration	testing.	The	
low	 level	 integration	 testing	 focused	 at	 the	
interface	 level	 and	 was	 performed	 by	 the	
developers	 during	 all	 the	 sprints.	 High	 level	
integration	testing	was	done	during	system	test	
and	 included	 SoS	 integration	 testing.	 All	 low	
level	 integration	tests	covered	normal	cases	and	special	cases;	 they	were	developed	in	 jUnit,	 incorporated	 in	
the	CI	pipeline	and	 reported	 in	Sonar.	Low	 level	 integration	 testing	 relied	heavily	on	 stubs	and	mocks.	High	
level	 integration	 testing	 focused	 on	 SoS	 integration	 testing	 preferably	 using	 production	 candidates	 of	 all	
systems	in	the	SoS.	The	scope	of	high	level	integration	testing	was	testing	of	user	scenarios	that	spanned	more	
than	one	system	in	the	SoS.	This	testing	was	performed	in	parallel	with	the	sprints	and	should	start	as	soon	as	
all	 necessary	 user	 stories	 were	 deployed	 to	 the	 test	 environments.	 The	 testing	 was	 both	 manual	 and	
automated.	

Test	 design	 and	 test	 scenarios	 per	 user	 story	 and	 at	 system/SoS-level	 were	 developed	 as	 part	 of	 the	
continuous	solution	design	phase.	Unit	test,	integration	test	(using	stubs)	and	sprint	test	were	done	as	in-sprint	
test	activities	per	user	story.	After	each	sprint	NPRA	was	responsible	for	executing	a	control	point.	The	control	
point	 consisted	of	 a	demonstration	of	 the	 sprint	deliverable	 (sprint	demo)	and	a	verification	phase	 to	make	
sure	all	deliverables	were	completed	according	to	the	Definition	of	Done.	Continuous	automated	and	manual	
testing	was	performed	in	parallel	with	the	sprints.	The	sprints	were	followed	by	a	three-week	final	system	test	
(hardening	sprint),	and	a	6-8-week	user	acceptance	test	performed	by	NPRA.		

Figure	2.	Test	process	at	the	Autosys	project	



System	Integration	Testing	in	Large	Scale	Agile:	dealing	with	challenges	and	pitfalls:	Page	-	4	
 

3. DEALING	WITH	SYSTEM	INTEGRATION	PITFALLS	AND	CHALLENGES	

Continuous	design	and	development	kept	a	steady	pace,	however	when	transitioning	to	high-level	integration	
testing,	we	started	to	experience	several	challenges:	
	

• Unaligned	SoS	development	plans	
• Uncomplete	SoS	integration	designs	and	SoS	integration	test	scenarios	
• Insufficient	test	automation	coverage	

3.1 Dealing	with	unaligned	SoS	development	plans	
Challenge.	When	starting	high	 level	 SoS	 integration	 testing	we	experienced	 that	 insufficient	 coordination	of	
SoS	deliverables	 caused	unaligned	development	 and	 test	 plans,	 hence	delays	 to	 the	planned	 SoS	 integration	
test	execution.	The	scope	to	be	implemented,	dependencies	and	timelines	important	to	the	Autosys	project	was	
communicated	 and	 discussed	with	 all	 system	 owners	 in	 the	 SoS	 at	 the	 start	 of	 every	 release.	 However,	 the	
regular	follow	up	was	done	in	a	fragmented	and	ad	hoc	fashion.	This	soon	escalated	to	unsynchronized	plans	
and	delayed	the	availability	of	production	candidates	of	all	integrating	systems	in	our	test	environments.	The	
test	team	experienced	different	scenarios,	as	illustrated	in	Error!	Reference	source	not	found..	I.e.	according	
to	the	development	plan	the	SoS	integration	test	team	could	start	SoS	integration	testing	in	sprint	4,	however	
several	of	the	integrating	systems	would	in	reality	not	be	ready	until	UAT.	It	became	challenging	to	accomplish	
the	goal	of	executing	an	early	and	structured	SoS	integration	test	of	business	processes	

Our	designers,	developers	and	testers	found	it	challenging	to	have	a	complete	overview	and	control	of	how	
transaction	patterns	and	data	combinations	could	affect	all	other	systems	in	the	SoS.	This	was	a	known	risk	and	
challenge,	and	our	initial	and	preferred	mitigation	was	to	identify	defects	through	early	SoS	integration	testing.	
However,	 having	 delays	 to	 the	 SoS	 integration	 test	 execution	 resulted	 in	 increased	 risk	 of	 identifying	
integration	defects	and	misunderstandings	late.		

Another	 issue	 was	 that	 other	 projects	 and	 owners	 of	 the	 other	 systems	 in	 the	 SoS	 used	 different	 Jira	
instances	than	Autosys,	and	we	had	no	tool	that	supported	linking	between	the	dependent	user	stories.	Due	to	
these	challenges	 the	quality	of	 the	solution	was	questioned	by	several	system	owners	and	a	dawning	 lack	of	
trust	in	the	project’s	capability	in	meeting	the	deadlines	pushed	the	project	management	to	act.	

	

	
Figure	3.	Delays	resulted	in	late	SoS	integration	testing	with	production	candidates	of	all	systems		

Our	 solution.	 Due	 to	 the	 complexity	 and	 scope	 of	 the	 SoS	 integrations	 we	 learned	 that	 the	 design	 and	
Scrum	teams	needed	support	in	dealing	with	SoS	integrations.	The	project	management	decided	to	strengthen	
the	SoS	integration	team	to	gain	better	control	with	SoS	integration	deliverables,	and	with	extensive	focus	on	
the	 systems	 that	 were	 not	 within	 direct	 control	 of	 the	 Autosys	 project.	 Our	 priority	 was	 to	 make	 sure	
deliverables	 that	had	dependencies	was	delivered	 in	a	 timely	 fashion,	reducing	the	use	of	stubs	 in	high-level	
integration	testing.	The	SoS	integration	team	had	extra	personnel	added	to	the	team;	and	representatives	from	
the	 Scrum	 teams,	 test	 managers	 and	 selected	 system	 owners	 from	 the	 integrating	 systems	 participated	 in	
weekly	 stand-up	 meetings.	 The	 technical	 integration	 and	 interface	 specifications	 were	 rarely	 an	 issue;	
however,	 the	 development	 of	 corresponding	 modifications	 could	 have	 delays.	 These	 meetings	 therefore	
focused	on	 sharing	 information	on	 status	 and	discussing	potential	 actions	 and	work	 arounds	 if	 delays	were	
reported.		



System	Integration	Testing	in	Large	Scale	Agile:	dealing	with	challenges	and	pitfalls:	Page	-	5	
 

	To	support	the	status	and	progress	reporting	we	modeled	all	dependencies	using	Jira.	The	SoS	integration	
team	 got	 access	 to	 all	 relevant	 Jira	 instances,	 and	
user	 stories	 with	 dependencies	 to	 other	 systems	
were	 tagged	 in	 Jira	 using	 a	 custom	 field.	 The	 SoS	
integration	 team	 decided	 to	 use	 Jira-linking	 to	
group	 all	 user	 stories	 with	 dependencies.	 The	
concept	 is	 illustrated	 in	 Figure	 4.	 The	 team	 then	
used	different	link	types	to	support	the	tracking	of	
the	 status	 of	 user	 stories	 necessary	 to	 be	
completed	 before	 SoS	 integration	 testing	 without	
stubs	 could	 be	 performed.	 Due	 dates	 on	 the	 user	
stories	 were	 set	 on	 all	 relevant	 user	 stories	 and	
aligned	with	 the	 test	plans.	By	using	 this	method	all	dependencies	were	automatically	displayed	 in	 Jira.	The	
flowing	link	types	were	used:	

	
• DEP_ON	 (dependent	 on):	 user	 stories	 that	 were	 required	 to	 be	 delivered	 in	 front	 of	 Scrum	 team	

development.	I.e.	interface	contracts.	
• SIT_1	(system	integration	level	1):	user	stories	that	needed	to	be	implemented	to	enable	connection	to	

the	 external	 systems	 test	 environment,	 including	 access	 to	 stubs.	 These	 user	 stories	 had	 to	 be	
delivered	to	start	first	wave	of	high	level	SoS	integration	testing.		

• SIT_2	(system	integration	level	2):	user	stories	that	needed	to	be	delivered	before	complete	functional	
business	 process	 testing	 could	 be	 executed	 with	 production	 candidate	 versions	 of	 the	 external	
systems.	

	
The	goal	was	to	complete	integration	testing	at	SIT_1-level	by	completion	of	the	final	system	test,	and	that	

all	necessary	user	stories	linked	with	SIT_2	were	released	to	the	test	environment	upon	UAT	start.		
The	 SoS	 integration	 team	 lead	 and	 SoS	

integration	test	manager	collaborated	on	the	status	
reporting	 and	 reported	 weekly	 to	 the	 project	
management	 team.	 As	 the	 test	 team	 relied	 heavily	
on	 risk	 based	 testing,	 a	 new	 status	 reporting	
template	 combining	 status	 of	 the	 SoS	 integration	
testing	 and	 the	 test	 effort	 was	 established	 (Figure	
5).	 The	 report	 also	 provided	 information	 on	
whether	 SoS	 integration	 testing	 using	 production	
candidates	or	stubs	had	started.	

Results.	 Having	 a	 dedicated	 team	 continually	
doing	 structured	 coordination	 and	 follow	 up	 on	
delivery	 plans,	 dependencies	 and	 progress,	 the	
project	 lowered	 the	 risk	 of	 not	 meeting	 the	
deadlines	due	 to	 SoS	 integration	 testing	delays.	By	
the	 start	 of	 the	 UAT	we	managed	 to	 have	most	 of	
the	SoS	value-chain	tested	at	SIT_1-level	and	SIT_2-
level	 integration	 testing	 had	 started	 for	 several	 of	
the	systems.	The	SoS	coordination	and	 follow	up	continued	through	all	sprints	and	the	team	continued	their	
work	 during	 all	 following	 releases.	 We	 did	 not	 experience	 having	 an	 SoS	 integration	 component	 team	 as	
defragmentation	of	responsibilities	or	as	any	negative	to	the	projects	or	the	agile	ways	of	working.	

Establishing	the	integration	dependency	model	in	Jira	was	done	during	two	sprints	but	needed	frequently	
reviews	to	verify	if	newly	added	user	stories	should	be	linked.	Dependencies	that	were	displayed	automatically	
in	Jira	gave	the	teams	a	complete	picture	of	the	SoS	integrations,	 including	statuses,	and	it	became	easier	for	
the	SoS	integration	test	team	to	create	their	testing	plans	and	identify	potential	delays.	

The	new	status	report	was	used	on	a	weekly	basis	and	was	found	understandable	and	easy	to	communicate	
when	reporting	 status	and	progress	 to	 the	project	management	and	steering	committee.	Frequent	 reporting	
involved	the	project	management	in	the	details	of	SoS	integrations	and	integration	testing	complexity,	resulting	
in	better	understanding	of	the	challenges.	

Figure	5.	Combining	SIT	status	and	test	effort	reporting	

Figure	4.	Jira	link	types	documenting	user	story	dependencies	



System	Integration	Testing	in	Large	Scale	Agile:	dealing	with	challenges	and	pitfalls:	Page	-	6	
 

3.2 Dealing	with	uncomplete	SoS	integration	designs	and	SoS	integration	test	scenarios	
Challenge.	Even	though	we	improved	at	having	user	stories	delivered	in	sequence	aligned	with	the	test	plans,	
hence	fewer	delays	in	starting	the	testing,	we	experienced	that	defects,	misunderstandings	and	even	conflicting	
requirements	blocked	 the	 SoS	 integration	 testing.	We	experienced	 that	we	 identified	more	new	user	 stories	
than	 expected	 related	 to	 SoS	 integrations	 when	 doing	 final	 system	 test	 and	 UAT,	 and	 realized	 that	 it	 was	
extremely	difficult	to	have	complete	insight	and	understanding	of	how	data	was	used	across	all	systems	in	an	
SoS	 legacy	 system	 that	had	evolved	 trough	40	years.	This	made	 it	 challenging	 to	design	SoS	 integration	 test	
scenarios	 that	 would	 cover	 all	 necessary	 paths	 through	 the	 systems,	 increasing	 the	 risk	 of	 not	 identifying	
blockers	 and	 defects.	 This	 again	 put	 a	 high	 pressure	 on	 the	 project	 as	 the	 time	 to	 fix	 these	 issues	 became	
shorter.		

Our	 solution.	 The	 SoS	 integration	 test	 team	 analyzed	 the	 situation	 together	 with	 the	 SoS	 integration	
designers	 and	 they	decided	 to	 focus	 on	 improving	both	 the	 integration	designs	 and	 the	 SoS	 integration	 test	
scenarios.	The	 two	 teams	approached	 this	 task	by	 introducing	a	 concept	we	named	Test	Driven	Design.	The	
basic	and	simple	idea	behind	this	concept	was	to	gather	resources	from	different	SoS	stakeholders,	 including	
system	owners,	designers,	developers	and	SoS	integration	testers,	and	“think	as	a	tester”	when	discussing	and	
experimenting	with	 the	different	 functional	 and	 technical	 scenarios	 involving	SoS	 integrations.	We	named	 it	
Test	Driven	Design	rather	than	Test	Driven	Development	to	stress	the	fact	that	the	improvements	were	in	the	
integration	designs	and	test	scenarios,	and	not	at	the	development.	

The	 activity	 was	 done	 having	 the	 resources	 collocated	 and	 it	 was	 done	 in	 iterations.	 The	 method	 was	
structured	walk-throughs	on	paper	and	by	using	both	the	deployed	new	version	of	the	Autosys	platform	and	
the	 legacy	system	still	 running	 in	production	comparing	different	 transaction	sequences.	The	priority	was	to	
get	a	unified	understanding	on	how	the	planned	modifications	would	affect	user	scenarios	spanning	the	SoS,	
and	 the	 level	of	 criticality	and	consequences	 to	 the	end	users	 if	 there	were	defects	 that	would	 trigger	ripple	
effects	such	as	faulty	calculations	in	integrated	systems.	

If	 we	 identified	 delays	 to	 the	 development	 plans	 for	 single	 systems	 in	 the	 SoS	 that	 could	 not	 be	 easily	
adjusted,	we	still	started	SoS	integration	testing	by	doing	static	testing	activities.	The	static	testing	was	mostly	
done	 as	 reviews	 and	walk-throughs	 using	 the	 design	 documentation	 and	 the	 learning	 from	 the	 test	 driven	
design	activities	as	test	basis	instead	of	the	deployed	code.		

Results.	 The	 creative	minds	of	 the	 tester	 and	 their	 “what	 if	…”	mindset	was	 experienced	as	 very	helpful	
when	improving	the	completeness	of	the	integration	designs.	A	better	understanding	of	transaction	sequences	
and	how	data	was	altered	during	the	steps	in	a	business	process	was	very	useful	to	the	SoS	integration	testers	
when	developing	the	test	scenarios.	We	learned	that	even	minor	variations	in	specific	data	fields	in	the	Autosys	
core	systems	could	have	a	huge	impact	on	calculations	further	down	the	value	chains.		

We	also	learned	that	most	“happy	cases”	usually	worked	fine	and	as	designed.	It	was	when	we	decided	to	
broaden	the	test	scenarios	with	combinations	of	user	scenarios	not	in	the	“happy	case”	sphere,	we	found	the	
more	 complex	 defects.	 I.e.,	 doing	 a	 relatively	 straightforward	 change	 of	 ownership	 produced	 the	 expected	
result	in	the	integrating	systems.	However,	when	doing	a	change	of	ownership	and	then	corrections	to	certain	
data	fields	registered	for	the	vehicle,	the	altered	data	fields	were	not	mapped	correctly	resulting	in	too	high	or	
low	calculations	of	taxes	and	insurance	fees	(in	two	of	the	integrated	systems).	

Doing	static	SoS	 integration	 testing	when	we	had	delays	 to	single	systems	or	 isolated	 functionality	 in	 the	
integrating	systems	was	found	to	be	a	very	valuable	activity.	Even	though	we	couldn’t	actually	see	the	actual	
results	produced	by	the	systems	we	could	still	do	high	level	analysis	and	evaluation	of	the	completeness	and	
correctness	of	the	user	stories	implemented.	By	constantly	having	the	test	teams	push	and	think	“shift-left”	and	
“nothing	is	going	to	block	our	testing”,	also	motivated	the	other	teams	to	constantly	strive	for	improvement.		

The	project	continued	to	use	the	test	driven	design	technique	upfront	of	SoS	integration	test	execution	as	it	
really	 helped	 us	 to	 early	 validate	 if	 all	 requirements	 and	 acceptance	 criteria	 were	 met.	 The	 upfront	 effort	
resulted	in	more	efficient	SoS	integration	testing	and	a	reduced	number	of	integration	defects	during	UAT.	We	
experienced	that	more	and	more	new	user	stories	were	identified	and	implemented	during	the	sprints	rather	
than	during	the	UAT.	All	this	resulted	in	a	higher	confidence	among	the	SoS	stakeholders	and	that	the	project	
would	be	able	to	deliver	complete	and	correct	SoS	integrations,	hence	meet	the	agreed	go-live	dates	with	a	high	
quality	solution.	

3.3 Dealing	with	insufficient	test	automation	coverage	
Challenge.	The	Scrum	and	test	team	had	implemented	a	thoughtful	approach	to	test	automation,	including	test	
automation	as	part	of	CI	and	automated	value-chain	testing	as	data	driven	automated	tests.	Our	strategy	was	to	



System	Integration	Testing	in	Large	Scale	Agile:	dealing	with	challenges	and	pitfalls:	Page	-	7	
 

develop	 relatively	 few	 tests	 focusing	 on	 core	 functionality	 that	 could	 test	 larger	 data	 sets	 rather	 than	many	
smaller	 testes	 covering	 the	 entire	 solution.	 Our	 automated	 tests	 did	 a	 good	 job	 in	 testing	 the	 Autosys	 core	
systems	 isolated,	however	 they	did	not	cover	 larger	volumes	of	data	combinations	and	user	scenarios	doing	
modifications	 to	 data	 important	 to	 calculations	 and	 transactions	 in	 integrated	 systems.	 Hence	 important	
defects	were	missed.	From	the	Test	Driven	Design,	we	saw	our	automated	tests	mostly	covering	“happy	cases”.	
The	automated	tests	did	not	uncover	the	defects	that	we	identified	during	manual	SoS	integration	testing,	as	
these	test	scenarios	now	covered	more	complex	transaction	patterns.		

Our	solution.	When	phasing	out	a	legacy	system	we	had	the	luxury	of	having	a	blueprint	for	how	data	were	
expected	to	look	like	to	the	other	systems	in	the	SoS.	By	replicating	vehicle	transactions	from	the	production	
system	 to	 the	 test	 environment	 and	 comparing	 the	 result,	 we	were	 able	 to	 implement	 automated	 checking	
routines	that	could	run	on	thousands	of	vehicles.	Given	that	we	had	a	constantly	changing	new	core	system	in	
development,	 there	was	a	need	 for	quick	verifications	 to	uncover	 if	unforeseen	changes	had	occurred	 in	our	
systems.	Based	on	the	experiences	from	our	Test	Driven	Design	we	embraced	this	opportunity	and	developed	
automated	 checking	 programs,	 in	 Java	 and	 Excel,	 that	 replicated	 vehicle	 changes	 from	 production	 in	 a	 test	
environment	and	then	compared	the	result	to	the	vehicle	in	the	two	environments.	This	replicate-and-compare	
job	was	 set	 up	 to	 run	 regularly	 via	 Jenkins,	 ensuring	 that	we	were	notified	 quickly	 if	 an	unforeseen	 change	
occurred.	The	 concept	was	 fairly	 simple;	 however,	 it	was	 an	 extremely	 valuable	 addition	 to	 our	 testing.	 For	
change	of	vehicle	ownership,	the	check	implemented	would	look	like	this:	

	
1. A	change	of	ownership	occurred	in	production	environment;	
2. The	verification	program	picks	up	the	change	of	ownership	transaction;	
3. Do	the	same	change	of	ownership	in	the	test	environment;	
4. Look	up	the	vehicle	in	the	production	environment	as	it	is	now	(after	the	change	of	ownership);	
5. Look	up	the	vehicle	in	the	test	environment;	
6. Expect	the	same	response	at	4	and	5;	
7. Send	notification	if	any	deviations.	
	
Results.	The	Autosys	project	identified	and	corrected	defects	directly	after	new	code	was	deployed	to	the	

test	environments	by	automatically	and	 frequently	comparing	data	regarding	several	 thousand	vehicles.	The	
checking	covered	transaction	patterns	as	done	in	the	production	environment,	it	was	done	before	the	manual	
testing	 and	 even	 better;	 before	 other	 systems	 in	 the	 SoS	 could	 identify	 the	 defects.	 Now,	 the	 automation	
strategy	and	implementation	worked	better	as	the	safety	net	it	was	meant	to	be.		

This	activity	made	us	realize	the	power	of	checking	and	how	important	this	is	as	a	supplement	to	the	testing	
of	a	system.	Automating	the	checking	helped	us	free	up	time	for	the	testers	to	do	more	exploratory	testing	and	
to,	through	experimentation	and	learning,	give	better	evaluations	on	the	usability	and	quality	of	the	solution.		

Evolving	 our	 test	 automation	 strategy	 also	 resulted	 in	 a	 positive	 collaboration	 between	 testers	 and	
developers.	They	designed	the	checks	together,	and	we	experienced	that	the	two	disciplines	were	brought	even	
closer	together;	the	testers	developing	their	technical	skill	set	and	the	developers	to	be	better	at	understanding	
the	importance	of	demonstrating	that	the	code	will	work	when	thinking	outside	the	pre-defined	and	designed	
user	scenarios.		

4. KEY	LEARNING	POINTS	

The	 SoS	 integration	 testing	 process	 was	 critical	 to	 the	 delivery	 of	 the	 final	 product	 in	 the	 Autosys	 Project.	
However,	 the	efficiency	and	quality	of	 the	SoS	 testing	was	affected	by	several	 factors.	By	dealing	proactively	
with	 the	 issues	 and	 shifting	quality	 assurance	 and	 testing	 activities	 left	 instead	of	 adding	 test	 phases	 to	 the	
right	we	regained	control	of	 the	project	progress	and	solution	quality.	All	go-live	dates	were	met	as	planned	
and	we	experienced	satisfied	end-users	and	very	 few	major	defects	after	go-live:	 the	project	 is	 considered	a	
huge	 success.	 Some	 SoS	 integration	 defects	 leaked	 to	 the	 production	 environment	 and	 the	 defect	 scenario	
described	 as	 part	 of	 the	 abstract	 actually	 happened.	 The	 defect	 was	 quickly	 fixed;	 however,	 it	 was	 a	 huge	
reminder	 to	 all,	 and	 our	 first	 key	 learning	 point;	 even	 when	 implementing	 several	 actions	 regarding	 SoS	
integrations	and	 testing,	 you	 cannot	 guarantee	 that	no	defects	will	 leak	 to	 the	production	environment.	You	
constantly	need	to	stay	alert	and	actively	make	use	of	all	 learning	and	experiences	before,	during	and	after	a	
solution	is	set	into	production.	

The	 second	 key	 learning	 point	 was	 that	 an	 SoS	 project	 should	 support	 their	 teams	 by	 having	 an	
organizational	 project	 unit,	 person	 or	 team,	 responsible	 for	 coordinating	 SoS	 integrations	 in	 scope.	 This	



System	Integration	Testing	in	Large	Scale	Agile:	dealing	with	challenges	and	pitfalls:	Page	-	8	
 

includes	 alignment	 of	 plans,	 reporting,	 communication,	 dependencies,	 deployment	 routines,	 test	 data	 and	
routines	 for	 defect	 fixing.	 In	 addition,	 the	 team	 needs	 to	 manage	 that	 user	 stories	 and	 defect	 fixing	 are	
requested	and	delivered	according	to	the	sprint	plans	enabling	early	testing	with	production	candidates	in	the	
test	 environments.	 The	 project	 unit	must	 be	 supported	with	 a	 tool	 for	 tracking	 status	 and	 progress	 across	
different	projects/organizations/state	departments/state	authorities.	When	the	Autosys	project	 is	completed	
and	 goes	 into	 “operations	 mode”,	 we	 plan	 to	 keep	 the	 component	 team	 operational,	 as	 part	 of	 portfolio	
management,	when	developing	larger	releases	and	gradually	pass	the	responsibility	to	the	Scrum	teams	when	
developing	features.	

The	 third	 key	 learning	 point	 was	 that	 the	 greater	 value	 from	 system	 integration	 testing	 arrives	when	
doing	testing	without	any	use	of	stubs	and	mocks.	Many	SI	failures	occur	at	interface	level	due	to	incomplete,	
inconsistent	 or	 misunderstood	 specifications.	 However,	 to	 us,	 lack	 of	 knowledge	 and	 insight	 regarding	 the	
integrated	systems	and	their	use	of	Autosys	data	was	an	important	additional	source	of	SI	failures.	It	was	very	
challenging	to	have	control	of	how	all	transaction	patterns	and	data	combinations	could	affect	other	systems	in	
the	 SoS,	 hence	 early	 testing	 with	 the	 production	 candidate	 was	 the	 best	 way	 of	 identifying	 defects	 and	
misunderstandings.	 It	was	 during	 this	 testing	we	were	 able	 to	 really	 challenge	 the	 product	 and	 identify	 the	
larger	 integration	 issues.	 Furthermore,	 SoS	 integration	 testing	 should	 be	 done	 by	 subject	 matter	 experts	
representing	 the	 different	 systems	 and	 in	 combination	with	 skilled	 test	 experts.	 If	 dynamic	 testing	without	
using	 stubs	 is	 not	 possible	 until	 late	 sprints,	 test	 driven	 design	 involving	 relevant	 project	 teams	 across	
organizations	should	be	performed	during	the	design	phase.	

The	 fourth	 key	 learning	 point	 was	 to	 continuously	 (and	 automated)	 check	 that	 new	 code	 does	 not	
introduce	 defects.	 The	 automated	 checking	 must	 run	 on	 volumes	 of	 data	 to	 demonstrate	 that	 as	 many	 as	
possible	combinations	of	data	produce	the	same	result	 in	the	old	and	new	solution.	The	automated	checking	
should	 be	 performed	 as	 a	 supplement	 to	 the	 manual	 testing	 and	 other	 automated	 testing.	 The	 automated	
checking	 is	 important	 for	 identifying	 regression	 defects	 and	 is	 a	 good	 source	 to	 identify	 misunderstood	
requirements.	The	mechanism	is	important	as	it	frees	up	time	for	the	testers	to	focus	on	experimentation	and	
exploratory	testing.	

The	 fifth	 key	 learning	 point	 was	 that	 the	 team	 doing	 business	 process	 testing	 of	 the	 SoS	 (not	 only	
interface	testing/technical	integration)	needs	to	be	staffed	with	SoS	integration	testing	experts	and	functional	
domain	experts.	 It	 is	 important	that	all	 test	team	members	understand	the	complete	value-chains	 in	the	SoS,	
including	dependencies	and	the	consequence	of	potential	defects	leaking	to	production	for	all	the	integrating	
systems.	

The	sixth	key	learning	point	was	that	system	integration	projects	such	as	Autosys	should	absolutely	be	
delivered	in	an	agile	way,	however	the	level	of	agility	needs	to	be	discussed	and	agreed	upon	when	starting	the	
work	on	a	project	 release.	 If	 the	 level	of	 insecurity	related	 to	data	usage	cross	systems	and	value-chains	are	
medium	to	high,	extra	measures	in	terms	of	additional	planning,	follow	up	on	definitions	of	done	etc.,	should	be	
added	to	the	daily	follow	up	and	management	routines.	

5. ACKNOWLEDGEMENTS	

We	 are	 grateful	 to	 Piet	 Syhler	 for	 helpful	 comments	 and	 guidance	 on	 this	 experience	 report.	We	 thank	 the	
NPRA	and	Accenture	for	all	support	during	the	process	of	writing	this	report.	This	work	was	supported	by	the	
SoS-Agile	(247678)	project,	funded	by	the	Research	Council	of	Norway.	
REFERENCES		
[1]	A.M.	Madni	and	M.	Sievers,	Systems	integration:	Key	perspectives,	experiences,	and	challenges,	INCOSE	J	Syst	Eng	16(4)	2013.	
[2]	W.H.J.	Manthorpe,	Jr.,	The	emerging	joint	system	of	systems:	A	systems	engineering	challenge	and	opportunity	for	APL,	Johns	Hopkins	
APL	Tech	Dig	17	(1996),	305–313.	
[3]	Madni,	Azad	M.,	and	Michael	Sievers.	"System	of	Systems	Integration:	Fundamental	Concepts,	Challenges	and	Opportunities."	Advances	
in	Systems	Engineering	(2014):	1-34.	
[4]	Office	of	the	Undersecretary	of	Defense	for	Acquisition,	Technology,	and	Logistics	(OUSD	AT&L),	Systems	engineering	guide	for	systems	
of	systems,	Washington,	DC,	August	2008.	
[5]	 Institute	of	Electrical	and	Electronics	Engineers.	 IEEE	Standard	Glossary	of	Software	Engineering	Terminology:	ANSI/IEEE	Standard	
610-12-1990.	IEEE	Press:	New	York,	1990.	


