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Abstract— Data classification in large scale systems, such as 

peer-to-peer networks, can be very communication-expensive 

and impractical due to the huge amount of available data and 

lack of central control. Frequent data updates pose even more 

difficulties when applying existing classification techniques in 

peer-to-peer networks. We propose a distributed, scalable and 

robust classification algorithm based on k-nearest neighbor 

estimation. Our algorithm is asynchronous, considers data 

updates and imposes low communication overhead. The 

proposed method uses a content based overlay structure to 

organize data and moderate the number of query 

messages propagated in the network. Simulation results 

show that our algorithm performs efficiently in large scale 

networks. 

Keywords- Classification; K-Nearest Neighbors; Content 

Addressable Network; Peer-to-peer systems. 

I.  INTRODUCTION 

Huge amounts of data are available in large scale systems 
such as peer-to-peer (P2P) networks. Data mining in these 
systems can utilize the distributed resources of data and 
computation. Many applications such as smart 
recommendations, query answering, failure determination, 
and market analysis can benefit from the hidden information 
and patterns in the distributed data. Due to large computation 
overhead, scalability and privacy issues, it is impractical to 
collect the data at different nodes in a central server. In an 
alternative approach, each node can execute the data mining 
algorithm to produce a local model of its data. Some 
approaches transmit these models or representatives of the 
data to a central server for integration [3][4]. However, pure 
distributed data mining approaches do not require a central 
server [2][5]. Datta et al. present an overview of data mining 
in P2P networks [10]. 

Well known classification algorithms like decision tree 
induction [6], nearest-neighbors [7], Bayesian methods [8] 
and Support Vector Machines [9] require data to reside on a 
central site. Majority of the available classification 
techniques have tried to minimize computation costs and 
number of disk accesses. Whereas different requirements 
exist in P2P systems, such as minimizing communication 
overhead, preserving privacy, etc. Special attempts have 
been made to design distributed classification algorithms for 
large scale dynamic P2P environments [11].  

In this paper we introduce a distributed K-Nearest 
Neighbors (KNN) [7] algorithm. We apply our proposed 

algorithm in the Content Addressable Network (CAN) [1], 
which is a well-accepted P2P overlay network supporting 
multidimensional data. In our design neighbor peers 
collaborate to find the k-nearest neighbors of the query. This 
collaboration is guided by the CAN structure to form a local 
algorithm [5]. We generally analyze the complexity of our 
algorithm. The simulation results show that our algorithm 
can efficiently perform classification in P2P networks.  

The rest of the paper is organized as follows. In Section 
2, we review the related work. Section 3 describes the system 
model and basic assumptions. Section 4 elaborates the 
distributed classification algorithm. Simulation results are 
presented in Section 5, and finally, Section 6 presents 
conclusion and future work. 

II. RELATED WORK 

Various proposals exist for classification of data in 
distributed systems [11]. Many of the proposed nearest 
neighbor algorithms assume a centralized collection of data. 
Seidl et al. propose a multi-step k-nearest neighbor search 
algorithm to overcome the shortcomings of single step 
algorithms [12]. Their algorithm tries to minimize the 
number of exact object distance evaluations and is suitable 
for high dimensional and adaptable distance functions.  
Roussopoulos et al. provide a branch and bound algorithm 
for processing k-nearest neighbor queries utilizing the R-tree 
structure [13].  

The majority of distributed nearest neighbor 
classification methods gather data at a central site before 
executing the classification algorithm. Li et al. use k-nearest 
neighbor classification in distributed sensor networks for 
collaborative signal processing [14]. The actual classification 
is performed in a central node which collects the data of the 
other nodes in its region. A monitoring algorithm for k-
nearest neighbor queries over moving objects is proposed by 
Yu et al [15]. They propose two methods based on indexing 
objects or queries, in a two dimensional space. Song et al. 
propose methods for finding k nearest neighbors of a moving 
query point. Their algorithm uses R-tree structure [16]. 

A. K-nearest Neighbor Classification 

Nearest neighbor classifiers [7] are based on learning by 
analogy. They compare a given query tuple with training 
data tuples that are similar to it. Each data tuple is described 
by m attributes. So each tuple represents a point in the m-
dimensional space. Given a query tuple with an unknown 
class attribute, the KNN classifier searches the m-



dimensional space for k data tuples that are closest to the 
query tuple according to a distance function. The query tuple 
is assigned the most common class among these k nearest 
data tuples. To determine the nearest tuples, a suitable 
distance metric such as Euclidean distance should be used. 

B. Content Addressable Network 

CAN [1] considers a virtual m-dimensional Cartesian 
logical coordinate space on a m-torus. The entire coordinate 
space is dynamically partitioned among all the peers in the 
network, such that each peer owns a distinct zone within the 
overall space. A hash function is used to map each (key, 
value) pair in the network to a point in the coordinate space.  
The pair is then stored at the node that owns the zone 
containing the corresponding point. Retrieval of any entry 
corresponding to a key is similar; after applying the hash 
function to the desired key, the related value is retrieved 
from the appropriate zone owner. 

Whenever a new node joins the network, it chooses a 
random point in the coordinate space and joins the zone 
containing that point. The zone owner splits its zone along a 
dimension, chosen on a round robin fashion, and transfers 
the data belonging to half of the zone to the new node. Also 
when a node leaves the network, it assigns its zone to one of 
its neighbor nodes. After any join or leave, the owners of 
neighbor zones should be informed of the new situation. 
Also control messages are propagated when a new data point 
is added to the network. Some other control messages are 
discussed in [1]. 

For efficient routing of queries, any node keeps pointers 
to neighboring zones along each dimension. Any message is 
always forwarded to the neighbor node which is closer to the 
destination zone. 

III. SYSTEM MODEL 

A network of size N is assumed, where each peer stores a 
portion of the available data in the network. Each data tuple, 
d, is represented by a m-dimensional attribute vector 
(d�, d�, … , d� ). The query is also described by a similar 
vector. The peers form an m-dimensional CAN overlay over 
the coordinate space. Attribute vectors are used, instead of 
the hash function, to map data tuples to points in the 
coordinate space. To handle dynamics in network topology 
and also changes in peers’ data, the mechanisms introduced 
in the CAN proposal are employed [1]. 

Two zones are considered adjacent if they share at least 
one point in their boundary. Note that this definition defers 
from the definition of neighboring zones in the CAN 
proposal [1]. Regarding the latter definition, adjacent zones 
reside at most two hops away from each other. The distance 
of any data tuple to an arbitrary zone is the length of the 
shortest line between the data tuple and the zone boundary. 
The zone owned by a peer and the data tuples mapped to that 
zone, are called the local zone and local data of that peer 
respectively. When a query is initiated, the zone containing 
the query tuple is called the query local zone and the owner 
of this zone is referred to as query owner. Also the term 
region refers to a collection of at least one zone in the CAN 
overlay. 

IV. THE DISTRIBUTED CLASSIFICATION ALGORITHM 

As a consequence of using attribute vectors to map data 
tuples to the coordinate space, similar data tuples will reside 
in approximate zones. The basic idea of our algorithm is that 
the nearest neighbors of a query are discovered, with high 
probability, in the query local zone and its approximate 
zones. This probability is directly proportional to the density 
of data objects in the zones and inversely proportional to the 
value of k in the KNN algorithm. 

The CAN overlay can be leveraged to find the nearest 
neighbors of a query in an iterative manner. Figure 1 shows 
the distributed k-nearest neighbors algorithm. The symbols 
used in the algorithm are summarized in table 1. When a 
query q is initiated by a peer, it is routed to the query local 
zone and the query owner initiates the KNN algorithm. In 
any iteration, a search region (SR) consisting of zones which 
may contain the k nearest neighbors of q is investigated. 
Also a candidate data set (CS) is maintained in different 
iterations. This set contains the data tuples that may be 
among the k nearest neighbors of q. The k nearest neighbors 
of q will eventually be excluded from this set and added to 
the final answer set. 

The main part of the distributed algorithm for finding the 
k nearest neighbors is iteration on three tasks: 

1) Searching the current search region for nearest data 

tuples (lines 7-16 of algorithm 1). 

2) Updating the final answer set (lines 17-23 of 

algorithm 1). 

3) Determining the next search region (lines 24-29 of 

algorithm 1) 
The above tasks are repeated until the final answer set 

size is k or the search region for the next iteration is empty.  
Note that for correct behavior of the algorithm it is necessary 
that the structure of the zones containing k nearest neighbors 
of q remain unchanged. Also as query owner stores contact 
information of zone owners in the search region, if these 
information changes additional routing is required to 
complete the algorithm. 

 In the next subsections each task is explored in depth. In 
the following sections the subscript of the symbols in table 1, 
is a representative of the iteration number. 

A. Searching the current search region 

The first task of algorithm 1 consists of sending query 
messages by the query owner to all the zone owners in the 
current search region. The search region for the first iteration 
is the query local zone, thus in the first iteration the query 
owner will send a query message to itself. At the beginning 
of any iteration if the search region is empty, then k − |KN| 
data tuples with minimum distance to q are extracted from 
CS and added to KN. The algorithm is then terminated. The 
candidate data set and the final answer set are empty at the 
beginning of the algorithm.  

All of the nodes that receive a query message should 
search their local zones for candidate data tuples that may be 
among the k nearest neighbors of q. A subset of their local 
data satisfying the conditions of lemma 1 is sent back to the 
query   local   zone   owner   which   will  insert  them  in  the  



TABLE I.  DESCRIPTION OF SYMBOLS 

Symbol Description 

KN The final answer set containing k nearest neighbors 

CS The set containing candidate data tuples 

SR The search region 

SZ Previously searched zones 

BDS The set containing distances to adjacent zones 

RZ The set containing received information of  adjacent zones 

candidate data set. They will also compute the distance 
between q and all of their adjacent zones, and send the set of 
adjacent zone owners’ addresses along with the computed 
distances to the query local zone owner. This information 
will be utilized later in the algorithm. 

Lemma 1. Let D�� denote the data of zone z′. The owner 
of zone z′ which has received the query message in iteration 
i, will reply back with a subset SD�� of its local data, such 
that |SD��| ≤ (k − |KN���|) . Also the following property 
holds:   

 ∀ d ∈ SD��. ∀d′ ∈ D��\SD��. Dist(q, d′) ≥ Dist(q, d) (1) 

If |CS���| > (k − |KN���|), then we also have: 

 ∀ d ∈ SD��. Dist(q, d) ≤ max {Dist(q, d′)|d′ ∈ CS���} (2) 

First note that size of SD�� is at most equal to number of 
desired data tuples, k − |KN���| , so that no extra data is 
transmitted. Inequality (1) emphasizes that the data tuples in 
SD�� have minimum distance to q among all the data tuples 

in D�� . Also if size of  CS���  is greater than number of 
desired data tuples, no data tuple which has greater distance 
to q than all the data tuples in CS���, can be among the k 
nearest neighbors of q, thus (2) should hold. 

After receiving replies from all of the nodes in the search 

region, the query owner will set CS� = ⋃ SD����∈+,-
⋃CS���. 

B. Updating the final answer set 

After obtaining CS�  in the previous task, the query owner 
should now examine CS� to extract suitable data tuples and 
add them to the final answer set.  

Lemma 2. Let Di be the set of data tuples mapped to 
region SR�. If C is the maximum subset of CS� such that   

∀ d ∈ C . Dist(q, d) <
min{Dist(q, z′)|z′is adjacent to SR�  ∧  z′ ∉   ⋃ SR7

�
78� }, 

then KN� = KN��� ∪ C  and .  CS� = CS� \C . Note that if 
|KN��� ∪ C| > ;, then k points with minimum distance to q 
will be kept. 
Using lemma 2, any candidate data tuple which is closer to q 
than to any adjacent zone of SR�  which is not investigated 
before, is extracted from CS�  and added to KN�. We have the 

following statement:∀ d ∈ ⋃ D7
�
78�  . ∀ d′ ∈ CS�  Dist(q, d) ≥

Dist(q, d′) . If this inequality does not hold for a pair of data 

tuples d  and d′  such that d ∈ ⋃ D7
�
78�  and  d′ ∈ CS� , then d 

can replace d′ in  the set  of  candidate  data  tuples. Also the 

Algorithm 1. Finding k nearest neighbors of q 

z: query local zone 

O�: query owner 

O�. Find_k_nearest_neighbors(q,k) 

1: KN = ∅, SR = z, SZ = ∅, CS = ∅, BDS = ∅  

2: while |KN| < ; do  

3:   if |SR|is zero then 

4:     add k − |KN| tuples from CS  with minimum distance   

from q, to KN 

5:     terminate the algorithm 

6:   end if 

7:   RZ= ∅ 

8:   send query message to owners of zones in SR with 

parameters ( q, k- |KN| , |CS| , max{Dist(q, d)| d ∈
CS}) 

9:   RZ = ∅    // the received candidate adjacent zones 

10: while not received reply from a zone owner in SR do 

11:   receive message from a zone owner o in region SR  

12:   CS= CS ⋃ received data tuples        

13:   RZ =  RZ ⋃ received adjacent zones  
14:   BDS =  BDS ⋃ received boundary distances 

15: end while 

16: SZ = SZ ⋃ SR 

17: minBDS = min{Dist(q, b)|b ∈ BDS} 

18: for i=1 to |CS| do 

19:   if Dist(q, d� ∈ CS) < minBDS then 

20:     KN =  KN ⋃  {d�}    //if |KN| = k replace one of the  

                   tuples in KNHwith d� if the overall sum of   

                   distances is improved 

21:     CS = CS\{d�} 

22:   end if 

23: end for 

24: maxD = max{Dist(q, d�)|d� ∈ CS} 

25: if (|CS| < (k − |KN|)) then 

26:   SR = RZ\{z|z ∈ SZ} 

27: else           

28:   SR = {z′ | z′ ∈ RZ ∧ Dist(q, z′) < maxD}\{z|z ∈ SZ}  
29: end if 

end while 

Figure 1.  The distributed KNN algorithm 

following property holds for any data tuple d belonging to an 
adjacent zone: 

∀d ∈ C. ∀d′ ∈ z�|(z�is adjacent to SR� ⋀ z� ∉
        ⋃ SR7

�
78� ). (Dist(q, d�) ≥ Dist(q, z�) ≥ Dist(q, d)}.  (3) 

So d is one of the k nearest neighbors of q. 

C. Determining the next search region 

If |KN�| <  ; , the search area should be expanded. 
Lemma 3 is used to construct the search region for the next 
iteration. 

Lemma 3. In any iteration we have: 



 ∀i > 1. ∀J < K. SR� ∩ SR7 = ∅    (4) 

Also for any zone z�  which is adjacent to  SR�  and  z′ ∉
  ⋃ SR7

�
78�  we have: 

If OCSHO < ; − |KN�| then z� ∈ SR�Q� 

else  ( ∃ d ∈ CSH . Dist (q, d) > TKUV(q, z�)  ⇒  z′ ∈ SR�Q� (5)    

If less than k − |KN�|  data tuples are available in the 
candidate data set, then any zone adjacent to the current 
search region which is not investigated before should be 
included in the next search region, as it may contain closer 
points to the query. Else, the distance between q and adjacent 
zones should be calculated. Only those zones are included in 
the next search region that the distance between them and q 
is less than the distance of q to at least one of the candidate 
data tuples. Consequently these zones may contain data 
tuples that are closer to the query. The distance between q 
and zones adjacent to the current search region is calculated 
by zones in SR� and sent to the query owner in task 1. Also 
addresses of the adjacent zone owners, is sent to the query 
owner so that in subsequent iterations, it can contact the 
adjacent zones directly. Note that SR�Q� does not contain any 
zones searched in the previous iterations.  

If the total number of data tuples in the network is greater 
than k, then the termination of the algorithm is guaranteed.  
Figure 2 illustrates examples of non expandable (a) and 
expandable (b) search regions in a 2-dimensional CAN 
overlay for k=5. In Figure 2 (b), the distance from q to the 
zones z2-z4 is less than the distance from q to data tuple 1. 
Therefore these zones should be investigated in the second 
iteration. 

V. ANALYSIS AND EXPERIMENTAL RESULTS 

In this section we present a general analysis on the 
message complexity of our algorithm in a static network.   

 

 

Figure 2.  Examples of (a) nonexpandable and (b) expandable search 

regions for k=5. 

Recall the three steps of the algorithm. Note that only 
step 1 imposes communication in the network. In any 
iteration the query owner sends a message to all zone owners 
in the search region. As the search regions in different 
iterations do not have any zones in common, no zone 

receives more than one message from the query owner. Also 
in other than the first iteration the query owner receives 
addresses of adjacent zones from the zones in the search 
region. So it can contact them directly without routing the 
message in the CAN overlay. So if we could determine the 
maximum number of zones investigated in the algorithm, the 
number of messages could be calculated.  

Define the diameter of an m-dimensional hypercube as 
the largest distance between any two of its vertices. Assume 
that the minimal hypercube centered at the q, which contains 
at least k data tuples other than q, has diameter l. So the 
distance from q to any of these k data tuples is at most l. To 
determine the maximum number of zones searched by the 
algorithm, consider the minimal m-dimensional hypercube 
centered at q, which contains the union of all search regions 
in different iterations. By extending lemma 3, it is induced 
that the edge size of this hypercube should be at most 2l + ε, 
where ε → 0, so that the algorithm investigates all the zones 
that may contain the k nearest neighbors. This observation  
shows that   the   communication overhead of our algorithm 
is independent of the network size and it is considered a local 
algorithm [5]. Having the average number of data tuples 
contained in any zone of the CAN overlay, the minimum 
number of zones that are investigated can be determined. 

We conducted a simulation to evaluate our proposed 
algorithm in a CAN network. We used two different 
synthetically generated data sets containing 20000 data 
tuples in our experiments. Figure 3 shows the snapshots of 
the test data used to evaluate the algorithm, which are 
generated using the uniform and 5 Gaussian distributions 
with pre selected centers and standard deviation. Each 
simulation is executed 10 times for random queries and the 
average value is displayed. Similarity is measured using 
Euclidean distance.  

We have also compared our algorithm with the KNN 
algorithm executed on P2PR-tree [17]. We extended the NN 
algorithm proposed in [18] for KNN by modifying the 
pruning rule for k data tuples, and implemented it on top of 
P2PR-tree. As each node in the P2PR-tree keeps information 
about the top level of the tree, it can initiate the KNN 
algorithm. Different parameters used in P2PR-tree are set as 
follows: number of blocks and groups in each block is set to 
10, number of routers of each node is set to 1, GMax and 
SGMax are set to 50 and minimum number of nodes in a 
subgroup is set to 20. Tree vertices other than blocks and 
leaves have two children. The tree node splitting algorithm is 
introduced in [20]. We consider a power law distribution of 
data among the peers. Each peer is assigned a maximum of 
100 data tuples based on the Sarioiu distribution [19].  

As our algorithm uses CAN overlay network as its base, 
it is useful to consider the message complexity incurred by 
maintaining this overlay. To better reveal the efficiency of 
the algorithm, we have compared the message complexity of 
our algorithm with the simple distributed KNN algorithm in 
which queries are broadcasted in the network. In the latter 
algorithm an unstructured P2P network is considered. In 
such  a  network, a  new  node  sends  join  requests  to  some  

 



 

Figure 3.  (a) Two dimensional uniform data, (b) Two dimensional mixture of Gaussian data sets 

 

Figure 4.  Number of messages incurred in the CAN network and 

unstructured network 

 
Figure 5.  Query messages incurred by algorithms when number of nodes 

is increased 

randomly chosen nodes. But when leaving the network no 
message overload is incurred. 

Figure 4 shows the average number of messages per 
request in a dynamic CAN network compared to an 
unstructured network. A request can be a join, leave, or KNN 
query request and also addition of new data to the network. 
As seen in the figure, although our algorithm imposes high 
control traffic load in the network, it outperforms executing 
the KNN algorithm in the unstructured network, due to the 
low query traffic. 

Figure 5 shows the message complexity of our algorithm 
and the KNN algorithm in P2PR-tree under different 
network sizes. As observed, the number of query messages 
for Gaussian data is larger than uniform data. In the former 
case, there are sparse areas in the network with few data 
tuples. If the query resides in these areas, more query 
messages should be propagated in the network. Also, Figure 
5 exposes the efficiency of our algorithm compared to KNN 
in P2PR-tree. 

The performance of our algorithm when the nodes form a 
regular m-dimensional mesh is shown in Figure 6 and Figure 
7. In such networks, number of adjacent zones of a particular 
zone is proportional to number of dimensions. So as 
observed in Figure 6, when number of dimensions is 10, the 
query  traffic  is  much  less  than  the same  configuration  in  

 

Figure 6.  Effect of changing number of dimensions on number of query 

messages 



 

Figure 7.  Effect of changing the value of parameter k on number of query 

messages 

Figure 5. Obviously when number of dimensions increases, 
more query messages are propagated through the network. 
Figure 7 shows the effect of changing the parameter k in the 
KNN algorithm, on number of query messages. As observed 
by increasing this parameter, number of query messages 
increases. The parameter k has a more visible effect when 
the data tuples are distributed uniformly in the network. This 
is due to the fact that the average number of nodes’ data is 
the same in the uniform configuration. Therefore by 
increasing the parameter k, eventually more zones should be 
investigated. 

I. CONCLUSION 

In this paper we studied classification of data objects in 
P2P networks. We presented a new distributed algorithm for 
finding the k nearest neighbors of a query in P2P networks. 
Our algorithm uses a content addressable network to 
organize data and moderate the number of query messages 
propagated in the network. Using pruning rules, the number 
of nodes that should be prompted to find the k nearest 
neighbors is decreased. Simulation results show the 
effectiveness of our algorithm in different configuration. We 
have presented comparisons with the KNN algorithm 
executed in an unstructured P2P network and in a network 
with P2PR-tree structure. Extending our algorithm to 
dynamically adapt the query answer, when nodes leave and 
join the network or k is updated, remains as future work. 
Also examining the effectiveness of our algorithm with real 
world non-numerical data sets can further expose its 
strengths and weaknesses. 
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