
K-Nearest Neighbor Search in Peer-to-Peer Systems

Hoda Mashayekhi, Jafar Habibi

Computer Engineering Department

Sharif University of Technology

Tehran, Iran

mashayekhi@ce.sharif.edu, jhabibi@sharif.edu

Abstract— Data classification in large scale systems, such as

peer-to-peer networks, can be very communication-expensive

and impractical due to the huge amount of available data and

lack of central control. Frequent data updates pose even more

difficulties when applying existing classification techniques in

peer-to-peer networks. We propose a distributed, scalable and

robust classification algorithm based on k-nearest neighbor

estimation. Our algorithm is asynchronous, considers data

updates and imposes low communication overhead. The

proposed method uses a content based overlay structure to

organize data and moderate the number of query

messages propagated in the network. Simulation results

show that our algorithm performs efficiently in large scale

networks.

Keywords- Classification; K-Nearest Neighbors; Content

Addressable Network; Peer-to-peer systems.

I. INTRODUCTION

Huge amounts of data are available in large scale systems
such as peer-to-peer (P2P) networks. Data mining in these
systems can utilize the distributed resources of data and
computation. Many applications such as smart
recommendations, query answering, failure determination,
and market analysis can benefit from the hidden information
and patterns in the distributed data. Due to large computation
overhead, scalability and privacy issues, it is impractical to
collect the data at different nodes in a central server. In an
alternative approach, each node can execute the data mining
algorithm to produce a local model of its data. Some
approaches transmit these models or representatives of the
data to a central server for integration [3][4]. However, pure
distributed data mining approaches do not require a central
server [2][5]. Datta et al. present an overview of data mining
in P2P networks [10].

Well known classification algorithms like decision tree
induction [6], nearest-neighbors [7], Bayesian methods [8]
and Support Vector Machines [9] require data to reside on a
central site. Majority of the available classification
techniques have tried to minimize computation costs and
number of disk accesses. Whereas different requirements
exist in P2P systems, such as minimizing communication
overhead, preserving privacy, etc. Special attempts have
been made to design distributed classification algorithms for
large scale dynamic P2P environments [11].

In this paper we introduce a distributed K-Nearest
Neighbors (KNN) [7] algorithm. We apply our proposed

algorithm in the Content Addressable Network (CAN) [1],
which is a well-accepted P2P overlay network supporting
multidimensional data. In our design neighbor peers
collaborate to find the k-nearest neighbors of the query. This
collaboration is guided by the CAN structure to form a local
algorithm [5]. We generally analyze the complexity of our
algorithm. The simulation results show that our algorithm
can efficiently perform classification in P2P networks.

The rest of the paper is organized as follows. In Section
2, we review the related work. Section 3 describes the system
model and basic assumptions. Section 4 elaborates the
distributed classification algorithm. Simulation results are
presented in Section 5, and finally, Section 6 presents
conclusion and future work.

II. RELATED WORK

Various proposals exist for classification of data in
distributed systems [11]. Many of the proposed nearest
neighbor algorithms assume a centralized collection of data.
Seidl et al. propose a multi-step k-nearest neighbor search
algorithm to overcome the shortcomings of single step
algorithms [12]. Their algorithm tries to minimize the
number of exact object distance evaluations and is suitable
for high dimensional and adaptable distance functions.
Roussopoulos et al. provide a branch and bound algorithm
for processing k-nearest neighbor queries utilizing the R-tree
structure [13].

The majority of distributed nearest neighbor
classification methods gather data at a central site before
executing the classification algorithm. Li et al. use k-nearest
neighbor classification in distributed sensor networks for
collaborative signal processing [14]. The actual classification
is performed in a central node which collects the data of the
other nodes in its region. A monitoring algorithm for k-
nearest neighbor queries over moving objects is proposed by
Yu et al [15]. They propose two methods based on indexing
objects or queries, in a two dimensional space. Song et al.
propose methods for finding k nearest neighbors of a moving
query point. Their algorithm uses R-tree structure [16].

A. K-nearest Neighbor Classification

Nearest neighbor classifiers [7] are based on learning by
analogy. They compare a given query tuple with training
data tuples that are similar to it. Each data tuple is described
by m attributes. So each tuple represents a point in the m-
dimensional space. Given a query tuple with an unknown
class attribute, the KNN classifier searches the m-

dimensional space for k data tuples that are closest to the
query tuple according to a distance function. The query tuple
is assigned the most common class among these k nearest
data tuples. To determine the nearest tuples, a suitable
distance metric such as Euclidean distance should be used.

B. Content Addressable Network

CAN [1] considers a virtual m-dimensional Cartesian
logical coordinate space on a m-torus. The entire coordinate
space is dynamically partitioned among all the peers in the
network, such that each peer owns a distinct zone within the
overall space. A hash function is used to map each (key,
value) pair in the network to a point in the coordinate space.
The pair is then stored at the node that owns the zone
containing the corresponding point. Retrieval of any entry
corresponding to a key is similar; after applying the hash
function to the desired key, the related value is retrieved
from the appropriate zone owner.

Whenever a new node joins the network, it chooses a
random point in the coordinate space and joins the zone
containing that point. The zone owner splits its zone along a
dimension, chosen on a round robin fashion, and transfers
the data belonging to half of the zone to the new node. Also
when a node leaves the network, it assigns its zone to one of
its neighbor nodes. After any join or leave, the owners of
neighbor zones should be informed of the new situation.
Also control messages are propagated when a new data point
is added to the network. Some other control messages are
discussed in [1].

For efficient routing of queries, any node keeps pointers
to neighboring zones along each dimension. Any message is
always forwarded to the neighbor node which is closer to the
destination zone.

III. SYSTEM MODEL

A network of size N is assumed, where each peer stores a
portion of the available data in the network. Each data tuple,
d, is represented by a m-dimensional attribute vector
(d�, d�, … , d�). The query is also described by a similar
vector. The peers form an m-dimensional CAN overlay over
the coordinate space. Attribute vectors are used, instead of
the hash function, to map data tuples to points in the
coordinate space. To handle dynamics in network topology
and also changes in peers’ data, the mechanisms introduced
in the CAN proposal are employed [1].

Two zones are considered adjacent if they share at least
one point in their boundary. Note that this definition defers
from the definition of neighboring zones in the CAN
proposal [1]. Regarding the latter definition, adjacent zones
reside at most two hops away from each other. The distance
of any data tuple to an arbitrary zone is the length of the
shortest line between the data tuple and the zone boundary.
The zone owned by a peer and the data tuples mapped to that
zone, are called the local zone and local data of that peer
respectively. When a query is initiated, the zone containing
the query tuple is called the query local zone and the owner
of this zone is referred to as query owner. Also the term
region refers to a collection of at least one zone in the CAN
overlay.

IV. THE DISTRIBUTED CLASSIFICATION ALGORITHM

As a consequence of using attribute vectors to map data
tuples to the coordinate space, similar data tuples will reside
in approximate zones. The basic idea of our algorithm is that
the nearest neighbors of a query are discovered, with high
probability, in the query local zone and its approximate
zones. This probability is directly proportional to the density
of data objects in the zones and inversely proportional to the
value of k in the KNN algorithm.

The CAN overlay can be leveraged to find the nearest
neighbors of a query in an iterative manner. Figure 1 shows
the distributed k-nearest neighbors algorithm. The symbols
used in the algorithm are summarized in table 1. When a
query q is initiated by a peer, it is routed to the query local
zone and the query owner initiates the KNN algorithm. In
any iteration, a search region (SR) consisting of zones which
may contain the k nearest neighbors of q is investigated.
Also a candidate data set (CS) is maintained in different
iterations. This set contains the data tuples that may be
among the k nearest neighbors of q. The k nearest neighbors
of q will eventually be excluded from this set and added to
the final answer set.

The main part of the distributed algorithm for finding the
k nearest neighbors is iteration on three tasks:

1) Searching the current search region for nearest data

tuples (lines 7-16 of algorithm 1).

2) Updating the final answer set (lines 17-23 of

algorithm 1).

3) Determining the next search region (lines 24-29 of

algorithm 1)
The above tasks are repeated until the final answer set

size is k or the search region for the next iteration is empty.
Note that for correct behavior of the algorithm it is necessary
that the structure of the zones containing k nearest neighbors
of q remain unchanged. Also as query owner stores contact
information of zone owners in the search region, if these
information changes additional routing is required to
complete the algorithm.

 In the next subsections each task is explored in depth. In
the following sections the subscript of the symbols in table 1,
is a representative of the iteration number.

A. Searching the current search region

The first task of algorithm 1 consists of sending query
messages by the query owner to all the zone owners in the
current search region. The search region for the first iteration
is the query local zone, thus in the first iteration the query
owner will send a query message to itself. At the beginning
of any iteration if the search region is empty, then k − |KN|
data tuples with minimum distance to q are extracted from
CS and added to KN. The algorithm is then terminated. The
candidate data set and the final answer set are empty at the
beginning of the algorithm.

All of the nodes that receive a query message should
search their local zones for candidate data tuples that may be
among the k nearest neighbors of q. A subset of their local
data satisfying the conditions of lemma 1 is sent back to the
query local zone owner which will insert them in the

TABLE I. DESCRIPTION OF SYMBOLS

Symbol Description

KN The final answer set containing k nearest neighbors

CS The set containing candidate data tuples

SR The search region

SZ Previously searched zones

BDS The set containing distances to adjacent zones

RZ The set containing received information of adjacent zones

candidate data set. They will also compute the distance
between q and all of their adjacent zones, and send the set of
adjacent zone owners’ addresses along with the computed
distances to the query local zone owner. This information
will be utilized later in the algorithm.

Lemma 1. Let D�� denote the data of zone z′. The owner
of zone z′ which has received the query message in iteration
i, will reply back with a subset SD�� of its local data, such
that |SD��| ≤ (k − |KN���|) . Also the following property
holds:

 ∀ d ∈ SD��. ∀d′ ∈ D��\SD��. Dist(q, d′) ≥ Dist(q, d) (1)

If |CS���| > (k − |KN���|), then we also have:

 ∀ d ∈ SD��. Dist(q, d) ≤ max {Dist(q, d′)|d′ ∈ CS���} (2)

First note that size of SD�� is at most equal to number of
desired data tuples, k − |KN���| , so that no extra data is
transmitted. Inequality (1) emphasizes that the data tuples in
SD�� have minimum distance to q among all the data tuples

in D�� . Also if size of CS��� is greater than number of
desired data tuples, no data tuple which has greater distance
to q than all the data tuples in CS���, can be among the k
nearest neighbors of q, thus (2) should hold.

After receiving replies from all of the nodes in the search

region, the query owner will set CS� = ⋃ SD����∈+,-
⋃CS���.

B. Updating the final answer set

After obtaining CS� in the previous task, the query owner
should now examine CS� to extract suitable data tuples and
add them to the final answer set.

Lemma 2. Let Di be the set of data tuples mapped to
region SR�. If C is the maximum subset of CS� such that

∀ d ∈ C . Dist(q, d) <
min{Dist(q, z′)|z′is adjacent to SR� ∧ z′ ∉ ⋃ SR7

�
78� },

then KN� = KN��� ∪ C and . CS� = CS� \C . Note that if
|KN��� ∪ C| > ;, then k points with minimum distance to q
will be kept.
Using lemma 2, any candidate data tuple which is closer to q
than to any adjacent zone of SR� which is not investigated
before, is extracted from CS� and added to KN�. We have the

following statement:∀ d ∈ ⋃ D7
�
78� . ∀ d′ ∈ CS� Dist(q, d) ≥

Dist(q, d′) . If this inequality does not hold for a pair of data

tuples d and d′ such that d ∈ ⋃ D7
�
78� and d′ ∈ CS� , then d

can replace d′ in the set of candidate data tuples. Also the

Algorithm 1. Finding k nearest neighbors of q

z: query local zone

O�: query owner

O�. Find_k_nearest_neighbors(q,k)

1: KN = ∅, SR = z, SZ = ∅, CS = ∅, BDS = ∅

2: while |KN| < ; do

3: if |SR|is zero then

4: add k − |KN| tuples from CS with minimum distance

from q, to KN

5: terminate the algorithm

6: end if

7: RZ= ∅

8: send query message to owners of zones in SR with

parameters (q, k- |KN| , |CS| , max{Dist(q, d)| d ∈
CS})

9: RZ = ∅ // the received candidate adjacent zones

10: while not received reply from a zone owner in SR do

11: receive message from a zone owner o in region SR

12: CS= CS ⋃ received data tuples

13: RZ = RZ ⋃ received adjacent zones
14: BDS = BDS ⋃ received boundary distances

15: end while

16: SZ = SZ ⋃ SR

17: minBDS = min{Dist(q, b)|b ∈ BDS}

18: for i=1 to |CS| do

19: if Dist(q, d� ∈ CS) < minBDS then

20: KN = KN ⋃ {d�} //if |KN| = k replace one of the

 tuples in KNHwith d� if the overall sum of

 distances is improved

21: CS = CS\{d�}

22: end if

23: end for

24: maxD = max{Dist(q, d�)|d� ∈ CS}

25: if (|CS| < (k − |KN|)) then

26: SR = RZ\{z|z ∈ SZ}

27: else

28: SR = {z′ | z′ ∈ RZ ∧ Dist(q, z′) < maxD}\{z|z ∈ SZ}
29: end if

end while

Figure 1. The distributed KNN algorithm

following property holds for any data tuple d belonging to an
adjacent zone:

∀d ∈ C. ∀d′ ∈ z�|(z�is adjacent to SR� ⋀ z� ∉
 ⋃ SR7

�
78�). (Dist(q, d�) ≥ Dist(q, z�) ≥ Dist(q, d)}. (3)

So d is one of the k nearest neighbors of q.

C. Determining the next search region

If |KN�| < ; , the search area should be expanded.
Lemma 3 is used to construct the search region for the next
iteration.

Lemma 3. In any iteration we have:

 ∀i > 1. ∀J < K. SR� ∩ SR7 = ∅ (4)

Also for any zone z� which is adjacent to SR� and z′ ∉
 ⋃ SR7

�
78� we have:

If OCSHO < ; − |KN�| then z� ∈ SR�Q�

else (∃ d ∈ CSH . Dist (q, d) > TKUV(q, z�) ⇒ z′ ∈ SR�Q� (5)

If less than k − |KN�| data tuples are available in the
candidate data set, then any zone adjacent to the current
search region which is not investigated before should be
included in the next search region, as it may contain closer
points to the query. Else, the distance between q and adjacent
zones should be calculated. Only those zones are included in
the next search region that the distance between them and q
is less than the distance of q to at least one of the candidate
data tuples. Consequently these zones may contain data
tuples that are closer to the query. The distance between q
and zones adjacent to the current search region is calculated
by zones in SR� and sent to the query owner in task 1. Also
addresses of the adjacent zone owners, is sent to the query
owner so that in subsequent iterations, it can contact the
adjacent zones directly. Note that SR�Q� does not contain any
zones searched in the previous iterations.

If the total number of data tuples in the network is greater
than k, then the termination of the algorithm is guaranteed.
Figure 2 illustrates examples of non expandable (a) and
expandable (b) search regions in a 2-dimensional CAN
overlay for k=5. In Figure 2 (b), the distance from q to the
zones z2-z4 is less than the distance from q to data tuple 1.
Therefore these zones should be investigated in the second
iteration.

V. ANALYSIS AND EXPERIMENTAL RESULTS

In this section we present a general analysis on the
message complexity of our algorithm in a static network.

Figure 2. Examples of (a) nonexpandable and (b) expandable search

regions for k=5.

Recall the three steps of the algorithm. Note that only
step 1 imposes communication in the network. In any
iteration the query owner sends a message to all zone owners
in the search region. As the search regions in different
iterations do not have any zones in common, no zone

receives more than one message from the query owner. Also
in other than the first iteration the query owner receives
addresses of adjacent zones from the zones in the search
region. So it can contact them directly without routing the
message in the CAN overlay. So if we could determine the
maximum number of zones investigated in the algorithm, the
number of messages could be calculated.

Define the diameter of an m-dimensional hypercube as
the largest distance between any two of its vertices. Assume
that the minimal hypercube centered at the q, which contains
at least k data tuples other than q, has diameter l. So the
distance from q to any of these k data tuples is at most l. To
determine the maximum number of zones searched by the
algorithm, consider the minimal m-dimensional hypercube
centered at q, which contains the union of all search regions
in different iterations. By extending lemma 3, it is induced
that the edge size of this hypercube should be at most 2l + ε,
where ε → 0, so that the algorithm investigates all the zones
that may contain the k nearest neighbors. This observation
shows that the communication overhead of our algorithm
is independent of the network size and it is considered a local
algorithm [5]. Having the average number of data tuples
contained in any zone of the CAN overlay, the minimum
number of zones that are investigated can be determined.

We conducted a simulation to evaluate our proposed
algorithm in a CAN network. We used two different
synthetically generated data sets containing 20000 data
tuples in our experiments. Figure 3 shows the snapshots of
the test data used to evaluate the algorithm, which are
generated using the uniform and 5 Gaussian distributions
with pre selected centers and standard deviation. Each
simulation is executed 10 times for random queries and the
average value is displayed. Similarity is measured using
Euclidean distance.

We have also compared our algorithm with the KNN
algorithm executed on P2PR-tree [17]. We extended the NN
algorithm proposed in [18] for KNN by modifying the
pruning rule for k data tuples, and implemented it on top of
P2PR-tree. As each node in the P2PR-tree keeps information
about the top level of the tree, it can initiate the KNN
algorithm. Different parameters used in P2PR-tree are set as
follows: number of blocks and groups in each block is set to
10, number of routers of each node is set to 1, GMax and
SGMax are set to 50 and minimum number of nodes in a
subgroup is set to 20. Tree vertices other than blocks and
leaves have two children. The tree node splitting algorithm is
introduced in [20]. We consider a power law distribution of
data among the peers. Each peer is assigned a maximum of
100 data tuples based on the Sarioiu distribution [19].

As our algorithm uses CAN overlay network as its base,
it is useful to consider the message complexity incurred by
maintaining this overlay. To better reveal the efficiency of
the algorithm, we have compared the message complexity of
our algorithm with the simple distributed KNN algorithm in
which queries are broadcasted in the network. In the latter
algorithm an unstructured P2P network is considered. In
such a network, a new node sends join requests to some

Figure 3. (a) Two dimensional uniform data, (b) Two dimensional mixture of Gaussian data sets

Figure 4. Number of messages incurred in the CAN network and

unstructured network

Figure 5. Query messages incurred by algorithms when number of nodes

is increased

randomly chosen nodes. But when leaving the network no
message overload is incurred.

Figure 4 shows the average number of messages per
request in a dynamic CAN network compared to an
unstructured network. A request can be a join, leave, or KNN
query request and also addition of new data to the network.
As seen in the figure, although our algorithm imposes high
control traffic load in the network, it outperforms executing
the KNN algorithm in the unstructured network, due to the
low query traffic.

Figure 5 shows the message complexity of our algorithm
and the KNN algorithm in P2PR-tree under different
network sizes. As observed, the number of query messages
for Gaussian data is larger than uniform data. In the former
case, there are sparse areas in the network with few data
tuples. If the query resides in these areas, more query
messages should be propagated in the network. Also, Figure
5 exposes the efficiency of our algorithm compared to KNN
in P2PR-tree.

The performance of our algorithm when the nodes form a
regular m-dimensional mesh is shown in Figure 6 and Figure
7. In such networks, number of adjacent zones of a particular
zone is proportional to number of dimensions. So as
observed in Figure 6, when number of dimensions is 10, the
query traffic is much less than the same configuration in

Figure 6. Effect of changing number of dimensions on number of query

messages

Figure 7. Effect of changing the value of parameter k on number of query

messages

Figure 5. Obviously when number of dimensions increases,
more query messages are propagated through the network.
Figure 7 shows the effect of changing the parameter k in the
KNN algorithm, on number of query messages. As observed
by increasing this parameter, number of query messages
increases. The parameter k has a more visible effect when
the data tuples are distributed uniformly in the network. This
is due to the fact that the average number of nodes’ data is
the same in the uniform configuration. Therefore by
increasing the parameter k, eventually more zones should be
investigated.

I. CONCLUSION

In this paper we studied classification of data objects in
P2P networks. We presented a new distributed algorithm for
finding the k nearest neighbors of a query in P2P networks.
Our algorithm uses a content addressable network to
organize data and moderate the number of query messages
propagated in the network. Using pruning rules, the number
of nodes that should be prompted to find the k nearest
neighbors is decreased. Simulation results show the
effectiveness of our algorithm in different configuration. We
have presented comparisons with the KNN algorithm
executed in an unstructured P2P network and in a network
with P2PR-tree structure. Extending our algorithm to
dynamically adapt the query answer, when nodes leave and
join the network or k is updated, remains as future work.
Also examining the effectiveness of our algorithm with real
world non-numerical data sets can further expose its
strengths and weaknesses.

REFERENCES

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A
scalable content addressable network," Proc. 2001 conference on
Applications, technologies, architectures, and protocols for computer
communications, ACM Press, 2001, pp. 161-172, doi:
10.1145/383059.383072.

[2] M. Li, G. Lee, W. C. Lee, and A. Sivasubramaniam, "PENS: An
algorithm for density-based clustering in peer-to-peer systems," Proc.
1st international conference on Scalable information systems, ACM
Press, 2006, Article No. 39, doi: 10.1145/1146847.1146886.

[3] J. da Silva, C. Giannella, R. Bhargava, H. Kargupta, and M. Klusch,
"Distributed Data Mining and Agents," Eng. Applications of
Artificial Intelligence, vol. 18 (7), 2005, pp. 791-807, doi:
10.1016/j.engappai.2005.06.004.

[4] E. Januzaj, H. P. Kriegel, and M. Pfeifle, "DBDC: Density Based
Distributed Clustering," Proc. Ninth Int’l Conf. Extending Database
Technology (EDBT ’04), Springer Berlin / Heidelberg Press, LNCS,
vol. 2992, 2004, pp. 88-105, doi: 10.1007/b95855.

[5] R. Wolff and A. Schuster, "Association Rule Mining in Peer-to-Peer
Systems," IEEE Transactions on Systems, Man and Cybernetics - Part
B, vol. 34 (6), 2004, pp. 2426-2438.

[6] J. R. Quinlan, "Induction of Decision Trees," Machine Learning, vol.
1(1), 1986, pp. 81-106, doi: 10.1023/A:1022643204877.

[7] B. V. Dasarathy, "Nearest Neighbor (NN) Norms: NN Pattern
Classification techniques," IEEE Computer Society Press, 1991.

[8] T. M. Mitchell, "Machine learning," McGraw Hill Higher Education,
1997.

[9] B. Boser, I. Guyon, and V. N. Vapnik, "A training algorithm for
optimal margin classifiers," Proc. Fifth Annual Workshop on
Computational Learning Theory, ACM Press, 1992, pp. 144-152, doi:
10.1145/130385.130401.

[10] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta,
"Distributed Data Mining in Peer-to-Peer Networks," IEEE Internet
Computing Special Issue on Distributed Data Mining, vol. 10 (4),
2006, pp. 18-26, doi: 10.1109/MIC.2006.74.

[11] S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W. Fan, and
P. K. Chan, "JAM: Java Agents for Meta-Learning over Distributed
Databases," Proc. Third International Conference on Knowledge
Discovery and Data Mining, AAAI press, 1997, pp. 74–81, doi:
10.1.1.44.5728.

[12] T. Seidl and H. P. Kriegel, "Optimal Multi-Step k-Nearest Neighbor
Search," Proc 1998 ACM SIGMOD international conference on
Management of data, ACM Press, 1998, pp. 154-165, doi:
10.1145/276304.276319.

[13] N. Rousopoulos, S. Kelley, and F. Vincent, "Nearest Neighbor
Queries," Proc. 1995 ACM SIGMOD international conference on
Management of data, ACM Press, 1995, pp. 71-79, doi:
10.1145/223784.223794.

[14] D. Li, K. D. Wong, Y. Hu, A. M. Sayeed, "Detection, Classification
and Tracking of objects in Distributed Sensor Networks," IEEE
Signal Processing Magazine, vol. 19 (2), 2002, pp. 17-29, doi:
10.1.1.58.2340.

[15] X. Yu, K. Pu, and N. Koudas, "Monitoring k-Nearest Neighbor
Queries Over Moving Objects," Proc. 21st International Conference
on Data Engineering, IEEE Press, 2005, pp. 631-642, doi:
10.1109/ICDE.2005.92.

[16] Z. Song and N. Roussopoulos, "K-Nearest Neighbor Search for
Moving Query Point," Proc. 7th International Symposium on
Advances in Spatial and Temporal Databases, Springer-Verlag Press,
2001, pp. 79-96, doi: 10.1.1.108.8564.

[17] A. Mondal, Y Lifu, and M Kitsuregawa, P2PR-tree: An R-tree-based
Spatial Index for Peer-to-Peer Environments, Proc. Current Trends in
Database Technology - EDBT 2004 Workshops, Springer Berlin /
Heidelberg Press, LNCS, vol. 3268/2005 (516), 2005, DOI:
10.1007/978-3-540-30192-9_51

[18] S. Berchtold, C. Bohm, D. Keim, and H. Kriegel. A cost model for
nearest neighbor search in high-dimensional data space. In Proc.
ACM Symp. on Principles of Database Systems, ACM Press, 1997,
pp. 78-86, doi: 10.1145/263661.263671.

[19] S. Saroiu, P. K. Gummad, SD. Gribble, A measurement study of peer-
to-peer file sharing systems, Proc of Multimedia Computing and
Networking, 2002.

[20] A. Guttman, R-trees: a dynamic index structure for spatial searching,
Proc of the ACM SIGMOD Conference on Management of Data,
ACM Press, 1984, pp. 47-57, doi: 10.1145/602259.602266.

