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Abstract—Given a point p and a set of points S, the kNN operation finds the k closest points to p in S. It is a computational intensive
task with a large range of applications such as knowledge discovery or data mining. However, as the volume and the dimension of data
increase, only distributed approaches can perform such costly operation in a reasonable time. Recent works have focused on
implementing efficient solutions using the MapReduce programming model because it is suitable for distributed large scale data
processing. Although these works provide different solutions to the same problem, each one has particular constraints and properties.
In this paper, we compare the different existing approaches for computing kNN on MapReduce, first theoretically, and then by
performing an extensive experimental evaluation. To be able to compare solutions, we identify three generic steps for kNN computation
on MapReduce: data pre-processing, data partitioning and computation. We then analyze each step from load balancing, accuracy and
complexity aspects. Experiments in this paper use a variety of datasets, and analyze the impact of data volume, data dimension and
the value of k from many perspectives like time and space complexity, and accuracy. The experimental part brings new advantages and
shortcomings that are discussed for each algorithm. To the best of our knowledge, this is the first paper that compares kNN computing
methods on MapReduce both theoretically and experimentally with the same setting. Overall, this paper can be used as a guide to
tackle kNN-based practical problems in the context of big data.

Index Terms—kNN, MapReduce, Performance Evaluation
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1 INTRODUCTION

G IVEN a set of query points R and a set of reference
points S, a k nearest neighbor join (hereafter kNN join)

is an operation which, for each point in R, discovers the k
nearest neighbors in S.

It is frequently used as a classification or clustering
method in machine learning or data mining. The primary
application of a kNN join is k-nearest neighbor classifica-
tion. Some data points are given for training, and some new
unlabeled data is given for testing. The aim is to find the
class label for the new points. For each unlabeled data, a
kNN query on the training set will be performed to estimate
its class membership. This process can be considered as
a kNN join of the testing set with the training set. The
kNN operation can also be used to identify similar images.
To do that, description features (points in a dataspace of
dimension 128) are first extracted from images using a
feature extractor technique. Then, the kNN operation is used
to discover the points that are close, which should indicates
similar images. Later in this paper, we consider this kind
of data for the kNN computation. kNN join, together with
other methods, can be applied to a large number of fields,
such as multimedia [1], [2], social network [3], time series
analysis [4], [5], bio-information and medical imagery [6],
[7].

The basic idea to compute a kNN join is to perform a
pairwise computation of distance for each element in R and
each element in S. The difficulties mainly lie in the following
two aspect: (1)Data Volume (2)Data Dimensionality. Sup-
pose we are in a d dimension space, the computational com-
plexity of this pairwise calculation is O(d× |R| × |S|). Find-
ing the k nearest neighbors in S for every r in R boils down
to finding the smallest k distances, and leads to a minimum
complexity of |S| × log |S|. As the amount of data or their
complexity (number of dimensions) increases, this approach
becomes impractical. This is why a lot of work has been
dedicated to reducing the in-memory computational com-
plexity [8]–[12]. These works mainly focus on two points:
(1) Using indexes to decrease the number of distances need
to be calculated. However, these indexes can hardly be
scaled on high dimension data. (2) Using projections to
reduce the dimensionality of data. But the maintenance
of the accuracy becomes another problem. Despite these
efforts, there are still significant limitations to process kNN
on a single machine when the amount of data increases.
For large dataset, only distributed and parallel solutions
prove to be powerful enough. MapReduce is a flexible and
scalable parallel and distributed programming paradigm
which is specially designed for data-intensive processing. It
was first introduced by Google [13] and popularized with
the Hadoop framework, an open source implementation.
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The framework can be installed on commodity hardware
and automatically distribute a MapReduce job over a set
of machines. Writing an efficient kNN in MapReduce is
also challenging for many reasons. First, classical algorithms
as well as the index and projection strategies have to be
redesigned to fit the MapReduce programming model and
its share-nothing execution platform. Second, data partition
and distribution strategies have to be carefully designed
to limit communications and data transfer. Third, the load
balancing problem which is new comparing with the single
version should also be attached importance to. Then, not
only the number of distance needed to be reduced, but also
the number of MapReduce jobs and map/reduce tasks will
bring impact. Finally, the parameter tuning remains always
a key point to improve the performance.

The goal of this paper is to survey existing methods of
kNN in MapReduce, and to compare their performance. It is
a major extension of one of our previously published paper,
[14], which provided only a simple theoretical analysis.
Other surveys about kNN have been conducted, such as
[15], [16], but they pursue a different goal. In [15], the
authors only focus on centralized solutions to optimize
kNN computation whereas we target distributed solutions.
In [16], the survey is also oriented towards centralized
techniques and is solely based on a theoretical performance
analysis. Our approach comprehends both theoretical and
practical performance analysis, obtained through extensive
experiments. To the best of our knowledge, it is the first
time such a comparison between existing kNN solutions on
MapReduce has been performed. The breakthrough of this
paper is that the solutions are experimentally compared in
the same setting: same hardware and same dataset. More-
over, we present in this paper experimental settings and
configurations that were not studied in the original papers.
Overall, our contributions are:
• The decomposition of a distributed MapReduce kNN

computation in different basic steps, introduced in Sec-
tion 3.

• A theoretical comparison of existing techniques in Sec-
tion 4, focusing on load balancing, accuracy and com-
plexity aspects.

• An implementation of 5 published algorithms and an
extensive set of experiments using both low and high
dimension datasets (Section 5).

• An analysis which outlines the influence of various
parameters on the performance of each algorithm.

The paper is concluded with a summary that indicates
the typical dataset-solution coupling and provides precise
guidelines to choose the best algorithm depending on the
context.

2 CONTEXT

2.1 k Nearest Neighbors
A nearest neighbors query consists in finding at most k
points in a data set S that are the closest to a considered
point r, in a dimensional space d. More formally, given two
data sets R and S in Rd, and given r and s, two elements,
with r ∈ R and s ∈ S, we have:
Definition 1. Let d(r, s) be the distance between r and s. The

kNN query of r over S, noted kNN(r, S) is the subset

{si} ⊆ S (|{si}| = k), which is the k nearest neighbors
of r in S, where ∀ si ∈ kNN(r, S), ∀ sj ∈ S−kNN(r, S),
d(r, si) ≤ d(r, sj).

This definition can be extended to a set of query points:
Definition 2. The kNN join of two datasetsR and S, kNN(R

n S) is: kNN(R n S)={(r,kNN(r,S)), ∀ r ∈ R}

Depending on the use case, it might not be necessary to
find the exact solution of a kNN query, and that is why
approximate kNN queries have been introduced. The idea
is to have the kth approximate neighbor not far from the kth

exact one, as shown in the following definition1.
Definition 3. The (1 + ε)-approximate kNN query for a

query point r in a dataset S, AkNN(r, S) is a set of
approximate k nearest neighbors of r from S, if the kth

furthest result sk satisfies sk∗ ≤ sk ≤ (1 + ε)sk∗ (ε > 0)
where sk∗ is the exact kth nearest neighbor of r in S.

And as with the exact kNN, this definition can be extended
to an approximate kNN join AkNN(R n S).

2.2 MapReduce

MapReduce [13] is a parallel programming model that aims
at efficiently processing large datasets. This programming
model is based on three concepts: (i) representing data
as key-value pairs, (ii) defining a map function, and (iii)
defining a reduce function. The map function takes key-
value pairs as an input, and produces zero or more key-
value pairs. Outputs with the same key are then gathered
together (shuffled) so that key-{list of values} pairs are
given to reducers. The reduce function processes all the
values associated with a given key.

The most famous implementation of this model is the
Hadoop framework 2 which provides a distributed platform
for executing MapReduce jobs.

2.3 Existing kNN Computing Systems

The basic solution to compute kNN adopts a nested loop
approach, which calculates the distance between every ob-
ject ri in R and sj in S and sorts the results to find the k
smallest. This approach is computational intensive, making
it unpractical for large or intricate datasets. Two strategies
have been proposed to work out this issue. The first one
consists in reducing the number of distances to compute, by
avoiding scanning the whole dataset. This strategy focuses
on indexing the data through efficient data structures. For
example, a one-dimension index structure, the B+-Tree, is
used in [17] to index distances; [18] adopts a multipage
overlapping index structure R-Tree; [10] proposes to use a
balanced and dynamic M-Tree to organize the dataset; [19]
introduces a sphere-tree with a sphere-shaped minimum
bound to reduce the number of areas to be searched; [20]
presents a multidimensional quad-tree in order to be able to
handle large amount of data; [12] develops a kd-tree which
is a clipping partition method to separate the search space;
and [21] introduces a loose coupling and shared nothing

1. Erratum: this definition corrects the one given in the conference
version of this journal.

2. http://hadoop.apache.org/
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distributed Inverted Grid Index structure for processing
kNN query on MapReduce. However, reducing the searched
dataset might not be sufficient. For data in large dimension
space, computing the distance might be very costly. That
is why a second strategy focuses on projecting the high-
dimension dataset onto a low-dimension one, while main-
taining the locality relationship between data. Representa-
tive efforts refer to LSH (Locality-Sensitive Hashing) [22]
and Space Filling Curve [23].

But with the increasing amount of data, these methods
still can not handle kNN computation on a single machine
efficiently. Experiments in [24] suggest using GPUs to signif-
icantly improve the performance of distance computation,
but this is still not applicable for large datasets that cannot
reasonably be processed on a single machine. More recent
papers have focused on providing efficient distributed im-
plementations. Some of them use ad hoc protocols based on
well-known distributed architectures [25], [26]. But most of
them use the MapReduce model as it is naturally adapted
for distributed computation, like in [27]–[29]. In this paper,
we focus on the kNN computing systems based on MapRe-
duce, because of its inherent scalability and the popularity
of the Hadoop framework.

3 WORKFLOW

We first introduce the reference algorithms that compute
kNN over MapReduce. They are divided into two cate-
gories: (1) Exact solutions: The basic kNN method called
hereafter H-BkNNJ; The block nested loop kNN named H-
BNLJ [29]; A kNN based on Voronoi diagrams named PGBJ
[28] and (2) Approximate solutions: A kNN based on z-
value (a space filling curve method) named H-zkNNJ [29];
A kNN based on LSH, named RankReduce [27].

Although based on different methods, all of these solu-
tions follow a common workflow which consists in three
ordered steps: (i) data preprocessing, (ii) data partitioning
and (iii) kNN computation. We analyze these three steps in
the following sections.

3.1 Data Preprocessing

The idea of data preprocessing is to transform the original
data to benefit from particular properties. This step is done
before the partitioning of data to pursue two different goals:
(1) either to reduce the dimension of data (2) or to select
central points of data clusters.

To reduce the dimension, data from a high-dimensional
space are mapped to a low-dimensional space by a linear
or non-linear transformation. In this process, the challenge
is to maintain the locality of the data in the low dimension
space. In this paper, we focus on two methods to reduce
data dimensionality. The first method is based on space
filling curve. Paper [29] uses z-value as space-filling curve.
The z-value of a data is a one dimensional value that is
calculated by interleaving the binary representation of data
coordinates from the most significant bit to the least signif-
icant bit. However, due to the loss of information during
this process, this method can not fully guarantee integrity
of the spatial location of data. In order to increase accuracy
of this method, one can use several shifted copies of data

and compute their z-values, although this increases the cost
of computation and space. The second method to reduce
data dimensionality is locality sensitive hashing (LSH) [22],
[30]. This method maps the high-dimensional data into low-
dimensional ones, with L families of M locality preserving
hash functions H = { h(v) = ba·v+b

W c }, where a is a random
vector, W is the size of the buckets into which transformed
values will fall, and b ∈ [0,W ]. And it makes sure that:

if d(x, y) ≤ d1, P rH [h(x) = h(y)] ≥ p1 (1)
if d(x, y) ≥ d2, P rH [h(x) = h(y)] ≤ p2 (2)

where d(x, y) is the distance between two points x and y,
and d1 < d2, p1 > p2.

As a result, the closer two points x and y are, the higher
the probability the hash values of these two points h(x)
and h(y) in the hash family H (the set of hash functions
used) are the same. The performance of LSH (how well it
preserves locality) depends on the tuning of its parameters
L, M, and W. The parameter L impacts the accuracy of
the projection: increasing L increases the number of hash
families that will be used, it thus increases the accuracy of
the positional relationship by avoiding fallacies of a single
projection, but in return, it also increases the processing
time because it duplicates data. The parameter M impacts
the probability that the adjacent points fall into the same
bucket. The parameter W reflects the size of each bucket
and thus, impacts the number of data in a bucket. All
those three parameters are important for the accuracy of
the result. Basically, the point of LSH for computing kNN is
to have some collisions to find enough accurate neighbors.
On this point, the reference RankReduce paper [27] does
not highlight enough the cost of setting the right value for
all parameters, and show only one specific setup that allow
them to have an accuracy greater than 70%.

Another aspect of the preprocessing step can be to select
central points of data clusters. Such points are called pivots.
Paper [28] proposes 3 methods to select pivots. The Random
Selection strategy generates a set of samples, then calculates
the pairwise distance of the points in the sample, and the
sample with the biggest summation of distances is chosen
as set of pivots. It provides good results if the sample is large
enough to maximize the chance of selecting points from
different clusters. The Furthest Selection strategy randomly
chooses the first pivot, and calculates the furthest point
to this chosen pivot as the second pivot, and so on until
having the desired number of pivots. This strategy ensures
that the distance between each selected point is as large as
possible, but it is more complex to process than the random
selection method. Finally, the K-Means Selection applies the
traditional k-means method on a data sample to update the
centroid of a cluster as the new pivot each step, until the
set of pivots stabilizes. With this strategy, the pivots are
ensured to be in the middle of a cluster, but it is the most
computational intensive strategy as it needs to converge
towards the optimal solution. The quality of the selected
pivots is crucial, for effectiveness of the partitioning step, as
we will see in the experiments.

3.2 Data Partitioning and Selection
MapReduce is a shared-nothing platform, so in order to
process data on MapReduce, we need to divide the dataset
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into independent pieces, called partitions. When computing
a kNN, we need to divide R and S respectively. As in
any MapReduce computation, the data partition strategy
will strongly impact CPU, network communication and disk
usages, which in turn will impact the overall processing
time [31]. Besides, a good partition strategy could help to
reduce the number of data replications, thereby reducing
the number of distances needed to be calculated and sorted.

However, not all the algorithms apply a special data par-
tition strategy. For example, H-BNLJ simply divides R into
rows and S into lines, making each subset ofRmeeting with
every subset of S. This ensures the distance between each
object ri in R and each object sj in S will be calculated. This
way of dividing datasets causes a lot of data replications.
For example, in H-BNLJ, each piece of data is duplicated n
times (n is the number of subsets of R and S), resulting in a
total of n2 tasks to calculate pairwise distances. This method
wastes a lot of hardware resources, and ultimately leads a
low efficiency.

The key to improve the performance is to preserve spa-
tial locality of objects when decomposing data for tasks [32].
This means making a coarse clustering in order to produce
a reduced set of neighbors that are candidates for the final
result. Intuitively, the goal is to have a partitioning of data
such that an element in a partition of R will have its nearest
neighbors in only one partition of S. Two partitioning strate-
gies that enable to separate the datasets into independent
partitions, while preserving locality information, have been
proposed. They are described in the two next sections.

3.2.1 Distance Based Partitioning Strategy

The distance based partitioning strategy we study in this
paper is based on Voronoi diagram, a method to divide
the space into disjoint cells. We can find other distance-
based partitioning methods in the litterature, such as in [21],
but we chose Voronoi diagram to represent distance-based
partitioning method because it it can apply to data in any
dimension. The main property of Voronoi diagram is that
every point in a cell is closer to the pivot of this cell than to
any other pivot. More formally, the definition of a Voronoi
cell is as follow:

Definition 4. Given a set of disjoint pivots:
P = {p1, p2, ..., pi, ..., pn}, the Voronoi Cell
of pi (0 < i ≤ n) is: ∀ i 6= j, V C (pi) =
{p‖d (p, pi) ≤ d (p, pj)}.

Paper [28] gives a method to partition datasets R and
S using Voronoi diagram. The partitioning principles are
illustrated in Figure 1. After having identified the pivots pi
in R (c.f. Section 3.1), the distances between elements of
each dataset and the pivots are computed. The elements are
then put in the cell of the closest pivot, giving a partitioning
of R (resp. S) into PR

i (resp. PS
i ). For each cell, the upper

bound U(PR
i ) (resp. the lower bound L(PR

i )) is computed
as a sphere determined by the furthest (resp. nearest) point
in PR

i from the pivot pi. The boundaries and other statistics
are used to find candidate data from S in the neighboring
cells. These data are then replicated in cell PS

i . For example,
in Figure 1, the element s of PS

j falls inside U(PR
i ) and is

thus copied to Si as a potential candidate for the kNN of r.

S pivotsR

 pi

 pj

 ph

s

r

Fig. 1: Voronoi : cells partitioning and replication for cell Pi

The main issue with this method is that it requires
computing the distance from all elements to the pivots.
Also, the distribution of the input data might not be known
in advance. Hence, pivots have to be recomputed if data
change. More importantly, there is no guarantee that all
cells have an equal number of elements because of potential
data skew. This can have a negative impact on the overall
performance because of load balancing issues. To alleviate
this issue, the authors propose two grouping strategies,
which will be discussed in Section 4.1.

3.2.2 Size Based Partitioning Strategy

Another type of partitioning strategy aims at dividing data
into equal size partitions. Paper [29] proposes a partitioning
strategy based on z-value described in the previous section.

In order to have a similar number of elements in all n
partitions, the authors first sample the dataset and compute
the n quantiles. These quantiles are an unbiased estimation
of the bounds for each partition. Figure 2 shows an example
for this method. In this example data are only shifted once.
Then, data are projected using z-value method, and the
interpolating “Z” in the figure indicates the neighborhood
after projection. Data is projected into a one dimension
space, represented by ZR

i and ZS
i in the figure. ZR

i is
divided into partitions using the sampling estimation ex-
plained above. For a given partition Ri, its corresponding
Si is defined in ZS

i by copying the nearest k preceding and
the nearest k succeeding points to the boundaries of Si. In
Figure 2, four points of Si are copied in partition 2, because
they are considered as candidates for the query points in
R2

i .
This method is likely to produce a substantially equiv-

alent number of objects in each partition, thus naturally
achieving load balancing. However, the quality of the result
depends solely on the quality of the z-curve, which might
be an issue for high dimension data.

Another similar size based partitioning method uses
Locality Sensitive Hashing to first project data into low
dimension space as illustrated in Figure 3. In this example,
data is hashed twice using two hash families a1 and a2. Each
hashed data is then projected in the corresponding bucket.
The principle of this method is to result in collisions for data
that is spatially close. So the data initially close in the high
dimension space is hashed to the same bucket with a high
probability, provided that the bucket size (parameter W in
LSH) is large enough to receive at least one copy of close
data.
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Fig. 2: z-value : partition

The strategy of partitioning directly impacts on the
number of tasks and the amount of computation. Distance
based methods aim at dividing the space into cells that
are driven by distance rules. Size based methods create
equal size zones in which the points are ordered. Regarding
the implementation, [28] uses a MapReduce job to perform
the partitioning. In [29], both data preprocessing and data
partitioning are completed in a single MapReduce job.

Fig. 3: LSH : bucket

3.3 Computation

The main principle to compute a kNN, is to (i) calculate
the distance between ri and sj for all i, j, and (ii) sort
these distances in ascending order to pick the first k results.
The number of MapReduce jobs for computing and sorting
has a significant impact on the global performance of the
kNN computation, given the complexity of MapReduce task
and the amount of data to exchange between them. The
preprocessing and partitioning steps impact on the number
of MapReduce tasks that are further needed for the core
computation. In this section, we review the different strate-
gies used to finally compute and sort distances efficiently
using MapReduce. These different strategies can be divided
into two categories, depending on the number of jobs they

require. Those categories can themselves be divided into
two subcategories: the ones that do not preprocess and par-
tition data before computation and the ones that implement
the preprocessing and partitioning steps.

3.3.1 One MapReduce Job
Without preprocessing and partitioning strategies.
The naive solution (H-BkNNJ) only uses one MapReduce
job to calculate and sort the distances, and only the Map
Phase is done in parallel. The Map tasks will cut datasets
into splits, and label each split with its original dataset (R
or S). The Reduce task then takes one object ri and one
object sj to form a key-value pair < ri, sj >, and calculate
the distance between them, then for each key ri sort the
distances with every object in S, leading the number of
distances need to be sorted to |S|. Since only the Map
phase is in parallel, and only one Reduce task is used for
calculating and sorting, when the datasets becomes large,
this method will quickly exceed the processing capacity of
the computer. Therefore, it is only suitable for small datasets.
With preprocessing and partitioning strategies.
PGBJ [28] uses a preprocessing step to select the pivot of
each partition and a distance based partitioning strategy to
ensure that each subset Ri only needs one corresponding
subset Si to form a partition where the kNN of all ri ∈
Ri can be found. Therefore, in the computation step, Map
tasks find the corresponding Si for each Ri according to
the information provided by the partitioning step. Reduce
tasks then perform the kNN join inside each partition of
< Ri, Si >.

Overall, the main limitation of these two approaches is
that the number of values to be sorted in the Reduce task
can be extremely large, up to |S|, if the preprocessing and
partitioning steps have not significantly reduced the set of
searched points.

This aspect can limit the applicability of such approaches
in practice.

3.3.2 Two Consecutive MapReduce Jobs
To overcome the previously described limitation, multiple
successive MapReduce jobs are required. The idea is to have
the first job output the local top k for each pair (Ri, Sj).
Then, the second job is used to merge all the top k values
for a given ri and to merge and sort all local top k values
(instead of all values) producing the final global top k.
Without preprocessing and partitioning strategies.
H-BNLJ does not have any special preprocessing or parti-
tioning strategy. The Map Phase of the first job distributes R
into n rows and S into n columns. The n2 Reduce tasks
output the local kNN for each object ri in the form of
(rid, sid, d(r, s)).

Since each rid has been replicated n times, the Map Phase
of the second MapReduce job will pull every candidate of ri
from the n pieces ofR, and form (rid), list(sid, d(r, s)). Then
each Reduce task will sort list(sid, d(r, s)) in ascending
order of d(r, s) for each ri, and finally, give the top k results.

Moreover, in order to avoid the scan of the whole dataset
of each block, some index structures like R-Tree [29] or
Hilbert R-Tree [33] can be used to index the local S blocks.
With preprocessing and partitioning strategies.
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In H-zkNNJ [29] the authors propose to define the bounds
of the partitions of R and then to determine from this the
corresponding Si in a preprocessing job. So here, the pre-
processing and partitioning steps are completely integrated
in MapReduce. Then, a second MapReduce job takes the
partitions Ri and Si previously determined, and computes
for all ri the candidate neighbor set, which represents the
points that could be in the final kNN3. To get this candidate
neighbor set, the closest k points are taken from either
side of the considered point (the partition is in dimension
1), which leads to exactly 2k candidate points. The third
MapReduce round determines the exact result for each ri
from the candidate neighbor set. So in total, this solution
uses three MapReduce jobs, and among them, the last two
are actually devoted to the kNN core computation. As
the number of points that are in the candidate neighbor
set is small (thanks to the drastic partitioning, itself due
to a drastic preprocessing), the cost of computation and
communication is extremely reduced.

In RankReduce [27]4, the authors first preprocess data
to reduce the dimentionality and partition data into buckets
using LSH. In our implementation, like in H-zkNNJ, one
MapReduce job is used to calculate the local kNN for each
ri, and a second one is used to find the global ones.

3.4 Summary
So far, we have studied the different ways to go through a
kNN computation from a workflow point of view with three
main steps. The first step focuses on data preprocessing,
either for selecting dominating points or for projecting data
from high dimension to low dimension. The second step
aims at partitioning and organizing data such that the
following kNN core computation step is lighten. This last
step can use one or two MapReduce jobs depending on the
number of distances we want to calculate and sort. Figure 4
summarizes the workflow we have gone through in this
section and the techniques associated with each step.

4 THEORETICAL ANALYSIS

4.1 Load Balance
In a MapReduce job, the Map tasks or the Reduce tasks will
be processed in parallel, so the overall computation time of
each phase depends on the completion time of the longest
task. Therefore, in order to obtain the best performance, it
is important that each task performs substantially the same
amount of computation. When considering load balancing
in this section, we mainly want to have the same time com-
plexity in each task. Ideally, we want to calculate roughly
the same number of distance between ri and sj in each task.

For H-BkNNJ, there is no load balancing problem. Be-
cause in this basic method, only the Map Phase is treated
in parallel. In Hadoop each task will process 64M data by
default.

H-BNLJ cuts both the dataset R and the dataset S into
p equal-size pieces, then those pieces are combined pairwise

3. Note that the notion of candidate points is different from local top
k points.

4. Although RankReduce only computes kNN for a single query, it is
directly expandable to a full kNN join.

to form a partition of < Ri, Sj >. Each task will process one
block of data so we need to ensure that the size of the data
block handled by each task is roughly the same. However,
H-BNLJ uses a random partitioning method which can not
exactly divide the data into equal-size blocks.

PGBJ uses Voronoi diagram to cut the data space of R
into cells, where each cell is represented by its pivot. Then
the data are assigned to the cell whose pivot is the nearest
from it. For each R cell, we need to find the corresponding
pieces of data in S. Sometimes, the data in S may be
potentially needed by more than oneR cells, which will lead
to the duplication of some elements of S. Thus the number
of distances to be calculated in each task, i.e. the relative
time complexity of each task is:

O (Task) =
∣∣PR

i

∣∣× (∣∣PS
i

∣∣+ |RepSc|
)

where
∣∣PR

i

∣∣ and
∣∣PS

i

∣∣ represents the number of elements
in cell PR

i or PS
i respectively, and |RepSc| the number of

replicated elements for the cell. Therefore, to ensure load
balancing, we need to ensure that O (Task) is roughly the
same for each task. PGBJ introduces two methods to group
the cells together to form a bigger cell which is the input
of a task. On one hand, the geo grouping method supposes
that close cells have a higher probability to replicate the
same data. On the other hand, the greedy grouping method
estimates the cells whose data are more likely to be repli-
cated. This approximation gives an upper bound on the
complexity of the computation for a particular cell, which
enables grouping of the cells that have the most replicated
data in common. This leads to a minimization of replication
and leads to groups that generate the same workload.

And the H-zkNNJ method assumes:
∀ i 6= j,

if |Ri| = |Rj | or |Si| = |Sj |,
then |Ri| × |Si| ≈ |Rj | × |Sj |

That is to say, if the number of objects in each partition of
R is equivalent, then the sum of the number of k nearest
neighbors of all objects in each partition can be considered
approximately equivalent, and vice versa. So an efficient
partitioning should try to enforce either (i) |Ri| = |Rj | or
(ii) |Si| = |Sj |. In paper [29], the authors give a short proof
which shows that the worst-case computational complexity
for (i) is equal to:

O (|Ri| × log |Si|) = O
( |R|
n
× log |S|

)
(3)

and for choice (ii), the worst-case complexity is equal to:

O (|Ri| × log |Si|) = O
(
|R| × log |S|

n

)
(4)

where n is the number of partitions. Since n � |S|, the
optimal partitioning is achieved when |Ri| = |Rj |.

In RankReduce, a custom partitioner is used to load
balance tasks between reducers. Let Wh =| Rh | × | Sh | be
the weight of bucket h. A bin packing algorithm is used such
that each reducer ends up with approximately the same
amount of work. More precisely, let O (Ri) =

∑
hWh the

work done by reducerRi, then this methods guarantees that

∀i 6= j,O (Ri) ≈ O (Rj) (5)
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Fig. 4: Usual workflow of a kNN computation using MapReduce

Because the weight of a bucket is only an approximation
of the computing time, this method can only give an ap-
proximate load balance. Having a large number of buckets
compared to the number of reducers significantly improves
the load balancing.

4.2 Accuracy

Usually, the lack of accuracy is the direct consequence of
techniques to reduce the dimensionality with techniques
such as z-values and LSH. In [29] (H-zkNNJ), the authors
show that when the dimension of the data increases, the
quality of the results tends to decrease. This can be counter-
balanced by increasing the number of random shifts applied
to the data, thereby increasing the size of the resulting
dataset. Their experiments show that three shifts of the ini-
tial dataset (in dimension 15) are sufficient to achieve a good
approximation (less than 10% of errors measured), while
controlling the computation time. Furthermore, paper [34]
shows a detailed theoretical analyses showing that, for any
fixed dimension, by using only O(1) random shifts of data,
the z-value method returns a constant factor approximation
in terms of the radius of the k nearest neighbor ball.

For LSH, the accuracy is defined by the probability that
the method will return the real nearest neighbor. Suppose
that the points within a distance d = |p− q| are considered
as close points. The probability [35] that these two points
end up in the same bucket is:

p(d) = PrH [h(p) = h(q)] =

∫ W

0

1

d
fs(

x

d
)(1− x

W
)dx (6)

where W is the size of the bucket and fs is the probability
density function of the hash function H. From this equation
we can see that for a given bucket size W, this probability de-
creases as the distance d increases. Another way to improve
the accuracy of LSH is to increase the number of hashing
families used. The use of LSH in RankReduce has an inter-
esting consequence on the number of results. Depending on
the parameters, the number of elements in a bucket might
be smaller than k. Overall, unlike z-value, the performance
of LSH depends a lot on parameter tuning.

4.3 Global Complexity

Carefully balancing the number of jobs, tasks, computa-
tion and communication is an important part of designing
an efficient distributed algorithm. All the kNN algorithms
studied in this survey have different characteristics. We will
now describe them and outline how they can impact the
execution time.
(1) The number of MapReduce jobs: Starting a job

(whether in Hadoop [36] or any other platform) re-
quires some initialization steps such as allocating re-
sources and copying data. Those steps can be very time
consuming.

(2) The number of Map tasks and Reduce tasks used to
calculate kNN(Ri n S): The larger this number is, the
more information is exchanged through the network
during the shuffle phase. Moreover, scheduling a task
also incurs an overhead. But the smaller this number is,
the more computation is done by one machine.

(3) The number of final candidates for each object ri:
We have seen that advanced algorithms use pre-
processing and partitioning techniques to reduce this
number as much as possible. The goal is to reduce the
amount of data transmitted and the computational cost.

Together these three points impact two main overheads
that affect the performance:
• Communication overhead, which can be considered

as the amount of data transmitted over the network
during the shuffle phases.

• Computation overhead, which is mainly composed of
two parts: 1). computing the distances, 2). finding the k
smallest distances. It is also impacted by the complexity
(dimension) of the data.

Suppose the dataset is d dimensional, the overhead for
computing the distance is roughly the same for every ri and
sj for each method. The difference comes from the number
of distances to sort for each element ri to get the top k
nearest neighbors. Suppose that the dataset R is divided
into n splits. Here n represents the number of partitions of
R and S for H-BNLJ and H-zkNNJ, the number of cells
after using the grouping strategy for PGBJ and the number
of buckets for RankReduce. Assuming there is a good load
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balance for each method, the number of elements in one split
Ri can be considered as |R|n . Finding the k closest neighbors
efficiently for a given ri can be done using a priority queue,
which less costly than sorting all candidates.

Since all these algorithms uses different strategies, their
steps cannot be directly compared. Nonetheless, to provide
a theoretical insight, we will now compare their complexity
for the last phase, which is common to all of them.

The basic method H-BkNNJ only uses one MapRe-
duce job, and requires only one Reduce task to compute
and sort the distances. The communication overhead is
O(|R| + |S|). The number of final candidates for one ri
is |S|. The complexity of finding the k smallest distances
for ri is O(|S| · log (k)). Hence, the total cost for one task is
O(|R|·|S|·log (k)). Since R and S are usually large datasets,
this method quickly becomes impracticable.

To overcome this limitation, H-BNLJ [29] uses two
MapReduce jobs, with n2 tasks to compute the distances.
Using a second job significantly reduces the number of
final candidates to nk. The total communication overhead
is O(n |R|+n |S|+ kn |R|). The complexity of finding the k
elements for each ri is reduced to (n · k) · log (k). Since each
task has |R|n elements, the total sort overhead for one task is
O(|R| · k · log(k)).

PGBJ [28] performs a preprocessing phase followed by
two MapReduce jobs. This method also only uses n Map
tasks to compute the distances and the number of final
candidates falls to |Si|. Since this method uses a distance
based partitioning method, the size of |Si| varies, depending
on the number of cells required to perform the computation
and the number of replications (|RepSc|, see Section 4.1)
required by each cell. As such, the computational com-
plexity cannot be expressed easily.Overall, finding the k
elements is reduced to O(|Si| · log |k|) for each ri, and
O( |R|n · |Si| · log |Si|) in total per task. The communication
overhead is O(|R|+ |S|+ |RepSc| ·n). In the original paper
the authors gives a formula to compute |RepSc| · n, which
is the total number of replications for the whole dataset S.

In RankReduce [27], the initial dataset is projected by L
hash families into buckets. After finding the local candidates
in the second job, the third job combines the local results to
find the global k nearest neighbor. For each ri, the number
of final candidates is L · k. Finding the k elements takes
O(L · k · log(k)) per ri, and O(|Ri| · L · k · log(k)) per task.
The total communication cost becomesO(|R|+ |S|+k · |R|).

H-zkNNJ [29] also begins by a preprocessing phase
and uses in total three MapReduce jobs in exchange for
requiring only n Map tasks. For a given ri, these tasks
process elements from the candidate neighbor set C (ri).
By construction, C (ri) only contains α · k neighbors,
where α is the number of shifts of the original dataset.
The complexity is now reduced to O((α · k) · log (k)) for
one ri, and O( |R|n · (α · k) · log (k)) in total per task. The
communication overhead is O( 1

ε2 + |S| + k · |R|), with
ε ∈ (0, 1), a parameter of the sampling process.

From the above analysis we can infer the following. H-
BkNNJ only uses one task, but this task needs to calculate
the entire data set. H-BNLJ uses n2 tasks to greatly reduce
the amount of data processed by each task. However this

also increases the amount of data to be exchanged among
the nodes. This should prove to be a major bottleneck.
PGBJ, RankReduce and H-zkNNJ all use three jobs which
reduces the number of tasks to n, and thus reduces the
communication overhead.

Although the computational complexity of each task de-
pends on various parameters of the preprocessing phases, it
is possible to outline a partial conclusion from this analysis.
There are basically three performance brackets. First, the
least efficient should be H-BkNNJ, followed by H-BNLJ.
PGBJ, RankReduce and H-zkNNJ are theoretically the most
efficient. Among them, PGBJ has the largest number of final
candidates. For RankReduce and H-zkNNJ , the number
of final candidates is of the same order of magnitude.
The main difference lies in the communication complexity,
more precisely in 1

ε2 compared to |R|. As the dataset size
increases, we will have eventually |R| � 1

ε2 . Hence, H-
zkNNJ seems to be the theoretically most efficient for large
query sets.

4.4 Wrap up
Although the workflow for computing kNN on MapReduce
is the same for all existing solutions, the guarantees offered
by each of them vary a lot. As load balancing is a key point
to reduce completion time, one should carefully choose the
partitioning method to achieve this goal. Also, the accuracy
of the computing system is crucial: are exact results really
needed? If not, then one might trade accuracy for efficiency,
by using data transformation techniques before the actual
computation. Complexity of the global system should also
be taken into account for particular needs, although it is
often related to the accuracy: an exact system is usually
more complex than an approximate one. Table 1 shows a
summary of the systems we have examined and their main
characteristics.

Due to the multiple parameters and very different steps
for each algorithm, we had to limit our complexity analysis
to common operations. Moreover, for some of them, the
complexity depends on parameters set by a user or some
properties of the dataset. Therefore, the total processing time
might be different, in practice, than the one predicted by the
theoretical analysis. That is why it is important to have a
thorough experimental study.

5 EVALUATION

In order to compare theoretical performance and perfor-
mance in practice, we performed an extensive experimen-
tal evaluation of the algorithms described in the previous
sections.

The experiments were run on two clusters of Grid’50005,
one with Opteron 2218 processors and 8GB of memory, the
other with Xeon E5520 processors and 32GB of memory,
using Hadoop 1.3, 1Gb/s Ethernet and SATA hard drives.
We follow the default configuration of Hadoop: (1) the
number of replications for each split of data is set to 3; (2) the
number of slot of each node is 1, so only one map/reduce
task is processed on the node at one time.

We evaluate the five approaches presented before.

5. www.grid5000.fr

www.grid5000.fr
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Methods Preprocessing Partitioning Accuracy

Complexity

Jobs Tasks
Final

Candidate
(per ri)

Communication

H-BkNNJ
(Basic Method)

None None Exact 1 1 |S| O(|R|+ |S|)

H-BNLJ [29]
(Zhang et al.)

None None Exact 2 n2 nk
O(n |R|

+n |S|+ kn |R|)
PGBJ [28]
(Lu et al.)

Pivots
Selection

Distance
Based

Exact 3 n |Si|
O(|R|

+ |S|+ |RepSc| · n)
RankReduce [27]

(Stupar et al.)
LSH Size Based Approximate 3 n L · k

O(|R|+ |S|
+k · |R|)

H-zkNNJ [29]
(Zhang et al.)

Z-Value Size Based Approximate 3 n α · k O( 1
ε2

+ |S|+ k · |R|)

TABLE 1: Summary table of kNN computing systems with MapReduce

For H-zkNNJ and H-BNLJ, we took the source code
provided by the authors as a starting point6 and added some
modifications to reduce the size of intermediate files. The
others were implemented from scratch using the description
provided in their respective papers.

When implementing RankReduce, we added a reduce
phase to the first MapReduce job to compute some statistics
information for each bucket. These information is used
for achieving good load balance. Moreover, in the original
version, the authors only use one hash function. To improve
the precision, we choose to use multiple families and hash
functions depending on the dataset. Finally, our version of
RankReduce uses three MapReduce jobs instead of two.

Most of the experiments were ran using two different
datasets:

• OpenStreetMap: we call it the Geographic - or Geo -
dataset. The Geo dataset involves geographic XML data
in two dimensions7. This is a real dataset containing
the location and description of objects. The data is
organized by region. We extract 256 ∗ 105 records from
the region of France.

• Catech 101: we call it the Speeded Up Robust Features -
or SURF - dataset. It is a public set of images8, which
contains 101 categories of pictures of objects, and 40
to 800 images per category. SURF [37] is a detector
and a descriptor for points of interest in images, which
produces image data in 128 dimensions. We extract 32
images per category, each image has between 1000 and
2000 descriptors.

In order to learn the impact of dimension and dataset,
we use 5 additional datasets: El Nino: in 9 dimensions;
HIGGS: in 28 dimensions; TWITTER: in 77 dimensions;
BlogFeedBack: in 281 dimensions; and Axial Axis: in 386
dimensions. These data sets are all downloaded from UCI
Machine Learning Repository9.

We use a self-join for all our experiments, which means
we use two datasets of equal sizes for R and S (|R| = |S|).
We also vary the number of records of each dataset from

6. http://ww2.cs.fsu.edu/∼czhang/knnjedbt/
7. Taken from: http://www.geofabrik.de/data/download.html
8. Taken from: www.vision.caltech.edu/Image Datasets/Caltech101
9. Taken from: https://archive.ics.uci.edu/ml/

0.125 ∗ 105 to 256 ∗ 105. For all experiments, we have set
k = 20 unless specified otherwise.

We study the methods from the following aspects:
• The impact of data size
• The impact of k
• The impact of dimension and dataset
And we record the following information: the processing

time, the disk space required, the recall and precision, and
the communication overhead.

To assess the quality of the approximate algorithms, we
compute two commonly used metrics and use the results
of the exact algorithm PGBJ as a reference. First, we define
the recall as recall = |A(v)

⋂
I(v)|

|I(v)| , where I(v) are the exact
kNN of v and A(v) the kNN found by the approximate
methods. Intuitively, the recall measures the ability of an
algorithm to find the correct kNNs. Another metric, the
precision is defined by precision = |A(v)

⋂
I(v)|

|A(v)| . It measures
the fraction of correct kNN in the final result set. By defini-
tion, the following properties holds: (1) recall ≤ precision
because all the tested algorithms return up to k elements.
(2) if an approximate algorithms outputs k elements, then
recall = precision.

Each algorithm produces intermediate data so we com-
pute a metric called Space requirement based on the size of
intermediate data (Sizeintermediate), the size of the result
(Sizefinal) and the size of the correct kNN (Sizecorrect). We
thus have space = Sizefinal+Sizeintermediate

Sizecorrect
.

We start by evaluating the most efficient number of
machines to use (hereafter called nodes) in terms of resources
and computing time. For that, we measure the computing
time of all algorithm for three different data input size of
the geographic dataset. The result can be seen on Figure 5.
As expected, the computing time is strongly related to the
number of nodes. Adding more nodes increases parallelism,
reducing the overall computing time. There is however a
significant slow down after using more than 15 machines.
Based on those results, and considering the fact that we
later use larger datasets, we conducted all subsequent ex-
periments using at most 20 nodes.

5.1 Geographic dataset
For all experiments in this section, we used the parameters
described in Table 2. Details regarding each parameter can

http://ww2.cs.fsu.edu/~czhang/knnjedbt/
http://www.geofabrik.de/data/download.html
www.vision.caltech.edu/Image_Datasets/Caltech101
https://archive.ics.uci.edu/ml/
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Fig. 5: Impact of the number of nodes on computing time

be found in sections 3.1 and 3.2. For RankReduce, the value
of W was adapted to get the best performance from each
dataset. For datasets up to 16 ∗ 105 records, W = 32 ∗ 105,
up to 25∗105 records,W = 25∗105 and finally,W = 15∗105
for the rest of the experiments.

Algorithm Partitioning Reducers Configuration
H-BNLJ 10 partitions 100 reducers

PGBJ 3000 pivots 25 reducers
k-means
+ greedy

RankReduce W =


32 ∗ 105

25 ∗ 105

15 ∗ 105
25 reducers

L = 2
M = 7

H-zkNNJ 10 partitions 30 reducers 3 shifts, p=10

TABLE 2: Algorithm parameters for geographic dataset

5.1.1 Impact of input data size

Our first set of experiments measures the impact of the
data size on execution time, disk space and recall. Figure 6a
shows the global computing time of all algorithms, varying
the number of records from 0.125 ∗ 105 to 256 ∗ 105. The
global computing time increases more or less exponen-
tially for all algorithms, but only H-zkNNJ and RankRe-
duce can process medium to large datasets. For small
datasets, PGBJ can compute an exact solution as fast as the
other algorithms.

Figure 6b shows the space requirement of each algorithm
as a function of the final output size. To reduce the footprint
of each run, intermediate data are compressed. For example,
for H-BNLJ, the size of intermediate data is 2.6 times bigger
than the size of output data. Overall, the algorithms with
the lowest space requirements are RankReduce and PGBJ.

Figure 6c shows the recall and precision of the two
approximate algorithms, H-zkNNJ and RankReduce. Since
H-zkNNJ always return k elements, its precision and recall
are identical. As the number of records increases, its recall
decreases, while still being high, because of the space filling
curves used in the preprocessing phase. On the other hand,
the recall of RankReduce is always lower than its precision
because it outputs less than k elements. It benefits from
larger datasets because more data end up in the same
bucket, increasing the number of candidates. Overall, the
quality of RankReduce was found to be better than H-
zkNNJ on the Geo dataset.

5.1.2 Impact of k
Changing the value of k can have a significant impact
on the performance of some of the kNN algorithms. We
experimented on a dataset of 2 ∗ 105 records (only 5 ∗ 104
for H-BNLJ for performance reasons) with values for k
varying from 2 to 512. Results are shown in Figure 7 using
a logarithmic scale on the x-axis.

First, we observe a global increase in computing time
(Figure 7a) which matches the complexity analysis per-
formed earlier. As k increases, the performance of H-zkNNJ,
compared to the other advanced algorithms, decreases. This
is due to the necessary replication of the z-values of S
throughout the partitions to find enough candidates: the
core computation is thus much more complex.

Second, the algorithms can also be distinguished con-
sidering their disk usage, visible on Figure 7b. The global
tendency is that the ratio of intermediate data size over the
final data size decreases. This means that for each algorithm
the final data size grows faster than the intermediate data
size. As a consequence, there is no particular algorithm that
suffers from such a bottleneck at this point. PGBJ is the
most efficient from this aspect. Its replication of data occurs
independently of the number of selected neighbors. Thus,
increasing k has a small impact on this algorithm, both in
computing time and space requirements. On this figure, an
interesting observation can also be made for H-zkNNJ. For
k = 2, it has by far the largest disk usage but becomes
similar to the others for larger values. This is because H-
zkNNJ creates a lot of intermediate data (copies of the
initial dataset, vectors for the space filling curve, sampling...)
irrespective of the value of k. As k increases, so does the
output size, mitigating the impact of these intermediate
data.

Surprisingly, changing k has a different impact on the
recall of the approximate kNN methods, as can be seen
on Figure 7c. For RankReduce, increasing k has a negative
impact on the recall which sharply decreases when k ≥ 64.
This is because the window parameter (W ) of LSH was
set at the beginning of the experiments to achieve the best
performance for this particular dataset. However, it was
not modified for various of k. Thus it became less optimal
as k increased. This shows there is a link between global
parameters such as k and parameters of the LSH process.
When using H-zkNNJ, increasing k improves the precision:
the probability to have incorrect points is reduced as there
are more candidates in a single partition.

5.1.3 Communication Overhead
Our last set of experiments looks at inter-node communica-
tion by measuring the amount of data transmitted during
the shuffle phase (Figure 8). The goal is to compare these
measurements with the theoretical analysis in Section 4.3,

Impact of data size. For Geo dataset (Figure 8a), H-
BNLJ has indeed a lot of communication. For a dataset of
1 ∗ 105 records, the shuffle phase transmits almost 4 times
the original size. Both RankReduce and H-zkNNJ have a
constant factor of 1 because of the duplication of the original
dataset to improve the recall. The most efficient algorithm is
PGBJ for two reasons. First it does not duplicate the original
dataset and second, it relies on various grouping strategies
to minimize replication.
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Impact of k. We have performed another set of experi-
ments, with a fixed dataset of 2 ∗ 105 records (only 0.5 ∗ 105
for H-BNLJ). The results can be seen in Figure 8b. For
different values of k, we have a similar hierarchy than
with the data size. For RankReduce and H-zkNNJ, the
shuffle increases linearly because the number of candidates
in the second phase depends on k. Moreover H-zkNNJ also
replicates k previous and succeeding elements in the first
phase, and because of that, its overhead becomes significant
for large k. Finally in PGBJ, k has no impact on the shuffle
phase.

5.2 Image Feature Descriptors (SURF) dataset
We now investigate whether the dimension of input data
has an impact on the kNN algorithms using the SURF
dataset. We used the Euclidian distance between descriptors
to measure image similarity. For all experiments in this
section, the parameters mentioned in Table 3 are used.

Algorithm Partitioning Reducers Configuration
H-BNLJ 10 partitions 100 reducers

PGBJ 3000 pivots 25 reducers
k-means

+ geo

RankReduce W = 107 25 reducers
L = 5
M = 7

H-zkNNJ 6 partitions 30 reducers 5 shifts

TABLE 3: Algorithm parameters for SURF dataset

5.2.1 Impact of input data size
Results of experiments when varying the number of descrip-
tors are shown in Figure 9 using a log scale on the x-axis.
We omitted H-BkNNJ as it could not process the data in
reasonable time. In Figure 9a, we can see that the execution
time of the algorithms follows globally the same trend as
with the Geo dataset, except for PGBJ. It is a computational
intensive algorithm because the replication process implies
calculating a lot of Euclidian distances. When in dimension
128, this part tends to dominate the overall computation
time. Regarding disk usage (Figure 9b), H-zkNNJ is very
high because we had to increase the number of shifted
copies from 3 to 5 to improve the recall. Indeed, compared to
the Geo dataset, it is very low (Figure 9c). Moreover, as the
number of descriptors increases, H-zkNNJ goes from 30% to
15% recall. As explained before, the precision was found to
be equal to the recall, which means the algorithm always
returned k results. This, together with the improvement
using more shifts, proves that the space filling curves using
in H-zkNNJ are less efficient with high dimension data.

5.2.2 Impact of k
Figure 10 shows the impact of different values of k on
the algorithms using a logarithmic scale on the x-axis.
Again, since for H-BNLJ and H-zkNNJ, the complexity of
the sorting phase is dependent on k, we can observe a
corresponding increase of the execution time (Figure 10a).
For RankReduce, the time varies a lot depending on k.
This is because of the stochastic nature of the projection
used in LSH. It can lead to buckets containing different
number of elements, creating a load imbalance and some

values of k naturally lead to a better load balancing. PGBJ is
very dependent on the value of k because of the grouping
phase. Neighboring cells are added until there are enough
elements to eventually identify the k nearest neighbors. As
a consequence, a large k will lead to larger group of cells
and increase the computing time.

Figure 10b shows the effect of k on disk usage. H-
zkNNJ starts with a very high ratio of 74 (not showed on
the Figure) and quickly reduces to more acceptable values.
RankReduce also experiences a similar pattern to a lesser
extend. As opposed to the Geo dataset, SURF descriptors
cannot be efficiently compressed, leading to large interme-
diate files.

Finally, Figure 10c shows the effect of k on the recall. As k
increases, the recall and precision of RankReduce decreases
for the same reason as with the Geo dataset. Also, for large k,
the recall becomes lower than the precision because we get
less than k results. The precision of H-zkNNJ decreases but
eventually shows an upward trend. The increased number
of requested neighbors increases the number of preceding
and succeeding points copied, slightly improving the recall.

5.2.3 Communication Overhead
With the SURF dataset, we get a very different behavior
than with the Geo dataset. The shuffle phase of PGBJ is very
costly (Figure 11a). This is an indication of large replications
incurred by the large dimension of the data and a poor
choice of pivots. When they are too close to each other, entire
cells have to be replicated during the grouping phase.

For RankReduce the shuffle is decreased but stay im-
portant, essentially because of the replication factor of 5.
Finally, the shifts of original data in H-zkNNJ lead to a large
communication overhead.

Considering now k, we have the same behavior we
observed with the Geo dataset. The only difference is
PGBJ which now exhibits a large communication overhead
(Figure 11b). This is again because of the choice of pivots
and the grouping of the cells. However, this overhead re-
mains constant, irrespective of k.

5.3 Impact of Dimension and Dataset

We now analyze the behavior of these algorithms according
to the dimension of data. Since some algorithms are dataset
dependent (i.e the spatial distribution of data has an impact
on the outcome), we need to separate data distribution
from the dimension. Hence, we use two different kinds
of datasets for these experiments. First, we use real world
data of various dimensions10. Second, we have built spe-
cific datasets by generating uniformly distributed data to
limit the impact of clustering. All the experiments were
performed using 0.5 ∗ 105 records and k = 20.

Since H-BNLJ relies on the dot product, it is not dataset
dependent and its execution time increases with the dimen-
sion as seen on Figures 12a and 13a.

PGBJ is heavily dependent on data distribution and on
the choice of pivots to build clusters of equivalent size which
improves parallelism. The comparison of execution times
for the datasets 128-sift and 281-blog in Figure 12a shows

10. archive.ics.uci.edu/ml/datasets.html
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Fig. 12: Real datasets of various dimensions
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Fig. 13: Generated datasets of various dimensions

that, although the dimension of data increases, the execution
time is greatly reduced. Nonetheless, the clustering phase
of the algorithm performs a lot of dot product operations
which makes it dependent on the dimension, as can be seen
in Figure 13a.

H-zkNNJ is an algorithm that depends on spatial dimen-
sion. Very efficient for low dimension, its execution time
increases with the dimension (Figure 13a). A closer analysis
shows that all phases see their execution time increase.
However, the overall time is dominated by the first phase
(generation of shifted copies and partitioning) whose time
complexity sharply increases with dimension. Data distribu-
tion has an impact on the recall which gets much lower than
the precision for some datasets (Figure 12b). With generated
dataset (Figure 13b), both recall and precision are identical
and initially very high. However as dimension increases, the
recall decreases because of the projection.

Finally, RankReduce is both dependent on the dimen-
sion and distribution of data. Experiments with the real
datasets have proved to be difficult because of the various
parameters of the algorithm to obtain the requested number
of neighbors without dramatically increasing the execution
time (see discussion in Section 5.4.5). Despite our efforts, the

precision was very low for some datasets, in particular 28-
higgs. Using the generated datasets, we see that its execution
time increases with the dimension (Figure 13a) but its recall
remains stable (Figure 13b).

5.4 Practical Analysis
In this section, we analyze the algorithms from a practical
point of view, outlying their sensitivity to the dataset, the
environment or some internal parameters.

5.4.1 H-BkNNJ
The main drawback of H-BkNNJ is that only the Map
phase is in parallel. In addition, the optimal parallelization
is subtle to achieve because the optimal number of nodes
to use is defined by input size

input split size . This algorithm is clearly
not suitable for large datasets but because of its simplicity, it
can, nonetheless, be used when the amount of data is small.

5.4.2 H-BNLJ
In H-BNLJ, both the Map and Reduce phases are in parallel,
but the optimal number of tasks is difficult to find. Given a
number of partitions n, there will be n2 tasks. Intuitively,
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one would choose a number of tasks that is a multiple of
the number of processing units. The issue with this strategy
is that the distribution of the partitions might be unbal-
anced. Figure 14 shows an experiment with 6 partitions and
62 = 36 tasks, each executed on a reducer. Some reducers
will have more elements to process than others, slowing the
computation.
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Fig. 14: H-BNLJ, candidates job, 105 records , 6 partitions,
Geo dataset

Overall, the challenge with this algorithm is to find the
optimal number of partitions for a given dataset.

5.4.3 PGBJ
A difficulty in PGBJ comes from its sampling-based pre-
processing techniques because it impacts the partitioning
and thus the load balancing. This raises many challenges.
First, how to choose the pivots from the initial dataset. The
three techniques proposed by the authors, farthest, k-means
and random, lead to different pivots and different partitions
and possibly different executions. We found that with our
datasets, both k-means and random techniques gave the
best performance. Second, the number of pivots is also
important because it will impact the number of partitions.
A too small or too large number of pivots will decrease
performance. Finally, another important parameter is the
grouping strategy used (Section 4.1). In Figure 15, we can see
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Fig. 15: PGBJ, overall time (lines) and Grouping time (bars)
with Geo dataset, 3000 pivots, KMeans Sampling

that the greedy grouping technique has a higher grouping
time (bars) than the geo grouping technique. However, the
global computing time (line) using this technique is shorter

thanks to the good load balancing. This is illustrated by
Figure 16 which shows the distribution of elements pro-
cessed by reducers when using geo grouping (16a) or greedy
grouping (16b).
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Fig. 16: PGBJ, load balancing with 20 reducers

5.4.4 H-zkNNJ
In H-zkNNJ, the z-value transformation leads to informa-
tion loss. The recall of this algorithm is influenced by the
nature, the dimension and the size of the input data. More
specifically, this algorithm becomes biased if the distance
between initial data is very scattered, and the more input
data or the higher the dimension, the more difficult it is
to draw the space filling curve. To improve the recall, the
authors propose to create duplicates in the original dataset
by shifting data. This greatly increases the amount of data to
process and has a significant impact on the execution time.

5.4.5 RankReduce
RankReduce, with the addition of a third job, can have
the best performance of all, provided that it is started with
the optimal parameters. The most important ones are W ,
the size of each bucket, L, the number of hash families
and M , the number of hash functions in each family. Since
they are dependent on the dataset, experiments are needed
to precisely tune them. In [38], the authors suggests this
can be achieved with a sample dataset and a theoretical
model. The first important metric to consider is the number
of candidates available in each bucket. Indeed, with some
poorly chosen parameter values, it is possible to have less
than k elements in each bucket, making it impossible to
have enough elements at the end of the computation (there
are less than k neighbors in the result). On the opposite,
having too many candidates in each bucket will increase
too much the execution time. To illustrate the complexity of
the parameter tuning operation, we have run experiments
on the Geo and SURF datasets. First, Figure 17 shows that,
for the Geo dataset, increasing W improves the recall and
the precision at the expense of the execution time, up to
an optimal before decreasing. This can be explained by
looking at the number of buckets for a given W . As W
increases, each bucket contains more elements and thus
their number decreases. As a consequence, the probability
to have the correct k neighbors inside a bucket increases,
which improves the recall. However, the computational load
of each bucket also increases.

A similar pattern can be observed with the SURF dataset
(Figure 18, left), where increasing W improves the recall
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Algorithm Advantage Shortcoming Typical Usecase

H-BkNNJ Trivial to implement
1. Breaks very quickly

2. Optimal parallelism difficult
to achieve a priori

Any tiny and low dimension dataset
(∼ 25000 records)

H-BNLJ Easy to implement
1. Slow

2. Very large communication overhead
Any small/medium dataset

(∼ 100000 records)

PGBJ

1. Exact solution
2. Lowest disk usage

3. No impact on communication
overhead with the increase of k

1. Cannot finish in reasonable time
for large dataset

2. Poor performance for high
dimension data

3. Large communication overhead
4. Performance highly depends on

the quality of a priori chosen pivots

1. Medium/large dataset for
low/medium dimension

2. Exact results

H-zkNNJ

1. Fast
2. Does not require a priori parameter

tuning
3. More precise for large k

4. Always give the right number of k

1. High disk usage
2. Slow for large dimension

3. Very high space requirement ratio
for small values of k

1. Large dataset of small dimension
2. High values of k

3. Approximate results

RankReduce
1. Fast

2. Low footprint on disk usage

1. Fine parameter tuning required with
experimental set up

2. Multiple hash functions needed for
acceptable recall

3. Different quality metrics to consider
(recall + precision)

1. Large dataset of any dimension
2. Approximate results

3. Room for parameter tuning

TABLE 4: Summary table for each algorithm in practice
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(from 5% to 35%) and the precision (from 22% to 35%). In-
creasing the number of families L greatly improves both the
precision and recall. However, increasing M , the number of
hash functions, decreases the number of collisions, reducing
execution time but also the recall and precision. Overall,
finding the optimal parameters for the LSH part is complex
and has to be done for every dataset

After finishing all the experiments, we found that the

execution time of all algorithms mostly follows the theoret-
ical analysis presented in Section 4. However, as expected,
the computationally intensive part, which could not be ex-
pressed analytically, has proved to be very sensitive to a lot
of different factors. The dataset itself, through its dimension
and the data distribution, but also the parameters of some of
the pre-processing steps. The magnitude of this sensitivity
and its impact on metrics such as recall and precision could
not have been inferred without thorough experiments.

5.5 Lessons Learned

The first aspect is related to load balance. H-BNLJ actually
cannot guarantee load balancing, because of the random
method it uses to split data. For PGBJ, Greedy grouping
gives a better load balance than Geo grouping, at the cost
of an increased duration of the grouping phase. At the
same time, our experiments also confirm that H-zkNNJ and
RankReduce, which use size based partitioning strategies,
have a very good load balance, with a very small deviation
of the completion time of each task.

Regarding disk usage, generally speaking, PGBJ has the
lowest disk space requirement, while H-zkNNJ has the
largest for small k values. However, for large k, the space
requirement of all algorithms becomes similar.

The communication overhead of PGBJ is very sensitive
to the choice of pivots.

The data are another important aspect affecting the
performance of the algorithms. As expected, all the algo-
rithms’ performance decreases as the dimension of data
increases. However, what exceeded the prediction of the
theoretical analysis is that the dimension is really a curse
for PGBJ . Because of the cost of computing distances in
the pre-processing phase, its performance becomes really
poor, sometimes worse than H-BNLJ. H-zkNNJ also suffers
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from the dimension, which decreases its recall. However,
the major impact comes from the distribution of data.

In addition, the overall performance is also sensitive
to some specific parameters, especially for RankReduce.
Its performance depends a lot on some parameter tuning,
which requires extensive experiments.

Based on the experimental results, we summarize the
advantages, disadvantages and suitable usage scenarios for
each algorithm, in Table 4.

6 CONCLUSION

In this paper, we have studied existing solutions to perform
the kNN operation in the context of MapReduce. We have
first approached this problem from a workflow point of
view. We have pointed out that all solutions follow three
main steps to compute kNN over MapReduce, namely
preprocessing of data, partitioning and actual computation.
We have listed and explained the different algorithms which
could be chosen for each step, and developed their pros and
cons, in terms of load balancing, accuracy of results, and
overall complexity. In a second part, we have performed
extensive experiments to compare the performance, disk
usage and accuracy of all these algorithms in the same
environment. We have mainly used two real datasets, a
geographic coordinates one (2 dimensions) and an image
based one (SURF descriptors, 128 dimensions). For all algo-
rithms, it was the first published experiment on such high
dimensions. Moreover, we have performed a fine analysis,
outlining, for each algorithm, the importance and difficulty
of fine tuning some parameters to obtain the best perfor-
mance.

Overall, this work gives a clear and detailed view of the
current algorithms for processing kNN on MapReduce. It
also clearly exhibits the limits of each of them in practice
and shows precisely the context where they best perform.
Above all, this paper can be seen as a guideline to help
selecting the most appropriate method to perform the kNN
join operation on MapReduce for a particular use case.

After this thorough analysis, we have found a number of
limitations on existing solution which could be addressed
in future work. First, besides H-BkNNJ, all methods need
to replicate the original data to some extend. The number of
replications, although necessary to improve precision, has a
great impact on disk usage and communication overhead.
Finding the optimal parameters to reduce this number is
still an open issue. Second, the partitioning methods are
all based on properties of R. However, one can expect
R to vary as it represents the query set. The cost of re-
partitioning is currently prohibitive so, for dynamic queries,
better approaches might rely on properties of S. Finally,
MapReduce, especially through its Hadoop implementa-
tion, is well suited for batch processing of static data. The
efficiency of theses methods on data stream has yet to be
investigated.
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