
     
  ME Krash (Sample) 

© Kreatryx. All Rights Reserved.   www.kreatryx.com 

 

 

 

 
 

Thermodynamics 

 

Second Law of Thermodynamics 

1st law does not give information whether a certain process will proceed or not. 2nd law 

provides information regarding feasibility of the process. 

 

Hence 2nd law of thermodynamics is known as directional law or law of degradation of 

energy. 

 

High grade energy (work) is fully convertible to low grade energy (heat) but low grade is not 

fully convertible to work. 

 

Cyclic heat engine 

A heat engine is a thermodynamic cycle in which there is a net heat transfer to the system 

and network transfer from the system. 

Q W   (1st law) 

rejectednet

thermal

input input

QW
1

Q Q

 
    
    
TER (Thermal Energy Resevoir) is defined as a large body of infinite heat capacity 

 C ,  T 0    which is capable of absorbing or rejecting an unlimited quantity of heat. 

 

Kelvin Plank’s Statement 

It is impossible to devise a cyclically operating device, the sole effect of which is to absorb 

energy in the form of heat from a single thermal reservoir and to deliver an equivalent 

amount of work. 

Machine violating the Kelvin-plank statement is called PMM2. Hence PMM2 is impossible. 

 

Clausius statement 

It is impossible to construct a device working in cycle which will produce no effect other than 

the transfer of heat from a cooler to a hotter body without any work input. 

1

input

Q
COP refrigerator or reverse carnot cycle

W


  

2

HP

input

Q
COP

W


  

HP ref
COP COP 1      

 Heat pump provides a thermodynamic advantage over electrical heater. 

K-Notes 
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Carnot Cycle 

(a) Reversible isothermal heat addition 

(b) Reversible adiabatic expansion 

(c) Reversible isothermal heat rejection 

(d) Reversible adiabatic compression 

 It states that of all the heat engine operating  

between constant source and sink temperature,  

none has higher efficiency than a reversible engine. 

 

 The efficiency of a reversible engine is independent of the nature or the amount of the 

working substance undergoing the cycle. 

 

 1 H

2 L

Q T

Q T
   

 

 

 L

carnot

H

T
1

T
    

 

Note: The temperatures appearing in the expression should be the temperatures of the 

working fluid, if both source and sink temperatures and working fluid temperatures are 

given. 

 

Drawbacks of Carnot cycle 

 All processes are reversible 

 Isothermal process takes place at infinite slow speed where as adiabatic at very fast 

speed. So the combination of two process is practically not possible. 

 

3rd law of Thermodynamics 

It is impossible by any procedure no matter, how idealized to reduce any system to absolute 

zero temperature in a finite number of operations. 
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Entropy 

The degree of randomness of a system is called Entropy. Entropy represents degradation of 

energy. 

 

Note: Randomness should not be linked with velocity. It basically signifies the scattering of 

energy in different directions. 

 

Clausius Inequality 

The cyclic integral of 
dQ

T
 for a reversible cycle is equal to zero. This is known as Clausius 

theorem. 

 

Clausius Inequality 

Q
0

T




 
Cases: 

(i) 
dQ

0
T

 ; irreversible 

(ii) 
dQ

0
T

 ; reversible 

(iii) 
dQ

0
T

 ; impossible 

 
dQ

ds
T

   only for reversible process 

 
dQ

dS
T

   for irreversible process 

 Entropy is a point function and does not depend on path 

 Area under T-S plot gives heat. 

 Since 
dQ

dS
T

   

For isolated system or universe dQ 0  

dS 0    

universe system surrounding
dS dS dS 

  
 When system is in equilibrium, change in entropy would be zero. 

 

Applications of Entropy 

(i) To find the direction of flow 

(ii) Transfer of heat through finite temperature difference 

(iii) Mixing of two fluids 

(iv) Maximum work obtainable from two finite bodies at temperature 
1 2

T and T   

(v) Maximum amount of work obtainable from a finite temperature body and a TER 

 

 



     
  ME Krash (Sample) 

© Kreatryx. All Rights Reserved.   www.kreatryx.com 

 

 

 

Entropy transfer mechanism 

(a) Heat transfer 

(b) Mass transfer 

 No transfer of entropy is associated with work 

 Heat flow increases the disorder hence entropy increases 

 Work may increase internal energy due to which entropy may increase but is as such no 

entropy transfer to it 

 

Entropy generation in a closed system 

(a) By heat interaction 

(b) By internal irreversibility 

 
generation

Q
dS S

T


  

 
 

Fixed mass entropy analysis 

1. Reversible process  gen
S 0   

(a) Heat addition  Q ive    

 dS ive   
(b) Heat rejection  Q ive    

 dS ive   
(c) Adiabatic  Q 0   

 dS 0 Isentropic  
 

2. Irreversible process  gen
S ive    

(a) Heat addition  Q ive    

   gen

Q
dS ive S ive

T


    

 
 dS ive   
(b) Heat rejection  Q ive    

   gen

Q
dS ive S ive

T


    

 
 dS ive,  +ive, zero   

(c) Adiabatic  Q 0   

 gen
dS zero S ive   

 
 dS ive   

 

Some important points 

 A reversible adiabatic process is always isentropic. 

 Entropy of an isolated system can never decrease. 
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 Entropy is not a conserved property. 

 Entropy generation represents degradation of energy. 

 Isentropic process is not always reversible adiabatic. 

 If an irreversible process is to be isentropic, it must be non-adiabatic. 

 Universe is an isolated system. 

 

Entropy generation in an open system 

gen exit inlet
S S S   and 

gen
S 0   

 

Important results 

(a) dQ dE dW    

 Valid for all processes, reversible or irreversible, open system or closed system 

(b) dQ dU dW    

 Every process but closed system 

(c) dQ dU PdV    

 Closed and reversible (Quasi-static) 

(d) dQ TdS  reversible only 

(e) TdS dU PdV    

 Valid for all process and system as it contains only properties. 

(f) TdS dH VdP    

 Valid for all process and system as it contains only properties. 

 
2 1 v

dT dV
s s c R

T V
     

 
2 1 P

dT dP
s s c R

T P
     

The above expressions give the following results: 

2 2

2 1 v

1 1

T V
s s c ln Rln

T V
  

 

2 2

2 1 p

1 1

T P
s s c ln Rln

T P
  

 

2 2

2 1 p v

1 1

V P
s s c ln c ln

V P
  

 
(g) Two reversible adiabatic processes cannot intersect each other or through one point, 

only one adiabatic path passes. 
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Different processes on P-V and T-S diagrams 

  
 

Note: 

On T-S diagram, slope of constant volume process is greater than slope of constant pressure 

v pv

T T T T
&

S c S c

    
    

      

v p
c c  

 

 

  



     
  ME Krash (Sample) 

© Kreatryx. All Rights Reserved.   www.kreatryx.com 

 

 

 

Heat Transfer 

 

Fins 

Fins are the projections protruding from a hot surface and they are meant for increasing the 

heat transfer rate by increasing the surface area of heat transfer. 

Area zt   

Perimeter 2z 2t p     

 x 0 x dx 0
q q hP dx T T

 
     

 x

x x convected

q
q q dx q

x


  


  

 
2

2

T hP
T T

KAx



 


  

T T


     

2 hP
m

KA
   

2
2

2

d
m

dx


    

mx mx

1 2
C e C e     

Now from boundary condition 

(i) 
o

At x 0, T T   , 
0 0

T T


      

(ii) 2nd boundary condition depends upon different cases. 

 

Case I – Fin is infinitely long 

 through fin c 0
Q hP KA Watt    

mx

0 0

T T
e

T T






 

 
  

 

Case II- Fin is finite in length and its Tip is insulated 

x L

T
0

x


 
 

 
 as there is no heat transfer from tip 

 

0 0

cosh m l xT T

T T cosh ml






 

 
  

   through fin c 0
Q hPKA tanh mL watt    

 

Note:  When no case is mentioned, in any problem use case-II 

 

Case III- Fin is finite in length and also loses heat by convection from its tip. 

 c

0 0 c

cosh m L xT T

T T cosh mL






 

 
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c
L   Corrected length 

c

t
L L

2
   (Rectangular fin) 

c

D
L L

4
   (Circular fin) 

 fin c 0 c
q hPKA tan h mL    

 

Fin efficiency 

It is the ratio of actual heat transfer rate to maximum possible heat transfer rate when entire 

fin is present at base root temperature. 

 
 

c 0actual

maximum possible 0

hPKA tanh mLQ

Q h PL


  


  

(When whole fin is at the base temp) 

Depends upon the case which one is to be used 

 

 

 

 

Fin efficiency for insulated tip        Fin efficiency for long fin (infinite) 

 

           
 Tanh mL

η=
mL

                              
1

η=
mL

  

 

Effectiveness of fin 

Ratio of heat transfer rate with fins to heat transfer rate without fins. It is a measure of how 

effective the usage of fins is. 

Effectiveness 
with fin

without fin

Q

Q
   

Effectiveness for case 1 (infinitely long fin) 

fin

c

KP

hA
   

Effectiveness for case 2 (Fin is finite in length and its Tip is insulated) 

 fin

c

KP
Tanh mL

hA
   

For fins to be effective, 
fin

1   

 K↑ 

 Ac↓ (i.e why thin fins are preferred) 

 Short in length 

 More in number, so closely spaced 

 

Note: Fins are more effective where convective heat transfer coefficient is less 
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Engineering Maths 

 

Calculus 

Important Series Expansion  

a.     

b.    

c.   

d.     

e.       

f. tan x =    

g. ln (1 + x) =    

h.  

i.  

j.  

 

Important Limits  

a.      

b.         

c.  

d.              

e.    

f.    

g.  

h.  

 

 

 
n

n n

r  0

r
r1 x C x



  

 
1 21 x 1 x x ............


    

   
2 3

2 3x x x
a 1 x log a xloga xloga ................

2! 3!
    

3 5x xsinx x    .................
3! 5!

  

 
2 4x xcosx 1  +  ......................

2! 4!
3

5x 2
x x

3 15
          

2 3x xx  +  + ............,  x  < 1
2 3



 
2 3x x

ln 1 x x ............ x 1
2 3

      

2 3
x x x x

e 1
1! 2! 3!

            

2 3
x x x x

e 1
1! 2! 3!

             

lt sinx
    1

x 0 x




lt tanx
     1

x 0 x




 
1 nx

lt
  1 nx  e

x 0
 



lt
 cos x  1

x 0




 
1

x
lt

 1 x   e
x 0

 


  


xlt 1 1  e
xx

   2

2

1 cos mxlt m

2x 0 x






lt sinx
0

xx



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L – Hospital’s Rule  

If f (x) and g(x) are two functions such that  

    and      

 

Then,     

If f’(x) and g’(x) are also zero as , then we can take successive derivatives till this 

condition is violated.  

For continuity,    

For differentiability,    exists and is equal to   

If a function is differentiable at some point then it is continuous at that point but converse 

may not be true.  

 

Mean Value Theorems  

 Rolle’s Theorem  

If there is a function f(x) such that f(x) is continuous in closed interval a ≤ x ≤ b and f’(x) is 

existing at every point in open interval a < x < b and f(a) = f(b). Then, there exists a point 

‘c’ such that f’(c) = 0 and a < c < b. 

 

 Lagrange’s Mean value Theorem 

If there is a function f(x) such that, f(x) is continuous in closed interval  a ≤ x ≤ b; and f(x) 

is differentiable in open interval (a, b) i.e., a < x < b,  

Then there exists a point ‘c’,  such that 

   

 

Differentiation  

Properties:  (f + g)’ = f’ + g’ ;  (f – g)’ = f’ – g’ ; (f g)’ = f’ g + f g’  

 

Important derivatives  

a.  → n         

b.     

c.    

d.     

e.   

f. sin x  → cos x  

g. cos x → –sin x  

h. tan x →    

 
lt

 f x  0
x a




 
lt

 g x  0
x a




 

 

 

 

lt ltf x f' x
    

x a x ag x g' x


 

x a

   
lim

f x =f a
x a

   00
f x h f xlim

h 0 h

  
 

   

 0f ' x

 
   

 

f b f a
f ' c

b a






nx n  1x 

1nx
x



 a a
1log x  (log e)

x

x xe   e
x x

ea   a log a

2sec x
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i. sec x →   sec x tan x  

j. cosec x →  – cosec x cot x  

k. cot x →  – cosec2 x  

l. sin h x → cos h x  

m. cos h x →  sin h x  

n.  

o.  

p.  

q.   

r.    

s.       

 

Increasing & Decreasing Functions  

  , then f is increasing in [a, b] 

  , then f is strictly increasing in [a, b] 

  , then f is decreasing in [a, b] 

  , then f is strictly decreasing in [a, b] 

 

Maxima & Minima  

Local maxima or minima    

There is a maximum of f(x) at x = a if f’(a) = 0 and f”(a) is negative.  

There is a minimum of f (x) at x = a, if f’(a) = 0 and f” (a) is positive.  

To calculate maximum or minima, we find the point ‘a’ such that f’(a) = 0 and then decide if it 

is maximum or minima by judging the sign of f”(a).  

 

Global maxima & minima  

We first find local maxima & minima & then calculate the value of ‘f’ at boundary points of 

interval given eg. [a, b], we find f(a) & f(b) & compare it with the values of local maxima & 

minima. The absolute maxima & minima can be decided then.  

 

Partial Derivative  

If a derivative of a function of several independent variables be found with respect to any 

one of them, keeping the others as constant, it is said to be a partial derivative.  

 

 1

2

1
sin x  

1 - x

2

1 -1
cos x  

1 x

 


 
 2

1 1
tan x  

1 x

2

1 -1
cosec x  

x x 1

 


 
2

1 1
sec x  

x x 1

1
2

-1
cot x  

1 x

 


 f ' x 0 V  x a, b

 f ' x 0 V  x a, b

 f ' x 0 V  x a, b

 f ' x 0 V  x a, b
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Homogenous Function  

  is a homogenous function of x & y,  of degree ‘n’  

=    

 

Euler’s Theorem  

If u is a homogenous function of x & y of degree n, then     

Maxima & minima of multi-variable function  

   ;              ;         

 Maxima  

rt – s2 >0  ;    r < 0  

 Minima 

rt – s2>0  ;     r > 0  

 Saddle point  

rt – s2< 0    

 

Integration  

Indefinite integrals are just opposite of derivatives and hence important derivatives must 

always be remembered. 

 

Some standard integral formula 

 

 

 

 

 

 

 

 

 

 

 

 

n 2 2n n  1 n
n0 1 2

a x a x y a x y ............. a y   

     
2 n

n0 1 2
n y y y

x a a a .................... a
x x x

 
    

 

u u
x y nu

x y

  
  

  

2

2

x a

y b

f
let r

x 



 
    

2

x a

y b

f
s  

x y 



 
     

2

2

x a

y b

f
t  

y 



 
    

n 1
n x

x dx c
n 1



 


x
xa loga dx a c 

x
xe dx a c 

uv dx u v u v c    
   

sinx dx cosx c  
cosx dx sinx c 

 tanx dx ln secx c 
 cosecx  dx ln cosecx cotx c  

 secx  dx ln secx tanx c  
 cotx dx ln sinx c 

1

2

1
 dx sin x c

1 x

 




1

2

1
 dx cos x c

1 x


 



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Properties of definite integral  

a.    

b.    

c.    

d.  

e.  

f.   

g.      

  

1

2

1
dx tan x c

1 x

 




1

2

1
dx cot x c

1 x


 




1

2

1
dx cosec x c

x x 1


 




1

2

1
dx sec x c

x x 1

 




1

2 2

1 x
dx sin c

aa x

  
  

 


1

2 2

1 1 x
dx tan c

a aa x

  
  

  


2 2

1 1 x a
dx ln c

2a x aa x

 
  

  


2 2

1 1 x a
dx ln c

2a x ax a

 
  

  


 2 2

2 2

1
dx ln x x a c

x a
   




 2 2

2 2

1
dx ln x x a c

x a
   




    
b b

a a

f x dx f t dt

   
b a

a b

f x dx f x dx  

        
b c b

a a c

f x dx f x dx f x dx

   
b b

a a

f x dx f a b x dx   

a

2a

0

0

2 f(x)dx  if  f(2a-x)=f(x)
f(x)dx

0   if    f(2a-x) f(x)




 


 




a

a

0

a

2 f(x)dx  if  f(x)=f(-x)
f(x)dx

0   if    f(x) f(x)





 


 




 
 

 

         

t

t

d
f x dx f t ' t f t ' t

dt




     
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Theory of Machine 

 

Terminology of CAMS 

 

 
 

Base circle: Smallest circle drawn from the centre of rotation of the cam forming a part of 

cam profile. Radius of the circle is called the least radius of cam. 

Pitch curve: Path of trace point assuming cam is fixed and follower rotates. 

Prime circle: Smallest circle that can be drawn from the cam centre and tangent to the pitch 

curve. 

Pitch circle: Circle drawn from the cam centre and passes through the pitch point. Pitch 

point corresponds to 
max
  

Cam profile: Surface of cam that comes in contact with the follower. While drawing cam 

profile, we consider that cam is stationary and follower rotates over it. 

Dwell: It is zero displacement or absence of rotation of the follower during the motion of the 

cam. 

Angle of Ascent  a
 : It is the angle through which the cam turns during the time follower 

rise. 

Angle of dwell   : it is the angle through which cam turns while the follower remains 

stationary at the highest or lowest position. 

Angle of dwell  d
: It is the angle through which cam turns during the time the follower 

returns to the initial position. 

 For a flat face and knife edge follower, prime circle and the base circle are the same, 

because in these types, trace point lies on the base circle.\ 

 Maximum lift of follower Stroke of follower 

 
max

30  or 30      , otherwise a reciprocating type of follower will jam the bearing. 
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Force exerted by cam 

Fcos : Vertical component which lifts the follower  

Fsin : Exerts lateral pressure on the bearing 

   Lateral force   

  Has to be reduced by making surface more convex and longer 

 The minimum value of   cannot be reduced from certain value 

 Base circle diameter    Pressure angle   
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Engineering Mechanics 

 

Impulse, Momentum and Collisions 

The impulse of a constant force F is defined as the product of the force and the time t for 

which it acts.  

Impulse = F.t 

 

The effect of the impulse on a body can be found using below equations, where a is 

acceleration, u and v are initial and final velocities respectively and t is time.  

 v u at v u at      

So  

  chaI F ngt m e a t m in momentumv u       

So we can say that, 

Impulse of a constant force = F.t = change in momentum produced. 

 

Impulse is a vector quantity and has the same units as momentum, Ns or kg m/s 

The impulse of a variable force can be defined by the integral  

Impulse=
t

0

F.dt , where t is the time for which F acts. 

 

By Newton's 2nd law  

 F m.a m dv / dt   

So impulse can also be written  

Impulse
v v

v

u
u u

dv
m dt mdv mv

dt
        

which for a constant mass  

Impulse =m (v-u) 

 

Impulsive force 

 Suppose the force F is very large and acts for a very short time. During this time the 

distance moved is very small and under normal analysis would be ignored. Under these 

conditions, the only effect of the force can be measured is the impulse, or change in 

momentum which is called an impulsive force.  

 

 In theory this force should be infinitely large and the time of action infinitely small. Some 

applications where the conditions are approached are collision of snooker balls, a 

hammer hitting a nail or the impact of a bullet on a target.  

 

Conservation of linear momentum 

Consider the direct collision of two spheres A and B.  
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 When the spheres collide, then by Newton's third law, the force F exerted by A on B is 

equal and opposite to the force exerted by B on A.  

 The time for contact is the same for both. The impulse of A on B is thus equal and 

opposite to the impulse of B on A. It then follows that the change in momentum of A is 

equal in magnitude to the change in momentum in B, but it is in the opposite direction. 

The total change in momentum of the whole system is thus zero.  

 This means that the total momentum before and after a collision is equal, or that linear 

momentum is conserved. This is called the principle of conservation of linear momentum 

and in summary this may be stated:  

 

The total momentum of a system, in any direction, remains constant unless an external 

force acts on the system in that direction.  

Caution: Take proper sign convention while solving problems. 

 

Impact of inelastic bodies 

 When two inelastic bodies collide they remain together. They show no inclination to 

return to their original shape after the collision.  

An example of this may be two railway carriages that collide and become coupled on 

impact.  

 Problems of this type may be solved by the principle of conservation of linear 

momentum.  

Momentum before impact = Momentum after impact 

(Take proper sign convention) 

 Although momentum is conserved, it is important to realize that energy is always lost in 

an inelastic collision (it is converted from mechanical energy to some other form such as 

heat, light or sound.)  

 

Impact of elastic bodies 

 In the last section the bodies were assumed to stay together after impact. An elastic body 

is one which tends to return to its original shape after impact. When two elastic bodies 

collide, they rebound after collision. An example is the collision of two snooker balls.  

 If the bodies are travelling along the same straight line before impact, then the collision is 

called a direct collision. This is the only type of collision considered here. 

  
 

Consider the two elastic spheres as shown. By the principle of conservation of linear 

momentum  

Momentum before impact = Momentum after impact 

1 1 2 2 1 1 2 2
m u m u m v m v    

where the 
i

u  initial velocity of body i. 

   
i

v  final velocity of body i.  
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 When the spheres are inelastic v1 and v2 are equal as we saw in the last section. For elastic 

bodies v1 and v2 depend on the elastic properties of the bodies. A measure of the 

elasticity is the coefficient of restitution, for direct collision this is defined as  

 
 

1 2

1 2

v v
e

u u


 


 

 The values of ‘e’ in practice vary between 0 and 1. For completely inelastic collision, e 0  

and for completely elastic collision, e=1. In the latter case, no energy is lost in the 

collision.  

 Both the law of restitution & conservation of momentum are applicable along x and y 

directions in case of oblique collision. 

 

Rolling, torque and angular momentum 

Rolling motion: 

Combination of translational motion & rotational motion. 

In rolling motion, the centre of the object moves in a line parallel to the surface.  

 

Relation between length and angle of rotation: 

When the object rotates through an angle ' ' , a point at a distance R from the rotation axis 

moves through a distance of S 

 

 

 

S R   

 

 

 

 

The arc length S is the same as the distance that the wheel translates. 

The linear (translational) speed 
COM

V of the wheel is 
dS

dt
;

COM
V  is the velocity of centre of mass. 

The angular speed of the wheel is 
d

dt


   

So, 
dS d

R
dt dt


  

COM
V R   

Rolling motion is the combination of pure rotational motion and pure translational motion. 
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        Pure rotation                  +     pure translation         =       Rolling motion 

 
 

The velocity of a point at the top of the rolling wheel is twice that of the centre of the wheel 

   top COM
V 2R 2 R 2V      

 

Kinetic energy of rolling: 

As an object rolls, the point at the very bottom, the contact point with the surface, is 

instantaneously stationary. 

We will call this point P and we can treat rolling about this point. 

K.E= 2

P

1
I

2
  

P
I : Rotational inertia about the point P 

Parallel axis theorem says 2

P COM
I I MR   

2

P

1
K.E I

2
   

2 2 2

COM

1 1
K.E I MR

2 2
     

2 2

COM COM

1 1
K.E I MV

2 2
    

Kinetic energy of a rolling object comes from rotational kinetic energy and translational 

kinetic energy. 

 

Forces in rolling: 

 If a wheel rolls smoothly, there is no sliding at the contact point so there is no friction. 

 However if there is an external force that produces an acceleration, there will be an 

angular acceleration . The acceleration will make the wheel want to slide at the contact 

point. Then a frictional force will be on the wheel to oppose the tendency to slide. 

 

Direction of static frictional force: 

 If a wheel moving to the right were to accelerate, the bottom of the wheel would want to 

move to the left compared to the surface. Thus static friction force is to the right. 

 If same wheel was to slow down, the direction of the acceleration and angular acceleration 

would switch and the static friction force will now be pointing towards the left. 
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Rolling down a ramp: 

The direction of the static friction force is the confusing part here. It points up along the 

ramp. If the wheel were to slide down the ramp, the friction opposing the sliding would be 

pointing up. 

 

s COM
f Mgsin Ma  

  
 

I    

 

Only force on the wheel that produces torque is the friction 

s COM
Rf I    

We will need to make use of 
COM

a R   

(a is down the ramp, negative X-direction but the wheel rolls counter-clockwise,  is positive) 

COM
a

R


   

So we can solve for COM

s COM 2

a
f I

R
   

COM

COM

2

gsin
a

I
1

MR

 




 

Yo-Yo 

A Yo-Yo behaves similar to the wheel rolling down a ramp. 

1) Instead of rolling down a ramp of angle ' ' , Yo-Yo follows an angle of 090 with horizontal. 

2) Yo-Yo rolls down a string on a radius R. 

3) Instead of friction, the tension shows up in the Yo-Yo. 

COM

COM

2

0

g
a

I
1

MR





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Machine Design 

 

Failure Theories 

Maximum principal stress theory 

 It is also known as Rankine’s theory. 

 Best for brittle materials. 

 For safe design yt w

1

S S
or

N N
   

1
   Maximum principal stress developed at a critical point 

N = Factor of safety 

 

Maximum shear stress theory (M.S.S.T) 

 Also known as Guest and Tresca theory. 

 Suitable for ductile materials. 

 It gives more safety to component (most safe design). 

 Dimension and cost of component is more. 

 It is not suitable under hydrostatic state of stress. 

 

For safe design 

Absolute Ys Yt

max

S S
E or

N 2N
  

Yt
S  tensile yield strength 

Ys
S = Yield shear stress of material 

Yt

Ys

S
S

2

 
 

 
 

For tri-axial state of stress: 

max
  Larger of 2 3 3 11 2 , ,

2 2 2

        
 
  

 

For biaxial state of stress: 

1 2

max 2

  
   

 

Maximum principal strain theory 

Also known as St. Venant’s theory 

For safe design 
1 Y.P

   or Yt
S

N E
 

1
 Maximum principal strain at critical point 

Y.P
 Strain corresponding to yield point 

NFactor of safety  
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E= Young modulus of elasticity 

 1 1 2 3

1

E
        

 

 

Total strain energy theory [T.S.E.T] 

 Also known as Haigh’s theory 

 For safe design, total strain energy per unit volume should be less than that of yield point 

Total 
S.E

Volume
= 

1 1 2 2 3 3

1 1 1

2 2 2
          2 2 2

1 2 3 1 2 2 3 3 1

1
2

2E
                 

 

(  = Poisson’s ratio) 

 
 

Yield point

S.E

Volume

 
 
  

2

YL
S1

2E N

 
  

 
 

 

For trivial state of stress condition 

 
2

yt2 2 2

1 2 3 1 2 2 3 3 1

S
2

N

 
                 

 
 

 

 

For biaxial state of stress condition 

2

yt2 2

1 2 1 2

S
2

N

 
        

 
 

 

 

Maximum distortion energy theory (M.D.E.T) 

 Also known as Von-Mises theory. 

 Best for ductile material. 

 Gives economical design (Less cost). 

 It is less safer design than those corresponding to maximum shear stress theory. 

 

For safe design 

Maximum distortion energy Distortion energy per unit volume

Per unit volume At yield point

   
   

   
 

 
     

2 2 2

1 2 2 3 3 1

D.E 1

Vol 6E

              
  

 

 
2

yt

Y.P

SD.E 1

Vol 3E N

    
    

  
  

 

     
2

2 2 2
Yt

1 2 2 3 3 1

S
2

N

 
          

 
 

For biaxial state of stress condition 
2

yt2 2

1 2 1 2

S

N

 
        

 
 
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Consolidated table for theories of failure 

 

S.No. 
Theories 

of failure 
Design equations e e

M  or T equations 

  yt

t per

S

N
 

equations 

(used when 

normal stress is 

acting in only 1 

direction) 

ys

yt

S

S
 

Shape of 

safe 

boundary 

i.e. 

yc yt
S S   

Valid for 

1. 

Max. 

Principal 

stress 

theory 

yt ut

1

S S
 or 

N N

 
   



 
 

2 2

e

3

t per

1
M M M T

2

    d
32

   
  


 

 

x

2 2

x xy

1

2 4

  
 
   
 

 

1 Square 

Best for 

brittle 

materials. 

Used for 

ductile 

materials 

when 

1.Uniaxial 

state of 

stress 

2. Biaxial if 

1,2
  are like 

in nature. 

3. 

Hydrostatic 

state of 

stress. 

2. 

Max. 

shear 

stress 

theory 

Larger of 

1 2

yt2 3

3 1

,
2

S

2 2 N

,
2

   
 
 
 
  

  
  
 
   

 
 

 

2 2

e

3

per

T M T

   d
16

 


 

 2 2

x xy
4     0.5 Hexagon 

Used for 

ductile 

materials 

(except 

hydrostatic 

state of 

stress). Gives 

over safe 

and 

uneconomic

al design. 

3. 

Max. 

principal 

strain 

theory 

  yt

1 2 3

S

N
       - - 

1

1 
 Rhombus - 

4. 

Total 

strain 

energy 

theory 

2 2 2

1 2 3

2
1 2

yt

2 3

3 1

S
2

N

    

  
  

         
     

 

- -  

1

2 1 

 

Ellipse 

Semi-major 

axis 

yt
S

1


 
 

Semi-

minor axis 

yt
S

1


 
 

Best for 

hydrostatic 

state of 

stress. 

5. 

Max. 

shear 

strain 

energy 

theory/ 

max. 

distortion 

energy 

theory 

 

 

 

2

1 2

2

2 3

2

2 yt

3 1

S
2

N

 

  

 
      

 
 

 

 

2 2

e

3

t per

3
T M T

4

   d
32

 


 

 2 2

x xy
3     

1

3
 

Ellipse 

Semi-major 

axis 

yt
2 S  

Semi-

minor axis 

yt

2
 S

3
  

Best for 

ductile 

materials. 

Gives safe 

and 

economical 

design. 



     
  ME Krash (Sample) 

© Kreatryx. All Rights Reserved.   www.kreatryx.com 

 

 

 

Clutches 

It is a mechanical device which is used to engage/disengage the driven shaft to/from driver 

shaft without stopping the prime mover. 

 

 
 

Properties of friction lining material used in clutches: 

(i) High coefficient of friction 

(ii) High wear resistance 

(iii) Higher conductivity 

(iv) Lower coefficient of thermal expansion ( )  

(v) Good strength 

 

Basic calculation 

i
R  Inner radius of clutch  

0
R Outer radius of clutch 

W =Total operating force 

p Pressure intensity 

Elemental area =  dA 2 r dr   

dW p 2 rdr                    dW =elemental force 

f
dF .dW .p.2 rdr           

f
dF =Frictional force on elemental area 

2

f f
dT dF r .p.2 r dr      

f
dT Torque transmitted by clutch for elemental area 

f
T  Total torque transmitted by clutch 

 

Theories of design of clutch:- 

(i) Uniform pressure theory (UPT) 

(ii) Uniform wear theory (UWT) 
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(A) Uniform pressure theory 

Pressure remains constant over entire friction plate 

p= Constant 
0

i

R

2 2

0 i

R

W p.2 r.dr p R R        

UPT 2 2

0 i

W
p

R R


   

 

0 0

i i

R R

2 2

f 2 2
R R 0 i

W
T n p 2 r dr n 2 r dr

R R
       

   
 

3 3

0 i

2 2

0 i

R R2
n W

3 R R

 
    

  
 

eff
T n WR   where, 

3 3

0 i

eff 2 2

0 i

R R2
R

3 R R

 
  

  
 

n = number of frictional surfaces  plates = (n+1) 

 

(B) Uniform wear theory (UWT) 

Wear uniformly distributed over entire surface area of clutch 
p r constant    

where, r= radius at any section 

 
0

i

R

UWT 0 i

R

W p 2 r dr p 2 r R R         

UWT

0 i

W
p

2 r R R


   

 

Pressure intensity varies over entire plate 

At r = 
i
r  

max
p p   [Maximum pressure] 

0
r r  

min
p p   [Minimum pressure] 

 

0 0

i i

R R

2 2

f

R R 0 i

W
T n p 2 r dr n 2 r dr

2 r R R
        

 
 

 0 i
R R

n W
2


 

eff
n WR   ; 0 i

eff

R R
R

2


  

 

Note:  

 Frictional torque as per uniform pressure theory is more than friction torque by uniform 

wear theory. That’s why for designing clutches, it is better to use uniform wear theory 

because clutches are used to transmit power by utilising frictional forces. Also pressure is 

non-uniformly distributed when clutches are in service so UWT is used. 

 In case of new clutches, UPT is more appropriate but in case of old clutches UWT is more 

appropriate. In friction clutches, UWT should be considered.  

 

For multiplate disc clutch, 
1 2

n n n 1    

where 
1

n  discs on driving shaft  

          
2

n   discs on driven shaft 
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Industrial Engineering 

 

Sequencing 

 Aim of sequencing is to find the order in which different number of jobs are to be 

proceeded on different machines, so that the idle time can be minimized and utilization 

may be optimized. 

 Job Flow time: It is the time from some starting point until that particular job is 

completed. 

 Make Span time (MST): It is the time from when processing begins on first job in the set 

until the last job is completed. 

 Tardiness: It is the amount of time by which a job is delayed beyond its due date. 

 Tardiness = Job Flow time – Due Date 

 Average Number of jobs in the system= 
Total job flow time

Make span time
 

Sequencing Rule 

 Shortest processing time (SPT) = Jobs are arranged in increasing order of their 

processing time. 

 Earliest due date (EDD): Jobs are arranged in increasing order of due dates. 

 Critical Ratio Rule (CRR): 

Critical Ratio = 
Due date

processing time
 

Jobs are arranged in increasing order of critical ratio. 

 Slack time remaining (STR): 

STR = Due date – Processing time 

Jobs are arranged in increasing order of their Slack time remaining. 

Sequencing of N-jobs on two machines: 

 For sequencing, Johnson’s rule is applied. 

Ex: 

 Machine – 1 Machine – 2 

A 8 4 

B 5 9 

C 3 7 

D 6 7 

E 10 5 

F 9 2 

 

Order is  

C   B   D   E   A   F  

 Minimum time on machine 1 is sequenced first and minimum time on machine 2 is 

sequenced last and this continues till all are assigned. 
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N-jobs on three machines 

Ex 

 

 A B C 

Jobs Ai Bi Ci 

1    

2    

3    

  Max Bi  

 Min Ai   

   Min Ci 

N    

 

Conditions to apply Johnson’s rule 

i i

i i

Min. A Max. B

OR

Min. C Max. B





 

i i i i i i
X A B  & Y B C      

Now apply Johnson’s rule for machines X & Y 

 

Example: There are S jobs each of which must go through m/c A, B, C in the same order. 

Find the optimum sequence, make span time and idle time for each m/c. 

 

Jobs A B C 

1 8 5 4 

2 10 6 9 

3 6 2 8 

4 7 3 6 

5 11 4 5 

 

Solution: Condition is satisfied i.e. 
i i

Min. A Max. B  

 

Jobs A B X   B C Y   

1 13 9 

2 16 15 

3 8 10 

4 10 9 

5 15 9 

 

So order is 

3 2 5 1 4     
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 m/c A m/c B m/c C 

Jobs In Out In Out In Out 

3 0 6 6 8 8 16 

2 6 16 16 22 22 31 

5 16 27 27 31 31 36 

1 27 35 35 40 40 44 

4 35 42 42 45 45 51=MST 

 

Make span time = 51 

Idle time for machine A = 9 

Idle time for machine B = 31 

Idle time for machine C = 19 
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Manufacturing Engineering 

 

Material Science 

Introduction: Material science is the study of relationship between structure and properties 

of engineering materials. 

 

Crystal system and bravais lattice 

Crystal system Geometry Bravais Lattice 

Cubic 
a b c

90

 

      
 SC, BCC, FCC 

Tetragonal 
a b c

90

 

      
 ST,BCT 

Orthorhombic 
a b c

90

 

      
 SO, BCO,FCO, ECO 

Rhombohedral 
a b c

90

 

      
 SR 

Hexagonal 
a b c

90 , 120

 

       
 SH 

Monoclinic 
a b c

90

 

      
 SM, EC, 

Triclinic 
a b c

90

 

      
 STr 

 

Some important definitions in crystal structure: 

Primitive cell: A primitive cell is defined as a simple cubic unit cell having atoms only at the 

corner. 

 

Crystal lattice: It is a 3D network of lines in space. It is also known as a line lattice. 

 

Space lattice: It is defined as a 3D network of points in space. It is also called as a point 

lattice. 

 

Lattice parameter: It is the smallest representative group of atoms which when repeated in all 

the crystallographic directions for infinite number of time result in the development of a 

crystal lattice. 

 

Crystal structure characteristics 

Let a = lattice parameter 

      r = atomic radius 

 



     
  ME Krash (Sample) 

© Kreatryx. All Rights Reserved.   www.kreatryx.com 

 

 

 

Characteristic BCC FCC HCP 

a to r relation 
4r

a
3

  
4r

a
2

  a 2r  

Average no. of atoms (Navg) 
8 0 1

2
8 2 1
    

8 6 0
4

8 2 1
    

12 2 3
6

6 2 1
    

Co-ordination numbers 8 12 12 

Atomic packing factor 0.68 0.74 0.74 

 

Example of BCC elements are: Fe (Except in 910–1400°C), W,Cr,  V, Mo etc. 

 BCC elements are generally hard and brittle. 

 BCC elements are mixed up with other material then the hardness and brittleness of 

combination being increased (wear resistance also increased). 

 All BCC elements are carbide formation elements and gives fine grains structure. 

 

Example of FCC elements are: Fe (in 910–1400°C), Al, Cu, Ni, Au, Ag, Pt etc. 

 FCC elements are generally strong and ductile. 

 Toughness depends upon both strength and ductility. 

 

Example of HCP: Ti, Mg, Zn, Zr, Co, Cd, etc. 

 HCP elements are relatively less ductile compared to FCC elements. 

 HCP elements are best suited for soild lubricant. 

 

Allotropy: Allotropy is defined as the tendency of an element to exist in the different 

crystalline structure at different temperature and pressure. 

The crystal structure which have higher value of atomic factor are called as closed packed 

structure. Ex: FCC and HCP 

 

Miller indices for plane: These are defined as rationalized reciprocals of fractional intercepts 

taken along the three crystallographic directions and written under parenthesis without a 

repeating comma between them. 

 They are denoted by (h k l) 

 Always expressed as smallest integers 

 

Characteristics of miller indices of plane: 

 When a plane is parallel to an axis its miller indices on the axis is zero. 

 Two parallel planes will have quantatively the same miller indices.  

 Two planes    1 1 1 2 2 2
h k & h k will be perpendicular if 

1 2 1 2 1 2
hh k k 0   . 

 The angle between two intersecting planes    1 1 1 2 2 2
h k & h k  is given by

1 2 1 2 1 2

2 2 2 2 2 2

1 1 1 2 2 2

hh k k
cos

h k h k

 
 

    
 

 Planes having low indices are far away from the origin than those having high indices. 
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 Interplanar distance denotes the distance between two planes, one of which is passing 

through the origin. 

Let d= interplanar distance, then 
2 2 2

a
d

h k


 
where a  lattice parameter, 

 h k Miller indices  

 

Miller indices of direction: These are defined as rationlised components of a given direction 

vector taken along the three crystallographic directions and written inside square brackets 

without a separating comma between them. 

 Denoted by [u v w] 

 Always written as smallest integers. 

 

Characteristics of miller indices of direction: 

 When a direction is perpendicular to an axis its miller indices on that direction is zero. 

 Parallel direction will have quantatively the same miller indices. 

 Two directions 
1 1 1 2 2 2

u v w & u v w       will be perpendicular if 
1 2 1 2 1 2

uu v v w w 0    

 The angle between two intersecting directions 
1 1 1 2 2 2

u v w & u v w       is given by

1 2 1 2 1 2

2 2 2 2 2 2

1 1 1 2 2 2

uu v v w w
cos

u v w u v w

 
 

    
 

 A plane and a direction having the same miller indices will be perpendicular to each 

other.   

 

Density calculation in crystal structures: 

(1). Volume density   avg

v

weight of N

Volume of unit cell
   

(2) Planar density  
number of atoms

area of plane
    

(3) Linear density  
number of atoms

length of direction vector
   
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Thermodynamics 

 

Heat & Work for open system 

 

Linked Answer Questions 

The inlet and the outlet conditions of steam for an adiabatic steam turbine are as indicated in 

the notations are as usually followed. 

 

 
 

a. If mass flow rate of steam through the turbine is 20 kg/s, the power output of the turbine 

(in MW) is 

(a) 12.157 (b) 12.941 

(b) 168.001 (d) 168.785 

 

b. Assume the above turbine to be part of a simple Ranking cycle. The density of water at the 

inlet to the pump is 1000 kg/m3. Ignoring kinetic and potential energy effects, the specific 

work (in kJ/kg) supplied to the pump is 

(a) 0.293 (b) 0.351 

(c) 2.930 (d) 3.510 

 

Solution: 

a. (a) 

 

 

Sample Problem 

Kuestions 
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Applying Steady Flow Energy Equation (SFEE) 

      

2 2

1 2

1 1 2 2

V V
h gZ q h gZ w

2 2  

q = 0; because it is an adiabatic steam turbine. 

2 2
3 3(160) (100)

3200 10 9.81 10 0 2600 10 9.81 6 w
2 2

          
 

(Note that all work and energy values are to be taken in J) 

w = 607839.24 J/kg = 607.84 kJ/kg 

Mass flow rate of steam through turbine is 20 kg/s. 

The power output of the turbine is = 20 × 607.84 = 12156.78 kW = 12.157 MW  

 

Solution: 

b. (c) 

 

 

Neglecting Kinetic and potential energy effects 

SFEE: 

1 2 T
h q h w (For Turbine)  

 
3200 = 2600 + wT 

wT = 600 kJ/kg                  (q=0 for adiabatic steam turbine) 

Specific work supplied to the pump is 
2

1 2

P 1 2 3

P P (3000 70) kN/m
w vdP v(P P ) 2.930 kJ / kg

1000 kg / m

 
      


 

 

 

01. 0.5 kg of air is compressed in a piston-cylinder device. At an instant of time when  

T = 400K, the rate at which work is being done on the air is 8.165kW and heat is being 

removed at a rate of 1.0 kW. The rate of temperature rise (in k/s) will be 

(a) 10 (b) 30 

(c) 25 (d) 20 

Problems 
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01. Ans: (d) 

Solution: 

 
dE dU d

Q W mu
dt dt dt

     v
mc T

v

dT
mc

dt
  

dT
1 8.165 0.5 0.718

dt
      

dT
19.95 K s 20 K s

dt
   

 

02. An insulated bottle is fitted with valve through which air from atmosphere at 1.013 bar 

and 25°C is allowed to flow slowly to fill the bottle. If bottle's initial temperature is 25°C and 

pressure is 0.5 bar then what will be the final temperature of the bottle (in °C) when the 

pressure in the bottle is 1.013bar. 

(a) 75.4 (b) 348.4 

(c) 278.5 (d) 982.2 

 

02. Ans: (a) 

Solution: 

i e

dm
m m

dt
 

0

      inlet i 0
h h h   

i i e e

du
mh m h

dt
 

0

 

i

du dm
h

dt dt
   

i
du dm h   

   2 1 2 1 i
U U m m h    

   2 2 1 1 2 1 0
m u m u m m h    

2 1 2 1

V 2 V 1 P 0

2 1 2 1

P V P V P V P V
c T c T c T

RT RT RT RT

   
        

   
 

P 0V 2 1

2 1

2 1

c T Vc V P P
P P

R R T T

 
     

 
 

  2 1

2 1 0

2 1

P P
P P T

T T

 
     

 
 

  5 5

2

1.013 0.5
1.013 0.5 10 1.4 298 10

T 298

 
       

 
 

2
T 347.92 K  

2
t 74.92 C   
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03. During steady flow compression process of a gas with mass flow rate of 2kg / s , an 

increase in specific enthalpy is 15 kJ/kg and decrease in kinetic energy is 2 kJ/kg. The rate of 

heat rejection to the environment is 3 kW. The power needed to drive the compressor is 

(a) 23 kW (b) 26 kW 

(c) 29 kW (d) 37 kW 

 

03. Ans: (c) 

Solution: 

Compression process 

m 2kg s
 

2 1
h h 15kJ kg 

 
2 2

2 1
V V

2kJ kg
2000


 

 
Q 3kW   

2 2

1 2

1 2

V V
h m Q h m W

2000 2000

   
       

   
     

 
2 2

2 1

2 1

V V
Q m h h W

2000

  
     

      
3 2 15 2 W        

W 29 kW   
-ve sign indicates work is done on the system. 

 

04. In an isentropic flow through nozzle, air flows at the rate of 600 kg/hr.  At inlet to the 

nozzle, pressure is 2 MPa and temperature is 127oC.  The exit pressure is 0.5 MPa.  Initial air 

velocity is 300m/s.    p
c 1.003kJ / Kg K R 287J / kg K    .  The exit velocity (m/s) of air is 

 

04. Ans: 576–612 

Solution: 

1
T 127 273  400K  

1

2 2

1 1

T p
  

T p

 
 

  
   
   
1.4 for air     

0.4

1.4

2

5
T 400

20

 
  

   
0.286

400
269 K

4
 

 
Applying energy equation to the nozzle, we can write. 

 2

2 1 1 2
V V 2 h h  

 

   2 2 3

2 1 P 1 2
V V 2c T T 300 2 1.003 400 269 10        593.95 m/s  
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Brayton cycle 

 

In an ideal Brayton cycle, atmospheric air (ratio of specific heats, cp/cv = 1.4, specific heat at 

constant pressure = 1.005 kJ/kg.K) at 1 bar and 300 K is compressed to 8 bar. The maximum 

temperature in the cycle is limited to 1280 K. If the heat is supplied at the rate of 80 MW, the 

mass flow rate (in kg/s) of air required in the cycle is ____________. 

 

Solution: 108.071 kg/s 

Given, p

v

c
1.4

c
    

cp = 1.005 kJ/kgK 

P1 = 1 bar 

T1 = 300 K   

P2 = 8 bar 

T3 = Tmax = 1280 K 

Qs = mcp(T3 – T2) = 80 MW 

For process 1 – 2, 
1

0.4

2 2 1.4

1 1

T P
8 1.8114

T P



 
    
   

2
T 300 1.8114 543.43K   

 
6

3

80 10
m 108.071 kg/s

1.005 10 (1280 543.43)


 

   
 

 

01. A gas turbine plant operates on Brayton cycle between 300 K and 1073 K.  The maximum 

cycle efficiency (in %) and maximum work done per kg of air (in kJ), respectively are:      

(a) 60 and 300 (b) 40 and 250 

(c) 52 and 254 (d) 47 and 240 

 

01. Ans: (d) 

Solution: 

min

cycle

max

T
1

T
   30

1
1073

 
47.12%  

2

max P max min
w c T T  

 

2

1.005 1073 300  
  239.47 kJ/kg  

 

02. A gas turbine power plant working on the Brayton cycle with regeneration of 80% 

effectiveness.  The air at the inlet to the compressor is at 1 bar and 300 K the pressure ratio is 

6 and maximum cycle temperature is 1200 K.  The turbine and compressor each have an 

efficiency of 80%. What will be the efficiency of the cycle with the regeneration? 

Problems 

Sample Problem 
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(a) 58.6 (b) 30.6 

(c) 20.5 (d) 40.2 

 

02. Ans: (b) 

Solution: 

Given: 

Regeneration
0.8 

 

T C
0.8   

 

1
P 1 bar

 

1
T 300 K

 

3
T 1200 K

 

2

P

1

P
r 6

P
 

 

2
P 6 1 6 bar  

 

 

1

0.4
2 2 1.4

1 1

T P
6

T P



   
       

     

2
T 500.55 K

 
1

4 4

3 3

T P

T P



 
   
   

0.4

1.4

4

1
T 1200

6

 
   

  719.2 K  

2 1

C

2 1

T T

T T


 

 
 

2

500.6 300
0.8

T 300




 
 

2
T 550.68 K 

 

4 3

T

4 3

T T

T T

 
 


 

4
T 1200

0.8
719.2 1200

 


  

4
T 815.6 K 

 

5 2

reg

4 2

T T

T T


 

 
 

5
T 550.68

0.8
815.36 550.68




  

5
T 762.42 K

 

T C

S

W W

Q


 

   
 

P 3 4 P 2 1

P 3 5

c T T c T T

c T T

   




   
 

1200 815.36 550.68 300
30.6%

1200 762.72

  
 


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03. In a gas turbine operating on Brayton cycle, with intercooling.   

i. Efficiency of the cycle increases 

ii. Work ratio increases 

iii. Compressor work decreases 

 

Which of the above statements are true? 

(a) I and III (b) I and II 

(c) II and III (d) I, II and III 

 

03. Ans: (c) 

Solution: 

Efficiency of Brayton cycle decreases with use of intercooling. 
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Heat Transfer 

 

Heat Transfer Coefficient and Nusselt number 

 

Linked Answer Questions  

An uninsulated air conditioning duct of rectangular cross section 1 m × 0.5 m, carrying air at 

20°C with a velocity of 10 m/s, is exposed to an ambient temperature of 30°C. Neglect the 

effect of duct construction material. For air in the range of 20-30°C, data is as follows: 

thermal conductivity = 0.025 W/m. K; viscosity = 18 Pa.s;  Prandtl number = 0.73; density = 

1.2 kg/m3. For laminar flow Nusselt number is equal to 3.4 for constant wall temperature 

conditions and, for turbulent flow, Nu = 0.023 Re0.8 Pr0.33. 

 

a. The Reynolds number for the flow is 

(a) 444 (b) 890 

(c) 4.44 × 105 (d) 5.33 × 105  

 

b. The heat transfer per meter length of the duct, in watt, is 

(a) 3.8 (b) 5.3 

(c) 89 (d) 769 

 

Solution: 

a. (c) 

Equivalent length of duct,  

4 A 4 ab 2ab 2 1 0.5
L 0.667 m

P 2(a b) a b 1 0.5

 
    

    
We know that Reynolds number 

6

VL 1.2 10 0.667
Re

18 10

  
 

   
Re = 4.44 × 105  

 

b. (d) 

For pipes, since Re > 2000, flow is turbulent. Hence using turbulent flow correlation, we get 

Nu = 0.023 R0.8Pr0.33 

5 0.8 0.33c
hL

0.023 (4.44 10 ) (0.73) 683.715
k

    
 

h 0.667
683.715

0.025




 
683.715 0.025

h
0.667




 
h = 25.63 W/m2-k 

Now, total area of duct 

A = 2 × 1 × L + 2 × 0.5 × L = 3L 

Sample Problem 
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(where L is the length of duct) 

Heat transfer rate 

q = hA (T1 – T2) = 25.63 × 3 × L × (30 – 20) 

q
768.8 W/m

L
 

 
q

769 W/m
L

 
 

 

 

01. In an experiment, the local heat transfer over a flat plate was correlated in the form of 

local Nusselt number as expressed by the following correlation.  
1

0.8 3
x x

Nu 0.035 Re Pr
 

The ratio of the average convection heat transfer coefficient  h  over the entire plate length 

to the local convection heat transfer coefficient  x
h  at x = L is __________________.     

 

01. Ans: 1.1–1.3 

Solution: 
0.8 1

x 3
x

h x Vx
Nu 0.035 Pr

k

 
   

   
0.2

x
h x

 

and, 
L

xx 0

1
h h dx

L 
   

We know, 
0.2

x
h x  

0.2

x
h cx

 
0.2

x L
h cL




 

0.2x L

x L0.2

h
c L h

L




 

 

 

0.2 0.2 1
L L

0.2 0.2 x L

0 0

L h1 c x
h cx dx x dx

L L L 0.2 1

 
  

 
   
   

 
 

0.8

x L

0.8

h L
h

0.8L


 

  
   

x L

h
1.25

h




 
 

02. Air at 25oC approaches a 0.9 m long 0.6 m wide plate with an approach velocity of 4.5 

m/sec.  The plate is heated to a surface temperate of 135oC. 

[ = 21.09  106 m2/sec, K = 0.0304 W/mK, Pr = 0.692] 

Average heat transfer coefficient of the plate is   
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(a) 32.5 W/m2K (b) 5.83 W/m2K 

(c) 15.25 W/m2K (d) 8.7 W/m2K 

 

02. Ans: (d) 

Solution: 

5

L 6

4.5 0.9
Re 192034.13 5 10 laminar

21.09 10


    

  

     
0.5 0.33

LL

hL
Nu 0.664 Re Pr

k
  

 

   
0.5 0.33h 0.9

0.664 192034.13 0.692
0.0304


 

 
2h 8.7 W/m K  

 

03. Air flows over a heated flat plate at a velocity of 100 m/s.  The local skin friction 

coefficient at a point on the plate is 0.008.    

Estimate the local heat transfer coefficient at this point.  Density = 0.88 kg/m3. 

Viscosity = 2.286  105 kg/ms.  cP = 1.001 kJ/kgK, K = 0.035 W/mK. 

Use St. 
2

f3
C

Pr
2

  

(a) 21.71 W/m2K (b) 46.779 W/m2K 

(c) 583.93 W/m2K  (d) 467.79 W/m2K 

 

03. Ans: (d) 

Solution: 
5 3

P
c 2.286 10 1.001 10

Pr 0.6537
k 0.035

   
  

 
x x x

x 3

P

h h h
St

c V 880880.88 1.001 10 100
  
     
2

f3
x

C
St .Pr

2


 

 
2

3
x

h 0.6537 0.008

88088 2


 
2

x
h 467.79 W/m K
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Engineering Mechanics 

 

Rectilinear Motion 

 

The initial velocity of an object is 40 m/s. The acceleration ‘a’ of the object is given by the 

following expression.  

a = -0.1 v, Where v is the instantaneous velocity of the object. The velocity of the object after 

3 seconds will be _____________ 

 

Solution: 29.63 m/s 

U 40 m / s  

a 0.1 V   

V ?  

T 3 s  

Using expression for acceleration 

dv
a 0.1 v

dt
  

 

Rearranging and integrating both sides 

v 3

40 0

dv
0.1dt

v
  

 

v

40
lnv 0.1 [t]      

ln v – ln 40 0.1 3.0 0.3    
 

ln v ln 40 0.3   

ln v 3.38887  

3.38887v e 29.6327 m/ s   

 

 

01. A stone is thrown upto a slope of inclination  at a speed of V and an angle (beta)  to 

slope.  The stone reaches its greatest distance from the slope after a time of   

(a) 
Vsin

gcos




 (b) 

Vcos

gsin




 

(c) 
Vsin

gcos




 (d) 

Vcos

gsin




 

Problems 
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01. Ans: (c)  

Solution: 

 

Take the reference planes as shown 

This ‘ gcos ’ will affect the vertical component of the projectile on this reference plane. 

 i x
V Vcos 

 ; 
 i Y
V Vsin 

 

   f f fx Y
V V  ; V 0 

 
Along Y-direction  

   f i YY
V V at 

 
0 Vsin gcos t        (Taking -ive sign with gcos    it is acting in downward direction) 

Vsin
t

gcos





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Free body diagram 

 

A mass 35 kg is suspended from a weightless bar AB which is supported by a cable CB and a 

pin at A as shown in figure. The pin reactions at A on the bar AB are 

 

(a) Rx = 343.4 N, Ry =755.4 N (b) Rx = 343.4 N, Ry = 0 

(c) Rx = 755.4 N, Ry = 343.4 N (d) Rx = 755.4 N, Ry = 0  

 

Solution: (d) is correct option 

y
T sin R mg  

 

x
T cos R 

 

Now, 
125

tan
275

   

24.44    
Taking moment about A 

Tsin mg   l l  
35 9.81

T 829.74
sin 24.44


 

 
Rx = 755.4 

Ry = 0 

 

 

01. The collars A and B hang on vertical frame composed of two smooth rods.  If the mass of 

collar A is 10 kg and the mass of collar B is 5 kg, determine the equilibrium angle  (in 

degree) 

 

 

 

 

 

 

 

 

Problems 
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01. Ans: 24-26 

Solution: 

Construct free body diagram.  

 

For equilibrium of A 
o

A
Tcos30 N cos30 0    .......(1)  

 
o

A A
Tsin30  N sin30 W 0  .......(2)   

 
For equilibrium of B 

o

B
Tcos N cos45 0  ........(3)  

 
o

B B
Tsin N sin45 W 0  .......(4)   

 
From (1) and (3), NA = 0.816NB 

From (2) and (4) 
o o

A B A B
N sin30 N sin45 W W    A B

g M M 147.15  
 

After putting value of NA 

 o o

B
0.816 sin30 sin45 N 147.15  

 
NB = 131.96 N 

NA = 107.679 N 

From (1) oTsin 107.679 cos30   = 93.2533 

From (2) o

A A
Tsin W N sin30   o10 9.81 107.679 sin30    44.2601  

44.2601
tan

93.2533
 

 
 = 25.39o 
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Machine Design 

 

Stress concentration and Theories of Failure 

 

A large uniform plate containing a rivet hole subjected to uniform uniaxial tension of 95 MPa. 

The maximum stress in the plate is 

(a) 100 MPa 

(b) 285 MPa 

(c) 190 MPa 

(d) Indeterminate 

 

 

Solution: (b) is correct option  

t

2b
k 1

a

 
  
 

 ;  a = b for circular hole 

 
Max. stress 

aw
3 285 MPa   due to stress concentration.     

 

 

A shaft is subjected to pure torsional moment. The maximum shear stress developed in the 

shaft is 100 MPa. The yield and ultimate strengths of the shaft material in tension are 300 

MPa and 500 MPa, respectively. The factor of safety using maximum distortion energy (von-

Mises) theory is _____________. 

 

Solution: 1.732 

1 2
100 MPa & 100 MPa      

As per Von-Mises yield theory: 

 
In this case,  

 

 

 

 
 

t
k 3

     
2

2 2 2 y

1 2 2 3 1 3
2

N

 
            
    

 

2

y2 2

1 2 1 2
2 2

N

 
           

 

       
2 2 2 22N 100 100 100 300   

  

2 9
N

3

N 3





N 1.732 

Sample Problem 

Sample Problem 

3
0 
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01. At a critical section in a shaft, bending stress of 60 MPa and torsional shear stress of 40 

MPa are induced.  If yield stress is 300 MPa and Poisson’s ratio is 0.3, then factor of safety 

according to maximum principal strain theory is ______________.   

 

01. Ans: 3.3 – 3.6  

Solution: 

Given: 

 

 

 

 
Maximum and Minimum principal stresses. 

 

 

 
According to maximum principal strain theory 

 

Factor of safety, F.S. 
 

y

1 2

300
3.5

80 0.3 20


  
   

 

 

02. According to the maximum shear stress theory of failure, permissible twisting in a circular 

shaft is T. The permissible twisting moment in the same shaft as per the maximum principal 

stress theory of failure will be 

(a) 
T

2
 (b) T 

(c) 2 T  (d) 2T 

 

02. Ans: (d) 

Solution: 

As per MSST, 
per

T T  

As per MPST, let 
per 1

T T  

   
3

ys3

p per per

Sd
T Z d

16 16 N

  
      

 
 

 

For a given ‘d’ and ‘N’, 
ys

T S  

 
 

 
 

ysper MPST MPST

per ysMSST MSST

ST

T S
 

yt1

yt

ST
2

T S /2
    

1
T 2T

 

t
60MPa 

40MPa 

y
300MPa 

0.3 

2 2 2 2

1,2 t t

1 1
4 60 60 4 40

2 2
             
      

1
80MPa 

2
20MPa  

 
 

y

1 2 3
F.S


      
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Industrial Engineering 

 

Linear Programming (Graphical & Simplex Method) 

 

For the linear programming problem: 

Maximize 
1 2

Z 3x 2x   

Subject to  

1 2
2x 3x 9  

 

1 2
x 5x 20  

 

1 2
x , x 0

 
The above problem has 

(a) unbounded solution (b) infeasible solution 

(c) alternative optimum solution (d) degenerate solution 

 

Solution: (a) is correct option 

Objective function to be maximized 
1 2

Z 3x 2x    

Constraints  

1 2
2x 3x 9  

 

1 2
x 5x 20  

 

1 2
x , x 0

 
 Changing the inequalities to equalities and plotting the  

same on graph 

1 2
2x 3x 9  

 

1 2
x 5x 20  

 
 The solution is unbounded. 

 

 

02. Maximize 
1 2

Z 3x 4x   

Subject to 

1 2
x x 1 

   

1 2
3x x 3  

 

1 2
x 0,x 0 

 
(a) The LPP has a unique optimal solution 

(b) The LPP is unbounded 

(c) The LPP has multiple optimal solution 

(d) The LPP is infeasible 

 

Problems 
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02. Ans: (d) 

Solution: 

The problem is depicted graphically as shown in figure, there is no point (x1, x2) which can lie 

in both the regions (satisfy both the constraints), there exists no solution to the given 

problem.  Hence, there is infeasible solution. 
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Manufacturing Engineering 

 

Solidification and Cooling 

 

A cube and a sphere made of cast iron (each of volume 1000 cm3) were cast under identical 

conditions. The time taken for solidifying the cube was 4 s. The solidification time (in s) for 

the sphere is _____________. 

Solution: 6.157 s 

Time of solidification (T) 

2

volume
k

surface area

 
  

 
 

2 2
2

sphere cube

3

cube sphere

T A 6a
(1)

T A 4/3 r

    
      

         

sphere cube
[V V ]

 
Vcube = a3 = 1000 cm3  

a = 10 cm 

Similary, 

3

sphere

4
V r 1000

3
  

 
r = 6.2035 cm 

Putting in (1), we get 
2

2
sphere

2

cube

T 6 10

T 4 (6.2035)

 
  

   

sphere
T 6.157 s

 
 

 

01.  A hollow casting is produced using a cylindrical core of height = diameter = 100 mm 

Density of liquid metal 32700 kg/m . 

Density of core 31600 kg/m  

Calculate the net buoyancy force on core. 

 

01. Ans: 8-9 

Solution: 

 m c
Net buoyancy force gV 8.4709 N   

 
 

02. A casting of size 150 mm  100 mm  10 mm is required. Assume volume shrinkage of 

casting as 8%.  If the height of the riser is 40 mm and the riser volume desired is three times 

the shrinkage in casting, the approximate riser diameter will be ____________ mm. 

Problems 
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02. Ans: 32.5-35.0 

Solution: 

Volume of riser=  3 % of shrinkage volume 

 2 8
d 40 3 150 100 10

4 100


      

         

8
 % of shrinkage volume 150 100 10

100

 
    

   
d 33.85mm  
 

Validating,  

 
2

riser 2

d h
4V 5.946

A
2 d dh

4


 

 


  
 

 
 casting

L B HV
A 2 LB BH HL

 


   
150 100 10

4.285
2 150 100 100 10 10 150

 
 

     
 

   
riser casting

V V
A A


  

  solidification time for riser is more than that of casting which is always required. 

riser
d 33.85 mm  is valid. 

 

03. A spherical drop of molten metal of radius 2mm was found to solidify in 10 seconds. A 

similar drop of radius 4mm would solidify in 

(a) 14.14 seconds (b) 20 seconds 

(c) 18.30 seconds (d) 40 seconds 

 

03. Ans: (d) 

Solution: 
2

solidification
s

Vt k
A

 
  

   
2

s

Vt
A

 
  
   

 
2

dt
6

  For sphere 

 
2

rt
3


 

2

1 1

2 2

t r

t r

 
   
   

2

2

2

10 2
t 40sec

t 4

 
   
 

  


