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Abstract

Abstract
The enhancement of noisy speech is a challenging research field with numerous applications. In

the presented work we focus on the case of speech signal corrupted by slowly varying, non-white,

additive noise, when only a corrupted signal is available. First, the survey of speech enhancement,

identification and filtering methods is presented. Second, a new speech enhancement algorithm

based on Kalman smoothing, spectral minima tracking, state-space identification and all-pole

modelling is proposed. Its main novelty is the use of bidirectional fast two-pass smoothing and also

the combination of minima tracking and Kalman filtering techniques. The intended application

of this algorithm is the suppression of noise in a running car environment for hands-free mobile

telephony. Its performance is compared to traditional methods: it is found that it can give better

results at the expense of execution speed. Its usability in the speech recognition setting and the

effect of changes of various parameters is demonstrated.

A conventional serial as well as a parallel version (using Parallel Virtual Machine) of the algorithm

discussed were developed. Sources are available in C and MATLAB.

Keywords: speech enhancement, noise reduction, Kalman filtering, smoothing, spectral subtrac-

tion, system identification, parameter estimation, all-pole modelling, state-space identification,

total least squares, structured total least squares, Hankel total least squares, singular value de-

composition, spectral minima tracking, speech recognition, hands-free mobile telephony, Matlab,

C, PVM, parallel computing.

AMS classification: 62M10, 62M20, 60G35, 68Q22, 93B30.

Abstrakt
Odstraňovánı́ šumu z řečového signalu je významným interdisciplinárnı́m problémem s mnoha

praktickými aplikacemi. Tato práce se soustřed’uje na přı́pad řeči znehodnocenépomalu se měnı́cı́m,

barevným aditivnı́m šumem, je-li k dispozici pouze zašuměný signál. V úvodu je předložen přehled

existujı́cı́ch metod zvýrazňovani řeči, identifikace lineárnı́ch dynamických systémů a stochastické

filtrace. Následuje popis nového algoritmu zvýrazňovánı́ řeči založeného na existujı́cı́ch metodách

dvouprůchodového Kalmanova vyhlazováni, odhadu šumu na principu sledováni minim, stavové

identifikace a autoregresivnı́ho modelovánı́. Jak použitı́ Kalmanova vyhlazováni, tak i jeho

kombinace s metodou sledovánı́ minim, je v této oblasti novinkou. Algoritmus byl navržen pro

použitı́ jako součást mobilnı́ho telefonu v automobilu. Závěrem je uveden popis provedených testů

prokazujı́cı́ch, že nový algoritmus dáva za jistých okolnostı́ lepšı́ výsledky než alternativnı́ metody,

i když na úkor delšı́ výpočetnı́ doby. Součástı́ práce je implementace téměř všech zmiňovaných

metod a klasická i paralelnı́ verze nového algoritmu.
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Declaration

Prohlášenı́
Tı́mto dávám svou diplomovou práci Kalman Filtering and Speech Enhancement k dispozici

elektrotechnické fakultě ČVUT Praha a souhlası́m s tı́m, aby byla použita podle potřeby.

Prohlašuji rovněž, že jsem tuto práci vypracoval samostatně a uvedl všechny použité prameny.

Lausanne, datum

Jan Kybic

English translation of the declaration above:

I hereby put my diploma thesis entitled Kalman Filtering and Speech Enhancement at the disposal of the Faculty of

Electrical Engineering of the Czech Technical University in Prague and I grant it the right to use this work as needed.

I also declare that my diploma thesis is a result of my solely individual effort and that I have quoted all references used.
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Glossary

Glossary

(1) reference to an equation number 1

[1] reference to a book or article, see References at page 69hxi syntactical unit

[x] optional syntactical unitxi j component of matrix X in i th row and j th columnx̂ estimate of x~x x � x̂�x windowed xx averaged, smoothed xx 0 quantity related to xx � true or ideal valuex . rectified valuex� tunable parametersx vectorX matrixXm�n matrix with given sizeX�m�n matrix cut to given sizeX" X without its top rowX# X without its bottom rowX1=2 lower-triangular Cholesky factorXT=2 upper-triangular Cholesky factorkXkF Frobenius norm,
PP x 2i jfx (t)gbt=a sequence x (a); x (a + 1); : : : ; x (b)f� �g sequence, concatenation of � and � , set[x1; : : : ; xn ] elements composing a vector x/ is linearly proportional to� approximately equalsb= corresponds to!= is to be (e.g. minimal)a � b ranging from a to ba autoregressive model parametersb autoregressive model parameter

e Euler constant 2:782818 : : :e prediction errorg gainj imaginary unitk time lag, frequency bin number, frame numberm dimensionality of the outputn system orderr dimensionality of the inputs window overlap factort (discrete) timeu ,u system inputv , v process noisew ,w measurement noise, Fourier factor, weight factorx system state
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Glossaryy , y system outputyN noise signalyS speech signalyX sum of speech and noise, measured signalA system transition matrixB system input matrixC autocorrelation operatorCx (k ) autocorrelation of x at lag kC system output matrix, autocorrelation matrixDt data available at time tD system feedforward matrixF complex Fourier spectrum, Newton method goal functionF Fourier transform operatorF backward gain in Kalman smoothing, left Vandermonde factorG diagonal Vandermonde factorH right Vandermonde factorI unitary matrixJ minimisation criterionK factor of Kalman gainL optimality criterionLF Frobenius norm,
PP x 2i jL2 2-norm maxi �iL1 Chebyshev 1 -norm, maxi j jxi j jL Kalman gainP power spectrumM buffer length for minimum trackingN set of natural numbersO(x ) asymptoticaly proportional to xP covariance of the state estimateQ covariance of the process noiseR set of real numbersR covariance of the output noiseS amplitude spectrumT number of samples, window sizeZ set of integers, Z -transformZ time step advance signal matrix� smoothing factor� secondary smoothing factor bias factor for noise estimation' phase spectrum� oversubtraction factor�(k ) Kronecker delta (discrete unit impulse)� auxiliary state in Kalman smoothing, Lagrange coefficients� innovation sequence� equation error� 3:141592 : : :� singular value! frequency
 penalty�x change, improvement of x� rearrange into vector� Euler function� prediction error sequence covariance factor, TLS factor
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Glossarycov covariance, E �~x ~xT	E f�g expected value

AR autoregressive (model)

AROE autoregressive output-error (model)

ARMAX autoregressive moving-average (model)

ASS amplitude spectral subtraction

CTLS constrained total least squares

DARE discrete algebraic Riccati equation

dBA logarithmic unit of acoustic intensity

DFT discrete Fourier transform

FIFO first in, first out

FFT fast Fourier transform

HMM hidden Markov model

HTLS Hankel TLS

IDFT inverse discrete Fourier transform

IFFT inverse fast discrete Fourier transform

KF Kalman filter

LMS (minimum) linear mean square (estimate)

LS least squares

MEM maximum entropy

ML maximum likelihood (estimate)

MS (minimum) mean square (estimate)

MV minimum variance

OE output error (model)

PEM prediction error method

PVM Parallel Virtual Machine library

PSS power spectral subtraction

QP quadratic programming

RASTA relative spectral (speech enhancement method)

SISO single-input single-output model

SNR signal to noise ratio

SVD singular value decomposition

SR square root (Kalman filter)

STLN structured total least norm

STLS structured total least squares

TLS total least squares

TSTLS Toeplitz structured total least squares

VD Vandermonde decomposition

VAD voice activity detector

Hankel (matrix) with equal elements on anti-diagonals

monaural single microphone, single input

Toeplitz (matrix) with equal elements on diagonals
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Chapter 1: Introduction

1. Introduction

The enhancement of speech corrupted by noise is an important problem with numerous applications

ranging from suppression of environmental noise for communication systems and hearing aids,

enhancing the quality of old records, to preprocessing for speech recognition systems.

Depending on the application, the properties of the noise as well as the nature of the corruption

vary. However, for the purpose of this work, we concentrate on the case of slowly varying, coloured

additive noise. The means of improvements in the acquisition phase (e.g., using better or multiple

microphones) are not considered. Instead, the speech enhancement algorithm itself is concentrated

upon. The availability of the noisy speech signal in digital form is assumed.

The intended application of the algorithm developed is a hands-free car telephony system. As the

use of conventional handsets can easily distract driver’s attention, it is advantageous from the

safety point of view (as well as more comfortable) to use a microphone and speakers attached to

a suitable point in the car. However, such a microphone is usually considerably far from the speaker

and picks up a significant amount of an environmental noise. A noise enhancer is therefore needed

to improve the speech quality.

To further reduce the distraction associated with making phone calls while the car is in motion,

a fully voice-driven telephone system is envisaged, using a speech recognition system. Traditionally,

though, speech recognition systems do not perform well in the presence of a background noise

and it is thus advantageous to employ a noise enhancement algorithm at a preprocessing stage.

Subsequent reflections can be found in [63],[20],[17].

A brief overview of the field of speech enhancement, Kalman filtering and autoregressive model

identification is given. The author implemented and tested all the described methods for which

enough information was available; the implementation is available as a part of this work.

Some analysis and comments on these methods and their limitations are included, based on

theoretical studies, experiments and personal experience. However, time and space constraints

sometimes prevented the author to treat the subject with a rigorousness it deserved. A new

speech enhancement algorithm combining the existing spectral estimation, noise estimation,

spectral subtraction, system identification and Kalman filtering algorithms is presented. The

implementation of this algorithm as well as the problems encountered is described. Finally, an

evaluation of the performance of this algorithm in comparison with traditional spectral subtraction

based algorithms, its usability in the speech recognition setting and the effect of various parameter

changes are given as well as a summary of its advantages, deficiencies and possibilities for future

enhancements.

The new algorithm is unique in combining fast two-pass bidirectional Kalman smoothing with

spectral minima tracking for speech enhancement purposes. This — together with the availability

of a working implementation, detailed description, and a literature survey — should make this

work a good basis for further improvements; some suggestions are included in the text.
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Chapter 2: State of the Problem

2. State of the Problem

In this chapter, the problem is stated more precisely and some existing solutions are outlined. More

information will be given in the following chapters on topics relevant to the new algorithm.

2.1. Problem Specification
The situation is pictured in figure 1. The task is to design a filter (denoted by ? ) to produce an

estimate ŷS of a speech signal yS given the sum yX of speech and noise signals. ( yX = yS + yN ).

The ultimate goal is to achieve the highest possible intelligibility. This is, however, hard to describe

mathematically. Instead, an alternative measure of quality of the estimate will be used — the mean

square value of the estimation error e .

+

+ ?
yX

yS
ŷSyN

+ e�
noise

speech

Figure 1.

This model neglects the transfer characteristics of the medium, or rather views it as a part of the

two systems generating the speech and noise signals.

2.2. Design Requirements
The filter to be built, in order to be usable in the given situation, must be:

r monaural — it has just one input to get all the information needed.
r fast — real time performance is required for many applications, but the speed is important even

for off-line processing.
r robust — the algorithm must be able to run unsupervised for extended periods of time, no matter

what the input data are. Should it ever fail, it must be able to fail gracefully (for example by

switching to an identity transformation) and restart as soon as possible.
r adaptable — it must be able to adapt automatically to different speakers and different kinds of

noise.
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Section 2.3: Speech Characteristics Chapter 2: State of the Problem

2.3. Speech Characteristics
A speech signal is composed of phonemes. Depending on the language, there are usually a few

tenths of phonemes. The signal can be regarded as stationary for some phonemes, notably vowels.

Other phonemes, like ‘d’, must be further decomposed into sub-phonemes and only those can be

then considered as stationary. Generally, a speech signal is said to be quasi-stationary, i.e., it can

be divided into (almost) stationary segments. The longest segments can be up to 300 ms long, the

shortest last only a few milliseconds.

Some phonemes, called voiced, are highly periodic, others, called unvoiced, are rather stochastic.

For most phonemes, the energy is concentrated between 300�3000 Hz, depending on the speaker.

The high frequency part is more pronounced for unvoiced phonemes. The peaks in the spectrum

are called formants. Vowels have mostly two major formants.

2.3.1. Speech Modelling
It appears (see [62] and [53]) that an autoregressive model (further referred to as an AR model) is

particularly suitable for modelling a speech signal. The motivation comes from a simplified picture

of a vocal tract as a lossless tube built of adjoining cylinders of different diameters.

The AR model should be ideally driven by pulse train for voiced phonemes and by white noise for

unvoiced ones. However, our experiments show (as well as [38],[19],[56],[47]) that a stochastically

excited (i.e., white noise driven) model AR can generate also the voiced parts of the speech reasonably

well by moving the poles close towards the unit circle (in the Z plane).

2.4. Noise Characteristics
We call it noise because we know nothing about it.

— Bishnu Atal, [6]

The noise is always a stochastic signal and can be often considered as long time stationary. For

our application, the noise in a car can be regarded as stationary for time periods of 0.5�2 s [22].

Its main contributions usually come from the engine (rather periodic noise on low frequencies),

the tyres (less periodic, higher frequencies), the fan (almost stochastic, wide-band middle and high

frequency noise) and the aerodynamic noise (random, wide-band high frequency noise). Their exact

frequencies and energies vary depending on the current driving mode, the car and many other

factors. Generally, the total noise spectrum ranges from about 50�10 kHz. The noise intensities

change between 50�90 dBA.

Due to physical constraints we can safely assume that speech and noise are independent and

uncorrelated. The physiological phenomena of speech parameter changes induced by noise

(Lombard effect) are too long-term to be influential.

2.4.1. Noise Modelling
Given the stochastic nature and the variety of noise, it is difficult to find a good model for it. Usually,

white noise driven AR model is used for its simplicity. Sometimes, the noise is modelled simply as

Gaussian white noise.

2.5. Spectral Subtraction
Many speech enhancement algorithm are based on the scenario illustrated in figure 2 and

nicknamed spectral subtracting. The input signal yX is first divided into equal length frames
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Section 2.5: Spectral Subtraction Chapter 2: State of the Problem

(usually 256 samples) with 1=2 or 3=4 overlap. A weighting function is applied, usually Hamming

(or Hanning) window [30]. Frequency spectra of each frame (PX ) and of the noise in each frame

(PN ) are estimated. A speech spectrum estimate (PS ) is calculated using a subtraction rule and

converted into the time domain. Finally, the frames are assembled to get the output ŷS .

assembling

subtracting

estimation

noise

estimation

spectrum

windowing

IFFT

ŷS

P̂N

yX
P̂X

P̂S
Figure 2.

2.5.1. Voice Activity Detector
Voice activity detector (abbreviated VAD) is an important part of many speech enhancement

algorithms. Its purpose is to determine whether a given frame contains the speech or not. Many

detectors are available based on different principles, e.g., detecting sudden changes in energy,

spectral or cepstral distances. However, none of them seems to work reliably under low SNR

conditions [49]. This seriously hinders the performance of all algorithms based on it. For an

example of a modern and, according to authors, relatively robust implementation, see [71].

2.5.2. Spectrum Estimation
Most speech enhancement algorithms operate in the frequency domain on segments of data. This is

called batch processing as opposed to iterative processing. A spectral estimation algorithm is used

to transform the data from the time domain into the frequency domain. In most cases, the FFT

(Fast Fourier Transform) is used preceded by windowing, combined with periodogram averaging

[25],[30],[40],[15],[62]. Parametric spectral estimation methods based on autoregressive models,
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equivalent to the maximum entropy (MEM) spectrum estimate [25], are suggested [38],[23],[62].

These methods can considerably reduce the variance of the estimate. Unfortunately, as the sum

of speech and noise is no longer an AR process, they often introduce a significant systematic

modelling error. Other methods such as the minimum variance (MV) spectrum estimate [25] can

also be considered. The MV estimate is essentially an average of MEM estimates and thus also

imposes a model on the data. Moreover, it is usually very conservative. See section 4.2.4 (p. 31) for

details.

2.5.3. Noise Spectrum Estimation
All algorithms working in the frequency domain need to estimate the noise spectrum in order to

perform the filtering. It is possible to average the noise spectrum over speech free segments as

indicated by the VAD [49]. A more elaborate solution based on minima tracking was proposed in

[40] (see section 6.4.2 (p. 45) for details) and a simplified version appeared in [15].

Attempts to use feature tracking algorithms have so far not succeeded, at least according to the

author’s knowledge. For an example, see [61],[12].

2.5.4. Speech Spectrum Estimation
Once we have the estimates of the input signal power spectrum P̂X and the noise power spectrumP̂N we can proceed to estimate the speech power spectrum P̂S . We shall henceforth use S to denote

the amplitude spectrum and ' the phase spectrum, i.e., P(! ) = S (! )2 , S (! ) 2 R+0 . As for the

true, mutually independent spectra it holds PX(! ) = PS(! ) +PN(! ) , the straightforward approach

called power spectral subtraction [23] givesP̂S(! ) = P̂X(! )� P̂N(! ) (1)
As for the phases, we usually leave them unchanged:'̂S(! ) = '̂X(! ) (2)
Another approach, called amplitude spectral subtraction or magnitude subtraction, [7] can be

derived from the equal phase assumption (2):Ŝ S(! ) = ŜX(! )� ŜN(! ) (3)
Both methods can be unified in the generalized spectral subtraction method [49]:Ŝ S(! ) = ���ŜX(! )a � b ŜN(! )a ���1=a (4)
Alternatively, we can reformulate the spectral subtraction methods using a gain factor [23]:Ŝ S(! ) = g(! )ŜX(! ) P̂S(! ) = g(! )2P̂X(! ) (5)
where for the power resp. amplitude spectral subtraction:
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Section 2.5: Spectral Subtraction Chapter 2: State of the ProblemgPSS(! ) =s1� P̂N(! )P̂X(! ) (6)
resp. gASS(! ) = 1�s P̂N(! )P̂X(! ) (7)

An often considered modification results in modified power spectral subtraction method [5],[40],[23]:gMPSS(! ) =s1� �(! ) P̂N(! )P̂X(! ) (8)
where � is called an oversubtraction factor. Various heuristics have been proposed to calculate it

[40],[23]. See also section 6.4.3 (p. 46) for details. Yet different gain factors have been suggested in

[16] and [15].

2.5.5. Rectification
Due to their physical meanings, PS; SS; g 2 R+0 . However, the approximate methods from section

2.5.4 (p. 15) do not guarantee this. As a remedy, a half wave rectification can be usedŜ S(! ). = maxn0; ŜS(! )o (9)
as well as a full wave rectification [49]: Ŝ S(! ). = ���Ŝ S(! )��� (10)
The rectification can be applied to any of P; S; g . Some refinements are suggested in [5] and [40].

2.5.6. Stochastic Approach to Speech Estimation
The speech spectrum estimation methods described so far have been only approximative, because

no efficient exact methods are known. It is instructive to apply a stochastic approach to the problem

in order to appreciate its difficulty. The reasoning sketched here is based on the periodogram

smoothing spectrum estimation method (described in section 4.2.4 (p. 31)) but similar results hold

generally. Many simplifying assumptions are used, such as the independence of speech and noise

spectrum estimates and the mutual independence of their frequency components.

Assuming that the input time series yS , yN are normally distributed random variables, it

follows from the linearity of DFT that Re (FS/N/X) and Im (FS/N/X) are also normally distributed.

Consequently, the components of the quantities 2mNP̂N=PN resp. 2mXP̂X=PX are �2 distributed

with 2mN resp. 2mX degrees of freedom, where m is the effective number of periodograms used to

obtain the estimate [62]. The task of estimating components of PS can be now transformed to the

task of estimating deterministic unknown PS given random measurements P̂X , P̂N of unknown

deterministic random variables PX ,PN . The probability density function (p.d.f) of P̂X isp(P̂X(! ) = x jPX(! )) =8<: PXxmX�1e�x=22mX2mX�(mX) ; if x � 00; if x < 0 (11)
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and similarly for P̂N . The procedure would now be to use the Bayes formula to calculatep(PX(! ) = x jP̂X(! )) , where the a priori probability p(PX(! ) = x ) must be guessed. Next, the

probability densityp(PS(! ) = x jP̂X(! ); P̂N(! )) = 1Z0 p(PN(! ) = y) p(PX(! ) = x + y)dy (12)
can be evaluated and a suitable estimate computed, e.g., mean square:P̂S(! jP̂X(! ); P̂N(! )) = 1Z0 x p(PS(! ) = x jP̂X(! ); P̂N(! ))dx (13)
The main problem of this approach is that the integration involved cannot be performed analytically

and a numerical integration is prohibitively slow. A feasible solution would be to approximate

the input p.d.f. or the resulting function P̂S(P̂X; P̂N) . Alternatively, instead of aiming at a true

statistically optimal estimate, a simplified criterion could be used, as in [16],[15].

2.5.7. Wiener Filter
If we assume that the speech and noise signals are independent and stationary (even though it

is only approximately true), we can use the non-causal Wiener filter ([59],[28],[25]) to find a gain

factor gW . This would yield an optimal estimate of Ŝ S in the mean square sense when used in (5)

if the assumptions held and if we had the true values of PX and PN .gW(! ) = PSX(! )PX(! ) = PS(! )PX(! ) = PX(! )� PN(! )PX(! ) (14)
The equality PSX(! ) = PS(! ) comes from the independence of yS and yN and from yX = yS + yN .

Using the certainty equivalence principle ([59]) (i.e., presuming blindly that y = f (x ) ) ŷ = f (x̂ ) )

we get: ĝW(! ) = P̂X(! )� P̂N(! )P̂X(! ) (15)
In practice, we want to assure the non-negativity of ĝW e.g., by means of half-wave rectification.

Finally, we can use (5) to get P̂S :P̂S(! ) = ĝW(! ).2P̂X(! ) = maxn0; P̂X(! )� P̂N(! )o2P̂X(! ) (16)
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2.5.8. Optimal Filter Limitations
It is instructive to observe that even under optimal conditions, i.e., if the signals were in fact

stationary and independent and if we knew exactly their spectra, the Wiener estimate P̂S(! ) as

given by (14,5,16) would be P̂S(! ) = PS(! )PS(! )PX(! ) (17)
which is not equal to PS(! ) unless there is no noise. Heuristically speaking, the information lost

in the mixing process cannot be retrieved and in absence of this information, the best estimate in

the mean square sense we can get is conservative and under-biased.

Because Wiener estimate is optimal, no other estimation method can yield better results under

the same conditions. Clearly, if the conditions are suboptimal, i.e., non-stationary, correlated or

finite-length signals, the results can be expected to be even worse. Consequently, no estimation

method can perform better in terms of mean square error (or equivalently SNR improvement) than

Wiener filter as given by (16) or (17), unless additional information are available.

The result of the preceding paragraph permits us to calculate for example the maximum achievable

SNR improvement for spectral subtraction based methods:�SNRmax = 10 log10 PNPe = 10 log10 PNPS � P̂S (18)
where Pe is the power of the error signal e = yS � ŷS , and the equality Pe = PS � P̂S holds

because of the orthogonality principle [59]. Using (17) and integrating over ! gives after additional

manipulations �SNRmax = 10 log100@PN � 1Z0 PS(! )PN(! )PS(! ) + PN(! ) d!1A (19)
Nevertheless, the filter (17) is hardly applicable in real situations because the Wiener filter

assumptions do not hold and the quantities involved are unknown. Therefore, it pays out to find

methods that would work even under these conditions. Moreover, the error minimisation is not

always the ultimate goal, it is the speech quality improvement. Finally, remark that (19) does not

assert anything about speech enhancement methods using an a priori information about the speech

signal. And many methods do use such an information.

2.5.9. Iterative Improvement
Converging iterative methods do exist; this just isn’t one of

them.

— Numerical Recipes, [50]

An iterative improvement speech enhancement method for speech signal corrupted by white noise

based on Wiener filtering and autoregressive modelling was proposed in [38] and quoted in [6].

The idea is as follows: Estimate initial AR parameters â0 by the autocorrelation method (see

section 4.4.1 (p. 34)), use â0 and Wiener filtering to get the speech signal estimate ŷ1S , estimate

AR parameters â1 of ŷ1S , use â1 and Wiener filtering to get the second speech signal estimate ŷ2S
etc., ad infimum.
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The catch here is that by estimating the AR parameters of a filtered signal, we do not get a good

estimate of the AR parameters of the original signal as ŷS is necessarily a biased and conservative

estimate of yS . The algorithm as described converges to zero but particular implementations may

behave differently or even diverge depending on the autocorrelation estimation procedure used.

According to [21], an equivalent iterative method based on Kalman filtering “does not guarantee an

improved estimate in terms of audible quality”. However, the first few iterations of the algorithm

may give better results than the autocorrelation method itself. The original article [38] mentions

two iterations as optimal.

Despite of its deficiencies, the procedure described above can be used with good results if the SNR

is high and if the algorithm speed is important in the particular application. Otherwise, one is

better off using some output-error model parameter estimation procedure such as prediction error

methods (PEM) [54] which are usually slower.

The author described in [34] another iterative approach to AR output-error model parameter

estimation based on repetitive autocorrelation. However, it was discovered later that, for similar

reasons as the above method, the model poles tend to converge to the unit circle (in Z plane) and

so it is recommended to use just a small number of iterations when applied to the speech signal.

2.5.10. Extended Spectral Subtraction
Extended spectral subtraction method combining Wiener filtering and conventional spectral

subtraction in a feedback algorithm is described in [58]. It is based on the assumption that fast

changes in the signal spectrum represent speech while slower ones correspond to noise changes.

2.6. Kalman Filtering
Several attempts to use Kalman filtering (see next chapter) in speech enhancement algorithms have

been made so far. While both Kalman and Wiener filtering can be made to optimally solve the same

problem (linear minimum-mean-square-error estimate of a wide-sense stationary signal from noisy

observations) and are hence equivalent, for other problems the Kalman filtering offers the following

advantages:

r It is designed to work with finite data sets.
r It makes use of models of the speech and noise production processes.
r It can be made to work with non-stationary signals.

However, it is not yet clear what the best way of applying Kalman filter to speech enhancement is

and most of the algorithms published so far have deficiencies calling for further improvements.

2.6.1. Published Algorithms
It was shown in [47] that Kalman filtering is a feasible approach and can outperform Wiener

filtering. Noise is considered to be white. Speech AR model parameters are assumed to be known

which is definitely not the case in real applications.

The approach described in [56] divides the signal into subbands using a quadrature-mirror filter

bank and then applies Kalman filter in each subband. Both speech and noise are modelled as AR

processes — noise does not need to be white. The speech model parameters are estimated either

from clean speech by the autocorrelation method or by using an iterative method equivalent to the

one described in section 2.5.9 (p. 18), sharing its deficiencies — reportedly only 2 or 3 iterations

could be carried out and the input SNR had to be fixed at 5 dB. The report gives no indication as to

how the noise parameters were obtained.

An iterative noise canceller based on [42],[43] is presented in [19]. The noise is assumed to be white.

The innovation sequence is tested for whiteness, indicating optimal functioning of the filter. If it is
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not white, it is used to improve the Kalman gain towards the optimum. Unfortunately, the iterative

improvement procedure is often unstable at low SNR conditions when the autocorrelation sequence

estimate, needed for the computation, deviates significantly from the true value. Furthermore, the

Kalman gain is kept constant during each frame which is suboptimal. See section 3.1.3 (p. 24) for

additional comments.

A neural network model for speech generation trained by dual extended Kalman filter is employed

in [70]. No justification for the non-linear system model is given. However, if it is appropriate it

can, in theory, perform significantly better than linear models. Promising results are presented,

though due to the approximative and rather ad hoc nature of the extended Kalman filter [59],[30],

the interaction of the two Kalman filters running in parallel [45], and neural networks in general,

no guaranties of performance or stability can be given.

The method described in [21] is similar to this work. However, this work was done independently —

the author was not aware of the article [21] until recently. The algorithm relies on VAD to update

noise parameters during speech pauses, limiting its performance for low SNRs. The suggestion of

updating the noise model during long continuous speech sections through Kalman filter estimates

suffers from the deficiencies outlined in section 2.5.9 (p. 18). An autocorrelation method is used

for AR parameters estimation which does not perform very well on noisy data. A modified power

spectral subtraction with half-way rectification is used to obtain the speech spectrum parameters.

An alternative algorithm is proposed based on prefiltering an input signal with the inverse of the

noise system followed by an ARMA system identification. Nevertheless, this algorithm is admittedly

not working well due to a small size of the stationary period available for identification.

2.7. Other methods
Relative spectral (RASTA) techniques ([27] and related [3]) work by Wiener filtering transformed

time trajectories of short-time power spectral bin magnitudes.

A noise canceller using signal delayed by one speech period and self-tuning FIR filter is presented

in [55].

Various other methods are presented in a survey [6], many of them modelling the speech and noise

processes using Hidden Markov models (HMM), usually needed to be trained on clean speech and

therefore suitable for limited vocabulary and limited number of speakers only. Modern example of

this kind of algorithms is given in [39].
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3. Kalman Filtering

It is probably not an overstatement to assert that the Kalman

filter represents the most widely applied and demonstrably

useful result to emerge from the state variable approach of

“modern control theory”.

— Harold Sorenson, [57]

Kalman filter [59],[57],[1],[25] is an optimal linear minimum mean-square-error state estimator for

stochastic linear systems in a state form. Given with the model and, possibly noisy, measurements

of inputs and outputs, it provides an an optimal estimate of system states. If the noises involved

are Gaussian, Kalman filter becomes an optimal mean-square-error estimator, i.e., not just among

the linear estimators. Many formulations exist targeted for specific application. The particular

approach presented here comes mainly from [59].

The main features of Kalman filtering are sequential operation, model-based approach and possible

non-stationarity.

3.1. One-Step Prediction
One of the most popular applications for Kalman filtering is one-step prediction. A linear stochastic

discrete system with n-dimensional state x , m-dimensional output y and r -dimensional input u
is described by the following equations:x(t + 1) =Ax(t) +Bu(t) + v(t)y(t) =Cx(t) +Du(t) +w(t) (20)
The matrices An�n , Bn�r , Cm�n and Dm�r are assumed to be known and time-invariant. The

extension towards time-varying systems is straightforward [1] but makes the notation rather clumsy

and is therefore omitted for clarity reasons here. Both input u and output y are measurable and

known, unlike the state x which is “hidden” inside the system and must be thus estimated. And

this is precisely a task for KF. The mutually uncorrelated discrete white noises v(t) and w(t)
are called process noise and measurement noise and have the following known symmetric positive-

definite covariance matrixcov � v(t)w(t) � = E (� v(t)w(t) � � � v(t)w(t) �T) = �Qn�n 00 Rm�m � (21)
The Kalman filter is used to update an estimate x̂ of the state x minimising in each step the tracetrP (t) of the estimation error covariance matrix
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Figure 3 shows the structure of the compound consisting of a Kalman filter and the original system.

An a priori estimate x(t jt � 1) — the best prediction of x(t) using all the available data prior

to time t , denoted Dt�1 = fu(1);u(2); : : : ;u(t � 1);y(1);y(2); : : : ;y(t � 1)g — with its associated

covariance matrix P (t jt � 1) are assumed to be known. The data step of the Kalman filter can be

then used to incorporate the measurements u(t) , y(t) from time t to get the a posteriori state

estimate x(t jt) . ŷ(t jt � 1) =Cx̂(t jt � 1) +Du(t)e(t) = y(t) � ŷ(t jt � 1)L(t) = P (t jt � 1)CT �CP (t jt � 1)CT +R��1x̂(t jt) = x̂(t jt � 1) +L(t)e(t)P (t jt) = P (t jt � 1)�L(t)CP (t jt � 1) (23)
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The a posteriori estimate x̂(t jt) with its associated covariance matrix P (t jt) is now the best linear

estimate of x(t) using all the data upto and including data from time t , i.e., the estimate is based

on data Dt = fu(1);u(2); : : : ;u(t);y(1);y(2); : : : ;y(t)g . The recursion is closed using the time step

of the Kalman filter: x̂(t + 1jt) =Ax̂(t jt) +Bu(t)P (t + 1jt) =AP (t jt)AT +Q (24)
By providing a suitable initial estimate x̂(1j0) and P (1j0) and alternating data steps (23) and

time steps (24) it is possible to recursively calculate estimates x̂(t) for all times t . Provided

that the initial estimate is a true minimum mean-square-error estimate of the state x(1) , all the

subsequent estimates of x(t) will be the best linear estimates in the mean-square sense for the

given data. If additionally the noises v and w are Gaussian, the estimates x̂(t) will be optimal

in the mean-square sense.

Note that the Kalman gain L(t) is independent of the measured data and can be thus computed

in advance.

The covariance matrix P (t) can be proved to stay symmetric and positive definite. Furthermore,

if the initial estimate P (1j0) is conservative in the sense P (1j0) � P �(1j0) (where P � is the true

covariance and the inequality is interpreted so as that the difference between the two matrices is

positive-semidefinite) then P (t jt � 1) � P �(t jt � 1) , i.e., the true covariances are bounded by the

calculated ones [46] (also appeared in [57]).

The filtering procedure outlined above provides not only the current estimates of the system state

and output but can be also employed to find the predicted future values and smoothed ancient

values thereof. Alternative formulas for one-step Kalman prediction can be found in [59],[1],[57].

3.1.1. Innovation
Calculating the covariance of the prediction error sequence e and factorizing we getcove = CP (t jt � 1)CT +R = � (t)� T (t)
The sequence �(t)m�1 defined by e(t) = � (t)�(t)
is called innovation sequence. If the filter is optimal, the innovation sequence is white and its

covariance is unitary cov� = Im�m
For single-output case, innovation sequence and prediction error differ only in magnitude and the

terms are therefore sometimes used interchangeably.
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3.1.2. Steady-State Kalman Filter
Under fairly general assumptions (the precise formulation is too lengthy to be included here, see [59]

for details) the sequence fP (t + 1jt)g1t=0 converges exponentially to a limit P1 and consequently

also the Kalman gain converges to a limit L1 . The convergence rate depends on variances of

the measurement and process noises and on the speed of the system — it is faster for stronger

measurement noise, weaker process noise and faster system. Discrete-time algebraic Riccati

equation (DARE) holds for the limit values:P1 =AP1AT �AP1CT �CP1CT +R��1CP1AT +QL1 = P1CT �CP1CT +R��1 (25)
Approximating L(t) from (23) by L1 yields steady-state Kalman filter:ŷ(t jt � 1) = Cx̂(t jt � 1) +Du(t)e(t) = y(t) � ŷ(t jt � 1)x̂(t jt) = x̂(t jt � 1) +L1e(t)x̂(t + 1jt) =Ax̂(t jt) +Bu(t) (26)
Using (26) instead of (23,24) can yield significant computational savings mainly if many samples

are to be processed, because P does not have to be updated. However, it must be determined for

each application separately whether the loss of precision is acceptable and if the time savings are

significant.

The straightforward solution of DARE (25) is iterative [59]. It is simple but converges only linearly.

More elaborate methods like step-doubling [1] or Kleinmann algorithm [59] converge in a quadratic

fashion but require extensive calculations in each step. Purely algebraic DARE solution using

Hamilton matrix eigen-decomposition also exists ([59], MATLAB function dare) but for most

systems it is usually the slowest method.

3.1.3. Innovation Based Iterative Improvement
It is shown in [42],[43],[19] that if the steady state Kalman filter is not working optimally, because

an inaccurate model was specified, the autocorrelation of the innovation sequence (which is now

non-white) can be used to iteratively find an optimal Kalman gain L�1 . If only a limited amount of

data is available (as it is always the case), the autocorrelation function of the innovation sequence

must be estimated. According to experiments it seems that if the noise level is high, this estimate

becomes unreliable and this prevents the algorithm from converging. See also section 2.6.1 (p. 19)

for complementary description.

3.2. Fixed-Interval Smoothing
In the prediction setting, the Kalman filter provides the best estimate based on past data. If future

data are also available, they can be used to further improve the estimate. The task of estimating

states x(0) , x(1) ,: : : x(T ) , given in advance all the available data DT = fu(1);u(2); : : : ;u(t);y(1);y(2); : : : ;y(T )g , as opposed to just past data, is termed fixed-interval smoothing.
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3.2.1. Three-Pass Smoothing
To use Kalman filter to solve the smoothing problem, we may begin by forward run, described

in section 3.1 (p. 21), followed by backward run obtained by applying the equations (23,24) on

a time-reversed system. Finally, the results of the two runs are combined in a third pass [59]. This

method requires little modification of the original Kalman filter algorithm but is computationally

very demanding as several matrix inversions must be performed in each step.

3.2.2. Two-Pass Smoothing
A modification of the algorithm above requiring only two passes over the data can be found in [59]

or [41] (included in [57], originally [52]). The forward run rests unchanged, the backward run is as

follows: x̂(t jT ) = x̂(t jt) +F (t)�x̂(t + 1jT )� x̂(t + 1jt)�P (t jT ) = P (t jt) �F (t)�P (t + 1jt)�P (t + 1jT )�F T (t)F (t) = P (t jt)ATP �1(t + 1jt) (27)
where the index T denotes estimates based on all available data. The recommended way to

compute F (t) is to use the Cholesky decomposition of P (t + 1jt) (guaranteed to exist because of

the positive-definiteness), see [50]. It is both quicker and more accurate. Many times, P (t jT ) does

not have to be computed.

3.2.3. Fast Two-Pass Smoothing
The algorithm described by (27) still needs to perform (an equivalent of) matrix inversion of P in

each step. This is avoided, with beneficial effects to performance, in another algorithm from [41] 1
(included in [57], based on [8],[9]) by introducing an auxiliary variable �n�1�(t) = P �1(t + 1jt) (x̂(t + 1jT )� x̂(t + 1jt)) (28)
The nice thing about � is that it can be updated without the need of inverting P�(t � 1) =AT�(t) + �CTR�1CL(t) +K(t)�n�m �� �e(t) �CL(t)e(t) �CP (t jt)AT�(t)�m�1

where K(t) = CT �CP (t jt � 1)CT +R��1 (29)
The forward run algorithm is extended to store the values of P (t jt) , L(t) and K(t) (which is

obtained as a by-product of calculating L , see (23)). The backward run is initialized by setting�(T ) = 0 and carried out by recursive application of (29) and (30).x̂(t jT ) = x̂(t jt) +P (t jt)AT�(t) (30)
This algorithm is very fast in comparison to the preceding ones but unfortunately exhibits far less

numerical stability since the numerical errors tend to build up. Caution should be taken to check1 The update formula had to be changed slightly to work properly.
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for possible divergence, see next section, and to switch to higher precision or more stable algorithm,

if necessary.

3.3. Square-Root Covariance Kalman Filter
3.3.1. Divergence
Due to modelling errors, bad numerical conditioning and other numerical errors, Kalman filter

algorithms can sometimes produce estimates much less accurate than the covariance matrix would

have indicated, can become unstable (the state estimate increases exponentially beyond any bounds)

and can fail due to the lack of non-negative-definiteness of the calculated matrix P . This is

generally called divergence [59],[1],[57]. It usually manifests itself by unnaturally small values ofP , L and too large a magnitude of x̂ . Moreover, the prediction error sequence e fails to be white,

zero-mean and have the expected covariance R +CP (t jt � 1)CT .

The remedy is to improve the model, artificially increase R , limit P , or — if the model is

intrinsically badly conditioned — use numerically more stable algorithm.

3.3.2. Square-Root Filter
The main idea behind square-root (SR) Kalman filtering is to store the covariance matrix P
in factorized form. This effectively doubles the available precision and makes the algorithm

exceptionally stable. If it still fails, it is an indication that Kalman filtering is most likely

inappropriate for the situation. Vast range of SR algorithms have been developed, varying in

the type of factorisation and update formulas. See [59],[1] and survey [31] (appeared in [57]).

Typically, an SR algorithm needs about 1.5 times the number of operations of the classical Kalman

filter implementation. However, in cases when the classical implementation can be simplified due to

system structure, no such optimisation is usually possible for the SR version and the corresponding

increase in computational burden is substantial.

In the algorithm presented below, taken from [1], Cholesky factor MT [50] of the covariance matrix

is stored, instead of the full form P . P =MMT (31)
where M is lower triangular. This ensures the non-negative definiteness of P .

The time step is given be the following equationsx̂(t + 1jt) =Ax̂(t jt) +Bu(t)�MT (i + 1ji)0 �2n�n = T �MT (i ji)ATQT=2 �2n�nQ =Q1=2QT=2I2n�2n = TT T (32)
The matrix QT=2 can be computed in advance by Cholesky factorisation, or, if Q is diagonal

(which is often the case) by taking the square-root of the diagonal, element-by-element. The

orthogonal matrix T does not have to be computed explicitly; all we need is to find an orthogonal

transformation to transform a general matrix X to an upper triangular matrix Y , i.e., Y = TX .

Gram-Schmidt methods, Householder transformation or Givens rotations can be used for this
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task [50]. Realizing that X = T TY , which describes a standard QR-factorisation, any of the

readily available algorithms [50],[72] can be used. As Y TY =XTX , Cholesky factorisation can

be employed, too.

The data step is slightly more complicated:ŷ(t jt � 1) = Cx̂(t jt � 1) +Du(t)e(t) = y(t) � ŷ(t jt � 1)x̂(t jt) = x̂(t jt � 1) +L(t)e(t)L(t) = L?(t)W �1(t)�W T (t) LT?0 MT (t jt) � = T? � RT=2 0MT (t jt � 1)CT MT (t jt � 1) �(n+m)�(n+m)Rm�m =R1=2RT=2I(m+n)�(m+n) = T?T T?
(33)

As before, RT=2 can be computed in advance. The meaning of W isW (t)W T (t) =CP (t jt � 1)CT +R
To find the orthogonal triangularisation factor T? , the same methods as in the time step can be

used.

Further refinements, optimisations and alternative formulas can be found in [1],[31],[59]. According

to [1], no set of filtering equations is always superior to the others. It is therefore necessary to

evaluate their performance for the specific application.

3.3.3. Square-Root Smoothing
Square-root Kalman filter described by (32,33) can be effectively used for smoothing using the

procedure (27), calculating P (t jt) from (31). As P (t + 1jt) is already available in the square-

root form, see the remark about Cholesky factorisation in section 3.2.2 (p. 25), the increase in

complexity of square-root smoothing over square-root filtering is only modest while the benefit can

be significant.

3.4. Extended Kalman Filter
Extended Kalman Filter (EKF) is a generalisation of an ordinary Kalman filter for non-linear

systems, see [59], [57]. In each step, the general non-linear system is linearised around the current

estimate of the state. Ordinary Kalman update of the state estimate is then calculated using

the current linearised model. Note that this implies time-varying system matrices even if the

underlying system is time-invariant.

Unfortunately, the linearization is rather an ad hoc approximation and may often be too coarse,

especially if the initial estimate is imprecise, noise level is high or the system is extremely nonlinear.

While EKF permits to use Kalman filtering even for non-linear systems and can be sometimes very

efficient, experience shows that at many times it behaves poorly and divergence frequently occurs.
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EKF is often used as a parameter estimator. Nevertheless, even if it converges, it usually converges

much more slowly than corresponding alternative methods. See also section 4.5 (p. 36) for

complementary description.

3.4.1. Neural Network Training
An interesting application of EKF is a training of feed-forward neural networks, [18]. It appears

that states of a system modelled by a suitable non-linear neural network as well as the parameters

of this network can be estimated by EKF without a pronounced danger of instability [70].

3.5. Parameter Optimisation
Parameters of a system we want to apply the Kalman filter on are often known only approximately.

While the adverse effects of an erroneous model on the estimation error have not been thoroughly

and completely investigated yet, it is known that they can be pronounced [46],[57]. As an alternative

to improving the identification method for obtaining better model parameters beforehand, it is also

possible to use the Kalman filter to iteratively ameliorate the model and thus the accuracy of the

state estimate itself. Section 3.1.3 (p. 24) mentiones one such approach together with its limitations.

Moreover, it is applicable only for steady-state Kalman filtering.

A better method exploits the quadratic optimality of Kalman estimate. Let us denote the unknown

parameters needed to use Kalman filter as� = fA;B;C;D;Q;R;P (1j0); x̂(1j0) g
and the correct values as �� . Because the Kalman state estimate is optimal, it follows that�� 2 argmin� E �eT e	8 t2h1;T i (34)
The above formula is obviously not directly usable. To be rendered applicable, it must be

approximated. A plausible version is�̂� = argmin� TXt=1 eT (t)e(t) (35)
Any multidimensional minimum-finding method can be applied to solve (35) while the Kalman filter

prediction error acts as the objective function. To speed it up, it is useful to note that x̂(t) / x̂(1j0) ,

which permits us to calculate x̂�(1j0) directly. Also observe, that multiplying P , Q , R by

a constant scalar does not change x̂ . Unfortunately, even after having applied these tricks, the

process is still very slow — depending on the number of parameters to be optimised and the quality

of the initial estimate, it can easily take several hours.

Experiments performed by the author show this method as very promising. However, much more

investigation is definitely needed.
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4. Identification

In order to use the Kalman filter, a model of the system must be known. A very brief survey of

identification methods will be presented, with emphasis on the application in speech enhancement.

For further information, it is refered to [59],[28],[62],[29],[25],[30],[54] and a comprehensive survey

[2].

4.1. System Identification
The goal of a stochastic system identification is to find an “optimal” estimate of parameters of

a stochastic system given its structure and a set of measurements of inputs and outputs of this

system. Various criteria for optimality are employed, most frequently minimum mean-square-

error (MS), minimum linear mean-square-error (LMS), minimum variance (MV), and maximum

likelihood (ML). Other critaria are employed in prediction error methods (PEM). Instead of providing

the values of inputs and outputs themselves, only their characteristics might be available, such as

spectrum or autocorrelation function.

Only batch methods will be discussed here, i.e., it is assumed that all the data are available at once

in advance. It is also assumed that the parameters remain constant during the estimation. Various

techniques for time-varying parameter estimations can be found in [59],[62],[25].

4.1.1. Limits on Attainable Precision
Note that due to the stochastic nature of the system, it is of course never possible to get the exact

values of the parameters. Moreover, the more complex the system structure is, the more difficult it is

to obtain a suitable parameter estimate and the less precise the estimate. This effectively restricts

the usability of complex models, if the amount and precision of data for parameter estimation is

limited.

For some methods, the estimate of the uncertainty as represented by the covariance of the parameter

estimates can be calculated. An important lower bound for this covariance for unbiased estimates

is given by the Cramér-Rao inequality, [59],[28]. Unfortunately, it can obviously only be used if the

stochastic parameters of the process are known, which is generally not the case.

4.2. Time-Series Analysis
In the view of the intended application only white-noise driven input-less single-output linear

time-invariant system identification will be dealt with. The output of such a system is a sequence

called time series, which can be both finite and infinite and will be denoted y(t) . The unit-variance

zero-mean driving noise will be denoted v (t)E fv (t)g = 0; E fv (t)v (t + �)g = �(�) = � 1; if � = 00; otherwise
(36)

Following from the linearity, E fy(t)g = 0 . Because of the time-invariance, y is stationary, i.e., its

properties do not change in time.
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4.2.1. Autocorrelation
Important characteristic of y is its autocorrelation (the extension of the notation to the infinite

case is straightforward)Cy (k ) = E fy(t) � y(t + k )g ; denoted fCy (k )gT�1k=�T+1 = C fy(t)gT�1t=0 (37)
Because of the stationarity of y , Cy (k ) does not depend on time t . It also follows thatCy (k ) = Cy (�k ) [25]. If only one (finite length) realization of y is available, Cy (k ) must be

estimated. According to [43], a reasonable estimate isĈy (k ) = 1T T�1Xt=jk j y(t) y(t � jk j) (38)
The estimate (38) is biased for finite sample sizes,E nĈy (k )o = (1� k=T )Cy(k ) (39)
However, it has been shown in [29] that the estimate (38) is preferable since it gives less mean-square

error than the corresponding unbiased estimate. Heuristically speaking, the values of Ĉy (k ) are

less accurate for bigger k and it is therefore beneficial that they are smaller and have thus less

influence.

It can be shown [48] that (38) is an asymptotically unbiased (as T ! 1) , normal and consistent

estimate of Cy . An expression for the asymptotic covariance of Ĉy (k ) has been given by Bartlett

[4] (simplified): cov(Ĉy (k ); Ĉy (l)) �8<: 0; k 6= l(1=T )Cy(0)2; k = l 6= 0Cy (0)2; k = l = 0 (40)
4.2.2. Discrete Fourier Transform
Another commonly used characteristic of y is its (discrete) spectrum (sometimes called frequency

distribution), obtainable by discrete Fourier transform (DFT)Fy (k ) = 1T T�1Xt=0 y(t)w tk ; where w = e�j2�=T
denoted fFy (k )gT�1k=0 = 1T F fy(t)gT�1t=0 (41)

The definition of F corresponds to the function fft in MATLAB. It is useful to define also the

(discrete) amplitude spectrum Sy (k ) = jFy (k )j , the phase spectrum 'y (k ) = argFy (k ) and the

power spectrum Py (k ) = jFy (k )j2 . All the discrete spectra are closely related to their continuous

counterparts, e.g., Sy (k )b=Sy (! )j!=2k�=T .

DFT, as well as its inverse (called IDFT and denoted F�1 ), can be very efficiently (in O(T logT )
time) calculated by some of the numerous fast Fourier transform (FFT) algorithms ([50],[62], [30]).
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4.2.3. Wiener-Khintchine Theorem
Instead of evaluating the sum (38), another autocorrelation function estimate can be obtained using

a Wiener-Khintchine theorem [62],[30]� nĈy (k )oT=2k=0 nĈy (k )o1k=T=2�1 � = 1T F�1� ���F fy(t)gT�1t=0 ���2�= 1T 2F � ���F fy(t)gT�1t=0 ���2� (42)
(The right-hand side is a sequence symmetrical along the middle element.)

For moderate or long sample sets ( T >� 30 ), the estimate (42) is quicker to compute than (38) (inO(T logT ) time as opposed to O(T 2) ) and yields almost the same results, usually well within the

confidence limits of the estimate itself. Note that (42) gives effectively an autocorrelation sequence

of the length T=2+1 , while (38) gives all the T values but in practice this does not matter because

the estimate Ĉy (k ) for higher k is statistically unreliable anyway and should not be used [62].

4.2.4. Spectrum Estimation Methods
Some identification methods use a frequency spectrum for subsequent calculations. Since the

estimate (41) has a rather high variance, it is often not directly usable.

Two of the main methods for spectrum estimation are periodogram and minimum entropy (MEM)

estimate. In the periodogram method [59],[30],[25], the frame is first multiplied with a Hanning

window (80) (or other suitable window, see [30]) and then the FFT (see section 4.2.2 (p. 30)) is

applied. The estimate is further averaged or recursively smoothed (which is called Welch method)Py (k ) = �Py (k ) + (1� �)Py (k ) 8 k (43)
In the MEM method [25], first the AR model parameters of the signal are estimated (e.g., using

Burg’s method (section 4.4.5 (p. 35)) plus (56)) and then the calculated model spectrum is obtained

using (48). The MEM method works very well if the process is autoregressive but does not give

reliable results otherwise.

The autocorrelation (also called correlogram) method of spectrum estimation [30],[62] based on

Wiener-Khintchine theorem (42) is difficult to use because the estimate (38) often yields invalid

autocorrelation sequences under low SNR conditions.

The minimum variance (MV) estimate is given by [25]P̂MV(! ) = (p+1) . �wT (! )C�1p�pw(! )�
where w(! ) = �1; ej ! ; : : : ; ej p!�TCp�p = 2664 Cy (0) Cy (1) : : : Cy (p�1)Cy (1) Cy (0) : : : Cy (p�2)

...
...

. . .
...Cy (p�1) Cy (p�2) : : : Cy (0) 3775 (44)

where p is the estimate order. The elements Cy must be approximated using the estimate (38)

(or other); the unreliability of this estimate limits the usability of the MV method similarly to
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the previous case. MV estimate is a harmonic mean of MEM estimates of orders 0; : : : ; p which

accounts for its conservativeness.

Other parametric as well as non-parametric methods exist [62],[25],[30],[2], [54]. See also

section 2.5.2 (p. 14) for an overview and section 6.4.1 (p. 45) for comments on implemenation.

4.3. Autoregressive System
In accordance with the conclusions of sections 2.3.1 (p. 13) and 2.4.1 (p. 13) only the autoregressive

(AR) model parameter estimation is considered here. Such a white-noise driven single-input single-

output (SISO) AR model can be described by the following equation:y(t) = nXi=1 aiy(t � i) + bv (t); b � 0 (45)
where v (t) is a unit-variance zero-mean white noise, as in (36).

As a shorthand, the set of parameters will be denoted a = (a1; a2; : : : ; an )T and � =(a1; a2; : : : ; an ; b)T .

4.3.1. State-Space Representation
The system (45) can be represented by the following state-space model with n-dimensional state xx(t) = [y(t � n + 1); y(t � n + 2); : : : ; y(t � 1); y(t)]TA = 266664 0 1 0 : : : 00 0 1 : : : 0

...
...

...
. . .

...0 0 0 : : : 1an an�1 an�2 : : : a1 377775x(t + 1) =Ax(t) + bhv (t); h = [0; 0; : : : ; 0; 1| {z }n ]Ty(t) = hTx(t) (46)
This model is simple to construct and evaluate but might suffer from numerical instability for

higher n . If this happens, other numerically more stable representations should be considered,

such as lattice, cascade, Jordan etc., see [25],[60],[44].

4.3.2. Properties
The autocorrelation sequence of the system (45) satisfies the Yule-Walker equations [25],[62]Cy (k ) = b2�(k ) + nXi=1 aiCy (k � i) 8 k 2 Z (47)
The discrete amplitude spectrum of the length T +1 of y is (following from the Wiener-Khintchine

theorem)
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calculated as fSy (k )gTk=0 = b � ����Fn1;�a1;�a2; : : : ;�an ; 0; 0; : : : ; 0| {z }(T�n�1) o���� (48)

(The division and absolute values are performed element by element.)

For the state-space formulation (46) the covariance matrix P = cov x (t) satisfies the Lyapunov

equation [59],[43] P =APAT + b2hhT (49)
The Lyapunov equation can be solved directly by transforming into a set of linear equations [59],

iteratively, or by Schur decomposition (MATLAB function dare). All methods are rather time

consuming — for our application (described later in more detail) solving Lyapunov equation and

Kalman filtering one segment typically takes comparable time.

Using P , a closed-form formula for Cy can be derived [43]Cy (k ) = �hTPh+ b2; if k = 0hTAkPh; if k > 0 (50)
4.3.3. Indirect Estimation
There is an interesting similarity between (47) and (45). Under the assumption that the estimatesĈy are unbiased and normal (which is asymptotically true), Ĉy can be viewed as an output of an

input-less autoregressive output-error (AROE) system (47,55). Therefore, methods for estimating

parameters of an AROE model directly from the signal can be used for estimating parameters of AR

model from the autocorrelation sequence. Further approximation is to use AR model estimation

techniques on the autocorrelation sequence.

Even though this use of an AR estimation algorithm is obviously suboptimal, the results are, in the

author’s experience, usually acceptable. A recursive extension of this approach is described in [34],

see also section 2.5.9 (p. 18).

4.4. Least-Squares Estimators
In order to estimate parameters of the AR model (45) given either y or Ĉy , the methods described

in this section construct a set of linear equations and solve it (in the least-squares sense, if the set

is overdetermined). Again, only a very limited subset of the most relevant available methods is

presented here due to space constraints. The equations come from minimising various least mean-

square error criteria such as the following least mean-square forward prediction error criterion.â = argmina E fy(t) � ŷ(t)g (51)ŷ(t) = nXi=1 aiy(t � i) (52)
Note that the parameter b in (45) must be estimated separately. See section 4.4.6 (p. 35) for details.
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Generalising the predictor, the model structure and the optimality criterion leads to a wide class

of, usually iterative, prediction error methods (PEM), see [54].

4.4.1. Autocorrelation Method
Using (47), exploring the symmetry of Cy (k ) and taking derivatives of (51) we get, after additional

manipulations266666666664
Ĉy (0) Ĉy (1) Ĉy (2) : : : Ĉy (n � 1)Ĉy (1) Ĉy (0) Ĉy (1) : : : Ĉy (n � 2)Ĉy (2) Ĉy (1) Ĉy (0) : : : Ĉy (n � 3)

...
...

...
. . .

...Ĉy (n � 1) Ĉy (n � 2) Ĉy (n � 3) : : : Ĉy (0)
...

...
...

...Ĉy (N � 1) Ĉy (N � 2) Ĉy (N � 3) : : : Ĉy (N � n)
377777777775266664 â1â2â3

...ân
377775 = 266666666664

Ĉy (1)Ĉy (2)Ĉy (3)
...Ĉy (n)
...Ĉy (N )

377777777775 (53)
If the estimates Ĉy (k ) are taken from (38) and if N = n (which is the common case), the procedure

described by (53) is commonly called autocorrelation method. As the matrix is then symmetrical

and Toeplitz, fast algorithms exist capable of solving (53) in O(n2) time, such us Levinson-Durbin

algorithm, see [62],[28],[50],[25], which accounts for the popularity of this method. However, the

autocorrelation method effectively weights the data with a window which seriously compromises

the resulting model accuracy. Moreover, if the data is noisy, which is always the case in reality, the

estimate is biased and statistically inefficient [43]. On the positive side, stability of the model is

assured. Making N > n is guaranteed to increase the accuracy of the model only if N � T , to

make a good estimate Ĉy (k ) by (38).

Similar to the autocorrelation method just described is the covariance method [62],[25]. However, in

the author’s experience, for moderate N >� 100 the additional computational burden is not justified

by the, relatively small, estimate quality improvement.

4.4.2. Cayley-Hamilton Method
Cayley-Hamilton theorem states that a matrix is a root of its own characteristic polynomial.

Applying this theorem on (50) (see [43]) yields after additional manipulation the following equation.

Alternatively, the same result can be obtained from (47).266666666664
Ĉy (1) Ĉy (2) Ĉy (3) : : : Ĉy (n)Ĉy (2) Ĉy (3) Ĉy (4) : : : Ĉy (n + 1)Ĉy (3) Ĉy (4) Ĉy (5) : : : Ĉy (n + 2)

...
...

...
. . .

...Ĉy (n) Ĉy (n + 1) Ĉy (n + 2) : : : Ĉy (2n � 1)
...

...
...

...Ĉy (N ) Ĉy (N + 1) Ĉy (N + 2) : : : Ĉy (N + n � 1)
377777777775266664 ânân�1ân�2

...â1
377775 = 266666666664

Ĉy (n + 1)Ĉy (n + 2)Ĉy (n + 3)
...Ĉy (2n)
...Ĉy (N + n)

377777777775 (54)
The matrix is known as the Hankel matrix of the system [43], however, it can be converted to the

Toeplitz structure by reverting a . Again, as in the previous case, it is usually set N = n and (38)

is used to estimate Ĉy . Increase N if your data set (T ) is large to gain some extra accuracy. It

can be proved [43] that asymptotically (as T ! 1 ) the estimate â from (54) is unbiased, normal

and consistent as the errors of estimating â are linearly related to errors of estimating Cy . For

moderate T � 100 , the performance is similar to the autocorrelation method.
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4.4.3. Output-Error Model
The principal advantage of (54) over (53) lies in the fact that (54) does not use Ĉy (0) and can be

therefore used also for output-error models yX = y + w (55)
when only yX is observable, y is an AR process (as in (45)) and w is a white measurement noise

with (possibly) unknown variance but independent of the system driving noise v , defined by (36).

Because of the whiteness and independence it holdsCX(k ) = �Cy (k ); if k 6= 0Cy (0) + Cw (0); if k = 0
where CX is the covariance of yX . It implies that Ĉy (0) is not readily available and therefore (54)

must be used in place of (53).

Generally, the additive noise w will degrade the quality of the estimate of Ĉy (k ) also for k 6= 0 . This

has serious adverse effects on both (53) and (54). One solution is to use the repetitive autocorrelation

method [34] but it is not feasible for many applications, as already discussed in section 2.5.9 (p. 18).

4.4.4. Modified Covariance Method
The autocorrelation method minimises the forward prediction error (51). However, given all the

data at once, there is no reason to prefer the forward direction over the backward direction. The

modified covariance method (also called forward-backwardmethod) combines the two and minimises

the sum of forward and backward prediction errors. The formulas are rather lengthy and will not be

given here, they can be found in [25]. The modified covariance method performs very well, usually

much better than either autocorrelation or Cayley-Hamilton methods. Its disadvantages are the

need to operate directly on the signal y and no guaranty of the model stability.

4.4.5. Burg’s Method
The Burg’s method [25] minimises the same criterion as the modified covariance method and

operates directly on the signal y , too. However, in contrast to this method, Burg proposed to

sequentially minimise the reflection coefficients ([25],[62]) starting from first order filter towards

higher orders. Although the result is not globally optimal, it is usually close to the result given by

modified covariance method and the model is in addition guaranteed to be stable. Burg’s method

requires only O(nT ) operations which makes it fast enough for most applications. Sometimes, the

estimate seems to be sensible to signal phase shifts.

4.4.6. Estimating b
Several methods are available for estimating the parameter b in (45). The power spectrum of the

model can be calculated using (48) and then made equal to the directly calculated signal energyTXk=0 S 2y (k ) = TXt=0 y2(t) (56)
Alternatively, an autocorrelation sequence Cy (k ) of the model output can be calculated either from

(38),(42) or (50) and then fitted, in the least-squares sense, to the autocorrelation sequence Ĉy (k )
estimated from data.
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where T 0 is the index of the last reliable estimate. Implementation of both methods should make

use of the fact that Cy (k ) / b2 , Sy (k ) / b2 . Other methods, such as linearly fitting power spectrum

etc., are of course possible, depending on what data are available. Least-squares fitting gives

usually slightly better results at the expense of speed.

It is also possible to set b2 equal to the power of the modelling error residual series [25],[12] givingb2 = Ĉy (0) + nXk=1 âi Ĉy (i) (58)
which is the quickest to compute but the estimate is often not very good.

4.5. Kalman Filter for Parameter Estimation
Extended Kalman filter can be used for parameter estimation by regarding the unknown parameters

as additional states [59],[57], as already mentioned in section 3.4 (p. 27). However, the resulting

combined model is non-linear which causes difficulties in assuring stability and convergence speed.

In some cases, though, it is possible to avoid the non-linearity in the estimation process and to use

the Kalman filter effectively. A dual Kalman filter approach was proposed in [45], using one KF to

estimate the parameters and a second one to estimate the state. It was shown in [24] that provided

the stochastic parameters of an ARMAX (auto-regressive moving average) system are known, the

rest of the parameters and the state can be estimated simultaneously by a linear Kalman filter.

4.6. State Space Approach
In the classical identification dealt with so far, the stochastic system parameters are determined

from noisy observations and then used to find an estimate of the system states, for example by

Wiener or Kalman filtering. In the state space approach [14], an estimate of the system states

is calculated first and then used to determine system parameters. The observations are usually

gathered in a matrix and then the closest matrix fulfilling constraints imposed by the system

structure is calculated. State space methods are in many cases equivalent to classical methods,

at least in the deterministic setting. For further information on algorithms and applications, see

[14],[36],[13],[64],[69],[66],[37],[67],[35],[68],[10].

4.6.1. HTLS
Hankel TLS (HTLS) is a subspace-based method for estimating parameters of damped sinusoids

in additive white noise [10],[11]. An application on the autocorrelation sequence estimates Ĉy (k )
will be shown here. Alternatively, HTLS can be used on the output of input-less autoregressive

output-error model, as in [10] or [36]. It can be assumed that the difference ~Cy (k ) = Cy (k )� Ĉy (k )
is white, see section 4.2.1 (p. 30). Furthermore, as a consequence of (47), Cy (k ) can be expressed

as a sum of exponentially damped sinusoids.

The measurement data is arranged in a Hankel matrix. Ĉy (0) should be included if it is available,

see section 4.4.3 (p. 35). Otherwise, start with Ĉy (1) .
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Xl�m = 2666664 Ĉy (0) Ĉy (1) Ĉy (2) : : : Ĉy (m � 1)Ĉy (1) Ĉy (2) Ĉy (3) : : : Ĉy (m)Ĉy (2) Ĉy (3) Ĉy (4) : : : Ĉy (m + 1)
...

...
...

. . .
...Ĉy (l � 1) Ĉy (l) Ĉy (l + 1) : : : Ĉy (l +m � 2)

3777775 (59)
The dimensions l , m must be greater than n . Moreover, l +m � 1 may not exceed the length of

the autocorrelation sequence available. It is recommended to choose l � m because bigger matrixX results in greater accuracy.

A signal matrix X of a signal composed by n exponentially damped sinusoids can be decomposed

using a Vandermonde decomposition (VD) [11] as followsX = FGHT == 266664 1 1 : : : 1�11 �12 : : : �1n�21 �22 : : : �2n
...

...
. . .

...� l�11 � l�12 : : : � l�1n
3777752664 g1 g2

. . . gk 3775266664 1 �11 : : : �m�111 �12 : : : �m�121 �13 : : : �m�13
...

...
. . .

...1 �1n : : : �m�1n
377775 (60)

where �i = e��i+j !i are the (complex) signal components with their respective normalised

frequencies and damping factors and gi are the corresponding (complex) amplitudes. A diagonal

matrix Z relates the VD in consecutive time intervalsZ = 2664 �1 �2
. . . �k 3775F " = F #Z H" =H#Z (61)

where " resp. # stand for deleting the top resp. bottom row.

It turns out ([11],[10]) that a SVD of X = USV T
has a very similar propertyU " = U #Z 0 V " = V #Z 00 (62)

where Z 0 ,Z 00 are similarity transforms of Z and have therefore the same eigenvalues. This

permits retrieving roots of the characteristic polynomial of the generating system by eigenvalue

decomposition [50].
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The HTLS estimation procedure can be summarised as follows:

r (1) — Arrange the (noisy) measured data in a matrix X according to (59).
r (2) — Choose a model order n . Compute rank n SVD approximationX̂l�m = Ul�nSn�nV Tm�n
r (3) — Use TLS (see next chapter) to retrieve Z 0 from (62).
r (4) — Find eigenvalues �̂1; : : : ; �̂n of Z 0 .
r (5) — Calculate the desired system parameters, e.g., for an autoregressive system, solve the

following equation for ai x n � nXi=1 aix n�i = nYi=1 x � �̂i
In step 2, faster algorithms than general purpose SVD can be applied, see [68].

While HTLS does not fully exploit the structure present in the signal matrix X and is therefore

clearly suboptimal, it still performs very well, usually with comparable accuracy to classical

methods, such as Burg’s algorithm.

4.6.2. Exact AR Modelling
Exact AR modelling (name taken from [36], also called Toeplitz structured total least squares —

TSTLS) employs STLN approach (to be discussed in section 5.4 (p. 41)) for identification of input-less

AROE systems (as (45) with b = 0 plus (55)). It converts the identification task into a constrained

optimisation problem shown below. Again, an application on the autocorrelation sequence will be

shown, while a direct application on the input sequence is also possible [36].

The constrained optimisation problem is as follows: Given the noisy autocorrelation sequencefĈy (k )gTt=0 and the model order n , find a sequence fC �y (k )gTt=0 and parameter vector a� such thath �C �y (k )	Tt=0 ;a� i = arg min�fCy (k)gTt=0 ;a� TXk=0�Ĉy (k )� Cy (k )�2
while Cy (k ) = nXi=1 aiCy (k � i) 8 k = n; n + 1; : : : ; T (63)

If the noise f ~Cy (k )g is a white Gaussian noise, the optimal solution of (63) is the maximum-

likelihood (ML) estimate of fCy (k )gTt=0 and a . This makes the method very attractive. The exact

AR modelling method is capable of retrieving AR model parameters even from a short and noisy

signal sample and is, in terms of accuracy, usually superior to all the other methods presented in

this chapter.

See section 5.4 (p. 41) for an overview of available methods for solving (63). The author found

the weighting method to be the fastest and most easily applicable. Unfortunately it still typically

needs thousands of iterations to arrive at an accuracy significantly higher than that of alternative

methods. This makes the TSTLS method rather unsuitable for real-time processing. The same

conclusion was obtained in [36]. For algorithm details, see section 6.4.4 (p. 47).
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5. Total Least Squares

TLS represents a technique that synthetizes statistical and

numerical methodologies for solving problems in many ap-

plication areas.

— Gene H. Golub, Stanford University

Total Least Squares (TLS) approach is an important tool for state-space identification methods

discussed in the preceding chapter as well as for many other tasks. It has been developed since

the last century, known as errors-in-variables approach. However, it has not become widely used

until the advent of cheap computing power. TLS allows to extract more precise information out of

inaccurately measured data. For an overview, see [65].

5.1. Ordinary Linear Least Squares
The least-squares procedure for solving overdetermined set of linear equations Ax � b (usually

attributed to Johann Carl Friedrich Gauss) has been long used for finding a “best” approximate

solution x̂ from noisy observations b by finding a correction �b such thatk�bk != min while 9 x̂ ; Ax̂ = b+�b (64)
However, in many cases, for example in the system identification context, such as (53), the model

(64) is no longer appropriate as not only b but A too, is noisy. The least-squares solutionx̂ =A��1n�n (b+�b)�n�1 = (ATA)�1ATb (65)
(diamonds denoting cutting out superfluous rows)

then becomes statistically inefficient and asymptotically underbiased estimate of x , see [69].

5.2. Total Least Squares
The total least squares (TLS) approach assumes that both A and b are noisy and tries to find

corrections �A and �b such that [�A; �b] F != min while 9 x̂ ; (A+�A) x̂ = b +�b (66)
If the minimum exists, the problem is called generic and any x̂ satisfying the condition (66) is called

a total least square (TLS) solution of Ax � b . If the solution is not unique, the minimum-norm

solution is usually chosen. The solution of a non-generic TLS problem can be defined by imposing

additional constraints [69] but will not be discussed here.
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TLS solution usually gives higher accuracy than the corresponding LS solution when the model is

appropriate, i.e., all elements of A and b are corrupted by independent identically distributed

(i.i.d.) white noise. It can be proved that under this assumption the TLS solution is a consistent

estimator of x , unlike the LS solution [65]. Unfortunately, TLS is rather sensitive to the presence

of outliers in data. Using different and more robust norms (such as L2 or L1 ) for measuring the

perturbation in (66) might be recommended in these cases [65].

5.2.1. TLS solution
The generic TLS problem solution can be found as follows. First, calculate a SVD decomposition[A;b]m�(n+1) = USV T = U 2664�1 �2

. . . �n+1 3775V T (67)
where Um�(n+1) and V(n+1)�(n+1) are orthogonal and S(n+1)�(n+1) is diagonal with its diagonal

components � (called singular values) sorted in non-ascending order ( �1 � �2 � : : : � �n+1 ). An

algorithm for calculating SVD can be found in [50]. Assuming the singular values are distinct

(which is almost always true for data from measurements), the TLS solution is given byx̂ = �26664 v1;(n+1)v2;(n+1)
...vn;(n+1) 37775� v(n+1);(n+1) (68)

where vi ;(n+1) are components of the last column of V . If the singular values are not distinct, (68)

still gives a TLS solution but it may not be the minimum-norm solution. See the original algorithm

in [69],[65] for an improvement.

If v(n+1);(n+1) = 0 the problem is non-generic and no solution of (66) exists. This may be caused by

incompatible equations or redundant variables.

Alternatively, by analysing (66), it can be seen that the TLS approach seeks a minimum effort

(as measured by Frobenius norm) rank n approximation of the matrix [A;b] . Following from

the Eckart-Young-Mirsky matrix approximation theorem [65], this can be acomplished simply by

zeroing the smallest singular value[A+�A;b +�b] = U 266664�1 �2
. . . �n 0377775V T (69)

The TLS solution can be then found asx̂ = (A+�A)��1n�n (b+�b)�n�1 (70)
where the matrix inversion can be calculated from the SVD decomposition, if needed. See [65] for

details.
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5.3. Multidimensional TLS
Unlike the ordinary LS approach for solving over-determined set of linear equations, it makes sense

with TLS to consider also a multidimensional caseAm�nXn�l �Bm�l (71)
Analogically to the one-dimensional case, we use SVD decomposition[A;B]m�(n+l) = USV T (72)
and (under the same assumptions) the solution is given byX̂ = �26664 v1;(n+1) : : : v1;(n+l)v2;(n+1) : : : v2;(n+l)

...
. . .

...vn;(n+1) : : : vn;(n+l) 37775 26664 v(n+1);(n+1) : : : v(n+1);(n+l)v(n+2);(n+1) : : : v(n+1);(n+l)
... : : : ...v(n+l);(n+1) : : : v(n+1);(n+l) 37775| {z }�

�1 (73)
Again, if � is singular, the problem is nongeneric and is probably not apt for linear modelling.

See [65],[69] for detailed description of the algorithm.

5.4. Introducing Structure into TLS
While using TLS solution as a direct replacement in (53) or (54) works, it gives only a moderate

or small gain in accuracy. The reason is that the corrections �A , �b in the TLS approach do

not take into account the inherent structure of the matrices of the equation set originating from

the underlying problem. In (53), for example, it only makes sense if A + �A is Toeplitz. Many

formulations of this problem have been made [37],[66],[67] — Structured TLS (STLS), Structured

Total Least Norm (STLN), Constrained TLS (CTLS). All of them describe the same problem but

some might be more appropriate than others for a specific application.

5.4.1. Structured Total Least Norm
The Structured Total Least Norm problem is formulated as follows. (See [37],[67] for alternative

definitions.) Let A , B be matrices with a known structure, i.e., some elements are guaranteed

to be equal. The matrices are defined by means of a vector � 2 Rp and a “copying” operation $ ,

such that [A;B] = $(�) is a bijection. The task is to find a correction �� so thatk��k != min while
9 X̂ ; (A+�A) X̂ =B +�B[A+�A;B +�B] = $ (�+��) (74)

Any norm can be used to measure the magnitude of �� , though usually the quadratic norm is

used.

Generally, a STLN problem must be solved iteratively. Due to its high dimensionality and high

nonlinearity, the convergence is typically very slow. A good starting guess (e.g., by an alternative
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method) can speed up the process significantly; a bad starting guess can get the algorithm stuck in

a local minimum.

5.4.2. STLN solution by Lagrange method
The STLN task (74) is an equality constrained quadratic minimisation problem. It can be converted

into an unconstrained minimisation-maximisation problem using Lagrange multipliers by defining

a new criterion L = k��k+�T��B +�B � (A+�A) X̂� (75)
where the operator � rearranges the residual error matrix into a vector. This minimisation-

maximisation problem can be in turn converted into a task of solving a set of nonlinear equations@L�i = 0 ; 8i @L�j = 0 ; 8j denoted F (�;�) = 0 (76)
The equations (76) can be solved by multidimensional Newton method [50]. Difficulties were

encountered in obtaining a reasonable initial estimate of � but it was found that zero can be

used safely. Unfortunately, as the initial estimate is almost always too far from the solution, the

algorithm converges only linearly with the exception of last few steps. Care must be taken to

adapt the step size properly. In [50] it is recommended that the search in each step be terminated

immediately after finding a point when kF k is smaller than the last value. In contrary to this,

faster convergence was experienced for this application when the search was carried out completely,

until the minimum along a search vector was found. Otherwise, the steps were sometimes too small.

5.4.3. STLN Solution by Weighting Method
Weighting method [67],[35] transforms (74) into an approximately equivalent unconstrained

problem  �� ; 
��B +�B � (A+�A) X̂�  != min (77)
where 
 is a suitably large number. The weighting method is not very accurate because

increasing 
 makes the problem (77) ill-conditioned [35]. The problem (77) can be solved (among

others) by a conjugate gradient multidimensional minimisation method [50], also described in

section 6.4.4 (p. 47).

5.4.4. STLN Solution by Linearization
Iterative algorithms described in [35] solve (74) by linearising the constraints and solving the

resulting linearly constrained quadratic programming (QP) (see [73],[72]) problem in each step.

Using modified criterion based on Karush-Kuhn-Tucker equations, superlinear convergence is

attained in the vicinity of the minima. As the algorithm operates on matrices in their expanded

form, it has very high memory and time consumption even for moderately sized problems and is

therefore not applicable for the task at hand. As presented in its simple form, the algorithm can

diverge and precautions must be taken.
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6. Algorithm Overview

You know my methods. Apply them, and it will be instructive

to compare results.

— Arthur C. Doyle, The Sign of the Four

This chapter describes the principal ideas of the new speech enhancement algorithm developed as

a part of this diploma work. The actual implementation is the topic of the following chapter.

6.1. Parameters
The algorithm contains many tunable parameters and alternative methods. The parameter values

suggested here work reasonably well for the specific signals used — linearly sampled at 8000 Hz

with 16 bit precision consisting of an artificial mixture of speech (isolated digits) and noise recorded

inside a steadily running car with average SNR of voiced segments around 0 dB. For other signals

and/or other preferences, different parameters may give better results; some hints will be provided

on their choice. The implementation was designed to make experiments easy. In this chapter,

tunable parameters are marked by � . The kalmse program has command line options to change

them (see section 7.2.3 (p. 52)). Other parameters must be changed in the source code.

6.2. Block Processing
The principal reason for the design decision of processing the input frame-by-frame is that no

reliable recurrent noise parameter estimating algorithm is known to the author. Furthermore,

using future data improves the estimate quality. Finally, very efficient algorithms based on FFT

can be used.

The main disadvantage of block processing is that inter-frame parameter changes often cause

artificially sounding artifacts. Additionally, as the stationarity regions in speech vary in length,

fixed-length segmentation is clearly suboptimal.

6.3. Basic Structure
Basic structure of the algorithm is depicted in figure 4. It assumes the sound generating system as

described in section 2.1 (p. 12).

Before any further processing, the input signal is normalised to have zero mean and unit maximum

amplitude. When the speech enhancement is finished, the original scale of the signal is restored.

The input signal y 0X is cut into overlapping windows (also called frames) yX . Note that for the sake

of notational simplicity, the symbol yX was sometimes used for y 0X in earlier chapters. Given the

window size T = 256� and the window overlap factor s = 4� , the contents of k th window is
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segmentation

KF

estimation

parameter

assembling

y 0XyX
ŷS �S�N
ŷ 0S

Figure 4. Basic structure of the algorithmny kX(t)oT�1t=0 = ny 0X(t)okT=s+T�1t=kT=s (78)
In accordance with [30], the only sensible values of s were found to be 2 and 4. Parameters�S resp. �N of the AR models of speech resp. noise are estimated. The parameters remain

constant during each frame. Kalman filter is used to find an estimate ŷS of the speech in a given

window. Finally, estimates ŷS from each s adjacent overlapping windows are assembled to produce

an output ŷ 0S as follows. First, each frame is multiplied by a weight function w (t) .�y kS (t) = w (t)ŷ kS (t) for t = 0; : : : ; T � 1 (79)
Hanning window is used, i.e., w (t) = 1� cos(2�(t + 1)=(T + 1)) (80)
In the end the weighted frames are added together.fŷS(t)0g1t=0 = 1Xk=0 1s f 0; 0; : : : ; 0| {z }kT=s f�y kS (t)g 0; 0; : : : g (81)
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6.4. Parameter Estimation
The structure of the parameter estimation can be seen in figure 5.

r (1) — The power spectrum PX of the frame is estimated.
r (2) — The noise spectrum PN is estimated from P̂X .
r (3) — The speech power spectrum estimate P̂S is calculated from P̂X and P̂N .
r (4) — Finally, AR parameters of speech and noise are retrieved from the spectra.

noise

spectrum

estimation

estimation

rule

subtraction

estimation

AR

estimation

AR

yX
P̂X

�NP̂S P̂N
�S

Figure 5. Parameter estimation

6.4.1. Frame Spectrum Estimation
Two spectrum estimation methods are available � — periodogram and MEM estimate, see

section 4.2.4 (p. 31).

Under high to moderate SNR conditions ( >� 5 dB), MEM estimate is superior to the periodogram,

providing an estimate with much less variance. For lower SNR the systematic error (caused by

imposing an incorrect AR model on the data) makes it no longer viable.

Either estimate is smoothed using (43), which effectively amounts to the Welch method [25],[12]

of spectrum estimation. In fact, two smoothed estimates are calculated, using smoothing factors�S = 0:75� resp. �N = 0:9� to be used in speech and noise spectrum estimation respectively. Much

less smoothing is necessary for the MEM estimate as compared with the periodogram. However,

it seems to improve its stability. More smoothing is possible for the purpose of noise estimation

(governed by �N ) while �S must allow for sufficiently fast tracking of speech changes.

6.4.2. Frame Noise Estimation
A practically unchanged spectral minimum tracking based algorithm by Martin is used for noise

spectrum estimation [40]. The principal idea is to store smoothed frame power spectra PXk
(smoothing factor �N ) of last M frames in a circular buffer. The noise estimate is calculated

as
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(The calculation is done for each frequency bin separately.)

where the noise bias compensation factor  must be determined experimentally [40] — higher results in higher noise suppression but also higher speech distortion. The buffer length M
should represent a sufficiently long period to bridge the longest conceivable speech activity, yet

short enough for the noise to remain approximately stationary — 0.5�2.5 s is recommended. The

secondary smoothing factor � helps to reduce short-term variations of the noise estimate, its value

is not critical. Currently, M = 64� ,  = 1:5� , � = 0:9� is used.

To reduce the computational complexity, the implementation does not in fact use a circular buffer

of the length M . Instead, a smaller circular FIFO buffer b of length M1 is used, denotingM1M2 = M . An auxiliary variable Pa keeps track of the current minima of the PX spectra for

each frequency bin. Every M2 frames, the minima of the last M2 frames stored in Pa is copied

into b and Pa is reset. Finally, the estimate �P kN is computed as�P kN =  min�M1�1minl=0 P lb ; Pa� (83)
where Pb denotes the contents of the buffer b . Consequently, the operation count is reduced

approximately by a factor of M 22 at the expense of an equivalent length M in (82) effectively

varying between M1M2 and M1M2 + M2 . Hence, M1 should not be smaller than about 5 . As

default M1 = 8� , M2 = 8� .

The noise spectrum estimation algorithm by Doblinger [15] was found to give very similar

but slightly worse results for given signals. Moreover, it is more complex. Nevertheless, its

implementation is available as a part of the ssub program.

6.4.3. Subtraction Rule
Several subtraction rules are available � — simple power subtraction (1), power spectral subtraction

with half wave rectification (1,9) or full wave rectification (1,10), Wiener filtering (16), and modified

power spectral subtraction (8) with half wave rectification. The oversubtraction factor � for the

last method is calculated [40] from an estimated band SNRdSNR(! ) = 10 log10min(qH ; max(qL ; P̂X(! )� P̂N(! )P̂N(! ) )) (84)
Currently, qL = 1 and qH = 100 . This automatically limits the SNR estimate into the 0 � 20 dB

range. The resulting � is a linear interpolation� = �L + (�H � �L) dSNR� 10 log10 qL10 log10 qH � 10 log10 qL (85)
where �L = 1� and �H = 4� Using higher � improves noise suppression at the expense of higher

speech distortion. It is argued in [23] that smaller values such as � � 0:5 � 0:9 , depending on other

parameters, should be used.
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The modified power spectral subtraction method is usually superior to the others and was made

default. Alternatively, Ephraim-Malah gain factors described in [15] could have been used.

However, according to the experiments carried out by the author, the difference in results was

rather small, while the presented method is quicker and needs less memory.

6.4.4. Frame AR Parameter Estimation
The estimated noise and speech spectra P̂N , P̂S are first converted to autocorrelation sequencesĈN , Ĉ S of lengths T=2 using (42). To proceed, two methods are available � — Burg’s and exact

AR modelling.

As a default, Burg’s algorithm (described in section 4.4.5 (p. 35)) is used to extract the AR parametersa of an autocorrelation sequence to be used as estimates of the AR parameters of the original

process. See section 4.3.3 (p. 33) for justification. Subsequently (56) is used to estimate a parameterb , as defined by (45). Although the Burg’s method is theoretically suboptimal, it proved to be fast

and to perform better on the average than methods mentioned in the section 4.4 (p. 33).

Alternatively, exact AR modelling method is used. See section 4.6.2 (p. 38) for a description.

The minimisation problem resulting from the weighting method (section 5.4.3 (p. 42)) is solved by

conjugate gradient multidimensional minimisation [50] as follows. The criterion to be minimised

given Ĉy , n and T (see (63) and (77)) isJ = TXk=0�Ĉy (k )� Cy (k )�2 +
 TXk=n+1 �2k
where �k = Cy (k )� nXi=1 aiCy (k � i) (86)

The � is called an equation error. The weight 
 = 100 is a compromise — too small a weight

results in a limited precision because the constraints are not met, too big a weight worsens the

numerical conditioning of the problem which prolongs the calculation and may cause instability.

Sensible values for 
 are approximately 1 � 107 . The gradient of J (fCyg;a) can be calculated as

follows @J@ai = �2
 TXk=n �kCy (k � i)@J@Cy (k ) = 2(Cy (k )� Ĉy (k )) + 2
��k � TXi=1k+i�T ai�i+k� (87)
The minimisation of (86) is performed sequentially starting from Cy = Ĉy and a = aBurg . Denoting

the parameter vector as x = [Cy (0); : : : ; Cy (T );aT ]T , the starting value will be called x0 . Two

other auxiliary vectors are defined and initialized as g0 = h0 = �rxJ .
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The iterative step consists of [50] � = argmin� J (xi + �hi )xi+1 = xi + �hi (88)gi+1 = �rxJ (xi+1)i = (gi+1 � gi )Tgi+1gTi gihi+1 = gi+1 + ihi
The iteration stops when either (J (xi ) � J (xi+1)) / J (xi ) � 10�10 or after 100� iterations. This

makes the method only a few times slower than Burg’s method with comparable accuracy. To attain

significantly higher precision, 103 � 105 iterations are needed, which is mostly too slow to be

usable.

The one-dimensional minimisation of J for � in (88) is performed by the following parabolic

interpolation algorithm, inspired by [50]. As a shortcut, let us denote f (�) = J (xi + �hi ) .

r (1) — If the magnitude of hi exceeds 10, it is scaled down to this magnitude. This is admittedly

a hack and while it is not strictly needed, it speeds up the process if hi is excessively large.
r (2) — Full step ( �1 = 1 ) is taken. If f (�1) < f (0) , progressively larger steps are taken as long

as f (�i ) < f (�i�1) . If f (�1) > f (0) , progressively shorter steps are taken until f (�i ) < f (0) .

As a result, the minimum of f is bracketted between three points �L < �M < �H such that the

value of f (�M) in the middle point is smaller than both f (�L) and f (�H) .
r (3) — Parabolic approximation fitting f (�L) , f (�M) , and f (�H) is attempted in order to find a new�0 closer to the minimum. The new �0 is forced into the ‘bracket’ ( �L < �0 < �H ), while care

is taken not to evaluate f too close to the endpoints, to avoid numerical problems. If the

interpolation fails because of colinearity, classical golden ratio search step is performed to find

alternative �0 .
r (4) — The ‘bracket’ �L < �M < �H is updated according to the values of �0 and f (�0) , so that the

bracketing is preserved while the bracket size �H��L decreases. The procedure beginning with

point (3) is repeated as long as the absolute and relative bracket size ( �H��L resp. (�H��L)=�M )

are greater than 10�20 resp. 10�6 and the number of iterations does not exceed 50.

This algorithm converges mostly super-linearly, usually in 10 � 20 iterations. If used for different

purposes when increased robustness is desired, Brent’s method can be used at the expense of

increased complexity [50].

6.5. Frame Filtering
In accordance with sections 2.1 (p. 12), 2.3.1 (p. 13) and 2.4.1 (p. 13), the following double AR model

is assumed yN(t) = nNXi=1 aNi yN(t � i) + bvN(t)yS(t) = nSXi=1 aSi yS(t � i) + bvS(t)yX(y) = yN(t) + yS(t) +pr w (t) (89)
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where vN , vS and w are mutually uncorrelated zero-mean Gaussian white noises with unit

variances. The variance of the measurement noise, denoted r , is, in the given setting, mainly

caused by quantisation noise and modelling errors. It is advisable to set r a little higher because

of its beneficial regularising effects. Too high r on the other hand makes the resulting estimate too

conservative. Value of r = 10�6� has been found to be a good compromise. The orders nN = 8� ,nS = 8� of noise resp. speech generating systems are used. Somewhat higher values might improve

the performance at the expense of increased calculation, however for nS/N >� 16 the negative effects

of identification errors often outweight the increased model precision.

In order to be able to use the Kalman filter, the model (89) is converted to the state-space form (20)

by combining two models (52). The resulting n = nN + nS dimensional state-space model with no

deterministic input is x(t + 1) =Ax(t) + v(t)yX(t) =Cx(t) + w 0(t) (90)
where x(t) = [ yN(t � nN + 1); : : : ; yN(t); yS(t � nS + 1); : : : ; yS(t) ]TC = [0; 0; : : : ; 1| {z }nN ; 0; 0; : : : ; 1| {z }nS ]

A =
266666666666666664

0 1 0 : : : 0 0 0 0 : : : 00 0 1 : : : 0 0 0 0 : : : 0
...

...
...

. . .
...

...
...

...
. . .

...0 0 0 : : : 1 0 0 0 : : : 0âNnN âN(nN�1) âN(nN�2) : : : âN1 0 0 0 : : : 00 0 0 : : : 0 0 1 0 : : : 00 0 0 : : : 0 0 0 1 : : : 0
...

...
...

. . .
...

...
...

...
. . .

...0 0 0 : : : 0 0 0 0 : : : 10 0 0 : : : 0 âSnS âS(nS�1) âS(nS�2) : : : âS1
377777777777777775

Q = covv =
26666666666666664
0

. . . 0 b2N| {z }nN 0
. . . 0 b2S| {z }nS

37777777777777775R = covw 0 = r
Given the observed signal values in the frame yX , fast bidirectional Kalman smoothing algorithm

described in section 3.2.3 (p. 25) is used to extract the speech estimate ŷS . The starting value x̂(1j0)
is set to zero. The initial covariance matrix is estimated as
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ĈN(0) ĈN(1) : : : ĈN(nN�1)ĈN(1) ĈN(0) : : : ĈN(nN�2)

...
...

. . .
...ĈN(nN�1) ĈN(nN�2) : : : ĈN(0) Ĉ S(0) Ĉ S(1) : : : Ĉ S(nS�1)Ĉ S(1) Ĉ S(0) : : : Ĉ S(nS�2)

...
...

. . .
...Ĉ S(nS�1) Ĉ S(nS�2) : : : Ĉ S(0)

37777777777775
which would be exact, if the autocorrelation function estimates were equal to the true values.

Because of the structure of the system matrices, many simplifications are possible so that both the

forward and backward runs take only O(Tn2) operations.

As described in section 3.2.3 (p. 25), this Kalman smoothing algorithm is fast but not very robust.

To overcome the problem, following measures are taken. If max ŷS > 1:5max yX , divergence is

assumed. The divergence criterion seems to perform very well, divergence almost never escapes

undetected, while seldom causing false alarms. If the condition above is triggered, the filtering is

redone using the following alternative robust smoothing method.

New P (1j0) is calculated by iteratively solving Lyapunov equation P = APAT + Q , see

section 4.3.2 (p. 32). The iteration is stopped when the L1 norm of the difference between

successive iterations drops below 10�6 kP k1 . If P fails again to be positive- definite, the filtering

is skipped, i.e., ŷS = yX . Otherwise, square-root Kalman smoothing is started (described in

section 3.3.3 (p. 27)), using Cholesky factorisation for triangularisation. If the smoothing fails, i.e.,

if the triangularisation cannot be performed for numerical reasons, the filtering is also skipped.

However, this happens very rarely, unless the problem is truly ill-conditioned. Unfortunately,

the square-root smoothing cannot be optimised in the same way as the previously mentioned fast

Kalman smoothing. Consequently, square-root smoothing tends to be about 2n times slower.

While the default procedure described above works well, providing maximum speed most of the

time and additional accuracy when needed, the user has an additional possibility � to perform

only forward filtering (which speeds up the process approximately twice), or to force always the

square-root implementation.
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7. Implementation

This chapter describes the software developed as a part of this diploma work. It can be found

either on a diskette accompanying the original of this report or alternatively on the Internet, at

http://cmp.felk.cvut.cz/˜kybic/dipl. From either source, you get an archive file kalmse-1.2.tgz. Unpack

the archive file using programs gzip and tar. This creates a top directory kalmse-1.2/ with several

subdirectories. These contain:

r MATLAB scripts used for experiments, testing and prototyping.
r C source code for the program kalmse, implementing the speech enhancement algorithm described

in the previous section. The same source can also generate functionally equivalent parallel

version kalmse pvm.
r C source code for other speech enhancement algorithms implemented earlier by the author and

used for performance comparison as well as additional auxiliary programs for speech detection,

sound file format conversion, mixing and measurements. 1
r Sample sound files.
r TEX source of this manuscript together with all the auxiliary fonts and macros used. The compiled

Postscript version ready to print as well as reduced version with two pages on one A4 sheet are

provided separately on the Internet. The source for slides used for presentation of this work is

also included.
r Other useful scripts for various conversions, testing etc.

More complete description can be found later in this chapter. For license information, refer to

page 10.

7.1. Requirements
The software was developed and tested on Unix workstations running Linux and HP-UX but as it

was written with portability in mind, it should run on other operating systems as well. C compiler

conforming to the ANSI specification with 32 bit integers is assumed. The MATLAB scripts were

tested with MATLAB version 5.1. Some scripts might need minor changes if other version of

MATLAB or its clone octave is used. Means of viewing Postscript files (e.g., programs ghostscript and

ghostview) is useful. Having the TEX typesetting system installed is not necessary unless you want

to recompile this manual. Sound card is, of course, helpful. On a PC running Linux, the built-in

speaker will do too, although the sound quality is obviously poor. The program sox was found useful

for converting between various sound formats.

As the algorithms are rather computationally intensive (next chapter gives quantitative values) fast

processor is an asset. If you have several networked computers at your disposition, it is strongly

recommended to use the parallel version. For this, you need to install the PVM library [74].

Programs octave, ghostscript, ghostview, TEX, sox, and the PVM library are all available freely on the

Internet.

1 Some of these programs were developed jointly with Petr Pollák.
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7.2. Program kalmse
The program kalmse implements the algorithm described in the previous chapter.

7.2.1. Installation
Go to the c/ subdirectory. Create Makefile using the provided Makefile.hp (for HP-UX) or Makefile.linux

(for Linux) as a basis. No changes except setting a compiler name and options should be needed.

Type make kalmse to compile the program kalmse or make to compile all programs at the same time.

Facultatively, move the resulting executable(s) to a customary directory.

7.2.2. Sound File Format
The program kalmse, as well as other programs included, store the sound data as a sequence of

16 bit signed integers in machine representation without any header and with a default extension

bin. The sampling frequency is assumed to be 8 kHz and the algorithm parameters are tuned for

it but it is not an obligation. This format was chosen because it is the native format of the speech

database used. While it is fast to process and memory-effective, it is generally not portable across

different architectures. Scripts bin2wav resp. wav2bin in the bin/ directory translate the bin format to

resp. from the wav format (readable by MATLAB and used in MS Windows) using the sox program.

Based on these scripts, conversion to other formats should not be difficult.

7.2.3. Description
The program kalmse takes a sound file, performs speech enhancement on the data as described in

the previous chapter and writes results into another file. When invoked without parameters, it

displays usage information. (All other C programs follow this conventions.) The normal invocation

is as follows

kalmse [options] hinput filei houtput filei
Available options are listed below together with their acceptable and default values (in parentheses).

For parameters mentioned in formulas of the previous chapter, the appropriate symbol is given.

Floating point parameters are indicated by presence of a decimal point in the sample values. The

rest of parameters take integer values.

–v 0�9 (9) controls the verbosity. Only messages on verbosity level lower or equal to the level set

will be printed. Level 1 is used for error messages, 2 for warnings, 3 for general information,

5 for progress indication and 9 for debug messages.

–nn 1�30 (8) noise model order nN .

–ns 1�30 (8) speech model order nS .

–wl 64,128,256,512 (256) window length T .

–wo 1,2,4,8 (4) window overlap factor s .

–la 1�20 (8) number of frames for primary minimisation M2 .

–lb 1�20 (8) circular buffer length M1 .

–an 0.0�1.0 (0.9) smoothing factor �N for noise estimation.

–as 0.0�1.0 (0.75) smoothing factor �S for speech estimation.

–be 0.0�1.0 (0.9) smoothing factor � for additional smoothing of noise estimate.

–eb 0.0�10.0 (1.5) noise estimate bias factor  .

–mc 0.0�10.0 (10�6) relative measurement noise covariance r .

–mh 0.0�10.0 (4) maximum oversubtraction factor �H .

–ml 0.0�10.0 (1) minimum oversubtraction factor �L .

–sr 0�4 (4) subtraction rule (see section 6.4.3 (p. 46)). 0 stands for simple power subtraction,

1 resp. 2 is half resp. full wave rectification, 3 is Wiener filtering and 4 modified power

subtraction.

–im 0,1 (0) identification method: 0 Burg, 1 TSTLS (exact AR modelling).

–tm 0�105 (100) maximum number of iterations for TSTLS, see section 6.4.4 (p. 47).
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–kf 0,1,2 (1) Kalman filter type: 0 unidirectional, 1 fast bidirectional with transition to SR when

needed, 2 always SR.

–fm 0,1 (0) spectrum estimation method: 0 MEM, 1 periodogram (smoothed FFT).

The implementation follows closely the description given in the previous chapter. Main source files

are kalmse.c and kalmseflt.c but the program also links fft.c, burg.c, tstlsw.c, darkalm7.c and darkalm.c to

perform particular computational tasks.

The program reads all the input into memory at once, performs the filtering and stores results

to an output file. This permits easy preprocessing (mean removal and normalisation), minimises

operation system overhead and simplifies parallel implementation, which uses the same skeleton.

Given today’s memory sizes, it should not be a limitation. Nevertheless, the program is modularised

so that it be easy to modify to keep in memory only a few frames at a time.

All computation is done in double precision (54 bit mantissa) to avoid numerical problems. Even

though for some operations single precision might be satisfactory, for identification and Kalman

filtering the additional accuracy is essential. Despite of all precautions, numerical problems in the

most difficult situations were still not completely eliminated. However, the program was written

with robustness in mind; if a computation fails, alternative actions are taken. If all else fails, no

filtering is performed for a given frame.

7.3. Parallel Version
To speed up the computation by using all available computer resources, parallel version kalmse pvm

was developed using the PVM package [74]. (This package implements a message passing paradigm

across multiple architectures.) Except for the parallelism, kalmse pvm and kalmse are completely

equivalent. They are even produced from the same source code using conditional compilation. The

only new command-line option added is –pv, to change the number of slave processes to be started;

the default is 1. Usually, one slave process per processor is used.

The computation is organised using the one-master/multiple-slaves model. Master and slaves run

the same executable, they are distinguished by command line options. The user-started master

process creates a predefined number of slave processes, possibly on different machines. For each

frame, the master performs all the calculations to obtain speech and noise spectra. It passes these

spectra to an available slave, which performs identification and filtering. The results from all slaves

are returned to the master, which combines them and ultimately writes the output file and stops

the slaves. The scheduling policy is FIFO — new tasks are distributed to slaves in the same order

as the slaves finish their previous assignments. Three tasks are kept in the input message queue

of each slave lest network delays should interrupt the computation.

With the parallelisation just described, it has been observed that there is a significant speed-up

for a small number of machines (details in section 8.6 (p. 62)). However, using more than about

10 hosts does not yield any additional benefit, as the master machine becomes a bottleneck. It is

therefore recommended to use the fastest machine as the master.

Greater, albeit more complicated parallelisation would be possible by distributing also the spectrum

estimation task between slaves. This has not been implemented so far. Moreover, it is not clear

whether the additional communication burden would not cancel-out the gain.

7.3.1. Installation
PVM must be correctly installed on all your computers [74]. Edit the supplied Makefile.aimk to reflect

your setup. Typing aimk should create a PVM-enabled executable kalmse pvm in your preferred

directory.
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7.4. MEX Files
MEX files are compiled routines callable from MATLAB. Because of the compilation, they are faster

than corresponding MATLAB scripts. The principal algorithms for kalmse were developed as follows.

r MATLAB script was written and tested, taking advantage of the fact that prototyping

mathematical algorithms in MATLAB is relatively easy and fast.
r The algorithm was reimplemented in C.
r A wrapper function was created and MEX file was built.
r Because the C implementation could now be called from MATLAB, it was easy to compare results

with the original MATLAB implementation and assure they match. This made debugging

much easier.
r The unchanged C routine was incorporated into kalmse.

The wrapper files darkalm3c.c darkalmbc.c darkalmc.c darkalmsc.c lusolve.c and tstlswc.c reside in the

c/ directory and a symbolic link is made into the m/ directory. Each MEX file is equivalent to

a MATLAB function with similar name (see source code). Unfortunately, the MEX application

interface has been changing with almost every version of MATLAB, some change to the wrapper

functions might be therefore needed. Similarly, follow your documentation on how to compile

MEX files. On my system (HP-UX, bash shell, MATLAB 5.1), the following commands did the job:

cd kalmse-1.2/m ; for i in *.c ; do cmex $i ; done

7.5. Archive Contents
This section describes rather briefly in alphanumerical order all files from the archive distributed as

a part of this work. Besides, there are README files providing additional information. The principal

files are set in bold. Conversely, files set in slanted type, as opposed to upright, are experimental or

targeted to my specific installation. They might be interesting and inspiring to look at but might

contain some deficiencies and should not be relied upon without prior inspection. To lesser extent,

this applies to all other files and especially scripts; you are advised to skip through them at least

briefly before use. Nevertheless, a significant effort has been put into making the kalmse and

kalmse pvm programs build seamlessly and work as intended. Files marked by ? were not created

by me, or not solely by me, although they have usually been modified. Files marked by � may

not be contained in the archive and must be built from other files, mostly by invoking make in the

respective directory.

README Basic overview of the package. Most recent information.
LICENSE License information.
bin/ Directory containing scripts and programs.
c/ Directory containg C source code.
data/ Directory containing sample sound files.
m/ Directory containg Matlab scripts.
pvm/ Directory devoted to auxiliary files for PVM.
tex/ TEX source code of this report and slides, other necessary files, and formatted output.
bin/README Brief info.
bin/backdipl Makes an archive of everything.
bin/bin2post Convert bin format to the format used by the POST speech recognition system.
bin/bin2wav Convert bin format to the wav format.
bin/calcres.tcl Tcl script for wieghted average calculation.
bin/imarktcl Tcl script generating index for TEX documents. Finally not used.
bin/kalmanfilter Tcl script for testing effects of speech enhancement by the new algorithm on speech recognition.
bin/latex2tex Awk script by S. Rogmann to render PS+LATEX pictures from xfig usable in plain TEX documents. ?
bin/makenoisyall Create all artificially mixed signals.
bin/makenoisypar Create all artificially mixed signals for a given SNR.
bin/martinfilter Tcl script for testing effects of speech enhancement by the Martin’s algorithm on speech

recognition.
bin/post2bin Convert from the format used by the POST speech recognition system to the bin format.
bin/recogall Top-level Tcl script driving the POST speech recognition system.
bin/spenh Tcl script driving tests of speech enhancement algorithms.
bin/wav2bin Convert wav format to the bin format.
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c/README Brief info.
c/Makefile Link to a system specific Makefile.
c/Makefile.aimk Link to a system specific Makefile.aimk, used by aimk to build kalmse pvm.
c/Makefile*.hp HP-UX specific version of Makefile*.
c/Makefile*.linux Linux specific version of Makefile*.
c/burg.c AR coefficients calculation using Burg’s algorithm. ?
c/cepdet Program implementing cepstral VAD. �
c/cepdet.c Main source code file for cepdet.
c/cepdist Program implementing cepstral distance calculation. �
c/cepdist.c Main source code file for cepdist.
c/cepstr.c Implementation of cepstral coefficients calculation. ?
c/cepstr.h Header file for cepstr.c. ?
c/cholesk.c Cholesky decomposition and backsubstitution.
c/darkalm.c Fast bidirectional Kalman smoothing implementation.
c/darkalm3c.c MEX wrapper for darkalm.c.
c/darkalm4.c Two-pass Kalman smoothing using constant backward gain.
c/darkalm5.LU.c Two-pass Kalman smoothing, LU-decomposition in each step.
c/darkalm5.c Two-pass Kalman smoothing, Cholesky factorisation in each step.
c/darkalm6.c SR Kalman smoothing.
c/darkalm7.c SR Kalman smoothing. Slightly faster than darkalm6.c because most operations now work on the

triangularized form.
c/darkalmbc.c MEX wrapper for darkalm4.c.
c/darkalmc.c MEX wrapper for darkalm5.c.
c/darkalmsc.c MEX wrapper for darkalm7.c.
c/dobl.c Implementation of Doblinger’s speech enhancement algorithm. Part of the ssub program.
c/dobl.h Header file for dobl.c.
c/enedet Energy based VAD. �
c/enedet.c Source code for enedet.
c/fft.c Two alternative FFT implementation.
c/fft.h Header file for fft.c.
c/kalmse Program kalmse performing Kalman filter based speech enhancement. �
c/kalmse.c Main source code file for kalmse (and kalmse pvm).
c/kalmse.h Header file for kalmse
c/kalmseflt.c Implementation of speech enhancement algorithms for kalmse.
c/ludecomp.c LU decomposition and backsubstitution.
c/lusolve.c MEX wrapper for ludecomp.c.
c/martin.c Implementation of Martin’s speech enhancement algorithm. Part of the ssub program.
c/martin.h Header file for martin.c.
c/mix Program for mixing of speech and noise signals with desired SNR. �
c/mix.c Source code for mix. ?
c/mono2ste.c Source code of a program mono2ste to convert two mono bin files into one stereo file.
c/snr Program for SNR measurements. �
c/snr.c Source for snr.
c/so1ff.c Implementation of two-step spectral subtraction, full-wave rectification speech enhancement

algorithm. Part of ssub.
c/so1ff.h Header file for so1ff.c.
c/ssub Program ssub, combining several speech enhancement algorithms. Gives usage hints when started

without parameters. �
c/ssub.c Main source file for ssub.
c/ste2mono.c Source code of a program ste2mono to convert one stereo bin file into two mono file.
c/tstlsw1.c Implementation of TSTLS (exact AR modelling) solution by weighting method and conjugate

gradient search.
c/tstlswc.c MEX wrapper for tstlsw1.c.
c/wav2sphr.c Source code for a program wav2sphr, transforming wav files to the sphere format, used by some

speech recognition software.
data/README Brief info.
data/ct.wav Car noise, 4 s.
data/p.wav Isolated digits, 2.5 s.
data/xsig.wav Speech plus noise, 12.5 s.
data/xsigout.wav xsig.wav processed by kalmse.
m/README Brief info.
m/.mexrc.sh Script sourced by MATLAB when making MEX files. Usually not necessary unless you want to

change e.g., compile flags.
m/a2c.m Calculate autocorrelation sequence from AR model coefficients using (50).
m/a2imp.m Returns impulse response of AR system.
m/a2s.m Calculates amplitude spectrum of AR system.
m/a2step.m Gives step response of AR system.
m/ar2tm.m Assembles state-space transfer matrix from AR coefficients (52).
m/ard2tm.m Assembles transfer matrix for dual AR system (90).
m/ard2tme.m As ard2tm.m plus estimates initial covariance matrix.
m/arfr.m Draws a frequency response of AR system.
m/arinv.m Whitening filter, inverse to a given AR system.
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m/arkalm.m Two-pass Kalman smoothing of a signal from white-noise driven AR system corrupted by white
noise.

m/arkalmr.m Repetitive, iterative arkalm.m.
m/arxkalm.m ARX Kalman filtering.
m/arxoekal.m Improved arxkalm.m.
m/astab.m Adjust given AR parameters, so that the model is stable.
m/burg.m Burg’s algorithm. ?
m/burg1.m Corrected and changed burg.m, different output format.
m/c2R.m Build Toeplitz matrix from autocorrelation coefficients.
m/c2a.m Find AR model parameters using autocorrelation method.
m/c2ach.m Find AR model parameters using Cayley-Hamilton method.
m/c2ache.m As c2ach.m except uses all available autocorrelation coefficients.
m/c2achw.m As c2ache.m except takes into account bias data.
m/c2achz.m As c2ache.m except uses also autocorrelation at zero lag.
m/c2ps.m Calculates power spectrum from autocorrelation.
m/chappr.m Chi-square distribution approximation.
m/chshape.m Matrix reorganization. ?
m/clhamre.m Using repetitive autocorrelation and Cayley-Hamilton method to find AR model parameters.
m/clhamred.m Like clhamre except provides results for all different number of iterations.
m/clhamres.m Like clhamre except FFT is used to calculate autocorrelation.
m/corri.m Compute autocorrelation for a signal with a reciprocal spectrum to given input signal.
m/corrn.m Compute directly biased autocorrelation estimate of a sequence.
m/corrs.m Use FFT to compute autocorrelation estimate.
m/corrss.m Use smoothed periodograms for autocorrelation estimate.
m/corru.m Like corrn except the estimate is unbiased.
m/corrw.m Uses time warping for efficient autocorrelation estimate by FFT.
m/darkalm.m Bidirectional two-pass Kalman smoothing for double AR model.
m/darkalm1.m Like darkalm.m with stationary Kalman filter; constant gain in both runs.
m/darkalm2.m Like darkalm.m but uses fast two-pass smoothing.
m/darkalm3.m Like darkalm2.m but more optimised.
m/darkalm3c.c Symbolic link to the MEX wrapper representing C version of darkalm3.m.
m/darkalm4.m Like darkalm.m except constant gain is used for the backward run and prediction error is calculated.
m/darkalmbc.c Symbolic link to the MEX wrapper representing C version of darkalm4.c.
m/darkalmc.c Symbolic link to the MEX wrapper representing C version of darkalm.c.
m/darkalms.m Covariance SR Kalman filtering (not smoothing).
m/darkalmsb.m Covariance SR Kalman two-pass smoothing.
m/darkalmsc.c Symbolic link to the MEX wrapper representing C version of darkalmsc.c.
m/darkalmu.m Like darkalm.m but does only filtering, no smoothing.
m/dbode.m Makes Bode plot of a given ARMA system.
m/demo1.m Demonstrates repetitive autocorrelation AR identification method.
m/demo10.m Kalman filtering demonstration. Covariance matrix estimated from autocorrelation.
m/demo2.m Demonstrates Kalman filtering for signal separation.
m/demo3.m Compares performance of several Kalman filter variants on real sound signals.
m/demo4.m Like demo3.m, using artificial signals.
m/demo5.m Demonstrates Kalman smoothing on real signals.
m/demo6.m Like demo5.m except covariance matrix is estimated from autocorrelation.
m/demo7.m Like demo6.m, using darkalms.m
m/demo8.m Demonstrate spectral subtraction on real data.
m/demo9.m Like demo6.m using darkalm3c.c
m/dlyap1.m Solve Lyapunov equation algebraically. ?
m/dlyap2.m Solve Lyapunov equation iteratively.
m/dpok3.m AR identification in noise, Kalman filtering.
m/dpok4.m Experiments with fltsnd1.m
m/dpok5.m SNR improvement measurement for Kalman filtering.
m/dpok6.m AR identification evaluation.
m/dpok7.m Demonstration of alternative AR identification methods.
m/dyadr.m Performs dyadic reduction. ?
m/fltseg.m Performs complete identification and Kalman filtering for one segment of a speech+noise signal.

Assumes white noise.
m/fltsgonc.m Given a Kalman gain, apply the filter. Calculate corrected Kalman gain based on innovation.
m/fltsnd.m Filter a given signal using iterative Kalman filtering as above. Uses kalmkee.m
m/fltsnd1.m Filter a given signal using iterative Kalman filtering. Uses kalmkeb.m
m/fltsnd2.m Like fltsnd1.m, uses clhamres.m for AR identification.
m/fltsnd3.m Like fltsnd2.m, uses kalmkebsvd.m.
m/gccopts.sh Script to configure MEX creation. ?
m/getnoise.m Given autocorrelation and AR coefficients, estimate process and measurement noise energies by

least-squares fitting.
m/getpns.m Get power spectrum of the noise signal using Doblinger’s algorithm.
m/getpns2.m Get power spectrum of the noise signal using Martin’s algorithm.
m/getpss.m Estimate power spectrum of a signal segment-by-segment.
m/hanning1.m Returns Hanning window coefficients. ?
m/havlena.m Implements Havlena’s simultaneous state and parameter estimation.
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m/htls.m Hankel TLS AR identification.
m/idarx.m Direct LS AR identification.
m/idarxb.m AR identification using modified covariance method (supplied by MATLAB). Also gives b.
m/idarxoe.m Direct LS AROE identification.
m/iswhite.m Autocorrelation whiteness test.
m/kalm1.m Test of identification and Kalman filtering on an AROE model.
m/kalm2.m Calls fltsgonc.m for an artificial signal.
m/kalmanf.m Performs Kalman filtering for general linear, white noise driven system. Gives filtered output.
m/kalmanr.m Like kalmanf.m but performs two-pass smoothing.
m/kalmanrs.m Like kalmanr.m, plus returns all state estimates.
m/kalmanrsi.m Like kalmars.m except it takes initial covariance matrix estimate.
m/kalmanrsi1.m Reorganised version of kalmanrsi.m.
m/kalmans.m Like kalmans.m, plus returns all state estimates.
m/kalmk.m Performs steady-state Kalman filtering, given the state matrix and Kalman gain.
m/kalmke.m Performs repetitively steady-state Kalman filtering as long as the innovation is non-white,

updating Kalman gain in each iteration. Based on Mehra’s articles [42],[43].
m/kalmke1.m Similar to kalmke.m except only one trial filtering is performed. Uses calculated innovation

sequence to iteratively find optimal Kalman gain.
m/kalmkeb.m Finds process noise for Kalman filtering by optimising a prediction error, then calls kalmk.m.
m/kalmkebsvd.m Like kalmkeb.m except it uses kalmksvd.m instead of kalmk.m.
m/kalmkee.m Like kalmke.m but proceeds until convergence is attained.
m/kalmkee1.m Streamlined version of kalmkee.m.
m/kalmkg.m Steady-state Kalman filtering for AR systems with gradient gain improvement algorithm.
m/kalmkre.m Like kalmkee.m, except uses weighting based on autocorrelation estimate accuracy to improve

robustness.
m/kalmksvd.m Like kalmk.m, in addition it finds optimal initial estimate of the state with respect to prediction

error.
m/kalmkw.m Steady-state Kalman filtering for AR systems with another gradient gain improvement algorithm.
m/kbfopt.m Objective function for kalmkeb.m using kalmk.m.
m/kbfoptsvd.m Objective function for kalmkeb.m using kalmksvd.m.
m/kgain.m Calculate Kalman gain from system parameters.
m/kgainm.m Like kgain.m but allows more general system description.
m/ldfaktor.m Finds LD factorisation of a matrix. ?
m/loadwav.m Loads wav file. Obsolete for recent MATLAB. ?
m/lusolve.c Symbolic link to a MEX wrapper. Solves a set of linear equation via LD decomposition.
m/lyap1.m Solves continuous-time Lyapunov equation. ?
m/memsp.m Maximum entropy spectrum estimate as suggested by Burg.
m/mlaroe.m Given AR signal distorted by additive noice, calculate ML estimate of its parameters. Very slow.
m/mlaroefn* Objective functions for mlaroe.m.
m/mvsp.m Minimum variance spectrum estimate.
m/pfft.m Parametric (AR) estimate of power spectrum.
m/play.linux.m Plays a vector on my Linux system as sound. Obsolete for recent MATLAB.
m/play.m Another version of play.linux.m.
m/procsig1.m Given a signal, performs windowing and speech parameter estimation. Parametric spectrum

estimation.
m/procsig2.m Given a signal, estimates speech and noise spectra in each segment using a method similar to

Martin’s.
m/procsig3.m Given a signal, performs complete processing including identification and Kalman smoothing,

returns speech estimate. May use darkalmc MEX.
m/procsig4.m Processes a signal using Martin’s algorithm.
m/procsig5.m Like procsig3, using fast Kalman smoothing as default and SR implementation as a fall-back. Uses

MEX files.
m/procsig6.m Generalised version of procsig5.m, variant subtraction rules etc.
m/procsig7.m Like procsig6.m except uses MEM spectrum estimation.
m/ps2c.m Transforms power spectrum to autocorrelation.
m/pub.m Exact AR estimation by P. Lemmerling. ?
m/rekurz.m Recursive ARMA identification.
m/s2a.m Given a spectrum, calculates AR parameters.
m/s2ae.m Like s2a.m plus returns also autocorrelation.
m/s2aex.m Like s2ae.m, uses TSTLS.
m/sarmax.m Simulates stochastic ARMAX system.
m/savewav.m Saves vector to wav file. Obsolete for recent MATLAB. ?
m/sfft.m Computes smoothed periodogram.
m/spsig.mat MATLAB 5.0 MAT file containing prepared real signals.
m/spsig4.mat Like spsig.mat but readable by MATLAB 4.x.
m/subr.m Alternative subtraction rule.
m/test?.m Various tests of spectrum and autocorrelation estimation.
m/testsig1.m Generates artificial test signals simulating speech and noise. ‘Speech’ is harmonic.
m/testsig2.m Generates artificial test signals simulating speech and noise by means of AR models.
m/testsig3.m Read and prepare real speech and noise signals for tests. Produced xsig.wav.
m/tls.m Solves generic one-dimensional TLS problem.
m/tstls.m Exact AR modeling by TSTLS solution. Using algorithm by Van Huffel, Park, Rosen.
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m/tstls1.m Uses quasi-Newton method to solve the TSTLS problem.
m/tstls2.m Like tstls1.m, now minimising objective function along the Newton vector in each step.
m/tstls3.m Like tstls2.m plus tries to find a good initial guess.
m/tstls4.m Like tstls3.m but improved handling of unsuccessful steps.
m/tstls5.m Different and more efficient implementation of tstls.m. Faster but needs more precise initial

estimate.
m/tstls6.m Yet different implementation for tstls.m.
m/tstlsw.m Solves TSTLS problem by weighting method and conjugate gradient minimisation.
m/tstlswc.c Symbolic link to the MEX wrapper representing C version of tstlsw.m.
m/ttls.m Solves TSTLS identification by neglecting Toeplitz matrix structure.
m/x2a.m Given a signal, compute AR parameters of the synthesising filter.
m/x2ar.m Like x2a.m, but uses repetitive autocorrelation method.
m/yey.m Returns anti-diagonal matrix.
pvm/hostfile An example host file for PVM.
pvm/startpvmd Script used to start PVM daemons.
tex/Makefile Makefile to facilitate compiling of this report. If you are fortunate, typing ‘make’ should be enough.
tex/README Description on how to compile this report and slides.
tex/abstract.tex Source for abstract.
tex/algor.tex Source for the chapter ‘Algorithm Overview’.
tex/*.eps Pictures as encapsulated Postscript, converted from fig, generated by MATLAB or obtained from

other sources.
tex/*.fig Source for all diagrams in xfig native format.
tex/*.pstex* Intermediary representation of xfig pictures.
tex/<picture>.tex Text part of a diagram, generated by latex2tex.
tex/conclusions.tex Source for the chapter ‘Conclusions’.
tex/declaration.tex Source for the initial declaration.
tex/dipl.aux Auxiliary file generated by TEX.
tex/dipl.dvi Dvi version of this report.
tex/dipl.log TEX log file.
tex/dipl.ps Postscript version of this report. �
tex/dipl.tex Main TEX file for this report.
tex/dipl.toc Automatically generated table of contents.
tex/diplmac.tex Macros used to typeset this report. Actually a link to diplmac.10pt.tex.
tex/diplmac.10pt.tex Truly used macros.
tex/diplmac.*.tex Previously used macros for different type sizes.
tex/diplpre1.tex Short preliminary report.
tex/diplsmall.ps Postscript version of this report, reduced by putting two pages on one sheet. Generated by pstops. �
tex/dplslds.tex Source code for slides.
tex/dvipsrc This file is to be stored either as /̃.dvipsrc or in a system-wide directory. It is used by dvips to find

non-standard fonts. See also jk psfonts.map.
tex/eplain.tex Eplain format by Karl Berry. ?
tex/experiments.tex Source for the chapter ‘Experiments’.
tex/glossary.tex Source for the ‘Glossary’.
tex/identification.tex Source for the chapter ‘Identification’.
tex/implementation.tex Source for the chapter ‘Implementation’.
tex/introduction.tex Source code for the chapter ‘Introduction’.
tex/jk psfonts.map This file is to be used by dvips to find the non-standard fonts. You might not need it, if you have

these fonts already installed.
tex/kalman.tex Source for the chapter ‘Kalman Filtering’.
tex/plaina4.tex Sets A4 paper size. ?
tex/preface.tex Source for the ‘Preface’.
tex/psfonts.map Symbolic link to jk psfonts.map. Might be needed for some versions of dvips.
tex/*.pro Postscript prologs from the PSTricks package by Timothy Van Zandt. Not needed if you have

PSTricks installed. ?
tex/pst-node.tex TEX source from the PSTricks package by Timothy Van Zandt. See remark above. ?
tex/pstricks.* TEX sources from the PSTricks package by Timothy Van Zandt. See remark above. ?
tex/references.tex Source for the ‘References’.
tex/un*.* Afm, pfb, tfm, and vf files for the non-standard Postscript fonts used, namely Century Schoolbook,

Nimbus Mono, Nimbus Sans, all coming from URW and distributed under GPL. Not needed if you
have these fonts already installed.

tex/state.tex Source for the chapter ‘Kalman Filtering’.
tex/tls.tex Source for the chapter ‘Total Least Squares’.

Jan Kybic: Kalman Filtering and Speech Enhancement 58



Chapter 8: Experiments

8. Experiments

This chapter describes experiments executed in order to assess performance of the newly developed

speech enhancement algorithm in comparison with existing ones. Care must be taken, however,

in interpreting the results. Firstly, the behaviour of the algorithm is highly dependent on the

parameter values; some observations of the dependence are also included. Certain criterion can

thus be improved at the expense of others. Secondly, the results are only meaningful for the specific

test signal set. For other test signals, the performance may be different. As for the subjective

criteria, it must be taken into account that they were evaluated only by the author, while for

a statistically reliable results a much larger number of listeners would be needed.

The new algorithm as implemented in program kalmse was compared with double power spectral

subtraction (PSS) (1,10) using an energy detector [49], Martin’s algorithm [40], and Doblinger’s

algorithm [15] as implemented in program ssub. Unless stated otherwise, default parameters were

used.

8.1. Test Signals
The 12 noise signals used were recorded inside different cars running at approximately constant

speeds using microphones mounted near the upper rim of the windshield. The 9 speech signals

were recorded using the same setting when the cars were stationary. The speech signals contain

isolated Czech digits 0�9 in random order pronounced by several mostly male speakers. After

manual labelling of speech/non-speech regions, the signals were artificially mixed to obtain average

segmental SNR in speech regions (denoted spSNRSEG ) of �10,�5,0,5, and 10 dB, thus yielding

a total of 12� 9� 5 = 540 test signals of the lengths of 6�10 s.

The use of artificially mixed signals was motivated by the need of having the original clean speech

signal available, so that the performance could be evaluated. Nevertheless, artificially mixed signals

exhibit similar characteristics to ‘real’ signals encountered when recording speech in a running

car, as far as spectrum and subjective acoustic perception are concerned; this was demonstrated by

several experiments. However, it is known that speakers unconsciously react to high environmental

noise which results in slight changes of speech parameters. It is known as Lombard effect [12].

It should also be noted that SNR of�10 dB represents rather harsh conditions that are not expected

to occur too often in the target application. On the other hand, at the SNR of 10 dB the speech

quality might be acceptable even without a speech enhancement. For most applications, an effective

range of the input SNR can be assumed to be close to the �5�5 dB range.

Jan Kybic: Kalman Filtering and Speech Enhancement 59



Section 8.2: Criteria Chapter 8: Experiments

8.2. Criteria
The performance of all algorithms was compared using the following criteria:

r subjective speech quality, intelligibility, and distortion
r recognition accuracy improvement
r improvement of mean cepstral distance in speech segments
r global segmental SNR improvement (gSNRSEG)
r segmental SNR improvement in speech segments (spSNRSEG).

8.3. Recognition Accuracy
Recognition error improvement was tested on a speech recognition system POST [26] in cooperation

with its author. However, in the given time we did not succeed to demonstrate clearly the benefits

of speech enhancement for improving a recognition rate for noisy input signals. When confronted

with a noisy signal, the recognition rate dropped almost to zero, regardless of whether the speech

enhancement algorithm was applied. This was in accordance with our former experiments.

8.4. Cepstral Distance
As another signal quality measure, a mean cepstral distance between the given signal and the

corresponding clean signal in speech segments was calculated [49]. The smaller this distance, the

greater the similarity between these signals, and the higher the quality of the tested signal. The

program cepdist was used to calculate the difference between these distances for a noisy input signal

and the corresponding filtered signal. Cepstral distances were obtained by the following method:

The signal was cut into segments, AR parameters of each segment found using Burg’s algorithm

and converted to cepstral coefficients [49]. An Euclidean distance between first 10 coefficients of

the two signals was calculated and averaged across all segments containing speech.

Ideally, a speech enhancement algorithm should make a signal closer to the original undistorted

speech, i.e., decrease the cepstral distance. Nevertheless, after having performed the tests on

the aforementioned set of 540 test signals, it was found that for all algorithms, the cepstral

distance increased significantly (by 20�100 % on the average). The cepstral distance decreased

in less than 5 % of cases and never by more than 5% . Moreover, the standard deviation averaged

about 100 % of the mean. The author infers that although it was demonstrated that none of the

algorithms improves the cepstral distance improvement criterion, the data set was probably too

small to make other conclusions.

8.5. Listening Tests
Example signals are shown in figure 6. The speech signal is a 5 s long sequence of Czech words ‘dva

osm jedna šest’ (meaning ‘two eight one six’) pronounced by a male speaker. This signal was mixed

with a noise from a car running with constant velocity, so that the resulting spSNRSEGwere 0 dB.

The output of the power spectral subtraction method is rather naturally sounding speech corrupted

by a large amount of bursting noise similar in nature to the original noise. The intelligibility has

deteriorated and the sound is rather unpleasant to listen to. At lower SNR the algorithm performs

very poorly because the VAD is no longer capable of working properly. At higher SNR ‘musical

noise’ can be perceived.

The Martin’s algorithm is very efficient and robust. At higher SNR, the noise suppression is almost

ideal with light speech distortion. Noise-free pauses are impressive. As the SNR decreases, the
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Figure 6. From top to bottom: clean speech, noise, speech corrupted by noise, PSS, Martin’s algorithm, Doblinger’s

algorithm, new algorithm with FFT, new algorithm with MEM. (The artifacts seen at the beginning of kalmse output in

both cases are caused by the startup phase of the algorithm and do not appear later. They cannot be removed by simple

means, because their shape depends on algorithm parameters.)
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signal seems to be still virtually noise-free but its distortion increases and low energy phonemes are

gravely attenuated. The frequency characteristics of the speech are also changed, the speech could

be described like coming from a deep well. The results are however very consistent and uniform.

The Doblinger’s method does not achieve the high noise suppression of Martin’s and artificially

sounding ‘musical noise’ can be heard. On the other hand, speech distortion is slightly smaller

and the algorithm also fails more gracefully with increasing SNR, the speech quality deteriorates

gradually and rather slowly. Generally, both Martin’s and Doblinger’s algorithm perform well and

the choice between them depends on personal preferences. Both have a number of parameters so

that their performance can be tuned to specific applications.

The performance of kalmse algorithm with averaged periodogram is similar to Burg’s and

Doblinger’s. Only moderate attenuation of low-energy phonemes is perceived while some

background musical noise is unfortunately reintroduced. The result is rather pleasant although

the filtering characteristics are apparently randomly varying around some mean values. It was

also observed that the more stationary a phoneme is, the better it appears at the output.

The musical noise problem is completely overcome in the MEM variant of the method when no

musical noise is present but at this SNR level the resulting speech distortion is severe.

The output of all examined methods except PSS is more pleasant to listen to than the original noisy

input. However, no clear intelligibility improvement was noticed. The Martin’s method and kalmse

were found to be the best from the subjective speech quality point of view. As their speech and

noise estimation procedures are based on similar principles they are consequently very close in

performance. Martin’s method has the advantage of higher robustness and introduces almost no

audible residual noise. Although kalmse can be made to perform better, parameter tuning is often

needed. Two good starting points for experimenting are the default parameters and ‘-fm 1 -mh 10 -ml

0.001 -eb 0.7 -be 0.99 -an 0.95’.

8.6. Algorithm Speed Comparison
The tests were performed on a HP 9000/712 workstation, model 712/100 with a 100 MHz PA-RISC

processor, SPECfp95 index 36.3, running HP-UX version B.10.20. The programs were compiled

using the C compiler cc provided with the system using maximum optimisation. Elapsed CPU

time is shown for serial algorithms. The speed of parallel versions was measured on a cluster of

8 computers — 7 HP workstations of different kinds and one PC with PentiumPro at 200 MHz

running Linux. All computers were being used by other users during the tests as well as the

network which should be taken into account when interpreting the results. The total elapsed real

times are shown, while total CPU time used on all machines were approximately the same as for

the serial versions. The test signal was the same as for the listening test, i.e., about 5 s long.

Algorithm serial parallel

PSS 0.20 s

Martin 0.55 s

Doblinger 0.82 s

kalmse + FFT 36.96 s 10.94 s

kalmse + MEM 33.86 s 10.34 s
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8.7. SNR Improvements
The segmental SNR of a signal ŷS with respect to the clean signal yS was calculated according to

the following formula

SNRSEG = 1N N�1Xi=0 max(SNRmin ; min�SNRmax ; 10 log10 Ti+T�1Pt=Ti y2S (t)Ti+T�1Pt=Ti �ŷS(t)� yS(t)�2�) (92)
where the frame length T = 128 and averaging is done either across all frames (resulting in

gSNRSEG), or only across segments containing speech (giving spSNRSEG ), where the presence of

speech is determined by human listener. For methods seeking to reproduce the original waveform,

such as all methods tested, the spSNRSEG is believed to be highly correlated with subjective quality

perception [12]. As spSNRSEG does not give any indication of the algorithm behaviour in speech

pauses, gSNRSEG was used for this purpose. The serious deficiency of gSNRSEG is its dependence on

somewhat arbitrary limit SNRmin which may come into effect in speech pauses. Consequently,

gSNRSEG values should be used for algorithm performance comparison only if applicable, if

calculated by the same algorithm and if the input signals are identical.

Sample means and standard deviations of the output gSNRSEG and spSNRSEG for various input

spSNRSEG are presented in the following table. All algorithms were tested on the complete set of

data described in section 8.1 (p. 59). SNR values were calculated by the program snr, which usesSNRmin = �300 .

input spSNRSEG[dB]

Algorithm �10 �5 0
PSS �13:4�1:4 �4:3�0:6 �9:1�1:4 �0:6�0:5 �4:7�1:4 3:5�0:5
Martin �0:9�0:6 1:0�0:4 0:6�0:4 2:5�0:4 1:8�0:3 4:5�0:5
Doblinger �9:5�3:5 �2:4�1:7 �5:9�3:0 0:2�1:3 �2:3�2:3 3:2�1:2
kalmse + FFT �4:0�1:6 0:5�0:7 �0:9�1:2 2:8�0:6 1:7�0:9 5:1�0:6
kalmse + MEM �1:8�1:8 0:4�0:6 0:2�1:3 1:8�0:5 1:8�0:9 3:4�0:6

output gSNRSEG spSNRSEG
Algorithm +5 +10
PSS �0:6�1:2 7:6�0:4 3:1�1:0 11:7�0:3
Martin 3:2�0:4 7:3�0:5 4:7�0:4 10:4�0:5
Doblinger 0:9�1:7 6:6�1:2 3:7�1:1 10:2�1:2
kalmse + FFT 3:8�0:6 7:8�0:6 5:7�0:5 10:9�0:5
kalmse + MEM 3:1�0:6 5:3�0:7 4:3�0:6 7:5�0:7

Figure 7 presents the results from the preceding table in graphical form. It can be seen that in

terms of output gSNRSEG kalmse (in the combination with averaged periodogram) performs better

than other algorithms for spSNRSEG >� 0 dB , while for lower input spSNRSEG , Martin’s algorithm is

preferable. This is in accordance with listening tests, as unlike kalmse, Martin’s algorithm indeed

gives almost noise-free pauses between words.

As explained above, it is more justified to compare algorithm performance using spSNRSEG . In

terms of this criterion, Martin’s algorithm gives best results for very low input spSNRSEG , PSS for
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Figure 7. The dependence of output gSNRSEG and spSNRSEG on input spSNRSEG for the algorithms tested.
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high input spSNRSEG , while kalmse outperforms all others in the region in between. And as most

application will probably process signals mainly from this range, it is a strong argument in favour

of the new kalmse algorithm. It is also interesting that the kalmse method using periodograms

outperforms the MEM variant in terms of SNR, while subjective comparison of speech quality

sometimes yields the contrary.

8.8. Effect of Parameter Changes
This section describes how changes to various parameters influence the performance of the kalmse

algorithm (using periodograms for spectrum estimation). As the number of combinations of possible

parameter values, input characteristics, and evaluation methods surpasses all practicable limits,

the results presented in this section come from only a relatively small number of tests. Moreover,

the optimal parameter value are likely to depend on the nature of input signals. This dependence

could not be studied as all signals available were approximately of the same kind.

If a different sampling speed fs and a different resolution NBITS is to be used, instead of 8000 Hz

and 16 bit, the parameters should be modified so that the following quantities remain constant:T=fs , M1M2=fs , (1� �N/S) fs , (1� �) fs , (1� ) fs , NBITS= log r . The rest can remain unchanged.

For the choice of a subtraction rule, refer to section 6.4.3 (p. 46), while section 6.4.1 (p. 45) can give

guidance on the proper spectrum estimation method and section 6.4.4 (p. 47) advises on the choice

of an identification method.

8.8.1. Model Orders
Listening tests indicate increase in the output speech quality as the model order nS increases.

The improvement gradually diminishes and for nS >� 8 becomes imperceptible. Similar behaviour is

perceived for nN , when little change was observed for nN >� 6 . Presumably, this threshold decreases

as the noise signal gets more stochastic and vice versa.

Output spSNRSEG values for different nS and nN are given in the following tables. The input

spSNRSEG was fixed at 5 dB. Each value given is a mean of 10 measurements on randomly chosen

input signals and its standard deviation is 0.5�0.7 dB.nN = 8nS 2 4 6 8 10 12 14 16 18 20

spSNRSEG [dB] 7.1 7.4 7.7 7.6 7.5 7.3 7.4 7.3 7.2 7.3nS = 8nN 2 4 6 8 10 12 14 16 18 20

spSNRSEG [dB] 7.3 7.6 7.7 7.6 7.6 7.6 7.3 7.3 7.2 7.2

The decrease for higher n can be explained by increased difficulty of the identification.

8.8.2. Smoothing Factors and Circular Buffer Length
Increasing smoothing factors means longer time constant of the averaging filters, which decreases

the variance of the estimate at the expense of its tracking ability and resolution. The smoothing

factors �N , � controlling noise estimation should be made larger if the noise is rather stationary

and conversely. For all three smoothing factors �S , �N , � there are optimum values around which

performance slowly deteriorates. This is illustrated in the following table showing the effect of

changing �N on the output spSNRSEG . Input spSNRSEG = 5dB ; all values have standard deviation

0.5�0.7 dB.
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spSNRSEG[dB] 6.7 7.3 7.6 7.7 7.5 7.3 6.5

Increasing effective length M1M2 of the circular buffer (used for minimum tracking for noise

estimation) has similar effects to increasing the smoothing factors — the estimate gets more precise

but loses its ability to track short-time changes and may become outdated. Again, optimum value

exists, around which the quality decreases.

8.8.3. Bias Factors
The behaviour of the algorithm with respect to noise bias factor  and oversubtraction factors �H , �L
is analogous. The greater they are, the greater suppression of unwanted noise is achieved. However,

the low energy phonemes are suppressed too and noise distortion increases. While �L resp. �H
control the lower resp. upper boundary for the suppression,  has general effect. Typical effects

can be seen in the following table, containing dependencies of output spSNRSEGand gSNRSEGon  ,

as input spSNRSEG is kept at 5 dB. There is an optimum value of  with respect to spSNRSEG ,

corresponding to minimum speech distortion. There is also an optimum with respect to gSNRSEG ;

this optimum is higher because noise suppression in speech pauses increases monotonously with  . 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9

spSNRSEG [dB] 7.7 7.7 7.9 7.6 7.5 7.5 7.5 7.4 7.2 7.2 7.0 6.7

gSNRSEG[dB] 1.7 2.6 3.2 3.4 3.7 3.8 3.9 3.9 3.9 3.9 3.8 3.7

Jan Kybic: Kalman Filtering and Speech Enhancement 66



Chapter 9: Conclusions

9. Conclusions

Speech enhancement is an inherently complex interdisciplinary topic, exploiting the knowledge

of physics (acoustics and mechanics), stochastic control theory (system identification and optimal

filtering), digital signal processing, numerical mathematics, computer science (efficient algorithm

design) and other disciplines. Although it could not be fully demonstrated in this report due to

the space constraints, the author enriched his knowledge in all the above mentioned areas. An

extensive reference list was gathered.

An overview of the speech enhancement field focused on spectral subtraction techniques was

presented. The basics of Kalman filtering, system identification and total least squares methods

were stated.

A new speech enhancement algorithm for speech corrupted by slowly varying additive background

noise based on Kalman filtering was developed. Existing spectral subtraction algorithms were

taken as basis, parametric models of both noise and speech generating systems were estimated

and passed to Kalman smoothing filter to obtain the speech signal estimate. According to our

knowledge, this is the first attempt to use Kalman smoothing for speech enhancement purposes

and also the first attempt to combine minimum tracking noise estimation, spectral subtraction, and

Kalman filtering. It was demonstrated that this new algorithm can outperform alternative speech

enhancement algorithms.

The algorithm was implemented and evaluated. The parallel version proves that speech

enhancement algorithms can profit from parallel computing techniques.

Nevertheless, the rather modest quality improvement of the resulting speech over alternative

methods would not by itself justify the significant increase in computational complexity. The

author believes that the main advantage of using Kalman filtering over spectral subtraction and

Wiener filtering is the freedom from the somewhat artificial assumptions about the speech and

noise properties imposed by the two latter methods. Using Kalman filtering, it is natural to use

adaptive segmentation of the input signal aiming at identifying the true stationarity regions of

the speech. Another example would be using model parameters varying in time within frames or

abandoning the frames completely.

These new possibilities were not exploited in the presented work. Instead, knowingly good legacy

algorithms were used. Many alternatives were proposed but usually found unfeasible.

Although the Kalman filter is optimal in the linear setting, the extended Kalman filter applied

on non-linear problems is only an approximation and suffers from numerous problems. If a full

extension of the Kalman filtering theory into the non-linear domain were available, it would greatly

simplify the solution of many important problems, including the identification-estimation task

discussed here.

This work also demonstrates the use of a model based approach for speech enhancement. Provided

a suitable model is available, model based techniques have the potential of being superior to

alternative approaches, making advantage of the a priori information accumulated in the model

structure. In the case studied, to identify the model parameters correctly and reliably was found to

be the critical part of the algorithm. Less ad hoc techniques for separating speech and noise features
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are needed, perhaps based on stationarity and independence measures. Moreover, a suitable and

efficient parameter estimation technique still remains to be find. Consequently, suboptimal methods

had to be used as well as clearly oversimplified auto-regressive models.

Limits on the maximum attainable performance for uninformed speech enhancement algorithms

were derived. To overcome these limits, a knowledge base consisting e.g., of typical phoneme

characteristics must be incorporated into the algorithm, for which HMM can be a valuable tool.

Finally, it is important to keep in mind that for speech enhancement systems designed for human

listener, it is the human listener who is the ultimate judge. The conversion to an optimisation

problem is a design and engineering decision and must be always verified by listening tests. As

far as enhancement systems for speech recognition are concerned, their design criterion should

closely match the recogniser structure and therefore, according to the author, it seems unlikely that

a single enhancement algorithm would perform well for both tasks.

Constant progress is being made in the domain of speech enhancement but it still remains

a challenging and rewarding field full of problems waiting to be solved.
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[63] D. Van Compernolle, Speech Recognition in the Car — From Phone Dialing to Car Navigation, Proceedings of

EUROSPEECH’97.

Jan Kybic: Kalman Filtering and Speech Enhancement 70



References

[64] S. Van Huffel and H. Zha, The Restricted Total Least Squares Problem, ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/vanhuffel/

reports/simax89.ps.Z

[65] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: computational aspects and analysis, Society

for Industrial and Applied Mathematics (SIAM), 1991.

[66] S. Van Huffel, B. De Moor and H. Chen, Relationship between Structured and Constrained TLS, with applications

to Signal Enhancement, ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/vanhuffel/reports/mtns93.ps.Z

[67] S. Van Huffel, H. Park and J. Ben Rosen, Formulation and Solution of Structured Total Least Norm Problems for

Parameter Estimation, ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/vanhuffel/reports/ieeesp95.ps.Z

[68] S. Van Huffel, P. Lemmerling and L. Vanhamme, Fast algorithms for signal subspace fitting with Toeplitz matrices

and applications to exponential data modeling, ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/vanhuffel/reports/svdw94.ps.Z

[69] S. Van Huffel, On the Significance of Nongeneric Total Least Squares Problems, ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/

vanhuffel/reports/simax90.ps.Z

[70] E. Wan and A. Nelson, Neural Dual Extended Kalman Filtering: Applications in Speech Enhancement and

Monaural Blind Signal Separation, IEEE Workshop and Neural Networks and Signal Processing, 1997.

[71] N. Yoma, F. McInnes, M. Jack, Robust speech pulse detection using adaptive noise modelling and non-stationarity

measure, Proceedings of EUROSPEECH’97.

[72] —, CLAPACK — Linear algebra routines in C, http://www.netlib.org/clapack/

[73] —, NEOS Guide, http://www.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/qprog/index.html

[74] —, PVM Home Page, http://www.epm.ornl.gov/pvm/pvm home.html

Jan Kybic: Kalman Filtering and Speech Enhancement 71


