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ABSTRACT 
 
Non-parametric survival analysis techniques are often used in clinical and epidemiologic research to model time at 
risk until event without parametric assumptions.  This workshop will walk through the concepts of follow-up time, 
event time, the hazard function, the cumulative distribution function, incomplete data, censoring, time dependencies 
or temporal biases, plotting of survival curves, testing the proportional hazards assumption, and model diagnostics.  
Using SAS® system's PROC LIFETEST, Kaplan Meier curves along with the log rank and Wilcoxon tests will be 
investigated to establish statistical differences in survival times between two groups.  From there we will use the 
SAS® system's PROC PHREG to run a Cox regression to model time until event while simultaneously adjusting for 
influential covariates and accounting for problems such as attrition, delayed entry, and temporal biases.  The 
workshop will conclude with using the baseline option to calculate survival function estimates for graphing the 
cumulative probability of event over the follow-up period. 
 
This workshop is aimed at intermediate level statisticians, epidemiologists, and data analysts. 
 
 
INTRODUCTION 
 
Survival analysis techniques employ methods designed to investigate the amount of study time an experimental unit 
contributes to a study period from entry until event.  The term “survival” may be misleading because the techniques 
are applicable to any well-defined event although traditionally death was the event of interest and the study period 
consisted of following the subject until death. Events in survival analysis (also referred to as endpoints or outcomes) 
are defined by a transition from one discrete state to another at an instantaneous moment in time.  Examples of 
events include months until onset of disease, days until remission after cancer therapy, years until stockmarket crash, 
hours until equipment failure, days until unemployment, or time until failing or passing an exam.   
 
Although the origin of survival analysis goes back to mortality tables from centuries ago, recent advancements in 
survival analytic techniques using non-parametric and semi-parametric approaches have allowed researchers 
flexibility in their work not previously seen within the confines of parametric methods. These methods have become 
popular over parametric methods due to the relatively robust modeling approaches without distributional 
assumptions on the survival times.   
 
Survival analysis has become a popular tool in observational and experimental studies involving follow-up of study 
participants over time. These studies often experience late arrival and early departure of subjects into and out of the 
observation period.  Survival analysis techniques allow for a study to start without all experimental units enrolled 
and to end before all experimental units have experienced an event. This is extremely important because even in the 
most well developed studies, there will be subjects who choose to quit participating, move too far away to follow, 
die from some unrelated event, or will simply not have an event before the end of the observation period.  With 
optional survival techniques, the researcher is no longer forced to withdraw the experimental unit and all associated 
data from the study.  Instead, censoring techniques enable researchers to analyze incomplete data due to delayed 
entry or early withdrawal from the study.  This is important in allowing each experimental unit to contribute all of 
the information possible to the model for the amount of time the researcher is able to observe the unit.   
 
The ease with which survival analytic techniques have been applied in recent years owes much of its success to the 
availability of specialized software packages and high performance computing.  Programmers and statisticians are 
now able to run complex and computationally intensive algorithms used in these types of analyses relatively quickly 
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and efficiently.  However, these advancements have also made it possible for the novice to dabble in statistical 
environments where understanding of the fundamentals are essential.  This Hands on Workshop  will begin with 
univariate investigation of survival estimates  using Kaplan-Meier curves and will conclude with adjusted hazard 
ratio estimates and survival curves using multivariable Cox Proportional Hazards regression. 
 
 
TIME 
 
The continuum that time reflects also implies that the probability of an event at an infinitely small single point in 
time is zero. Therefore it is necessary to define the distribution of events over that continuum instead of at an instant 
in time.  In survival analysis, researchers rely on four functions to describe the distribution of event times: 1) 
probability density function (pdf), 2) cumulative distribution function (cdf), 3) hazard function, and 4) survival 
function. 
 
These functions are quantitatively related to one another and possess a one-to-one relationship that makes 
interpretation and comparison easier.  The pdf can be computed by taking the derivative of the cdf and likewise, the 
cdf can be computed by taking the integral of the pdf.  The survival function is simply 1 minus the cdf, and the 
hazard function is calculated by dividing the pdf by  the survival function.  It is important to note that these 
relationships will allow us to compute the cdf from the survival function estimates produced by the SAS procedure 
PROC PHREG. 
 
 
THE CUMULATIVE DISTRIBUTION FUNCTION 
 
The cumulative distribution function is very useful in describing the continuous probability distribution of a random 
variable, such as time, in survival analysis.  The cdf of a random variable T, denoted FT (t), is defined by FT (t) = PT 
(T < t).  This is interpreted as a function that will give the probability that the variable T will be less than or equal to 
any value t that we choose.  Several properties of a distribution function F(t) can be listed as a consequence of the 
knowledge of probabilities.  F(t) ranges from 0 < F(t) < 1, is a  nondecreasing function of t, and as t approaches ∞, 
F(t) approaches 1.    
 
 
THE PROBABILITY DENSITY FUNCTION 
 
The probability density function is also very useful in describing the continuous probability distribution of a random 
variable.  The pdf of a random variable T, denoted fT(t), is defined by fT(t) = d FT (t) / dt.  That is, the pdf is the 
derivative or slope of the cdf.  Every continuous random variable has its own density function, the probability P(a < 
T < b) is the area under the curve between times a and b. 
 
 
THE SURVIVAL FUNCTION 
 
Let T > 0 have a pdf f(t) and cdf F(t).  Then the survival function takes on the following form: 
S(t)  =  P{T > t} =  1 - F(t) 
 
The survival function gives the probability of surviving or being event-free beyond time t.  Because S(t) is a 
probability, it is positive and ranges from 0 to 1.  It is defined as S(0) = 1 and as t approaches ∞, S(t) approaches 0.  
The survival curve describes the relationship between the probability of survival and time.  Thus, S(10) is the 
probability that an individual survives longer than 10 units of time, while F(10) is the probability that an individual 
survives no more than 10 units of time. 
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THE HAZARD FUNCTION 
 
The hazard function h(t) is given by the following: 
 

h(t)  =   P{ t  <  T  <  (t + ∆)  |  T >t} 
  
       =   f(t) / (1 - F(t))  =   f(t) / S(t)   

 
The hazard function describes the concept of the risk of an outcome (e.g., death, failure, hospitalization) in an 
interval after time t, conditional on the subject having survived to time t. It is the probability that an individual dies 
somewhere between t and (t + ∆), divided by the probability that the individual survived beyond time t.   
 
The hazard function seems to be more intuitive to use in survival analysis than the pdf because it quantifies the 
instantaneous risk that an event will take place at time t given that the subject survived to time t.  Sir David Cox 
recognized this appeal and in a sentinel paper published in 1972 described what is now known as the Cox 
Proportional Hazards model.  In his paper titled, “Regression Models and Life Tables”, he outlines a robust 
regression method that did not require the choice of a probability distribution to represent survival times.  We return 
for more description of this important paper later.  

Time

h(t)
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Figure 1. The plot of a constant hazard such as seen with accidents, an increasing hazard such as seen with the aging 
process of a mechanical engine, and a decreasing hazard such as seen with risk of dying after surgery. 
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Figure 2. The plot of the hazard of death during a lifetime begins high at birth then goes down for many years before 
beginning to steadily increase through the aging process. 
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INCOMPLETE DATA 
 
Although incomplete data plagues many analytic approaches, this unfortunate hurdle is common in survival 
analysis. A hallmark of survival analysis is the ability to manage many incomplete data forms.  Survival analytic 
techniques rely on two points of observation time that must be carefully defined, as well as possible, prior to 
analyses. There is a beginning point of observation where time=0 and there is an ending point of observation where 
some reason or cause will terminate observation time.  For example, in a complete observation cancer study, 
observation of survival time may begin on the day a subject is diagnosed with cancer and end when that subject dies 
as a result of the cancer.   This subject is what is called an uncensored subject, resulting from the event occurring 
within the time period of observation.  Complete observation time data like this example are desired but not realistic 
in most studies. There are always possibilies that the subject might recover completely and never have an event or 
the subject might die due to an entirely unrelated cause.  In other words, the study cannot go on indefinitely waiting 
for an event from a participant, and unforeseen things happen to study participants that make them unavailable for 
observation.  Specialized censoring techniques have been developed to ease the burden of these observation times.  
 
LEFT AND RIGHT CENSORING 
 
The most common form of censoring for incomplete data is right censoring where a subject's follow-up time 
terminates before the outcome of interest is observed.  There are different forms of right censoring.  The first,  type I 
right censoring, occurs when the observation time reaches the end of a defined study period and the subject has not 
had an event.  Type II right censoring occurs when the researcher ends the follow-up period based on a pre-specified 
number of events occurring.  Right censoring also includes censoring a subject when they move out of observation 
during the follow-up period.  Right censoring techniques allow subjects to contribute to the model until they are no 
longer able to contribute (end of the study, or withdrawal), but right censoring for loss to follow-up will be 
appropriate only if it is non-informative.   
 
An observation is left censored if the event of interest has already occurred when observation of time begins. For 
example, in a study of myocardial infarction we begin following a group of people at age 50.  However, some may 
have already had an event prior to the start of follow-up and unless you gain information as to the time of the events, 
the myocardial infarction may be left censored at age 50.  In this paper we focus on the more typical right censoring. 
 
The following figure presents a study design where the observation times start at differing points after the beginning 
of the study period.  After t=0 is established, there is a fixed follow-up period.  The X's represent events and the O's 
represent censored observations.  Some subjects have events early in the study period and others have events at the 
end of the study period.  Likewise some subjects enter the study period late and/or leave the study period early, but 
most do not have an event during the entire study and are simply right censored at the end.  In this example there is 
no need for truncation techniques and we assume the censoring to be non-informative. 
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Figure 3.  Follow-up time in a typical survival analysis.
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KAPLAN-MEIER 
 
The Kaplan-Meier (KM) estimator, or product limit estimator, is the estimator used by most software packages 
because of the simplistic step approach.  The KM estimator incorporates information from all of the observations 
available, both censored and uncensored, by considering any point in time as a series of steps defined by the 
observed survival and censored times.  When there is no censoring, the estimator is simply the sample proportion of 
observations with event times greater than t.  The technique becomes a little more complicated but still manageable 
when censored times are included. 
 
The KM estimator is a nonparametric estimator of the survivor function S(t). 
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where dj is the number of individuals who experience the event at time t(j), and nj is the number of individuals who 
have not yet experienced the event at that time and are therefore still at risk for experiencing it. 
 
The KM estimator consists of the product of a number of conditional probabilities resulting in an estimated survival 
function S(t) in the form of a step function. Using PROC LIFETEST we can compute and plot the survival curve of 
a single group or we can compare survival in subgroups. The procedure will also output tests for equality of the 
survival function estimates of the two or more strata being investigated.   
 
 
   proc lifetest  data=analydat plots=(s) method=km graphics outsurv=surv ; 
      strata variable;              * cutpoint if continuous; 
      time survtime*censor (value); 
      symbol1 line=1 color=blue; 
      symbol2 line=2 color=red; 
   run; 
 
PLOTS=(s) requests a plot of the survival step functions (curves). 
 
METHOD=km requests the KM estimator (also the default) instead of the life tables method used when the 
researcher wishes event times to be grouped into intervals. 
 
GRAPHICS requests high-resolution graphics rather than character based graphics. 
 
OUTSURV=surv requests that a dataset be created with survival probabilities and confidence intervals. 
 
STRATA statement indicates the group variable you wish to compare by.  For categorical variables, just indicate 
variable name, for continuous indicate cutpoint—ex: (45) for age.  The strata statement is left out if no comparisons 
are being calculated 
 
survtime*censor (censor value) indicates the time of the event or censoring and whether or not the observation was 
censored. 
 
symbol1 line=1 color=blue will color the lines in the graph on the output.  
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Figure 4.  Kaplan-Meier survival step function (curve) of a single group. 
 
 
PROC LIFETEST is often used to investigate the unadjusted survival times of a group without influence of other 
covariates in the model.  It is also used as a non-parametric survival analysis approach when the proportional 
hazards assumption in Cox regression is violated.  The procedure will output the mean, median, and quartile survival 
times of the group or subgroups of the population.  The procedure will also report statistics for the comparison of 
two groups of survival times using the log rank test, Wilcoxon test, and the likelihood ratio test.  The log-rank test, 
(which is the most commonly used and related to the Cox proportional hazards model) is more sensitive than 
Wilcoxon in detecting differences between groups occurring later in the follow-up.  The Wilcoxon (better if no 
censoring) differs from the log-rank in that it takes into account the total number at risk at each time point.  Neither 
test is good at detecting differences if the curves cross but they are adequate to compare two or more survival curves 
with the null hypothesis that all survival curves are the equal.   
 
 
COX'S PROPORTIONAL HAZARDS REGRESSION 
 
Sir David Cox’s 1972 paper took a different approach to standard parametric survival analysis and extended the 
methods of the non-parametric Kaplan-Meier estimates to  regression type arguments for life-table analyses.  Cox 
advanced to prediction of survival time in individual subjects by only utilizing variables covarying with survival and 
ignoring the baseline hazard of individuals.  Cox did this by making no assumptions about the baseline hazard of 
individuals and only assumed that the hazard functions of different individuals remained proportional and constant 
over time.   
 
When there are several explanatory variables, and in particular when some of these are continuous, it is much more 
useful to use a regression method such as Cox rather than a KM approach.   
 
Here the hazard function for individual i is modeled as: 
 

i
T xβ

0i (t)eh(t)h =  
 
where ho(t) is the baseline hazard function, β’s are regression coefficients, and xi denote covariates. 
 
The underlining or baseline hazard is the hazard when all covariates equal zero. 
 

xethxth β ′= )0,(),(  
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h(t,0) is the baseline hazard rate at time t for covariate vector 0.  A subject’s hazard at time t is proportional to the 
baseline hazard ho(t). The proportionality factor depends on the covariate vector for an individual. If all covariate 
values are homogenous, then it gets subsumed into the baseline hazard function. 
 
The probability that an individual dies, leaves, etc., at time Ti, is given by: 
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The conditioning eliminates the baseline hazard function. 
 
Researchers favor Cox's proportional hazards modeling because of the robust semi-parametric method of calculating 
the probabilities of survival while simultaneously adjusting for other possibly influential variables.  Other attractive 
features of Cox modeling include: the relative risk type measure of association, no parametric assumptions, the use 
of the partial likelihood function, and the creation of survival function estimates. 
 
 
RELATIVE RISK TYPE MEASURE OF ASSOCIATION 
 
The simple interpretation of the measures of association given by the Cox model as "relative risk" type ratios is very 
desirable in explaining the risk of event for certain categories of covariates or exposures of interest.  For example, 
when a two-level (dichotomous) covariate with a value of 0=no and 1=yes is observed, the hazard ratio becomes eβ 
where β is the parameter estimate from the regression.   If the value of the coefficient is β = 1.099, then e1.099 = 3.  
The measure is simply saying that the subjects labeled with a 1 (yes) are three times more likely to have an event 
than the subjects labeled with a 0 (no).   In this way we have a measure of association that gives insight into the 
strength and direction of the relationship between our exposure and outcome. 
 
 
NO PARAMETRIC ASSUMPTIONS 
 
Another attractive feature of Cox regression is not having to choose the density function of a parametric distribution.  
This means that Cox's semi-parametric modeling allows for no assumptions to be made about the parametric 
distribution of the survival times, making the method considerably more robust.  Instead, the researcher must only 
validate the assumption that the hazards are proportional over time. The proportional hazards assumption refers to 
the fact that the hazard functions are multiplicatively related.  That is, their ratio is assumed constant over the 
survival time, thereby not allowing a temporal bias to become influential on the endpoint.  In other words, the Cox 
proportional hazards model assumes that changes in the hazard of any subject over time will always be proportional 
to changes in the hazard of any other subject and to changes in the underlying hazard over time. 

T im e

h(t)

 
 
Figure 5.  Graphical representation of proportional hazards over the follow-up period. 
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USE OF THE PARTIAL LIKELIHOOD FUNCTION 
 
The Cox model has the flexibility to include time-dependent explanatory variables and handle censoring of survival 
times due to its use of the partial likelihood function.  The likelihood function for the proportional hazards model 
can be thought of in two parts.  The individual hazard and the exponentiated function of the  independent variables 
represented by the linear sum of the βixi’s.  The baseline hazard multiplied by the function of independent variables 
produces the hazard for the ith subject.  The partial likelihood formula considers probabilities for those subjects who 
fail and does not explicitly consider probabilities for censored subjects.  However, survival time information prior to 
censorship is used for those subjects who are censored.  That is, the subject who is censored after the jth failure time 
is part of the risk set used to compute the jth likelihood even though this subject is censored later.  We get estimates 
by finding values for the function of independent variables (betas) that maximize the partial likelihood.  Some 
efficiency in estimate is lost but the model is robust and two of three standard properties of maximum likelihood 
estimates persist, being consistent and being asymptotically normal. 
 
SURVIVAL FUNCTION ESTIMATES 
 
With the SAS option BASELINE, a SAS dataset containing survival function estimates stratified by exposure levels 
can be output.  These estimates correspond to the means of the explanatory variables for each stratum.   
 
TIME DEPENDENCIES 
 
In some situations the researcher may find that the dynamic nature of a variable causes changes in value over the 
observation time.  In other instances the researcher may find that certain trends affect the probability of the event of 
interest over time.  There are easy ways to test and account for these temporal biases within PROC PHREG but be 
careful if you have a large number of observations as the computation of the subsequent partial likelihood is very 
taxing and time consuming.  Graphical display of survival curves is often an easier way to initially see if there are 
apparent proportional hazards assumption violations.  If there is a steep increase or decrease in the survival curve, it 
may suggest more statistical investigation is needed.  If you are investigating two or more survival curves and the 
curves cross, you need to investigate further.  It is important to note here that when a time dependent variable is 
introduced into the model, the ratios of the hazards will not remain steady.   This only affects the model structure.   
We will still be doing a Cox regression but instead the model used is called the extended Cox model.  
 
The following is a quick note regarding extending the Cox model to incorporate time dependent covariates.  The 
hazard at time t is the product of the baseline hazard function and the exponential expression is the linear sum of the 
βixi’s.  The baseline hazard is a function of time (t) but does not involve the independent variables, the function of 
independent variables involve the x’s but does not involve time (t).  However, if we consider x’s that do involve t, 
we no longer have time independent x’s and must account for this in the interpretation of the model.  The extended 
Cox model can be used with time dependent variables, but hazard ratios need to be interpreted as a function of time. 

 

 
Figure 6. A cumulative distribution function that violates the proportional hazards assumption.  Note the sharp 
increase in probability of hospitalization beginning right before the third year and lasting for approximately 1 year.  
After this one-year period the top curve then levels off and becomes parallel with the bottom curve once again.  
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ANALYTIC APPROACH 
 
UNIVARIATE ANALYSES 
 
Using PROC FREQ, PROC UNIVARIATE, and PROC LIFETEST an initial univariate analysis of the individual 
characteristics with event experience should be carried out to determine possible significant explanatory variables to 
be included in the model runs.  An exploratory model analysis should be performed to explore the relations between 
the variables while simultaneously adjusting for all other variables that have influences on the event times.  
Collinearity among potential model variables should be investigated using PROC REG’s diagnostic capabilities to 
ensure no model burdening correlations exist between variables.  After investigation for confounding of variables 
not independently associated with the event times, variables with p-values of 0.05 or less are retained in the final 
model analysis. Additionally, the distributions of loss to follow-up times should be investigated for differing rates 
across the categories of exposure over the study period.  The potentially harmful effect of differential loss to follow-
up may be an indicator of informative censoring and should not be overlooked when conducting a survival analysis. 
 
 
MULTIVARIABLE COX MODELING APPROACH 
 
Dummy variables should be created using reference cell coding for the categorical variables.  The measures of 
association output will compare your category of interest to the reference category of  your choice.  Starting with a 
saturated model, run PROC PHREG and use a manual backward stepwise  model building approach. This will allow 
you to stay in control of the model and investigate possible confounding if variables are not independently 
associated with event times and slated for removal from the model.  It is important to establish a magnitude 
difference rule such as 10-20% difference in measure of interest to establish confounding.  Based on the rule you 
choose prior to beginning the analysis, retain variables that are not independently associated with the outcome but 
considered to be a confounder or remove from the model if considered not to be distorting the effect of interest.  
This will result in a final model with statistically significant independent risk factors of survival times or 
confounders.  
 
   proc phreg data=analydat;          

   model survtime*censor(0) (censor value) = treated  x  sex  previousdxs  / rl ties=efron; 
   x=treated*(log(survtime) - (log(mean survival)));   

       title1 'Cox regression of Treatment Status after Controlling for Sex and Previous Diagnosis'; 
       title2’Investigate Proportional Hazards Assumption’; 
   run; 
 
DATA=analydat names the input data set for the survival analysis. 
 
RL requests for each explanatory variable, the 95% (the default alpha level because the ALPHA= option is not 
invoked) confidence limits for the hazard ratios. 
 
TIES=efron gives the researcher the approximations to the EXACT method without using the tremendous CPU it 
takes to run the EXACT method.  Both the EFRON and the BRESLOW methods do reasonably well at 
approximating the EXACT when there are not a lot of ties.  If there are a lot of ties, then the BRESLOW 
approximation of the EXACT will be very poor.  If the time scale is not continuous and is therefore discrete, the 
option TIES=DISCRETE should be used. 
 
x=treated*(log(survtime)-(log(mean survival))) tests the interaction of treatment with time to determine if the 
proportional hazards assumption is met.  If x is not significant, you can conclude that the proportional hazards 
assumption is met and remove the variable from the model. 
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STRATIFICATION BY TREATMENT STATUS 
 
These data were then stratified by treatment status in order to compute the survivor function estimates for the two 
treatment arms.  Using the BASELINE function in PROC PHREG, we were able to output the survivor function 
estimates.  The survival curves can then be displayed or we have the capability to compute the cumulative 
distribution function for the separate treatment arms over the study period. 
 
   proc sort data=survdat1; 
     by treated; 
 
   proc phreg data=survdat1; 
     by treated;  
     model  survtime*surv(0)= treated /rl ties=efron; 
        baseline out=surv1 survival=s ; 
     title1 'Cox Proportional Hazard Model';  
     title2 'Survival Differences by Treatment'; 
     label 
        treated = 'Yes Treated (no ref)'; 
   run; 
 
BY stratifies the analysis by the categories in the by variable, after data are sorted in that manner. 
 
BASELINE without the COVARIATES= option produces the survival function estimates corresponding to the 
means of the explanatory variables for each stratum.   
 
OUT=surv1 names the data set output by the BASELINE option. 
 
SURVIVAL=s tells SAS to produce the survival function estimates in the output data set. 
 
TEST statement allows testing of subgroups of regression coefficients.  This statement is not shown above but can 
be done with “test age, occupation;” after the model statement.  This test statement will test the null that age and 
occupation taken together are not related to probability of event after adjusting for the other variables in the model.  
This statement is also useful when testing the global significance of a categorical variable in which the model 
statement expresses only the dummy variables. 
 
Graphing using PROC GPLOT 
 
   options ps=52; 
   goptions device=win; 
 
   symbol1 line=1 color=blue value=square i=join;  
   symbol2 line=2 color=red value=star i=join; 
 
   proc gplot data= surv1; 
     plot survtime*s=treated; 
     title1 font=swissb 'Cox Proportional Hazard Model' ;  
     title2 font=swissb h=1.5 'Survival Differences by Treatment'; 
   run; 
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Figure 7. The stratified treatment arm survival curves for over the follow-up period. 
 
 
Calculation of 1-survival function estimates in the output data set SURV1, obtained from running the BASELINE 
option, will produce the cumulative distribution function estimates that may be graphed as well (Figure 8).   
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Figure 8: The stratified cumulative distribution functions of event by treatment arm.  There was no violation of the 
assumption of proportional hazards but there did happen to be an observed significant difference in the probability 
of event between the 7 treatment arms. 
 
 
LIKELIHOOD RATIO TEST 
 
This test makes use of the log likelihood value given by the –2logL in the SAS output.  If the researcher would like 
to see the importance of a variable or a group of variables in the model they should run a full and a reduced model.  
The full model has all of the variables included and the reduced model removes the variable or variables you would 
like to inspect.  Taking the difference of the two values will yield a test statistic having a chi-square distribution 
under the null hypothesis with the number of degrees of freedom equal to the number of variables removed from the 
model. 
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COMPUTING THE GENERALIZED R2 

 
It may be helpful to compute the R2 value for the Cox model. Although it is not an option of PROC PHREG, the R2 
value can be computed from the output of the regression. 
  
R2 = 1 - exp(LR2/n) 
 
Where LR is the Likelihood-ratio chi-square statistic for testing the null hypothesis that all variables included in the 
model have coefficients of 0, and n is the number of observations.  The researcher needs to take extreme caution 
when comparing the R2 values of Cox regression models. Remember from linear regression analysis, R2 can be 
artificially increased by simply adding explanatory variables to the regression model (ie; more variables does not 
equal a better model necessarily).  Also, the above computation does not give the proportion of variance of the 
dependent variable explained by the independent variables as it would in linear regression, but does give a measure 
of how associated the independent variables are with the dependent variable. 
 
 
RESIDUAL ANALYSIS 
 
SAS has included three types of individual residuals for investigation. Cox-Snell residuals are helpful for assessing 
the fit of parametric models but are not as helpful with Cox models.  Instead, the two that are most used are the 
martingale residuals and the deviance residuals.  Deviance residuals are most often investigated because of their 
similarities with residuals from ordinary least squares (they are symmetrically distributed around 0 and have a 
standard deviation of approximately 1). Add the following after a model statement to output the martingale and 
deviance residuals:  
 
   baseline out=survs survival=s xbeta=xbet resmart=marting resdev=rdev;  
 
The researcher can plot the residuals against covariates or plot the residuals against the linear predictor scores giving 
an idea of the fit or lack of fit of the model to individual observations. 
 
   proc gplot data=survs; 
     plot (marting rdev) * xbet / vref=0; 
     symbol1 value=circle; 
 
 
MULTIPLE EVENT ANALYSIS 
 
Often in long follow-up studies researchers will be asked if  those treated have more events than those who were not 
treated.  That is, have we wasted important event information by only modeling time until first event?  There are 
many methods which can be used for this type of an analysis, however, the researcher first must decide if they are 
modeling ordered or unordered outcomes.  Since we often investigate multiple events of the same type, we will 
focus on ordered outcomes.  Three popular marginal regression models are the independent increment model 
(mutual independence of the observations within a subject), the WLW model (treating the ordered outcome data set 
with an unordered competing risks approach), and the conditional model (assuming an individual can’t be at risk for 
outcome 2 if outcome 1 has not happened to the individual).  After ordering the event dates in chronological order, 
follow-up time periods for multiple event time modeling are calculated from the start of follow up, and subsequent 
event dates, until first or subsequent event, loss to follow-up, or the end of follow-up, whichever occurs first.  This 
area of survival analysis is currently of great interest among statisticians and epidemiologists and will no doubt have 
many advancements in the coming years. 
  
 
SUMMARY 
 
In this Hands on Workshop, we discussed the capabilities of SAS to allow the researcher to conduct a survival 
analysis using non and semi-parametric methods.  The constellation of tools at the fingertips of SAS users include 
univariate procedures such as PROC FREQ, PROC TTEST, and PROC LIFETEST; regression diagnostic 
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procedures using PROC REG; the powerful multivariable procedure PROC PHREG; and the graphical procedure 
PROC GPLOT.  With continued effort by SAS® to increase the capabilities of PROC PHREG this semi-parametric 
regression tool for handling incomplete data will only become more powerful.  Further growth will hopefully 
include advanced graphics within PROC PHREG including the ability to output survival curves and the cumulative 
probability of event over the follow-up period.  Using these analytic tools together is important to conduct a 
thorough analysis of time to event type data.  
 
 
VERSION 9.0 
 
Prior to SAS version 9.0 PROC PHREG did not have a class statement and the analyst was forced to create dummy 
variables.  In addition, there was no automatic global test of the null hypothesis that a categorical variable was 
significant.  With version 9.0 the TPHREG procedure adds the class statement to the PHREG procedure with the 
idea that the enhancement will be incorporated into future PHREG releases.  Also in version 9.0, the weight 
statement has been added and enables the analyst to specify case weights when using the BRESLOW or EFRON 
methods for handling ties.  The test statement now includes the average option enabling the computation of a 
combined estimate of all the effects in the statement. 
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