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ABSTRACT. Consider a complex normed linear space (X, || - ||), and let
X% € X with ¢ # 0. Motivated by a recent work of Chorianopoulos
and Psarrakos (2011) on rectangular matrices, we introduce the Birkhoff-
James e-orthogonality set of x with respect to v, and explore its rich
structure.

1. INTRODUCTION

The numerical range (also known as the field of values) of a square complex
matrix A € C"*™ is defined as F(A) = {z*Az € C: z € C", z*x =1} [8].
This range is a non-empty, compact and conver subset of C, which has been
studied extensively and is useful in understanding matrices and operators; see
[2, 3, 8, 10] and the references therein. The numerical range F(A) is also writ-
ten in the form (see [3, 10]) F(A) ={p € C: [|[A—AL,|, > |p— A, VA € C},
where ||-]|2 denotes the spectral matrix norm (i.e., that norm subordinate to the
euclidean vector norm) and I, is the n x n identity matrix. As a consequence,
F(A) is an infinite intersection of closed (circular) disks D (A, [|[A — AL, ||5) =
{peC: p=A <[[A= AL} (A € C), namely,

(11) F(A) = ({reC: [p=MN<[A=ALl,} = (DA = AL,).
AeC AeC

For two elements x and ¢ of a complex normed linear space (X, ||-]|), x is said
to be Birkhoff-James orthogonal to 1, denoted by x Lps ¥, if ||x + M| > |Ix]l
for all A € C [1, 9]. This orthogonality is homogeneous, but it is neither
symmetric nor additive [9]. Moreover, for any e € [0,1), x is called Birkhoff-
James e-orthogonal to 1, denoted by x L%, v, if [[x + M| > V1 —€? | x| for
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all A € C [4, 7]. Tt is worth mentioning that this relation is also homogeneous.
In an inner product space (X, (-,-)), with the standard orthogonality relation
1,ax € X is called e-orthogonal to a ¥ € X, denoted by x L€, if |(x, ¥)| <
ellx|l l¥|l. Furthermore, x L ¢ (resp., x L€ ) if and only if x L ¢ (resp.,
X Ly %) [4, 7).

Inspired by (1.1) and the above definition of Birkhoff-James e-orthogonality,
Chorianopoulos and Psarrakos [6] (see also [5] for a primer work) proposed the
following definition for rectangular matrices: For any A, B € C"*™ with B # 0,
any matrix norm || - ||, and any € € [0,1), the Birkhoff-James e-orthogonality
set of A with respect to B is defined as

Fi(4;B) = {peC:Bly; (A—puB)}

{ne€: |A=AB| = VI=E|B|ju- A, ¥Ae C}
|A—AB|
(1.2) = D( .
ﬂl Vi—é|B|

The Birkhoff-James e-orthogonality set is a direct generalization of the stan-
dard numerical range. In particular, for n = m, |- || = || - |2, B = I, and
e =0, we have F}, (A;I,) = F(A); see (1.1) and (1.2). Moreover, F} (A; B)
is a non-empty, compact and convex subset of C that lies in the closed disk
D (07 \/1_‘7%”“]3”) and has interesting geometric properties [6].

In this note, we adopt ideas and techniques from [6] to introduce and study
the Birkhoff-James e-orthogonality set of elements of a complex normed linear
space, generalizing results of [6]. In the next section, we give the definition of
the set, and verify that it is always non-empty. In Section 3, we explore the
growth of the set, and in Section 4, we derive characterizations of its interior and
boundary. Finally, in Section 5, we describe the Birkhoff-James e-orthogonality
set when the norm is induced by an inner product.

2. THE DEFINITION

Consider a complex normed linear space (X, || -||) (for simplicity, X), and
let x,% € X with ¢ # 0. For any € € [0, 1), the Birkhoff-James e-orthogonality
set of x with respect to 1 is defined and denoted by

(2.1) Fryogv) ={peC: ¢ Ly, (x — )}
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It is straightforward to see that
Fijew) = {neCilv=Ax—m)l = V1=l vaec)

hea: Hw— iu—on > VI= & |l vae e\ (o}

1

oI - =)l 2 VIS @l vae € {0}}

pECs x - (u=Null = VI=& e 1A, ¥re ¢}
peC: |l =Xl = V1= elllu - Al, VA €€}

X — Ay
(2.3) D </\, X AT
Q«; V1i—é |y
The defining formula (2.3) implies that FIIG-H(X;w) is a compact and convez

subset of C, which lies in the closed disk D (O7 Vll_‘e%u\lw\l) Furthermore, it is
apparent that for any 0 <e€; < ey < 1, FHE.lu(XH/J) - FHG-QII (x; ).

By Corollary 2.2 of [9], it follows that Fiy (x; ¥) is always non-empty. For
clarity, we give a short proof, adopting arguments from the proofs of Theorem

2.1, Theorem 2.2 and Corollary 2.2 of [9)].

Proposition 2.1. For any x,v € X with ¢ # 0, and any € € [0,1), the
Birkhoff-James e-orthogonality set FHE'H (x;¥) is non-empty.

I
=

m
a

(2.2) =

PROOF. Since FI?H(X; ) C FHE~H(X§ ) for every € € [0,1), it is enough to prove
that ﬂ?-\l(x; 1) # (0. Applying the Hahn-Banach Theorem one can verify that

for any nonzero ¢ € X, there is a linear functional T : X — C such that
T() = |IT] ||| As a consequence,

1Tl = 1T = TG+ D) < (ITIHIx + 4l VX € Ker(T),

and hence,

(2.4) Y 1lpyx, Vxe€Ker(T).
For the scalar p = %, we have that T'(x — p) = 0, and thus, x — up €
Ker(T). By (24), ¥ Lps (x — w)), and hence, p € ), (x; ). O

Next we derive some basic properties of the Birkhoff-James e-orthogonality
set.

Proposition 2.2. Let x,1 € X with ¢ # 0, and let € € [0,1). Then, for any
nonzero b € C, FHE.”()G ) = %Flle-\l(x;w)'
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PROOF. By the defining formula (2.1) of the Birkhoff-James e-orthogonality
set F) I (x; %) and the homogeneity of the Birkhoff-James e-orthogonality, it is

straightforward that Fl‘e_”(x; b)={peC: ¢ Ly, (x — (b))} O

Proposition 2.3. Let x and ¥ be two nonzero elements of X. Then, for any
e€0,1),

_ ; [ ¢
Proor. Consider a p € Fff (x;¢) with |u| = H Then, by (2.2), we have

1
A o= 5 = vim@ram |5 -1

, YAae €\ {0},
or

[ =l = VI=e[lllpl [n =X = V1I=€e|x| [n =], VreC.

Thus, u~* lies in Fff | (13 X). -

Proposition 2.4. Let || - ||, and || - ||p be two equivalent norms acting in X,
and suppose that for two real numbers C,c >0, c||Clla < lI<lle < C|Clla for

all ¢ € X. Then, for any x,v € X with ¢ # 0 and any € € [0,1), it holds that
iy, 069) € Fi, 06¥),

_ i eae
where € =4/1 - —z—.

PROOF. Suppose p € F”fl‘a(x; ). Then, it follows readily that
Ix =M, = V1I=e[[¢lalp—Al, VAeC,

or
c
=Xl = V=€ Zpleln -, vAec,
or
2(1 — €2) 2
c2(1—e
=Xl 2 \[1- 1= S5 ekl - A, vaee,
and the proof is complete. (Il
1 141
For example, we consider the vectors xy = | 2+i |, = | 2+i | € C3,
—111 i

and recall that the (equivalent in C?) norms ||-||2 and ||-||1 satisfy [|¢[l2 < [|¢]|1 <
V3||¢|l2 for all ¢ € €3. The Birkhoff-James e-orthogonality sets F> (x;1),

lI-Il2

Fl?j‘“lr’l (x;9) and F}Y ‘?1'75 (x; 1) are estimated by the unshaded regions in the left,
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middle and right parts of Figure 1, respectively. Each estimation results from
having drawn 2000 circles of the form {u € C: |u— A = ||x — AY||}; see (2.2)
and (2.3). The compactness and the convexity of the sets are apparent, and

since V0.75 = /1 — 1-0.5% 'pProposition 2.4 is also confirmed.

3 )

FIGURE 1. The sets F > (x;9) (left), F‘?"‘i (x;1) (middle),

ll-l2

and FY)™ (x; ¥) (vight).

3. ON THE GROWTH OF Fiy, (x; ¥)

As mentioned before, for 0 < €; < €5 < 1 and for any two elements x and
1 of a complex normed linear space X with 1 # 0, it holds that F\Ie-l\l (x;v) C

Fﬁ|(x;¢)~

Theorem 3.1. (For matrices, see [6, Proposition 2].) Let x,v¢ € X with ¢ # 0,
and suppose that x is not a scalar multiple of 1. Then, for any 0 < € < ex < 1,
FIT}H(X;w) lies in the interior of Fﬁ‘(x; ).

PROOF. It is enough to prove that for any u € F”E}H (x;), thereis areal p, >0
such that the disk D(u, p,,) lies in FHG‘ZH (x;¥). By the defining formula (2.2) of
the Birkhoff-James e-orthogonality set iy (x; ¥), for any u € Fl\e-ll\ (x; ¥),

Ix =Ml = /1=etlldllln—Al, VAeC,

or equivalently,

X =+ (k= NPl = /1=t |[d]lp—Al, YreC.
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As a consequence,

X = o+ Ml = (/1= [l [Al > (/L= lYll[Al, ¥YAeC.

Thus, for every complex number A # 0,

Ix = o+ 2] — /1= & ] 1A > (w—e%—w—e%) el A > 0.

Since  is not a scalar multiple of 1, it follows that ||x — p + M| > 0, and

hence, the continuous function f(\) = ||[x — up + M| — /1 — €3 ||| || takes

only positive values in the disk D(0, 1). Thus, /\eiDn(%yl) fA) = /\ergi(gl) f(A) > 0.

This means that we can consider a real § > 0 such that

o< win{ in 700, (V1-d - 1= ) i}

For every A € C with |A| > 1, we have

s+ 2 = 1= G 1ol 2 (V= - 1= ) 1ol = 5

and thus,

<. _ —_ _— 2 .
a_;gg{u o+ 2] — /1 eznwnw}

As a consequence, for every £ € D (0, HTSH)’

X = (e + ¢+ M| = lIx — b + M| = €01l = /1= [[¥[lIAl, YAeC.
Hence, D (07 ﬁ) - F”€_2|| (x; %), and the proof is complete. a

Corollary 3.2. Let x,v¥ € X with ¢» # 0, and suppose that x is not a scalar
multiple of 1. Then, for any e € (0,1), Fﬁ.H(X?@/J) has a non-empty interior.

Proposition 3.3. Let x,v € X with ¢ # 0. Then, x = ay for some a € C if
and only if Ly (x;¥) = {a} for every e € [0,1).

PROOF. If x = a® for some a € C, then (2.2) yields
FHe‘H(Xﬂ/’) = F||€.||(a¢;¢)
= {uec: @—Nel = VI=e |l -, ¥rec)
- {NEC: la— Al > V1—e|u— A, V)\GC}.

It is apparent that a € F||€~H (ax; ). Furthermore, for any p # a and \ = a, we
have 0 = |a — A| < V1 —€*|u— A, ie, p & Fif (ath; ).
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For the converse, suppose that F”E.”(Xé ¢) = {a} for an € € (0,1). Then, by
Corollary 3.2, x is a scalar multiple of 1, i.e., there is a b € C such that y = .

As a consequence,
la—A > V1—€|b—1), VAeC.

For A\ = a, it follows that |b — a| = 0, and the proof is complete. O
By the proof of the previous proposition, it is clear that if FHE_” (x;v) = {a}

for an € € (0,1), then x = a%, and consequently, F\|€~H(X;w) = {a} for all

e€0,1).

Proposition 3.4. Let x,v € X with 1) # 0, and let € € [0,1). Then, for any

a,beC, FHG.H(@X +by;ep) = aFHfH(X; V) +b.

PROOF. If a = 0, then Proposition 3.3 yields F‘T_H(ax; ) ={0} = 0F, (; ).

If a # 0, then

Fijlaxy) = {u €C: flax— M| = V1= |vll|lu—A, VA e @}

A A
= {nee: -2z vim@ |4~ 2] vaec)
= {nees Ix-wlzvi=el |4 -2, vaec)

= GFHE.H(X;W-
Furthermore, for any a,b € C,

Fiyax+bisw) = {neC: ax+b-Nul = Vil -, vAe )
= {neC: lax— 2l = Vi=e |yl -t -, vrec}

= {M €eC:p—-be FHE»H(GX;W}’
and the proof is complete. (Il
If we allow the value e = 1, then (2.2) implies that F/ (4;B) = C. Fur-

thermore, if y is not a scalar multiple of v, then F; He'll (A; B) can be arbitrarily
large for e sufficiently close to 1.

Theorem 3.5. (For matrices, see [6, Proposition 4].) Let x, % € X with ¢ # 0,
and suppose that x is not a scalar multiple of 1. Then, for any bounded region

Q CC, there is an eq € [0,1) such that @ C F5(x; ¥).

PRrROOF. Without loss of generality, we may assume that the region € is com-
pact. For the sake of contradiction, we also assume that for every € € [0,1),
there is scalar p. € C such that u. ¢ F il (x;¥). Then, there exist two sequences
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{€n}nen C [0,1) and {pn }neny C © such that €, — 1~ and p, ¢ F|| ”( x; ) for
all n € IN. By the compactness of €, it follows that {g, }nen has a converging
subsequence, say {i, fnen C £, Which converges to a pu € Q.

If pe Fué_H(Xﬂ/)) for some € € [0, 1), then by Theorem 3.1, and without loss

of generality, we may assume that p lies in the interior of Flﬁl‘(x;w). Then
there is an n’ € IN such that uy, € FII€~H (x;®) for every n > n/. Moreover, there

is an n” € N such that €, > € for every n > n”. As a consequence, for every
n > max{n’',n"}, ug, € F\fﬂ(X”/’) - FHEICH (x; ¥); this a a contradiction. So, for

every e € [0,1), u & Ff | (x;1). Thus, for every €, = /1 — 1, n € NN, there is
a scalar A, € C such that

1
I = (= APl < 4|1 - (\/1— —) [l An] = = 91 Anl,
or

1
(3.1) Al = lIx = pll | < A = x =l < — 19l A,

or

1
Pl 11 (1= 7)< = ol
Hence, for every n > 2,

Ix—pll - lx—pl
Wl=5) = el

The bounded sequence Az, As, ... has a converging subsequence {j, }nen which
converges to a scalar \p € C. By (3.1), it follows

An] <

1
Ak, ¥ — x — p|| < T 191 [ Ak, |,

and as n — +00,
Aot — x — ug|| = 0.

This is a contradiction because x is not a scalar multiple of . O

Corollary 3.6. Let x,v € X with v # 0. If x is not a scalar multiple of 1,

then
1__
¢ =UF; v
neN
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4. THE INTERIOR AND THE BOUNDARY OF Fﬁ.”(X; )
Consider the Birkhoff-James e-orthogonality set F; IT'H(X; 1), and denote its
interior by Int [F“T.‘l(x; w)}, and its boundary by aFHE'H (; ¥).
Proposition 4.1. Let x,v € X, with ¥ # 0. Then, for any € € [0, 1),
nt [Fi06w)] € {neCsx= 2wl >vVi=e|pllu-A, vrec},

ProOF. If i € Int [Flle‘\l(x; 1/))}, then there is a real p > 0 such that p+ pe'? €
F”‘_H (x; ) for every 6 € [0,2x]. Hence, for every A € C,

X =M = V1I—€ |9l |p+pe® =7, V6e[0,27].
Setting 6\ = arg(u — \), we observe that
Ix =2l = V1€ [[§l [u+pe®™ = > V1=e ¢ |n— Al
completing the proof. |

Theorem 4.2. (For matrices, see [6, Proposition 16].) Let x,v € X with
Y #0, and let € € [0,1). Suppose also that pg € FHE'H(X; ).

(1): The scalar ug lies on the boundary 8F|T.H(X§ ) if and only if

: _ _ — _ _
inf {[lx = 2l = VI=€ ¥l — M} = 0.
(ii): If e > 0, then po € 6F”5_”(X; ) if and only if
: B B — B _
min { [l = Ml = VI =€ ¥ lo = A} = 0,
or equivalently, if and only if ||[x — Xo¥| = V1 — €2 ||| |0 — Xo| for
some X\g € C.

PROOF. (i) Suppose that po is a boundary point of the Birkhoff-James e-
orthogonality set (recall (2.3))

Fiae) = DA 2=t ).
e =11 (i

Then, for any é > 0, there is a As € € such that

I = Asll < V1 =€ [[¢]l o — As| + 0.

Since the quantity ||x — As®|| — V1 — €2 ||¢)]| |10 — As| is nonnegative, as 6 —
0%, it follows that )i\I%{HX =X = VI =€ |[¢]l |po — Al} = 0.
€
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For the converse, we assume that ;nfc{||x = M| = VI =€ ]| o — Al} =
€

0 and pg € Int {FHE'H O 1/1)] Then, by (2.3), there exists a real p > 0 such that

Ix — || ﬂ
D(uo,p) CInt |D (N, —2—2"1L )| vreC.
(/U'O P) Ilt|: < me” €

As a consequence,
X =AYl = VI=e ] [no = Al > V1=€*[[¢][p >0, VAeC.
This means that

. I )
inf {|lx =2l = VI=€ ¥l lno— A} > 0

which is a contradiction.
(i) For every 6, = L (n € IN), there is a A, € C such that

X = Al < V1= 9l [po = Anl + n,
or

1
Xl = Al < VI =el[9] o = Anl + —,

or
1
Pal 91 = Il < V1= [l (luoll + [Anll) + -

Since € > 0, one can verify that

I+ V1 = €[] |pol +1
Il (1-vVi=e)

i.e., the sequence {\,},, o is bounded and has a converging subsequence A, —
Ao. As a consequence,

X = M Il < VI =€ [I9f] |10 = A,

and as n — o0,

An| <

1
+E, VnelN,
Ix = Aotll < V1= 9] [0 = Aol

This inequality can hold only as an equality because u € F) \T'I\(X; 1), and the
proof is complete. O

Proposition 4.1 and Theorem 4.2 yield readily the following.
Corollary 4.3. Let x,v € X, with ¢ # 0. Then, for any € € (0,1),

nt [Ff (6 w)] = {ne € Ix= 2l > vVi=e|pllu-A, vrec},
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5. THE CASE OF NORMS INDUCED BY INNER PRODUCTS

In the special case of norms induced by inner products, we can fully describe
the Birkhoff-James e-orthogonality set F; |‘€.|‘(X;¢). In particular, FHC'H (x; ) is

always a closed disk; this is the case for FI?-‘H52 (x;%) in the left part of Figure 1.

Theorem 5.1. (For matrices, see [6, Section 5].) Let x,¢ € X with ¢ # 0
and € € [0,1), and suppose that the norm || - || is induced by an inner product
(,+). Then the Birkhoff-James e-orthogonality set of x with respect to 1 is the
closed disk

c 06 ) () ” € )
F, sY) =D — .
oo =2 (et - 53 o=omm
PROOF. A scalar p € € lies in F|f | (x;1) if and only if [4, 7]
P L (x — ),

or equivalently, if and only if

[, x = )| < el [Ix — pabll,

or equivalently, if and only if

(b, x — ) (x — pb, ) < )2 (x — pb, x — by,

or equivalently, if and only if

OGP (o) 0ow) e 2<||x||2_ Wx) () 2>
Tl T R\ T A T e LA

or equivalently, if and only if

SR IR € o6 1P
B (1-¢€) < X — Y
‘ %11 411 4112
The proof is complete. O
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