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Abstract. Consider a complex normed linear space (X , ‖ · ‖), and let
χ, ψ ∈ X with ψ 6= 0. Motivated by a recent work of Chorianopoulos

and Psarrakos (2011) on rectangular matrices, we introduce the Birkhoff-
James ǫ-orthogonality set of χ with respect to ψ, and explore its rich

structure.

1. Introduction

The numerical range (also known as the field of values) of a square complex
matrix A ∈ Cn×n is defined as F (A) = {x∗Ax ∈ C : x ∈ Cn, x∗x = 1} [8].
This range is a non-empty, compact and convex subset of C, which has been
studied extensively and is useful in understanding matrices and operators; see
[2, 3, 8, 10] and the references therein. The numerical range F (A) is also writ-
ten in the form (see [3, 10]) F (A) = {µ ∈ C : ‖A− λIn‖2 ≥ |µ− λ|, ∀λ ∈ C},
where ‖·‖2 denotes the spectral matrix norm (i.e., that norm subordinate to the
euclidean vector norm) and In is the n× n identity matrix. As a consequence,
F (A) is an infinite intersection of closed (circular) disks D (λ, ‖A− λIn‖2) =
{µ ∈ C : |µ− λ| ≤ ‖A− λIn‖2} (λ ∈ C), namely,

(1.1) F (A) =
⋂

λ∈C

{µ ∈ C : |µ− λ| ≤ ‖A− λIn‖2} =
⋂

λ∈C

D (λ, ‖A− λIn‖2) .

For two elements χ and ψ of a complex normed linear space (X , ‖·‖), χ is said
to be Birkhoff-James orthogonal to ψ, denoted by χ ⊥BJ ψ, if ‖χ+λψ‖ ≥ ‖χ‖
for all λ ∈ C [1, 9]. This orthogonality is homogeneous, but it is neither
symmetric nor additive [9]. Moreover, for any ǫ ∈ [0, 1), χ is called Birkhoff-

James ǫ-orthogonal to ψ, denoted by χ ⊥ǫBJ ψ, if ‖χ+ λψ‖ ≥
√

1 − ǫ2 ‖χ‖ for
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all λ ∈ C [4, 7]. It is worth mentioning that this relation is also homogeneous.
In an inner product space (X , 〈·, ·〉), with the standard orthogonality relation
⊥ , a χ ∈ X is called ǫ-orthogonal to a ψ ∈ X , denoted by χ ⊥ǫ ψ, if |〈χ, ψ〉| ≤
ǫ ‖χ‖ ‖ψ‖. Furthermore, χ ⊥ ψ (resp., χ ⊥ǫ ψ) if and only if χ ⊥BJ ψ (resp.,
χ ⊥ǫBJ ψ) [4, 7].

Inspired by (1.1) and the above definition of Birkhoff-James ǫ-orthogonality,
Chorianopoulos and Psarrakos [6] (see also [5] for a primer work) proposed the
following definition for rectangular matrices: For any A,B ∈ Cn×m with B 6= 0,
any matrix norm ‖ · ‖, and any ǫ ∈ [0, 1), the Birkhoff-James ǫ-orthogonality

set of A with respect to B is defined as

F ǫ‖·‖(A;B) = {µ ∈ C : B ⊥ǫBJ (A− µB)}

=
{

µ ∈ C : ‖A− λB‖ ≥
√

1 − ǫ2 ‖B‖ |µ− λ|, ∀λ ∈ C}
=

⋂

λ∈C

D
(

λ,
‖A− λB‖√
1 − ǫ2 ‖B‖

)

.(1.2)

The Birkhoff-James ǫ-orthogonality set is a direct generalization of the stan-
dard numerical range. In particular, for n = m, ‖ · ‖ = ‖ · ‖2, B = In and
ǫ = 0, we have F 0

‖·‖2
(A; In) = F (A); see (1.1) and (1.2). Moreover, F ǫ‖·‖(A;B)

is a non-empty, compact and convex subset of C that lies in the closed disk

D
(

0, ‖A‖√
1−ǫ2 ‖B‖

)

and has interesting geometric properties [6].

In this note, we adopt ideas and techniques from [6] to introduce and study
the Birkhoff-James ǫ-orthogonality set of elements of a complex normed linear
space, generalizing results of [6]. In the next section, we give the definition of
the set, and verify that it is always non-empty. In Section 3, we explore the
growth of the set, and in Section 4, we derive characterizations of its interior and
boundary. Finally, in Section 5, we describe the Birkhoff-James ǫ-orthogonality
set when the norm is induced by an inner product.

2. The definition

Consider a complex normed linear space (X , ‖ · ‖) (for simplicity, X ), and
let χ, ψ ∈ X with ψ 6= 0. For any ǫ ∈ [0, 1), the Birkhoff-James ǫ-orthogonality

set of χ with respect to ψ is defined and denoted by

(2.1) F ǫ‖·‖(χ;ψ) = {µ ∈ C : ψ ⊥ǫBJ (χ− µψ)} .



BIRKHOFF-JAMES ǫ-ORTHOGONALITY SETS 3

It is straightforward to see that

F ǫ‖·‖(χ;ψ) =
{

µ ∈ C : ‖ψ − λ(χ− µψ)‖ ≥
√

1 − ǫ2 ‖ψ‖, ∀λ ∈ C}
=

{

µ ∈ C :

∥

∥

∥

∥

ψ − 1

λ
(χ− µψ)

∥

∥

∥

∥

≥
√

1 − ǫ2 ‖ψ‖, ∀λ ∈ C \ {0}
}

=

{

µ ∈ C :
1

|λ| ‖λψ − (χ− µψ)‖ ≥
√

1 − ǫ2 ‖ψ‖, ∀λ ∈ C \ {0}
}

=
{

µ ∈ C : ‖χ− (µ− λ)ψ‖ ≥
√

1 − ǫ2 ‖ψ‖ |λ|, ∀λ ∈ C}
=

{

µ ∈ C : ‖χ− λψ‖ ≥
√

1 − ǫ2 ‖ψ‖ |µ− λ|, ∀λ ∈ C}(2.2)

=
⋂

λ∈C

D
(

λ,
‖χ− λψ‖√
1 − ǫ2 ‖ψ‖

)

.(2.3)

The defining formula (2.3) implies that F ǫ‖·‖(χ;ψ) is a compact and convex

subset of C, which lies in the closed disk D
(

0, ‖χ‖√
1−ǫ2 ‖ψ‖

)

. Furthermore, it is

apparent that for any 0 ≤ ǫ1 < ǫ2 < 1, F ǫ1‖·‖(χ;ψ) ⊆ F ǫ2‖·‖(χ;ψ).

By Corollary 2.2 of [9], it follows that F ǫ‖·‖(χ;ψ) is always non-empty. For

clarity, we give a short proof, adopting arguments from the proofs of Theorem
2.1, Theorem 2.2 and Corollary 2.2 of [9].

Proposition 2.1. For any χ, ψ ∈ X with ψ 6= 0, and any ǫ ∈ [0, 1), the

Birkhoff-James ǫ-orthogonality set F ǫ‖·‖(χ;ψ) is non-empty.

Proof. Since F 0
‖·‖(χ;ψ) ⊆ F ǫ‖·‖(χ;ψ) for every ǫ ∈ [0, 1), it is enough to prove

that F 0
‖·‖(χ;ψ) 6= ∅. Applying the Hahn-Banach Theorem one can verify that

for any nonzero ψ ∈ X , there is a linear functional T : X → C such that
T (ψ) = ‖T‖ ‖ψ‖. As a consequence,

‖T‖ ‖ψ‖ = |T (ψ)| = |T (χ̂+ ψ)| ≤ ‖T‖ ‖χ̂+ ψ‖, ∀ χ̂ ∈ Ker(T ),

and hence,

(2.4) ψ ⊥BJ χ̂, ∀ χ̂ ∈ Ker(T ).

For the scalar µ = T (χ)
‖T‖ ‖ψ‖ , we have that T (χ − µψ) = 0, and thus, χ − µψ ∈

Ker(T ). By (2.4), ψ ⊥BJ (χ− µψ), and hence, µ ∈ F 0
‖·‖(χ;ψ). �

Next we derive some basic properties of the Birkhoff-James ǫ-orthogonality
set.

Proposition 2.2. Let χ, ψ ∈ X with ψ 6= 0, and let ǫ ∈ [0, 1). Then, for any

nonzero b ∈ C, F ǫ‖·‖(χ; bψ) = 1
b
F ǫ‖·‖(χ;ψ).
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Proof. By the defining formula (2.1) of the Birkhoff-James ǫ-orthogonality
set F ǫ‖·‖(χ;ψ) and the homogeneity of the Birkhoff-James ǫ-orthogonality, it is

straightforward that F ǫ‖·‖(χ; bψ) = {µ ∈ C : ψ ⊥ǫBJ (χ− (bµ)ψ)}. �

Proposition 2.3. Let χ and ψ be two nonzero elements of X . Then, for any

ǫ ∈ [0, 1),
{

µ−1 ∈ C : µ ∈ F ǫ‖·‖(χ;ψ), |µ| ≥ ‖χ‖
‖ψ‖

}

⊆ F ǫ‖·‖(ψ;χ).

Proof. Consider a µ ∈ F ǫ‖·‖(χ;ψ) with |µ| ≥ ‖χ‖
‖ψ‖ . Then, by (2.2), we have

|λ|
∥

∥

∥

∥

ψ − 1

λ
χ

∥

∥

∥

∥

≥
√

1 − ǫ2 ‖ψ‖ |λ|
∣

∣

∣

µ

λ
− 1
∣

∣

∣
, ∀λ ∈ C \ {0},

or

‖ψ − λχ‖ ≥
√

1 − ǫ2 ‖ψ‖ |µ|
∣

∣µ−1 − λ
∣

∣ ≥
√

1 − ǫ2 ‖χ‖
∣

∣µ−1 − λ
∣

∣ , ∀λ ∈ C.
Thus, µ−1 lies in F ǫ‖·‖(ψ;χ). �

Proposition 2.4. Let ‖ · ‖a and ‖ · ‖b be two equivalent norms acting in X ,

and suppose that for two real numbers C, c > 0, c ‖ζ‖a ≤ ‖ζ‖b ≤ C ‖ζ‖a for

all ζ ∈ X . Then, for any χ, ψ ∈ X with ψ 6= 0 and any ǫ ∈ [0, 1), it holds that

F ǫ‖·‖a
(χ;ψ) ⊆ F ǫ

′

‖·‖b
(χ;ψ),

where ǫ′ =
√

1 − c2(1−ǫ2)
C2 .

Proof. Suppose µ ∈ F ǫ‖·‖a
(χ;ψ). Then, it follows readily that

‖χ− λψ‖a ≥
√

1 − ǫ2 ‖ψ‖a|µ− λ|, ∀λ ∈ C,
or

‖χ− λψ‖b ≥
√

1 − ǫ2
c

C
‖ψ‖b|µ− λ|, ∀λ ∈ C,

or

‖χ− λψ‖b ≥

√

1 −
√

1 − c2(1 − ǫ2)

C2

2

‖ψ‖b|µ− λ|, ∀λ ∈ C,
and the proof is complete. �

For example, we consider the vectors χ =





1
2 + i
−11 i



 , ψ =





1 + i
2 + i

i



 ∈ C3,

and recall that the (equivalent in C3) norms ‖·‖2 and ‖·‖1 satisfy ‖ζ‖2 ≤ ‖ζ‖1 ≤√
3 ‖ζ‖2 for all ζ ∈ C3. The Birkhoff-James ǫ-orthogonality sets F 0.5

‖·‖2
(χ;ψ),

F 0.5
‖·‖1

(χ;ψ) and F
√

0.75
‖·‖1

(χ;ψ) are estimated by the unshaded regions in the left,
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middle and right parts of Figure 1, respectively. Each estimation results from
having drawn 2000 circles of the form {µ ∈ C : |µ− λ| = ‖χ− λψ‖}; see (2.2)
and (2.3). The compactness and the convexity of the sets are apparent, and

since
√

0.75 =
√

1 − 1−0.52

3 , Proposition 2.4 is also confirmed.
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Figure 1. The sets F 0.5
‖·‖2

(χ;ψ) (left), F 0.5
‖·‖1

(χ;ψ) (middle),

and F
√

0.75
‖·‖1

(χ;ψ) (right).

3. On the growth of F ǫ‖·‖(χ;ψ)

As mentioned before, for 0 ≤ ǫ1 < ǫ2 < 1 and for any two elements χ and
ψ of a complex normed linear space X with ψ 6= 0, it holds that F ǫ1‖·‖(χ;ψ) ⊆
F ǫ2‖·‖(χ;ψ).

Theorem 3.1. (For matrices, see [6, Proposition 2].) Let χ, ψ ∈ X with ψ 6= 0,
and suppose that χ is not a scalar multiple of ψ. Then, for any 0 ≤ ǫ1 < ǫ2 < 1,
F ǫ1‖·‖(χ;ψ) lies in the interior of F ǫ2‖·‖(χ;ψ).

Proof. It is enough to prove that for any µ ∈ F ǫ1‖·‖(χ;ψ), there is a real ρµ > 0

such that the disk D(µ, ρµ) lies in F ǫ2‖·‖(χ;ψ). By the defining formula (2.2) of

the Birkhoff-James ǫ-orthogonality set F ǫ‖·‖(χ;ψ), for any µ ∈ F ǫ1‖·‖(χ;ψ),

‖χ− λψ‖ ≥
√

1 − ǫ21 ‖ψ‖ |µ− λ|, ∀λ ∈ C,
or equivalently,

‖χ− µψ + (µ− λ)ψ‖ ≥
√

1 − ǫ21 ‖ψ‖ |µ− λ|, ∀λ ∈ C.
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As a consequence,

‖χ− µψ + λψ‖ ≥
√

1 − ǫ21 ‖ψ‖ |λ| >
√

1 − ǫ22 ‖ψ‖ |λ|, ∀λ ∈ C.
Thus, for every complex number λ 6= 0,

‖χ− µψ + λψ‖ −
√

1 − ǫ22 ‖ψ‖ |λ| ≥
(

√

1 − ǫ21 −
√

1 − ǫ22

)

‖ψ‖ |λ| > 0.

Since χ is not a scalar multiple of ψ, it follows that ‖χ− µψ + λψ‖ > 0, and

hence, the continuous function f(λ) = ‖χ− µψ + λψ‖ −
√

1 − ǫ22 ‖ψ‖ |λ| takes
only positive values in the disk D(0, 1). Thus, inf

λ∈D(0,1)
f(λ) = min

λ∈D(0,1)
f(λ) > 0.

This means that we can consider a real δ > 0 such that

δ ≤ min

{

min
λ∈D(0,1)

f(λ),

(

√

1 − ǫ21 −
√

1 − ǫ22

)

‖ψ‖
}

.

For every λ ∈ C with |λ| > 1, we have

‖χ− µψ + λψ‖ −
√

1 − ǫ22 ‖ψ‖ |λ| ≥
(

√

1 − ǫ21 −
√

1 − ǫ22

)

‖ψ‖ ≥ δ,

and thus,

δ ≤ inf
λ∈C

{

‖χ− µψ + λψ‖ −
√

1 − ǫ22 ‖ψ‖ |λ|
}

.

As a consequence, for every ξ ∈ D
(

0, δ
‖ψ‖

)

,

‖χ− (µ+ ξ)ψ + λψ‖ ≥ ‖χ− µψ + λψ‖ − ‖ξψ‖ ≥
√

1 − ǫ22 ‖ψ‖ |λ|, ∀λ ∈ C.
Hence, D

(

0, δ
‖ψ‖

)

⊆ F ǫ2‖·‖(χ;ψ), and the proof is complete. �

Corollary 3.2. Let χ, ψ ∈ X with ψ 6= 0, and suppose that χ is not a scalar

multiple of ψ. Then, for any ǫ ∈ (0, 1), F ǫ‖·‖(χ;ψ) has a non-empty interior.

Proposition 3.3. Let χ, ψ ∈ X with ψ 6= 0. Then, χ = aψ for some a ∈ C if

and only if F ǫ‖·‖(χ;ψ) = {a} for every ǫ ∈ [0, 1).

Proof. If χ = aψ for some a ∈ C, then (2.2) yields

F ǫ‖·‖(χ;ψ) = F ǫ‖·‖(aψ;ψ)

=
{

µ ∈ C : ‖(a− λ)ψ‖ ≥
√

1 − ǫ2 ‖ψ‖ |µ− λ|, ∀λ ∈ C}
=

{

µ ∈ C : |a− λ| ≥
√

1 − ǫ2 |µ− λ|, ∀λ ∈ C} .
It is apparent that a ∈ F ǫ‖·‖(aχ;ψ). Furthermore, for any µ 6= a and λ = a, we

have 0 = |a− λ| <
√

1 − ǫ2 |µ− λ|, i.e., µ /∈ F ǫ‖·‖(aψ;ψ).
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For the converse, suppose that F ǫ‖·‖(χ;ψ) = {a} for an ǫ ∈ (0, 1). Then, by

Corollary 3.2, χ is a scalar multiple of ψ, i.e., there is a b ∈ C such that χ = bψ.
As a consequence,

|a− λ| ≥
√

1 − ǫ2 |b− λ|, ∀λ ∈ C.
For λ = a, it follows that |b− a| = 0, and the proof is complete. �

By the proof of the previous proposition, it is clear that if F ǫ‖·‖(χ;ψ) = {a}
for an ǫ ∈ (0, 1), then χ = aψ, and consequently, F ǫ‖·‖(χ;ψ) = {a} for all

ǫ ∈ [0, 1).

Proposition 3.4. Let χ, ψ ∈ X with ψ 6= 0, and let ǫ ∈ [0, 1). Then, for any

a, b ∈ C, F ǫ‖·‖(aχ+ bψ;ψ) = aF ǫ‖·‖(χ;ψ) + b.

Proof. If a = 0, then Proposition 3.3 yields F ǫ‖·‖(aχ;ψ) = {0} = 0F ǫ‖·‖(ψ;ψ).

If a 6= 0, then

F ǫ‖·‖(aχ;ψ) =
{

µ ∈ C : ‖aχ− λψ‖ ≥
√

1 − ǫ2 ‖ψ‖ |µ− λ|, ∀λ ∈ C}
=

{

µ ∈ C :

∥

∥

∥

∥

χ− λ

a
ψ

∥

∥

∥

∥

≥
√

1 − ǫ2 ‖ψ‖
∣

∣

∣

∣

µ

a
− λ

a

∣

∣

∣

∣

, ∀λ ∈ C}
=

{

µ ∈ C : ‖χ− λψ‖ ≥
√

1 − ǫ2 ‖ψ‖
∣

∣

∣

µ

a
− λ

∣

∣

∣
, ∀λ ∈ C}

= aF ǫ‖·‖(χ;ψ).

Furthermore, for any a, b ∈ C,

F ǫ‖·‖(aχ+ bψ;ψ) =
{

µ ∈ C : ‖aχ+ (b− λ)ψ‖ ≥
√

1 − ǫ2‖ψ‖ |µ− λ|, ∀λ ∈ C}
=

{

µ ∈ C : ‖aχ− λψ‖ ≥
√

1 − ǫ2 ‖ψ‖ |(µ− b) − λ), ∀λ ∈ C}
=

{

µ ∈ C : µ− b ∈ F ǫ‖·‖(aχ;ψ)
}

,

and the proof is complete. �

If we allow the value ǫ = 1, then (2.2) implies that F 1
‖·‖(A;B) = C. Fur-

thermore, if χ is not a scalar multiple of ψ, then F ǫ‖·‖(A;B) can be arbitrarily

large for ǫ sufficiently close to 1.

Theorem 3.5. (For matrices, see [6, Proposition 4].) Let χ, ψ ∈ X with ψ 6= 0,
and suppose that χ is not a scalar multiple of ψ. Then, for any bounded region

Ω ⊂ C, there is an ǫΩ ∈ [0, 1) such that Ω ⊆ F ǫΩ‖·‖(χ;ψ).

Proof. Without loss of generality, we may assume that the region Ω is com-
pact. For the sake of contradiction, we also assume that for every ǫ ∈ [0, 1),
there is scalar µǫ ∈ C such that µǫ /∈ F ǫ‖·‖(χ;ψ). Then, there exist two sequences
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{ǫn}n∈N ⊂ [0, 1) and {µn}n∈N ⊂ Ω such that ǫn −→ 1− and µn /∈ F ǫn‖·‖(χ;ψ) for

all n ∈ N. By the compactness of Ω, it follows that {µn}n∈N has a converging
subsequence, say {µkn

}n∈N ⊂ Ω, which converges to a µ ∈ Ω.
If µ ∈ F ǫ̂‖·‖(χ;ψ) for some ǫ̂ ∈ [0, 1), then by Theorem 3.1, and without loss

of generality, we may assume that µ lies in the interior of F ǫ̂‖·‖(χ;ψ). Then

there is an n′ ∈ N such that µkn
∈ F ǫ̂‖·‖(χ;ψ) for every n ≥ n′. Moreover, there

is an n′′ ∈ N such that ǫkn
> ǫ̂ for every n ≥ n′′. As a consequence, for every

n ≥ max{n′, n′′}, µkn
∈ F ǫ̂‖·‖(χ;ψ) ⊆ F

ǫkn

‖·‖ (χ;ψ); this a a contradiction. So, for

every ǫ ∈ [0, 1), µ /∈ F ǫ‖·‖(χ;ψ). Thus, for every ǫn =
√

1 − 1
n2 , n ∈ N, there is

a scalar λn ∈ C such that

‖χ− (µ− λn)ψ‖ <

√

√

√

√1 −
(

√

1 − 1

n2

)2

‖ψ‖ |λn| =
1

n
‖ψ‖ |λn|,

or

(3.1) | ‖λnψ‖ − ‖χ− µψ‖ | ≤ ‖λnψ − χ− µψ‖ <
1

n
‖ψ‖ |λn|,

or

|λn| ‖ψ‖
(

1 − 1

n

)

< ‖χ− µψ‖ .

Hence, for every n ≥ 2,

|λn| <
‖χ− µψ‖

‖ψ‖
(

1 − 1
n

) ≤ 2
‖χ− µψ‖

‖ψ‖ .

The bounded sequence λ2, λ3, . . . has a converging subsequence {λkn
}n∈N which

converges to a scalar λ0 ∈ C. By (3.1), it follows

‖λkn
ψ − χ− µψ‖ <

1

kn
‖ψ‖ |λkn

|,

and as n −→ +∞,

‖λ0ψ − χ− µψ‖ = 0.

This is a contradiction because χ is not a scalar multiple of ψ. �

Corollary 3.6. Let χ, ψ ∈ X with ψ 6= 0. If χ is not a scalar multiple of ψ,

then C =
⋃

n∈N

F
1− 1

n

‖·‖ (χ;ψ).
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4. The interior and the boundary of F ǫ‖·‖(χ;ψ)

Consider the Birkhoff-James ǫ-orthogonality set F ǫ‖·‖(χ;ψ), and denote its

interior by Int
[

F ǫ‖·‖(χ;ψ)
]

, and its boundary by ∂F ǫ‖·‖(χ;ψ).

Proposition 4.1. Let χ, ψ ∈ X , with ψ 6= 0. Then, for any ǫ ∈ [0, 1),

Int
[

F ǫ‖·‖(χ;ψ)
]

⊆
{

µ ∈ C : ‖χ− λψ‖ >
√

1 − ǫ2 ‖ψ‖ |µ− λ|, ∀λ ∈ C} .
Proof. If µ ∈ Int

[

F ǫ‖·‖(χ;ψ)
]

, then there is a real ρ > 0 such that µ+ ρ eiθ ∈
F ǫ‖·‖(χ;ψ) for every θ ∈ [0, 2π]. Hence, for every λ ∈ C,

‖χ− λψ‖ ≥
√

1 − ǫ2 ‖ψ‖ |µ+ ρ eiθ − λ|, ∀ θ ∈ [0, 2π].

Setting θλ = arg(µ− λ), we observe that

‖χ− λψ‖ ≥
√

1 − ǫ2 ‖ψ‖ |µ+ ρ eiθλ − λ| >
√

1 − ǫ2 ‖ψ‖ |µ− λ|,
completing the proof. �

Theorem 4.2. (For matrices, see [6, Proposition 16].) Let χ, ψ ∈ X with

ψ 6= 0, and let ǫ ∈ [0, 1). Suppose also that µ0 ∈ F ǫ‖·‖(χ;ψ).

(i): The scalar µ0 lies on the boundary ∂F ǫ‖·‖(χ;ψ) if and only if

inf
λ∈C

{

‖χ− λψ‖ −
√

1 − ǫ2 ‖ψ‖ |µ0 − λ|
}

= 0.

(ii): If ǫ > 0, then µ0 ∈ ∂F ǫ‖·‖(χ;ψ) if and only if

min
λ∈C

{

‖χ− λψ‖ −
√

1 − ǫ2 ‖ψ‖ |µ0 − λ|
}

= 0,

or equivalently, if and only if ‖χ− λ0ψ‖ =
√

1 − ǫ2 ‖ψ‖ |µ0 − λ0| for

some λ0 ∈ C.

Proof. (i) Suppose that µ0 is a boundary point of the Birkhoff-James ǫ-
orthogonality set (recall (2.3))

F ǫ‖·‖(χ;ψ) =
⋂

λ∈C

D
(

λ,
‖χ− λψ‖√
1 − ǫ2 ‖ψ‖

)

.

Then, for any δ > 0, there is a λδ ∈ C such that

‖χ− λδψ‖ <
√

1 − ǫ2 ‖ψ‖ |µ0 − λδ| + δ.

Since the quantity ‖χ− λδψ‖ −
√

1 − ǫ2 ‖ψ‖ |µ0 − λδ| is nonnegative, as δ −→
0+, it follows that inf

λ∈C

{

‖χ− λψ‖ −
√

1 − ǫ2 ‖ψ‖ |µ0 − λ|
}

= 0.
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For the converse, we assume that inf
λ∈C

{

‖χ− λψ‖ −
√

1 − ǫ2 ‖ψ‖ |µ0 − λ|
}

=

0 and µ0 ∈ Int
[

F ǫ‖·‖(χ;ψ)
]

. Then, by (2.3), there exists a real ρ > 0 such that

D(µ0, ρ) ⊆ Int

[

D
(

λ,
‖χ− λψ‖√
1 − ǫ2 ‖ψ‖

)]

, ∀λ ∈ C.
As a consequence,

‖χ− λψ‖ −
√

1 − ǫ2 ‖ψ‖ |µ0 − λ| >
√

1 − ǫ2 ‖ψ‖ ρ > 0, ∀λ ∈ C.
This means that

inf
λ∈C

{

‖χ− λψ‖ −
√

1 − ǫ2 ‖ψ‖ |µ0 − λ|
}

> 0

which is a contradiction.
(ii) For every δn = 1

n
(n ∈ N), there is a λn ∈ C such that

‖χ− λnψ‖ <
√

1 − ǫ2 ‖ψ‖ |µ0 − λn| + δn,

or

|‖χ‖ − ‖λnψ‖| <
√

1 − ǫ2 ‖ψ‖ |µ0 − λn| +
1

n
,

or

|λn| ‖ψ‖ − ‖χ‖ <
√

1 − ǫ2 ‖ψ‖ (‖µ0‖ + ‖λn‖) +
1

n
.

Since ǫ > 0, one can verify that

|λn| <
‖χ‖ +

√
1 − ǫ2 ‖ψ‖ |µ0| + 1

‖ψ‖
(

1 −
√

1 − ǫ2
) ,

i.e., the sequence {λn}n∈N
is bounded and has a converging subsequence λkn

−→
λ0. As a consequence,

‖χ− λkn
ψ‖ <

√

1 − ǫ2 ‖ψ‖ |µ0 − λkn
| + 1

kn
, ∀n ∈ N,

and as n −→ +∞,

‖χ− λ0ψ‖ ≤
√

1 − ǫ2 ‖ψ‖ |µ0 − λ0| .
This inequality can hold only as an equality because µ ∈ F ǫ‖·‖(χ;ψ), and the

proof is complete. �

Proposition 4.1 and Theorem 4.2 yield readily the following.

Corollary 4.3. Let χ, ψ ∈ X , with ψ 6= 0. Then, for any ǫ ∈ (0, 1),

Int
[

F ǫ‖·‖(χ;ψ)
]

=
{

µ ∈ C : ‖χ− λψ‖ >
√

1 − ǫ2 ‖ψ‖ |µ− λ|, ∀λ ∈ C} .
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5. The case of norms induced by inner products

In the special case of norms induced by inner products, we can fully describe
the Birkhoff-James ǫ-orthogonality set F ǫ‖·‖(χ;ψ). In particular, F ǫ‖·‖(χ;ψ) is

always a closed disk; this is the case for F 0.5
‖·‖2

(χ;ψ) in the left part of Figure 1.

Theorem 5.1. (For matrices, see [6, Section 5].) Let χ, ψ ∈ X with ψ 6= 0
and ǫ ∈ [0, 1), and suppose that the norm ‖ · ‖ is induced by an inner product

〈·, ·〉. Then the Birkhoff-James ǫ-orthogonality set of χ with respect to ψ is the

closed disk

F ǫ‖·‖(χ;ψ) = D
( 〈χ, ψ〉

‖ψ‖2
,

∥

∥

∥

∥

χ− 〈χ, ψ〉
‖ψ‖2

ψ

∥

∥

∥

∥

ǫ√
1 − ǫ2 ‖ψ‖

)

.

Proof. A scalar µ ∈ C lies in F ǫ‖·‖(χ;ψ) if and only if [4, 7]

ψ ⊥ǫ (χ− µψ),

or equivalently, if and only if

|〈ψ, χ− µψ〉| ≤ ǫ ‖ψ‖ ‖χ− µψ‖,
or equivalently, if and only if

〈ψ, χ− µψ〉 〈χ− µψ, ψ〉 ≤ ǫ2‖ψ‖2〈χ− µψ, χ− µψ〉,
or equivalently, if and only if

|〈χ, ψ〉|2
‖ψ‖4

−µ 〈ψ, χ〉
‖ψ‖2

−µ 〈χ, ψ〉
‖ψ‖2

+|µ|2 ≤ ǫ2
( ‖χ‖2

‖ψ‖2
− µ

〈ψ, χ〉
‖ψ‖2

− µ
〈χ, ψ〉
‖ψ‖2

+ |µ|2
)

,

or equivalently, if and only if
∣

∣

∣

∣

µ− 〈χ, ψ〉
‖ψ‖2

∣

∣

∣

∣

2

(1 − ǫ2) ≤ ǫ2

‖ψ‖2

∥

∥

∥

∥

χ− 〈χ, ψ〉
‖ψ‖2

ψ

∥

∥

∥

∥

2

.

The proof is complete. �
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