BIRKHOFF-JAMES *e*-ORTHOGONALITY SETS IN NORMED LINEAR SPACES

MILTIADIS KARAMANLIS AND PANAYIOTIS J. PSARRAKOS

Dedicated to Professor Natalia Bebiano on the occasion of her 60th birthday

ABSTRACT. Consider a complex normed linear space $(\mathcal{X}, \|\cdot\|)$, and let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$. Motivated by a recent work of Chorianopoulos and Psarrakos (2011) on rectangular matrices, we introduce the Birkhoff-James ϵ -orthogonality set of χ with respect to ψ , and explore its rich structure.

1. INTRODUCTION

The numerical range (also known as the field of values) of a square complex matrix $A \in \mathbb{C}^{n \times n}$ is defined as $F(A) = \{x^*Ax \in \mathbb{C} : x \in \mathbb{C}^n, x^*x = 1\}$ [8]. This range is a non-empty, compact and convex subset of \mathbb{C} , which has been studied extensively and is useful in understanding matrices and operators; see [2, 3, 8, 10] and the references therein. The numerical range F(A) is also written in the form (see [3, 10]) $F(A) = \{\mu \in \mathbb{C} : \|A - \lambda I_n\|_2 \ge |\mu - \lambda|, \forall \lambda \in \mathbb{C}\},$ where $\|\cdot\|_2$ denotes the spectral matrix norm (i.e., that norm subordinate to the euclidean vector norm) and I_n is the $n \times n$ identity matrix. As a consequence, F(A) is an infinite intersection of closed (circular) disks $\mathcal{D}(\lambda, \|A - \lambda I_n\|_2) =$ $\{\mu \in \mathbb{C} : \|\mu - \lambda| \le \|A - \lambda I_n\|_2\}$ ($\lambda \in \mathbb{C}$), namely,

(1.1)
$$F(A) = \bigcap_{\lambda \in \mathbb{C}} \left\{ \mu \in \mathbb{C} : \left| \mu - \lambda \right| \le \left\| A - \lambda I_n \right\|_2 \right\} = \bigcap_{\lambda \in \mathbb{C}} \mathcal{D} \left(\lambda, \left\| A - \lambda I_n \right\|_2 \right).$$

For two elements χ and ψ of a complex normed linear space $(\mathcal{X}, \|\cdot\|)$, χ is said to be *Birkhoff-James orthogonal* to ψ , denoted by $\chi \perp_{BJ} \psi$, if $\|\chi + \lambda \psi\| \ge \|\chi\|$ for all $\lambda \in \mathbb{C}$ [1, 9]. This orthogonality is homogeneous, but it is neither symmetric nor additive [9]. Moreover, for any $\epsilon \in [0, 1)$, χ is called *Birkhoff-James \epsilon-orthogonal* to ψ , denoted by $\chi \perp_{BJ}^{\epsilon} \psi$, if $\|\chi + \lambda \psi\| \ge \sqrt{1 - \epsilon^2} \|\chi\|$ for

²⁰⁰⁰ Mathematics Subject Classification. 46B99, 47A12.

Key words and phrases. norm, Birkhoff-James orthogonality, Birkhoff-James ϵ -orthogonality, numerical range, inner product.

¹

all $\lambda \in \mathbb{C}$ [4, 7]. It is worth mentioning that this relation is also homogeneous. In an inner product space $(\mathcal{X}, \langle \cdot, \cdot \rangle)$, with the standard orthogonality relation \bot , a $\chi \in \mathcal{X}$ is called ϵ -orthogonal to a $\psi \in \mathcal{X}$, denoted by $\chi \perp^{\epsilon} \psi$, if $|\langle \chi, \psi \rangle| \leq \epsilon ||\chi|| ||\psi||$. Furthermore, $\chi \perp \psi$ (resp., $\chi \perp^{\epsilon} \psi$) if and only if $\chi \perp_{BJ} \psi$ (resp., $\chi \perp^{\epsilon}_{BJ} \psi$) [4, 7].

Inspired by (1.1) and the above definition of Birkhoff-James ϵ -orthogonality, Chorianopoulos and Psarrakos [6] (see also [5] for a primer work) proposed the following definition for rectangular matrices: For any $A, B \in \mathbb{C}^{n \times m}$ with $B \neq 0$, any matrix norm $\|\cdot\|$, and any $\epsilon \in [0, 1)$, the Birkhoff-James ϵ -orthogonality set of A with respect to B is defined as

$$F_{\parallel\cdot\parallel}^{\epsilon}(A;B) = \{\mu \in \mathbb{C} : B \perp_{BJ}^{\epsilon} (A - \mu B)\} \\ = \left\{\mu \in \mathbb{C} : \|A - \lambda B\| \ge \sqrt{1 - \epsilon^2} \|B\| \, |\mu - \lambda|, \, \forall \lambda \in \mathbb{C}\right\}$$

(1.2)
$$= \bigcap_{\lambda \in \mathbb{C}} \mathcal{D}\left(\lambda, \frac{\|A - \lambda B\|}{\sqrt{1 - \epsilon^2} \|B\|}\right).$$

The Birkhoff-James ϵ -orthogonality set is a direct generalization of the standard numerical range. In particular, for n = m, $\|\cdot\| = \|\cdot\|_2$, $B = I_n$ and $\epsilon = 0$, we have $F_{\|\cdot\|_2}^0(A; I_n) = F(A)$; see (1.1) and (1.2). Moreover, $F_{\|\cdot\|}^{\epsilon}(A; B)$ is a *non-empty*, *compact* and *convex* subset of \mathbb{C} that lies in the closed disk $\mathcal{D}\left(0, \frac{\|A\|}{\sqrt{1-\epsilon^2}\|B\|}\right)$ and has interesting geometric properties [6].

In this note, we adopt ideas and techniques from [6] to introduce and study the Birkhoff-James ϵ -orthogonality set of elements of a complex normed linear space, generalizing results of [6]. In the next section, we give the definition of the set, and verify that it is always non-empty. In Section 3, we explore the growth of the set, and in Section 4, we derive characterizations of its interior and boundary. Finally, in Section 5, we describe the Birkhoff-James ϵ -orthogonality set when the norm is induced by an inner product.

2. The definition

Consider a complex normed linear space $(\mathcal{X}, \|\cdot\|)$ (for simplicity, \mathcal{X}), and let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$. For any $\epsilon \in [0, 1)$, the *Birkhoff-James* ϵ -orthogonality set of χ with respect to ψ is defined and denoted by

(2.1)
$$F_{\parallel \cdot \parallel}^{\epsilon}(\chi;\psi) = \left\{ \mu \in \mathbb{C} : \psi \perp_{BJ}^{\epsilon} (\chi - \mu \psi) \right\}.$$

It is straightforward to see that

$$F_{\parallel,\parallel}^{\epsilon}(\chi;\psi) = \left\{ \mu \in \mathbb{C} : \|\psi - \lambda(\chi - \mu\psi)\| \ge \sqrt{1 - \epsilon^2} \|\psi\|, \,\forall \lambda \in \mathbb{C} \right\}$$
$$= \left\{ \mu \in \mathbb{C} : \left\|\psi - \frac{1}{\lambda}(\chi - \mu\psi)\right\| \ge \sqrt{1 - \epsilon^2} \|\psi\|, \,\forall \lambda \in \mathbb{C} \setminus \{0\} \right\}$$
$$= \left\{ \mu \in \mathbb{C} : \frac{1}{|\lambda|} \|\lambda\psi - (\chi - \mu\psi)\| \ge \sqrt{1 - \epsilon^2} \|\psi\|, \,\forall \lambda \in \mathbb{C} \setminus \{0\} \right\}$$
$$= \left\{ \mu \in \mathbb{C} : \|\chi - (\mu - \lambda)\psi\| \ge \sqrt{1 - \epsilon^2} \|\psi\| |\lambda|, \,\forall \lambda \in \mathbb{C} \right\}$$
$$(2.2) = \left\{ \mu \in \mathbb{C} : \|\chi - \lambda\psi\| \ge \sqrt{1 - \epsilon^2} \|\psi\| |\mu - \lambda|, \,\forall \lambda \in \mathbb{C} \right\}$$

(2.3)
$$= \bigcap_{\lambda \in \mathbb{C}} \mathcal{D}\left(\lambda, \frac{\|\chi - \lambda\psi\|}{\sqrt{1 - \epsilon^2} \|\psi\|}\right).$$

The defining formula (2.3) implies that $F_{\|\cdot\|}^{\epsilon}(\chi;\psi)$ is a *compact* and *convex* subset of C, which lies in the closed disk $\mathcal{D}\left(0, \frac{\|\chi\|}{\sqrt{1-\epsilon^2} \|\psi\|}\right)$. Furthermore, it is apparent that for any $0 \leq \epsilon_1 < \epsilon_2 < 1$, $F_{\|\cdot\|}^{\epsilon_1}(\chi;\psi) \subseteq F_{\|\cdot\|}^{\epsilon_2}(\chi;\psi)$. By Corollary 2.2 of [9], it follows that $F_{\|\cdot\|}^{\epsilon}(\chi;\psi)$ is always *non-empty*. For

By Corollary 2.2 of [9], it follows that $F_{\|\cdot\|}^{\epsilon}(\chi;\psi)$ is always *non-empty*. For clarity, we give a short proof, adopting arguments from the proofs of Theorem 2.1, Theorem 2.2 and Corollary 2.2 of [9].

Proposition 2.1. For any $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$, and any $\epsilon \in [0,1)$, the Birkhoff-James ϵ -orthogonality set $F_{\parallel,\parallel}^{\epsilon}(\chi;\psi)$ is non-empty.

PROOF. Since $F^0_{\|\cdot\|}(\chi;\psi) \subseteq F^{\epsilon}_{\|\cdot\|}(\chi;\psi)$ for every $\epsilon \in [0,1)$, it is enough to prove that $F^0_{\|\cdot\|}(\chi;\psi) \neq \emptyset$. Applying the Hahn-Banach Theorem one can verify that for any nonzero $\psi \in \mathcal{X}$, there is a linear functional $T : \mathcal{X} \to \mathbb{C}$ such that $T(\psi) = \|T\| \|\psi\|$. As a consequence,

$$||T|| ||\psi|| = |T(\psi)| = |T(\hat{\chi} + \psi)| \le ||T|| ||\hat{\chi} + \psi||, \quad \forall \hat{\chi} \in \operatorname{Ker}(T),$$

and hence,

(2.4)
$$\psi \perp_{BJ} \hat{\chi}, \quad \forall \hat{\chi} \in \operatorname{Ker}(T).$$

For the scalar $\mu = \frac{T(\chi)}{\|T\| \|\psi\|}$, we have that $T(\chi - \mu\psi) = 0$, and thus, $\chi - \mu\psi \in \text{Ker}(T)$. By (2.4), $\psi \perp_{BJ} (\chi - \mu\psi)$, and hence, $\mu \in F^0_{\|\cdot\|}(\chi;\psi)$.

Next we derive some basic properties of the Birkhoff-James $\epsilon\text{-}\mathrm{orthogonality}$ set.

Proposition 2.2. Let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$, and let $\epsilon \in [0, 1)$. Then, for any nonzero $b \in \mathbb{C}$, $F_{\parallel,\parallel}^{\epsilon}(\chi; b\psi) = \frac{1}{b} F_{\parallel,\parallel}^{\epsilon}(\chi; \psi)$.

PROOF. By the defining formula (2.1) of the Birkhoff-James ϵ -orthogonality set $F_{\parallel \cdot \parallel}^{\epsilon}(\chi; \psi)$ and the homogeneity of the Birkhoff-James ϵ -orthogonality, it is straightforward that $F_{\parallel \cdot \parallel}^{\epsilon}(\chi; b\psi) = \{\mu \in \mathbb{C} : \psi \perp_{BJ}^{\epsilon} (\chi - (b\mu)\psi)\}.$

Proposition 2.3. Let χ and ψ be two nonzero elements of \mathcal{X} . Then, for any $\epsilon \in [0, 1)$,

$$\left\{\mu^{-1} \in \mathbb{C} : \mu \in F^{\epsilon}_{\|\cdot\|}(\chi;\psi), |\mu| \ge \frac{\|\chi\|}{\|\psi\|}\right\} \subseteq F^{\epsilon}_{\|\cdot\|}(\psi;\chi).$$

PROOF. Consider a $\mu \in F_{\|\cdot\|}^{\epsilon}(\chi; \psi)$ with $|\mu| \geq \frac{\|\chi\|}{\|\psi\|}$. Then, by (2.2), we have

$$|\lambda| \left\| \psi - \frac{1}{\lambda} \chi \right\| \ge \sqrt{1 - \epsilon^2} \left\| \psi \right\| |\lambda| \left| \frac{\mu}{\lambda} - 1 \right|, \quad \forall \lambda \in \mathbb{C} \setminus \{0\},$$

or

$$\begin{aligned} \|\psi - \lambda \chi\| &\geq \sqrt{1 - \epsilon^2} \, \|\psi\| \, |\mu| \, \left|\mu^{-1} - \lambda\right| &\geq \sqrt{1 - \epsilon^2} \, \|\chi\| \, \left|\mu^{-1} - \lambda\right|, \quad \forall \, \lambda \in \mathbb{C}. \end{aligned}$$

Thus, μ^{-1} lies in $F_{\|\cdot\|}^{\epsilon}(\psi; \chi)$.

Proposition 2.4. Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be two equivalent norms acting in \mathcal{X} , and suppose that for two real numbers C, c > 0, $c \|\zeta\|_a \leq \|\zeta\|_b \leq C \|\zeta\|_a$ for all $\zeta \in \mathcal{X}$. Then, for any $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$ and any $\epsilon \in [0, 1)$, it holds that

$$F_{\|\cdot\|_a}^{\epsilon}(\chi;\psi) \subseteq F_{\|\cdot\|_b}^{\epsilon'}(\chi;\psi),$$

where $\epsilon' = \sqrt{1 - \frac{c^2(1 - \epsilon^2)}{C^2}}.$

PROOF. Suppose $\mu \in F_{\|\cdot\|_a}^{\epsilon}(\chi; \psi)$. Then, it follows readily that

$$\|\chi - \lambda \psi\|_a \ge \sqrt{1 - \epsilon^2} \, \|\psi\|_a |\mu - \lambda|, \quad \forall \lambda \in \mathbb{C},$$

or

$$\|\chi - \lambda \psi\|_b \ge \sqrt{1 - \epsilon^2} \frac{c}{C} \|\psi\|_b |\mu - \lambda|, \quad \forall \lambda \in \mathbb{C},$$

or

$$\|\chi - \lambda \psi\|_b \ge \sqrt{1 - \sqrt{1 - \frac{c^2(1 - \epsilon^2)}{C^2}}^2} \|\psi\|_b |\mu - \lambda|, \quad \forall \lambda \in \mathbb{C},$$

and the proof is complete.

For example, we consider the vectors $\chi = \begin{bmatrix} 1\\ 2+i\\ -11i \end{bmatrix}$, $\psi = \begin{bmatrix} 1+i\\ 2+i\\ i \end{bmatrix} \in \mathbb{C}^3$, and recall that the (equivalent in \mathbb{C}^3) norms $\|\cdot\|_2$ and $\|\cdot\|_1$ satisfy $\|\zeta\|_2 \le \|\zeta\|_1 \le \sqrt{3} \|\zeta\|_2$ for all $\zeta \in \mathbb{C}^3$. The Birkhoff-James ϵ -orthogonality sets $F^{0.5}_{\|\cdot\|_2}(\chi;\psi)$, $F^{0.5}_{\|\cdot\|_1}(\chi;\psi)$ and $F^{\sqrt{0.75}}_{\|\cdot\|_1}(\chi;\psi)$ are estimated by the unshaded regions in the left,

middle and right parts of Figure 1, respectively. Each estimation results from having drawn 2000 circles of the form $\{\mu \in \mathbb{C} : |\mu - \lambda| = \|\chi - \lambda\psi\|\}$; see (2.2) and (2.3). The compactness and the convexity of the sets are apparent, and since $\sqrt{0.75} = \sqrt{1 - \frac{1 - 0.5^2}{3}}$, Proposition 2.4 is also confirmed.

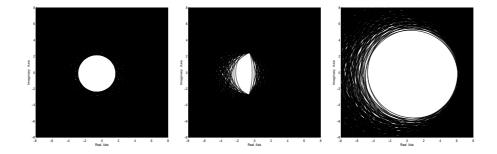


FIGURE 1. The sets $F_{\|\cdot\|_2}^{0.5}(\chi;\psi)$ (left), $F_{\|\cdot\|_1}^{0.5}(\chi;\psi)$ (middle), and $F_{\|\cdot\|_1}^{\sqrt{0.75}}(\chi;\psi)$ (right).

3. On the growth of $F_{\parallel \cdot \parallel}^{\epsilon}(\chi;\psi)$

As mentioned before, for $0 \leq \epsilon_1 < \epsilon_2 < 1$ and for any two elements χ and ψ of a complex normed linear space \mathcal{X} with $\psi \neq 0$, it holds that $F_{\|\cdot\|}^{\epsilon_1}(\chi;\psi) \subseteq F_{\|\cdot\|}^{\epsilon_2}(\chi;\psi)$.

Theorem 3.1. (For matrices, see [6, Proposition 2].) Let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$, and suppose that χ is not a scalar multiple of ψ . Then, for any $0 \leq \epsilon_1 < \epsilon_2 < 1$, $F_{\|\cdot\|}^{\epsilon_1}(\chi;\psi)$ lies in the interior of $F_{\|\cdot\|}^{\epsilon_2}(\chi;\psi)$.

PROOF. It is enough to prove that for any $\mu \in F_{\|\cdot\|}^{\epsilon_1}(\chi;\psi)$, there is a real $\rho_{\mu} > 0$ such that the disk $\mathcal{D}(\mu, \rho_{\mu})$ lies in $F_{\|\cdot\|}^{\epsilon_2}(\chi;\psi)$. By the defining formula (2.2) of the Birkhoff-James ϵ -orthogonality set $F_{\|\cdot\|}^{\epsilon}(\chi;\psi)$, for any $\mu \in F_{\|\cdot\|}^{\epsilon_1}(\chi;\psi)$,

$$\|\chi - \lambda \psi\| \ge \sqrt{1 - \epsilon_1^2} \|\psi\| |\mu - \lambda|, \quad \forall \lambda \in \mathbb{C},$$

or equivalently,

$$\|\chi - \mu \psi + (\mu - \lambda)\psi\| \ge \sqrt{1 - \epsilon_1^2} \|\psi\| |\mu - \lambda|, \quad \forall \lambda \in \mathbb{C}.$$

As a consequence,

$$\|\chi - \mu\psi + \lambda\psi\| \ge \sqrt{1 - \epsilon_1^2} \|\psi\| |\lambda| > \sqrt{1 - \epsilon_2^2} \|\psi\| |\lambda|, \quad \forall \lambda \in \mathbb{C}.$$

Thus, for every complex number $\lambda \neq 0$,

$$\|\chi - \mu\psi + \lambda\psi\| - \sqrt{1 - \epsilon_2^2} \|\psi\| |\lambda| \ge \left(\sqrt{1 - \epsilon_1^2} - \sqrt{1 - \epsilon_2^2}\right) \|\psi\| |\lambda| > 0.$$

Since χ is not a scalar multiple of ψ , it follows that $\|\chi - \mu\psi + \lambda\psi\| > 0$, and hence, the continuous function $f(\lambda) = \|\chi - \mu\psi + \lambda\psi\| - \sqrt{1 - \epsilon_2^2} \|\psi\| |\lambda|$ takes only positive values in the disk $\mathcal{D}(0, 1)$. Thus, $\inf_{\lambda \in \mathcal{D}(0, 1)} f(\lambda) = \min_{\lambda \in \mathcal{D}(0, 1)} f(\lambda) > 0$. This means that we can consider a real $\delta > 0$ such that

$$\delta \leq \min\left\{\min_{\lambda \in \mathcal{D}(0,1)} f(\lambda), \left(\sqrt{1-\epsilon_1^2} - \sqrt{1-\epsilon_2^2}\right) \|\psi\|\right\}.$$

For every $\lambda \in \mathbb{C}$ with $|\lambda| > 1$, we have

$$\|\chi - \mu\psi + \lambda\psi\| - \sqrt{1 - \epsilon_2^2} \|\psi\| |\lambda| \ge \left(\sqrt{1 - \epsilon_1^2} - \sqrt{1 - \epsilon_2^2}\right) \|\psi\| \ge \delta,$$

and thus,

$$\delta \leq \inf_{\lambda \in \mathbb{C}} \left\{ \|\chi - \mu \psi + \lambda \psi\| - \sqrt{1 - \epsilon_2^2} \|\psi\| |\lambda| \right\}.$$

As a consequence, for every $\xi \in \mathcal{D}\left(0, \frac{\delta}{\|\psi\|}\right)$,

$$\|\chi - (\mu + \xi)\psi + \lambda\psi\| \ge \|\chi - \mu\psi + \lambda\psi\| - \|\xi\psi\| \ge \sqrt{1 - \epsilon_2^2} \|\psi\| |\lambda|, \quad \forall \lambda \in \mathbb{C}.$$

Hence, $\mathcal{D}\left(0, \frac{\delta}{\|\psi\|}\right) \subseteq F_{\|\cdot\|}^{\epsilon_2}(\chi; \psi)$, and the proof is complete. \Box

Corollary 3.2. Let $\chi, \psi \in X$ with $\psi \neq 0$, and suppose that χ is not a scalar multiple of ψ . Then, for any $\epsilon \in (0, 1)$, $F_{\parallel,\parallel}^{\epsilon}(\chi; \psi)$ has a non-empty interior.

Proposition 3.3. Let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$. Then, $\chi = a\psi$ for some $a \in \mathbb{C}$ if and only if $F_{\parallel,\parallel}^{\epsilon}(\chi; \psi) = \{a\}$ for every $\epsilon \in [0, 1)$.

PROOF. If $\chi = a\psi$ for some $a \in \mathbb{C}$, then (2.2) yields

$$\begin{split} F_{\|\cdot\|}^{\epsilon}(\chi;\psi) &= F_{\|\cdot\|}^{\epsilon}(a\psi;\psi) \\ &= \left\{ \mu \in \mathbb{C} : \left\| (a-\lambda)\psi \right\| \geq \sqrt{1-\epsilon^2} \left\| \psi \right\| \left| \mu - \lambda \right|, \ \forall \, \lambda \in \mathbb{C} \right\} \\ &= \left\{ \mu \in \mathbb{C} : \left| a - \lambda \right| \geq \sqrt{1-\epsilon^2} \left| \mu - \lambda \right|, \ \forall \, \lambda \in \mathbb{C} \right\}. \end{split}$$

It is apparent that $a \in F_{\|\cdot\|}^{\epsilon}(a\chi;\psi)$. Furthermore, for any $\mu \neq a$ and $\lambda = a$, we have $0 = |a - \lambda| < \sqrt{1 - \epsilon^2} |\mu - \lambda|$, i.e., $\mu \notin F_{\|\cdot\|}^{\epsilon}(a\psi;\psi)$.

For the converse, suppose that $F_{\|\cdot\|}^{\epsilon}(\chi;\psi) = \{a\}$ for an $\epsilon \in (0,1)$. Then, by Corollary 3.2, χ is a scalar multiple of ψ , i.e., there is a $b \in \mathbb{C}$ such that $\chi = b\psi$. As a consequence,

$$|a-\lambda| \ge \sqrt{1-\epsilon^2} |b-\lambda|, \quad \forall \lambda \in \mathbb{C}.$$

For $\lambda = a$, it follows that |b - a| = 0, and the proof is complete.

By the proof of the previous proposition, it is clear that if $F_{\|\cdot\|}^{\epsilon}(\chi;\psi) = \{a\}$ for an $\epsilon \in (0,1)$, then $\chi = a\psi$, and consequently, $F_{\|\cdot\|}^{\epsilon}(\chi;\psi) = \{a\}$ for all $\epsilon \in [0,1)$.

Proposition 3.4. Let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$, and let $\epsilon \in [0, 1)$. Then, for any $a, b \in \mathbb{C}$, $F_{\|\cdot\|}^{\epsilon}(a\chi + b\psi; \psi) = a F_{\|\cdot\|}^{\epsilon}(\chi; \psi) + b$.

PROOF. If a = 0, then Proposition 3.3 yields $F^{\epsilon}_{\|\cdot\|}(a\chi;\psi) = \{0\} = 0$ $F^{\epsilon}_{\|\cdot\|}(\psi;\psi)$. If $a \neq 0$, then

$$\begin{split} F_{\|\cdot\|}^{\epsilon}(a\chi;\psi) &= \left\{ \mu \in \mathbb{C} : \|a\chi - \lambda\psi\| \ge \sqrt{1 - \epsilon^2} \|\psi\| \, |\mu - \lambda|, \, \forall \lambda \in \mathbb{C} \right\} \\ &= \left\{ \mu \in \mathbb{C} : \left\| \chi - \frac{\lambda}{a} \, \psi \right\| \ge \sqrt{1 - \epsilon^2} \, \|\psi\| \, \left| \frac{\mu}{a} - \frac{\lambda}{a} \right|, \, \forall \lambda \in \mathbb{C} \right\} \\ &= \left\{ \mu \in \mathbb{C} : \, \|\chi - \lambda\psi\| \ge \sqrt{1 - \epsilon^2} \, \|\psi\| \, \left| \frac{\mu}{a} - \lambda \right|, \, \forall \lambda \in \mathbb{C} \right\} \\ &= a \, F_{\|\cdot\|}^{\epsilon}(\chi;\psi). \end{split}$$

Furthermore, for any $a, b \in \mathbb{C}$,

$$\begin{split} F_{\|\cdot\|}^{\epsilon}(a\chi + b\psi;\psi) &= \left\{ \mu \in \mathbb{C} : \|a\chi + (b-\lambda)\psi\| \ge \sqrt{1-\epsilon^2} \|\psi\| \, |\mu-\lambda|, \, \forall \lambda \in \mathbb{C} \right\} \\ &= \left\{ \mu \in \mathbb{C} : \, \|a\chi - \lambda\psi\| \ge \sqrt{1-\epsilon^2} \, \|\psi\| \, |(\mu-b)-\lambda), \, \forall \lambda \in \mathbb{C} \right\} \\ &= \left\{ \mu \in \mathbb{C} : \, \mu - b \in F_{\|\cdot\|}^{\epsilon}(a\chi;\psi) \right\}, \end{split}$$

and the proof is complete.

If we allow the value $\epsilon = 1$, then (2.2) implies that $F^1_{\|\cdot\|}(A; B) = \mathbb{C}$. Furthermore, if χ is not a scalar multiple of ψ , then $F^{\epsilon}_{\|\cdot\|}(A; B)$ can be arbitrarily large for ϵ sufficiently close to 1.

Theorem 3.5. (For matrices, see [6, Proposition 4].) Let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$, and suppose that χ is not a scalar multiple of ψ . Then, for any bounded region $\Omega \subset \mathbb{C}$, there is an $\epsilon_{\Omega} \in [0, 1)$ such that $\Omega \subseteq F_{\parallel, \parallel}^{\epsilon_{\Omega}}(\chi; \psi)$.

PROOF. Without loss of generality, we may assume that the region Ω is compact. For the sake of contradiction, we also assume that for every $\epsilon \in [0, 1)$, there is scalar $\mu_{\epsilon} \in \mathbb{C}$ such that $\mu_{\epsilon} \notin F_{\|\cdot\|}^{\epsilon}(\chi; \psi)$. Then, there exist two sequences

 $\{\epsilon_n\}_{n\in\mathbb{N}}\subset[0,1)$ and $\{\mu_n\}_{n\in\mathbb{N}}\subset\Omega$ such that $\epsilon_n\longrightarrow 1^-$ and $\mu_n\notin F_{\|\cdot\|}^{\epsilon_n}(\chi;\psi)$ for all $n\in\mathbb{N}$. By the compactness of Ω , it follows that $\{\mu_n\}_{n\in\mathbb{N}}$ has a converging subsequence, say $\{\mu_{k_n}\}_{n\in\mathbb{N}}\subset\Omega$, which converges to a $\mu\in\Omega$. If $\mu\in F_{\|\cdot\|}^{\hat{\epsilon}}(\chi;\psi)$ for some $\hat{\epsilon}\in[0,1)$, then by Theorem 3.1, and without loss

If $\mu \in F_{\|\cdot\|}^{\epsilon}(\chi;\psi)$ for some $\hat{\epsilon} \in [0,1)$, then by Theorem 3.1, and without loss of generality, we may assume that μ lies in the interior of $F_{\|\cdot\|}^{\hat{\epsilon}}(\chi;\psi)$. Then there is an $n' \in \mathbb{N}$ such that $\mu_{k_n} \in F_{\|\cdot\|}^{\hat{\epsilon}}(\chi;\psi)$ for every $n \ge n'$. Moreover, there is an $n'' \in \mathbb{N}$ such that $\epsilon_{k_n} > \hat{\epsilon}$ for every $n \ge n''$. As a consequence, for every $n \ge \max\{n', n''\}, \mu_{k_n} \in F_{\|\cdot\|}^{\hat{\epsilon}}(\chi;\psi) \subseteq F_{\|\cdot\|}^{\epsilon_{k_n}}(\chi;\psi)$; this a contradiction. So, for every $\epsilon \in [0, 1), \mu \notin F_{\|\cdot\|}^{\epsilon}(\chi;\psi)$. Thus, for every $\epsilon_n = \sqrt{1 - \frac{1}{n^2}}, n \in \mathbb{N}$, there is a scalar $\lambda_n \in \mathbb{C}$ such that

$$\|\chi - (\mu - \lambda_n)\psi\| < \sqrt{1 - \left(\sqrt{1 - \frac{1}{n^2}}\right)^2} \|\psi\| |\lambda_n| = \frac{1}{n} \|\psi\| |\lambda_n|,$$

or

(3.1)
$$|\|\lambda_n\psi\| - \|\chi - \mu\psi\|| \le \|\lambda_n\psi - \chi - \mu\psi\| < \frac{1}{n} \|\psi\| |\lambda_n|,$$

or

$$|\lambda_n| \|\psi\|\left(1-\frac{1}{n}\right) < \|\chi-\mu\psi\|.$$

Hence, for every $n \geq 2$,

$$|\lambda_n| < \frac{\|\chi - \mu\psi\|}{\|\psi\| \left(1 - \frac{1}{n}\right)} \le 2 \frac{\|\chi - \mu\psi\|}{\|\psi\|}.$$

The bounded sequence $\lambda_2, \lambda_3, \ldots$ has a converging subsequence $\{\lambda_{k_n}\}_{n \in \mathbb{N}}$ which converges to a scalar $\lambda_0 \in \mathbb{C}$. By (3.1), it follows

$$\|\lambda_{k_n}\psi - \chi - \mu\psi\| < \frac{1}{k_n} \|\psi\| |\lambda_{k_n}|,$$

and as $n \longrightarrow +\infty$,

$$\|\lambda_0\psi - \chi - \mu\psi\| = 0$$

This is a contradiction because χ is not a scalar multiple of ψ .

Corollary 3.6. Let $\chi, \psi \in X$ with $\psi \neq 0$. If χ is not a scalar multiple of ψ , then

$$\mathbb{C} = \bigcup_{n \in \mathbb{N}} F_{\|\cdot\|}^{1-\frac{1}{n}}(\chi;\psi).$$

4. The interior and the boundary of $F_{\|\cdot\|}^{\epsilon}(\chi;\psi)$

Consider the Birkhoff-James ϵ -orthogonality set $F_{\|\cdot\|}^{\epsilon}(\chi;\psi)$, and denote its interior by Int $\left[F_{\|\cdot\|}^{\epsilon}(\chi;\psi)\right]$, and its boundary by $\partial F_{\|\cdot\|}^{\epsilon}(\chi;\psi)$.

Proposition 4.1. Let $\chi, \psi \in \mathcal{X}$, with $\psi \neq 0$. Then, for any $\epsilon \in [0, 1)$,

$$\operatorname{Int}\left[F_{\parallel\cdot\parallel}^{\epsilon}(\chi;\psi)\right] \subseteq \left\{\mu \in \mathbb{C} : \left\|\chi - \lambda\psi\right\| > \sqrt{1-\epsilon^2} \left\|\psi\right\| \left|\mu - \lambda\right|, \ \forall \lambda \in \mathbb{C}\right\}.$$

PROOF. If $\mu \in \text{Int}\left[F_{\|\cdot\|}^{\epsilon}(\chi;\psi)\right]$, then there is a real $\rho > 0$ such that $\mu + \rho e^{i\theta} \in F_{\|\cdot\|}^{\epsilon}(\chi;\psi)$ for every $\theta \in [0, 2\pi]$. Hence, for every $\lambda \in \mathbb{C}$,

$$|\chi - \lambda \psi|| \ge \sqrt{1 - \epsilon^2} \|\psi\| \|\mu + \rho e^{i\theta} - \lambda|, \quad \forall \theta \in [0, 2\pi].$$

Setting $\theta_{\lambda} = \arg(\mu - \lambda)$, we observe that

$$\|\chi - \lambda \psi\| \ge \sqrt{1 - \epsilon^2} \|\psi\| \|\mu + \rho e^{i\theta_\lambda} - \lambda\| > \sqrt{1 - \epsilon^2} \|\psi\| \|\mu - \lambda\|,$$

completing the proof. \Box

Theorem 4.2. (For matrices, see [6, Proposition 16].) Let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$, and let $\epsilon \in [0, 1)$. Suppose also that $\mu_0 \in F^{\epsilon}_{\parallel,\parallel}(\chi; \psi)$.

(i): The scalar μ_0 lies on the boundary $\partial F^{\epsilon}_{\|\cdot\|}(\chi;\psi)$ if and only if

$$\inf_{\lambda \in \mathbb{C}} \left\{ \left\| \chi - \lambda \psi \right\| - \sqrt{1 - \epsilon^2} \left\| \psi \right\| \left| \mu_0 - \lambda \right| \right\} = 0.$$

(ii): If $\epsilon > 0$, then $\mu_0 \in \partial F^{\epsilon}_{\|\cdot\|}(\chi; \psi)$ if and only if

$$\min_{\lambda \in \mathbb{C}} \left\{ \|\chi - \lambda \psi\| - \sqrt{1 - \epsilon^2} \|\psi\| |\mu_0 - \lambda| \right\} = 0,$$

or equivalently, if and only if $\|\chi - \lambda_0 \psi\| = \sqrt{1 - \epsilon^2} \|\psi\| \|\mu_0 - \lambda_0\|$ for some $\lambda_0 \in \mathbb{C}$.

PROOF. (i) Suppose that μ_0 is a boundary point of the Birkhoff-James ϵ -orthogonality set (recall (2.3))

$$F_{\|\cdot\|}^{\epsilon}(\chi;\psi) = \bigcap_{\lambda \in \mathbb{C}} \mathcal{D}\left(\lambda, \frac{\|\chi - \lambda\psi\|}{\sqrt{1 - \epsilon^2} \|\psi\|}\right).$$

Then, for any $\delta > 0$, there is a $\lambda_{\delta} \in \mathbb{C}$ such that

$$\|\chi - \lambda_{\delta}\psi\| < \sqrt{1 - \epsilon^2} \|\psi\| \|\mu_0 - \lambda_{\delta}\| + \delta$$

Since the quantity $\|\chi - \lambda_{\delta}\psi\| - \sqrt{1 - \epsilon^2} \|\psi\| |\mu_0 - \lambda_{\delta}|$ is nonnegative, as $\delta \longrightarrow 0^+$, it follows that $\inf_{\lambda \in \mathbb{C}} \{\|\chi - \lambda\psi\| - \sqrt{1 - \epsilon^2} \|\psi\| |\mu_0 - \lambda|\} = 0.$

For the converse, we assume that $\inf_{\lambda \in \mathbb{C}} \left\{ \|\chi - \lambda \psi\| - \sqrt{1 - \epsilon^2} \|\psi\| \|\mu_0 - \lambda\| \right\} = 0$ and $\mu_0 \in \operatorname{Int} \left[F_{\|\cdot\|}^{\epsilon}(\chi; \psi) \right]$. Then, by (2.3), there exists a real $\rho > 0$ such that

$$\mathcal{D}(\mu_0, \rho) \subseteq \operatorname{Int}\left[\mathcal{D}\left(\lambda, \frac{\|\chi - \lambda\psi\|}{\sqrt{1 - \epsilon^2} \,\|\psi\|}\right)\right], \quad \forall \, \lambda \in \mathbb{C}$$

As a consequence,

$$\|\chi - \lambda \psi\| - \sqrt{1 - \epsilon^2} \|\psi\| \, |\mu_0 - \lambda| > \sqrt{1 - \epsilon^2} \, \|\psi\| \, \rho > 0, \quad \forall \lambda \in \mathbb{C}.$$

This means that

$$\inf_{\lambda \in \mathbb{C}} \left\{ \|\chi - \lambda \psi\| - \sqrt{1 - \epsilon^2} \|\psi\| \|\mu_0 - \lambda\| \right\} > 0$$

which is a contradiction.

(ii) For every $\delta_n = \frac{1}{n}$ $(n \in \mathbb{N})$, there is a $\lambda_n \in \mathbb{C}$ such that

$$\|\chi - \lambda_n \psi\| < \sqrt{1 - \epsilon^2} \|\psi\| \|\mu_0 - \lambda_n\| + \delta_n,$$

or

$$\|\|\chi\| - \|\lambda_n\psi\|\| < \sqrt{1-\epsilon^2} \|\psi\| \|\mu_0 - \lambda_n\| + \frac{1}{n},$$

$$|\lambda_n| \|\psi\| - \|\chi\| < \sqrt{1 - \epsilon^2} \|\psi\| (\|\mu_0\| + \|\lambda_n\|) + \frac{1}{n}$$

Since $\epsilon > 0$, one can verify that

$$|\lambda_n| < \frac{\|\chi\| + \sqrt{1 - \epsilon^2} \, \|\psi\| \, |\mu_0| + 1}{\|\psi\| \, (1 - \sqrt{1 - \epsilon^2})}$$

i.e., the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ is bounded and has a converging subsequence $\lambda_{k_n} \longrightarrow \lambda_0$. As a consequence,

$$\|\chi - \lambda_{k_n}\psi\| < \sqrt{1 - \epsilon^2} \|\psi\| \|\mu_0 - \lambda_{k_n}\| + \frac{1}{k_n}, \quad \forall n \in \mathbb{N},$$

and as $n \longrightarrow +\infty$,

$$\|\chi - \lambda_0 \psi\| \le \sqrt{1 - \epsilon^2} \|\psi\| \|\mu_0 - \lambda_0\|.$$

This inequality can hold only as an equality because $\mu \in F_{\|\cdot\|}^{\epsilon}(\chi;\psi)$, and the proof is complete.

Proposition 4.1 and Theorem 4.2 yield readily the following.

Corollary 4.3. Let $\chi, \psi \in \mathcal{X}$, with $\psi \neq 0$. Then, for any $\epsilon \in (0, 1)$,

$$\operatorname{Int}\left[F_{\|\cdot\|}^{\epsilon}(\chi;\psi)\right] = \left\{\mu \in \mathbb{C}: \|\chi - \lambda\psi\| > \sqrt{1-\epsilon^2} \|\psi\| \, |\mu - \lambda|, \, \forall \, \lambda \in \mathbb{C}\right\}$$

5. The case of norms induced by inner products

In the special case of norms induced by inner products, we can fully describe the Birkhoff-James ϵ -orthogonality set $F^{\epsilon}_{\|\cdot\|}(\chi;\psi)$. In particular, $F^{\epsilon}_{\|\cdot\|}(\chi;\psi)$ is always a closed disk; this is the case for $F^{0.5}_{\|\cdot\|_2}(\chi;\psi)$ in the left part of Figure 1.

Theorem 5.1. (For matrices, see [6, Section 5].) Let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$ and $\epsilon \in [0, 1)$, and suppose that the norm $\|\cdot\|$ is induced by an inner product $\langle \cdot, \cdot \rangle$. Then the Birkhoff-James ϵ -orthogonality set of χ with respect to ψ is the closed disk

$$F_{\parallel\cdot\parallel}^{\epsilon}(\chi;\psi) = \mathcal{D}\left(\frac{\langle \chi,\psi\rangle}{\|\psi\|^2}, \left\|\chi - \frac{\langle \chi,\psi\rangle}{\|\psi\|^2}\psi\right\|\frac{\epsilon}{\sqrt{1-\epsilon^2}\|\psi\|}\right).$$

PROOF. A scalar $\mu \in \mathbb{C}$ lies in $F_{\parallel \cdot \parallel}^{\epsilon}(\chi; \psi)$ if and only if [4, 7]

$$\psi \perp^{\epsilon} (\chi - \mu \psi),$$

or equivalently, if and only if

$$|\langle \psi, \chi - \mu \psi \rangle| \leq \epsilon \|\psi\| \|\chi - \mu \psi\|,$$

or equivalently, if and only if

$$\langle \psi, \chi - \mu \psi \rangle \langle \chi - \mu \psi, \psi \rangle \le \epsilon^2 \|\psi\|^2 \langle \chi - \mu \psi, \chi - \mu \psi \rangle,$$

or equivalently, if and only if

$$\frac{|\langle \chi, \psi \rangle|^2}{\|\psi\|^4} - \mu \frac{\langle \psi, \chi \rangle}{\|\psi\|^2} - \overline{\mu} \frac{\langle \chi, \psi \rangle}{\|\psi\|^2} + |\mu|^2 \le \epsilon^2 \left(\frac{\|\chi\|^2}{\|\psi\|^2} - \mu \frac{\langle \psi, \chi \rangle}{\|\psi\|^2} - \overline{\mu} \frac{\langle \chi, \psi \rangle}{\|\psi\|^2} + |\mu|^2 \right),$$
 or equivalently, if and only if

$$\left|\mu - \frac{\langle \chi, \psi \rangle}{\|\psi\|^2}\right|^2 (1 - \epsilon^2) \le \frac{\epsilon^2}{\|\psi\|^2} \left\|\chi - \frac{\langle \chi, \psi \rangle}{\|\psi\|^2} \psi\right\|^2.$$

The proof is complete.

References

- [1] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1 (1935), 169–172.
- [2] F.F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Mathematical Society Lecture Note Series, Cambridge University Press, New York, 1971.
- [3] F.F. Bonsall and J. Duncan, Numerical Ranges II, London Mathematical Society Lecture Notes Series, Cambridge University Press, New York, 1973.
- [4] J. Chmielinski, On an ε-Birkhoff orthogonality, J. Ineq. Pure and Appl. Math., 6 (2005), Article 79.
- [5] Ch. Chorianopoulos, S. Karanasios and P. Psarrakos, A definition of numerical range of rectangular matrices, *Linear Multilinear Algebra*, 57 (2009), 459–475.

- [6] Ch. Chorianopoulos and P. Psarrakos, Birkhoff-James approximate orthogonality sets and numerical ranges, *Linear Algebra Appl.*, 434 (2011), 2089–2108.
- [7] S.S. Dragomir, On approximation of continuous linear functionals in normed linear spaces, An. Univ. Timişoara Ser. Ştiinţ. Mat., 29 (1991), 51–58.
- [8] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
- R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61 (1947), 265–292.
- [10] J.G. Stampfli and J.P. Williams, Growth conditions and the numerical range in a Banach algebra, *Tôhoku Math. Journ.*, **20** (1968), 417–424.

DEPARTMENT OF MATHEMATICS, NATIONAL TECHNICAL UNIVERSITY OF ATHENS, ZOGRAFOU CAMPUS, 15780 ATHENS, GREECE

E-mail address: kararemilt@gmail.com, ppsarr@math.ntua.gr