
C P S C 2 3 1 - FA L L 2 0 1 8

K A R E L T H E R O B O T
C O M E S T O C A L G A R Y

S O N N Y C H A N , U N I V E R S I T Y O F C A L G A R Y

2

This handout is an abridged adaptation of

Karel the Robot Learns Java by Eric Roberts

(Stanford University, 2005).

We are adapting and making use of these educational materials for cpsc 231 under a Creative Commons
licence (cc by-nc-sa 4.0). Terms of the licence can be found at https://creativecommons.org/licenses/
by-nc-sa/4.0/. The original materials can be found at https://see.stanford.edu/Course/CS106A.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://see.stanford.edu/Course/CS106A

chapter 1

Introducing Karel the Robot

What is Karel?

Karel is a very simple, fictitious robot living in a very simple, ficti-
tious world. Karel the Robot was invented by Richard E. Pattis in
1981,1 and joins us in this course to help you learn the fundamentals

1 Richard E. Pattis. Karel the Robot: A
Gentle Introduction to the Art of Program-
ming. John Wiley & Sons, 2nd edition,
1995

of computer science.
Karel can understand and execute a very small set of predefined

commands, but by giving these commands to Karel in various com-
binations, you can get him to perform some very interesting tasks
in his world. The process of specifying commands to Karel is called
programming. As simple as the commands and the world are, you will
soon appreciate that there is an intricate art to doing this.

When you program Karel to perform a task, you must write out
the commands in a very precise manner so that the Karel can cor-
rectly interpret what you have instructed him to do. The format and
particular layout with which you must specify these commands are
called syntactic rules. The set of commands and the syntactic rules
together define the Karel programming language.

You may already know that Python is also a computer program-
ming language. Indeed, Python is the language that we will be
spending the majority of cpsc 231 working in. We start you off with
Karel the Robot rather than with Python for one key reason: Karel’s
programming language is extremely small in the sense that it has
very few commands and rules. We can learn the entirety of the lan-
guage in just a few hours, leaving us plenty of time to focus on what
we would argue is the most important aspect of computer science:
computational problem solving.

Python is a very intricate real-world programming language with
many nuances that can take a lifetime to learn and master. Working
with Karel allows us to concentrate on solving problems and to get to
the essence of programming without getting caught up in the details
of the language. Our version of Karel’s programming language is
designed to have the same structure and fundamental elements that
a Python program has, so that you will have a graceful transition to
writing programs in Python later on.

4 karel the robot comes to calgary

Karel’s World

Karel the Robot lives in a rectangular world filled with horizontal
streets running east-west and vertical avenues running north-south.
The streets and avenues are evenly spaced and form a grid. At any
moment in time, Karel stands at the intersection of a street and an
avenue, which we naturally call a street corner, and faces one of the
four cardinal directions: north, east, south, or west. The streets and
avenues are numbered and the intersections are marked by small +
symbols as shown in the sample Karel world of Figure 1.

Figure 1: A sample world that contains
all elements that Karel will encounter.
Here, Karel is standing in his favourite
starting location, the intersection of 1st
street and 1st avenue, facing east.

You can see several other elements of Karel’s world in this ex-
ample. The grey diamond-shaped object in front of Karel is called a
beeper. As Richard Pattis describes them, beepers are “plastic cones
that emit a quiet beeping noise.” Karel can detect the presence or
absence of a beeper located at the intersection on which he is stand-
ing, and beepers are the only objects in Karel’s world that he can
manipulate.

The solid lines within the outer rectangle of Figure 1 are walls.
Walls block Karel’s passage and create obstacles that Karel must walk
around. As you can see, Karel’s world is always surrounded by an
outer boundary of walls. The world itself can have different dimen-
sions (number of streets/avenues) depending on the requirements of
the task or problem that Karel is working on.

Karel’s Commands

The “out-of-the-box” set of instructions that Karel can understand
and execute is extremely small. He only knows how to do four
things! The commands are as follows:

move() instructs Karel to move forward one block. Karel cannot
move if there is a wall in his way and will execute an error shutoff
in such a situation instead.

turn_left() instructs Karel to turn 90 degrees to the left (counter-
clockwise when observing from overhead).

pick_beeper() instructs Karel to pick up one beeper from the loca-
tion he is standing at and place it in his beeper bag. If no beeper is
present at his location, he executes an error shutoff instead.

put_beeper() instructs Karel to take a beeper from his bag and place
it at his current location. If he has no beepers left in his bag, he
will execute an error shutoff.

You will notice that Karel’s two-word commands have the words
connected by an underscore (_) character. This is part of the syntactic
rules of the language, where each instruction must be a continuous

introducing karel the robot 5

string of characters, not separated by a space. The empty parentheses
that follow each instruction are also part of the syntax of the instruc-
tion. For now, you can safely think of it as punctuation that must
follow each instruction, much like how we punctuate sentences with
periods.

Some of these commands require the world or Karel to be in a cer-
tain state before they can complete. For example, Karel must have at
least one beeper in his bag before he can put a beeper down. If Karel
attempts to execute a command that cannot complete correctly, such
as moving through a wall or picking up a non-existent beeper, he will
stop and shut himself off for safety reasons. No further commands
will execute.

Figure 2: Karel has executed an error
shutdown after running into a wall.

It may appear that, with just these four primitive instructions,
Karel’s capabilities would be rather limited. This couldn’t be further
from the truth because, as you’ll learn later in your studies of com-
puter science, Karel is actually capable of solving incredibly complex
and intricate problems. A hallmark of the Karel programming lan-
guage is the ability to create new instructions by combining existing
ones, and teaching Karel new commands is an important part of the
programming process that you will learn.

chapter 2

Programming Karel

There is an age-old adage in computer science that says com-
puter programming is a skill best learned through experience and
practice. Like many other disciplines (art and drawing come to
mind), a concept may seem very clear and simple to you when you
read about it, or when an instructor shows it to you, but turns out to
be very challenging for you to put into practice. As we work through
examples of programming Karel here, we encourage you to actively
explore, investigate, and tinker with the programs yourself to under-
stand how the system works. Let’s get our hands dirty!

Hello Karel

Karel programs are created by writing instructions in a plain text file
(named with a .py extension), carefully following the syntactic rules
of the Karel programming language. We often use the colloquial term
“code” to refer to such program text. A listing of a very simple, but
complete Karel program is shown below.

beeper-picking-karel.py

"""

This simple Karel the Robot example contains instructions that

cause Karel to move forward one block, pick up a beeper, then

move ahead to the next corner.

"""

from karel import *

begin_karel_program()

instructions for Karel start here

move()

pick_beeper()

move()

end_karel_program()

The first several lines of text in the file are surrounded by lines
containing exactly three quotes each ("""), and are highlighted in

8 karel the robot comes to calgary

blue in the listing. These lines of text together constitute a comment
in the code. Any text following a # on a line, such as the one in the
middle of the listing, is also a comment.

Comments in the code text are completely ignored by Karel, and
have no bearing on what he does or how he interprets the instruc-
tions in the program. However, they play a very important role in the
practice of programming in that they communicate important infor-
mation to the readers of the code. Remember that when you write a
program, you should not write it for a computer to understand, but
write it for people to understand. The person reading your code my
be a friend, colleague, boss, stranger, or even yourself a few years
down the road!

Our version of Karel the Robot actually runs inside the Python
environment (which probably comes as no surprise to you). The first
statement in the program,

from karel import *

tells Python to load all of the Karel commands from the karel mod-
ule. Every Karel program you write should start with this statement.

The next instruction, begin_karel_program(), tells Karel to start
interpreting and executing commands. This is paired with the
end_karel_program() instruction at the end of the program which
tells Karel to stop executing commands. Thus, whenever you write a
Karel program, every instruction you want Karel to execute should
be sandwiched between the instruction pair begin_karel_program()
and end_karel_program(). We don’t actually know what Karel will
do if you forget these, or put instructions outside this sandwich!

Finally, after the one-line comment, we see the instructions that we
actually want Karel to execute:

move()

pick_beeper()

move()

Karel with carry out these commands as faithfully as he can, in order
from top to bottom. If at any time his present state, or the state of
the world, does not allow him to carry out your command, Karel will
execute an error shutoff.

Figure 3: The initial state of our simple
example world is shown on top. After
running our very first Karel program,
you’ll see what’s just above.

If you ran this sample program with Karel in the sample world
previously shown, the end result would look like that illustrated in
Figure 3. And that’s all there is to programming Karel!

A Slightly More Interesting Problem

Keeping the same example world as before (Figure 1), suppose we
would like Karel to perform a slightly more complex task. We want
Karel to pick up the beeper located at the corner of 1st street and 2nd

programming karel 9

avenue, walk over to 2nd street and 5th avenue, put the beeper down
there, and finally move forward to 6th avenue. The initial and desired
final state of the world are shown below.

Figure 4: What we want Karel to do in
this slightly more interesting problem.

The first part is easy: we can start with the same three commands
as before to bring us to 1st street and 3rd avenue with the beeper.
From there, we can turn_left() to face north, then move() onto 2nd
street, resulting in the configuration shown on the right.

At this point, you get a chance to practice thinking like a computer
scientist. You would now like to turn right so that you can continue
along 2nd street, but Karel has no such command available. Perhaps
you might be able to accomplish what you want using only what
you have available? Of course, it turns out you can achieve the same
effect (remember that Karel is incredibly capable), albeit taking a
little longer, by turning left three times. To complete the task, you can
ask Karel to move forward twice, put the beeper down, and move
forward one last time. The final program listing is shown below.

beeper-toting-karel.py

"""

This program instructs Karel to pick up a beeper from 1st street

and carry that beeper to the centre of a ledge on 2nd street.

"""

from karel import *

begin_karel_program()

move()

pick_beeper()

move()

turn_left()

move()

turn_left()

turn_left()

turn_left()

move()

move()

put_beeper()

move()

end_karel_program()

10 karel the robot comes to calgary

Defining New Instructions

One drawback you may have noticed when reading the program
from the previous program is that, even though we are able to turn
left three times to make a right turn, the intent isn’t necessarily clear
from just looking at the program code. Furthermore, if we ever
wanted to program Karel to perform a task that required many right
turns, having to write turn_left three times repeatedly would start
to get rather tedious.

Fortunately, the Karel programming language provides one key
mechanism to help us with this problem: the ability to define new
instructions, or subroutines, for Karel by composing existing ones.
This is much more than a convenience, as our ability to name the
new instructions descriptively allow us to create and communicate
abstractions for ever more complex tasks. Thinking in terms of such
abstractions is the cornerstone of the art of computer programming.

We define a new instruction using the following syntax:

def 〈new instruction name〉():
〈commands that make up the instruction〉

The new instruction name must be a continuous string of characters
that begins with a letter, and can include letters, numbers, and under-
scores. You can otherwise name the instruction whatever you’d like,
though it’s obviously best to be descriptive wherever possible. The
the new instruction can be composed of a sequence of commands
including the primitive Karel instructions, other instructions you pre-
viously defined, or the control statements we’ll see later. One very
important syntactical thing to note is that each instruction that be-
longs to the sequence of commands in your new instruction must
be written indented by exactly four spaces.1 Spaces are shown as 1 Because of this strict requirement on

the format of indentation when defin-
ing new instructions, or using other
statements you’ll see later, we strongly
recommend using a “proper” code
editor to write your Karel programs.
A good text editor for programming
will automatically insert four spaces
when you press the “tab” key on your
keyboard. We don’t want to get into
specific recommendations here, but
suffice it to say that using your word
processor to write Karel programs is
probably not a good idea!

characters above to make the required syntax clear.
Using this new mechanism, we can define a new turn_right in-

struction as follows:

def turn_right():

turn_left()

turn_left()

turn_left()

We can now write a revised and more conceptually clear version of
beeper-toting-karel.py as shown below.

beeper-toting-karel.py

"""

This program instructs Karel to pick up a beeper from 1st street

and carry that beeper to the centre of a ledge on 2nd street.

"""

from karel import *

programming karel 11

def turn_right():

"""

Turns Karel 90 degrees to the right by turning left thrice.

"""

turn_left()

turn_left()

turn_left()

begin_karel_program()

move()

pick_beeper()

move()

turn_left()

move()

turn_right()

move()

move()

put_beeper()

move()

end_karel_program()

Problem Decomposition

With our most powerful tool now in hand, let’s see if we can program
Karel to solve another problem. If you’ve ever driven in Calgary after
a long, hard winter, you will have noticed that the roads are full of
gigantic potholes that can swallow a rabbit whole. Wouldn’t it be
nice if Karel would help us fill some of those potholes?

Imagine that Karel is travelling west to east along a “road” with a
pothole in it, as shown in Figure 5. His job is to fill the pothole, with
a beeper of course, so that the final world looks like that shown on
the right. If you were to use only the four primitive Karel commands
to solve this problem, the body of your program may look like this:

Figure 5: A “road” with a pothole
in it is shown on the top. The world
immediately below shows how Karel
has filled the pothole with a beeper.

begin_karel_program()

move()

turn_left()

turn_left()

turn_left()

move()

put_beeper()

turn_left()

turn_left()

move()

turn_left()

turn_left()

turn_left()

move()

end_karel_program()

12 karel the robot comes to calgary

By defining and using new instructions,
we can make the code more intuitive
and informative, like this:

begin_karel_program()

move()

turn_right()

move()

put_beeper()

turn_around()

move()

turn_right()

move()

end_karel_program()

If were to apply what we learned previously to define two new
instructions, turn_right() and turn_around(), we could rewrite the
main section of the program to look like what’s shown on the right.
If you read through this revised section, you should notice that it is
also easier to interpret and understand what Karel is doing. This is
the power of abstraction.

The process of breaking a large problem down into smaller pieces
that are easier to solve is called problem decomposition. As you can
probably guess, you’ll be doing a lot of this over the semester, and
hopefully throughout your degree. We refer to the component parts
of the larger problem as subproblems.

Looking at the pothole problem a bit more, you might think that it
would be most reasonable to decompose it into the following tasks: A program body that corresponds

directly to our tasks may look like this:

begin_karel_program()

move()

fill_pothole()

move()

end_karel_program()

1. Move up to the pothole.

2. Fill the hole by dropping a beeper into it.

3. Move to the next street corner.

A corresponding, descriptive program body would then ideally look
like what’s shown on the right.

We can certainly achieve this by putting the commands required to
fill a pothole into the definition of a new instruction. A final program
using this decomposition may look like the listing below.

pothole-filling-karel.py

"""

This program instructs Karel to fill a single pothole on 2nd avenue.

"""

from karel import *

def turn_right():

turn_left()

turn_left()

turn_left()

def turn_around():

turn_left()

turn_left()

def fill_pothole():

turn_right()

move()

put_beeper()

turn_around()

move()

turn_right()

begin_karel_program()

move()

programming karel 13

fill_pothole()

move()

end_karel_program()

Which Decomposition Should I Choose?

The problem decomposition we chose to solve the pothole problem
in the previous section seems to be pretty intuitive and reasonable
enough. However, you can imagine that it’s not the only decompo-
sition that would solve the pothole problem correctly. For example,
you might have considered this like:

1. Move forward and fill the pothole underneath.

2. Move to the next street corner.

Or perhaps another decomposition with the following steps:

1. Move forward and down into the pothole.

2. Fill the pothole that Karel is standing in.

3. Move up out of the pothole and forward.

We can see that each of these strategies would ultimately achieve
the same goal. Which one should we choose to use? Is there a “best”
choice?

In general, choosing how to decompose a larger problem will be
one of the most difficult design decisions you will need to make as
a programmer. Typically, the more complex a problem is, the more
challenging it will be to choose an appropriate decomposition of it.
The following guidelines may help:

• Each subproblem should address a conceptually simple task. No matter
how many, or how few, commands go into the definition of a new
instruction, it should end up accomplishing a conceptual task that
is itself easy to describe. If it’s easy for you to describe the effect of
a new instruction with a simple and concise name, you probably
have a good decomposition.

• Each subproblem should address its task in as general a context as possi-
ble. We would like to have instructions that are useful in a variety
of different situations. A decomposition that breaks the program
up into instructions that solve common subproblems in a variety
of related situations is likely superior to a decomposition that only
works in a very specific and particular situation.

Given the two guidelines above, we can see that our final choice of
decomposition from the previous section is preferable to the alterna-
tives discussed here.

chapter 3

Control Statements

The ability to define new instructions for Karel gave us the in-
credibly powerful tool of problem decomposition, but even with this
tool, Karel’s capabilities are quite limited. New instructions are es-
sentially just shorthand for a longer sequence of commands, and
Karel ultimately just executes a sequence of his four built-in com-
mands in a fixed order, oblivious to the world around him. A nicely
decomposed program is functionally no different from a the mono-
lithic sequence of the same instructions that Karel ends up following.

In order to fully unlock Karel’s problem-solving potential, we
must allow Karel to observe the state of his world and to use this
information to decide which set of instructions to execute. Statements
that affect the order in which a program executes commands are
called control statements. The Karel programming language has two
types of control statements:

Conditional statements indicate that a certain set of instructions should
be executed only if a particular condition is true.

Iterative statements specify that a certain set of instructions should be
executed repeatedly in what we call a loop, either for a predeter-
mined number of times, or while a particular condition is true.

Control statements can be placed wherever you may write any
other Karel instruction (e.g. in the main instruction block of your
program or under the definition of a new instruction). These control
statements constitute the final element of the Karel programming lan-
guage. We’ll briefly examine the use of each type of control statement
in the sections that follow.

Condition Tests

Conditional statements provide the means for Karel to examine the
state of his world and react accordingly. Let’s revisit the pothole
filling problem as a simple example of where this may be helpful.
Suppose that another robot—perhaps an inferior model—has already

16 karel the robot comes to calgary

come by to repair potholes on the road. Some potholes may already
have been filled, but others might have been missed, and it is Karel’s
job to ensure that every pothole is filled. Thus, before Karel takes
action to fill a pothole with a beeper, he would like to check if there is
already a beeper filling the pothole to avoid placing a second one.

There are a total of nine different conditions that Karel can test,
including the one he needs for the new pothole problem. These are
shown in Table 1. At any moment while Karel is executing your
program, each of these conditions is either true or false.

Condition Meaning

front_is_clear() No wall is in front of Karel
left_is_clear() No wall is blocking Karel on the right
right_is_clear() No wall is blocking Karel on the left
beepers_present() There is a beeper where Karel is standing
beepers_in_bag() Karel has at least one beeper left in his bag
facing_north() Karel is facing north
facing_east() Karel is facing east
facing_south() Karel is facing south
facing_west() Karel is facing west

Table 1: The nine conditions that Karel
can test about himself or the world
around him.

Like the names of the four built-in Karel commands, words in the
condition names are separated by underscores. The empty parenthe-
ses following each condition are part of the syntax, and show that the
condition test is being applied, just like executing an instruction. You
can also test the opposite of any of these conditions. For example,

not front_is_clear()

evaluates true if Karel is being blocked by a wall in front of him.
Note that you must separate the word “not” from the base condition
with a space, and not an underscore.

In the Karel programming language, the if statement allows you
to specify a set of instructions for Karel to execute only if a certain
condition is true. Its syntax is as follows:

if 〈condition〉:
〈statements executed only if condition is true〉

The 〈condition〉 can be any of those listed in Table 1, or its opposite.
Like the definition of new instructions, every statement that belongs
to the group of statements executed only if the condition is true must
be written indented by four spaces (shown as above).

Using the if statement, we can update Karel’s pothole filling pro-
gram to account for the other robot’s work as follows:

def fill_pothole():

turn_right()

move()

control statements 17

if not beepers_present():

put_beeper()

turn_around()

move()

turn_right()

Note that the put_beeper() command is now written indented
by eight spaces total. It belongs within the if conditional, requir-
ing four spaces, which itself appears within the definition of the
fill_pothole() instruction, requiring an additional four spaces.

Even within this simple example, you can begin to see the nested
control structure that most real-world programs take. If you were
wondering whether or not an if statement can appear within the
statement set of another if condition test, the answer is yes, of
course, and this happes all the time. Suppose you wanted to add
one more test to ensure that Karel has a beeper before filling the pot-
hole with it, so that doesn’t execute an error shutoff if he runs out of
beepers on the job, you may write something like this:

if not beepers_present():

if beepers_in_bag():

put_beeper()

Sometimes you may want to divide your program into two dif-
ferent courses of action based on a condition to solve a particular
problem. For example, you may want a certain set of instructions to
executed only if a condition is true, and a different set of instructions
to be executed if the condition is false. There is an extended form of
the if statement that allows you to do exactly that:

if 〈condition〉:
〈statements executed only if condition is true〉

else:

〈statements executed only if condition is false〉

Again, note the careful way in which the statements must be in-
dented when written.

Repetition

Many problems you will solve with Karel will require repeating sets
of instructions in various ways. After all, isn’t that what robots and
computers excel at? Unlike humans, they never seem to complain
when you ask them to repeat a task hundreds, thousands, or even
millions of times!

We can use the pothole filling example yet again to demonstrate
the ease and power of repetition. More often than not, you’ll see
our roads in spring covered with many more than a single pothole.
What good is a program can only fill one pothole? Consider the first

18 karel the robot comes to calgary

scenario below, where Karel is standing on a street full of potholes
(which happen to be spaced evenly apart) to fill.

Figure 6: A long road with many
potholes for Karel to fill.

If you’ve been following our examples, you should notice that
this problem can be solved by repeating the instructions in the main
body of pothole-filling-karel.py five times. And if you’re also
cringing at the thought of having to type out those instructions five
times over, that’s a very good sign! Modern text editors do give us a
pretty convenient shortcut for doing this, via the “copy” and “paste”
commands, but this would break one of our golden rules of program-
ming: Never copy and paste code!1

1 Except for some special situations,
which do occur pretty often. So it’s
more of a recommendation. But we
firmly believe that you will be adopting
very good habits if you can refrain from
copy-pasting code.

The first kind of iterative statement, the for statement, help us to
do exactly what we want in this case. Its syntax is as follows:

for i in range(〈count〉):
〈statements repeated count times〉

The sequence of statements appearing indented under the for will be
repeated 〈count〉 number of times. The same four-space indentation
syntax rules apply here, though we haven’t explicitly shown the
spaces this time. The repetition 〈count〉 must be a positive integer.

You may also be wondering why the
syntax of a for statement appears
much less simple and graceful than
the others you’ve learned. The reason
is that other programming languages
use the same syntax to produce more
complex and intricate types of iteration
than Karel needs or understands.
When programming Karel, just copy
the syntax shown exactly and replace
〈count〉 with a number.

One limitation with the for statement is that it is only useful when
you know in advance the number of repetitions you need. When
designing programs to solve real-world problems, you might often
want to repeat instructions until a certain condition of the world is
met. For example, it seems an unlikely scenario that Karel can count
on having exactly five potholes to fill. Wouldn’t it be nice to write a
program that instructs Karel to fill potholes until he gets to the end of
the road? Such a program would also work, without modification, on
other roads with potholes spaced two avenues apart, like the one on
the right.

Figure 7: Karel should also be able to
fill the pothole in this short little road
by running the same program.

The while control statement provides us exactly the functionality
we need to accomplish this. Its syntax is as follows:

while 〈condition〉:
〈statements repeated while condition is true〉

This instructs Karel to repeat a sequence of instructions while a spec-
ified 〈condition〉 is true. The usual indentation syntax rules apply.
Karel tests the condition before executing the first instruction in the
repeated set each time. If ever the condition evaluates false, including
on the first test, Karel skips over the statements indented under the
while and continues merrily along with the rest of your program.

control statements 19

In our pothole examples, Karel reaches the end of the road when
the eastern wall of the world is directly in front of him. Thus, we can
use the front_is_clear() condition to detect when Karel has made
it to the end of the road. Incorporating these control statements, we
can now write the program to fill any number of potholes spaced two
avenues apart, shown in the listing below. We call such a program
more general (as opposed to specific) than the ones we studied in the
previous chapter because the same program can be used to solve the
problem described in many worlds with different configurations.
Generality is usually a very desirable trait.

road-repair-karel.py

"""

This program instructs Karel to fill potholes spaced two avenues

apart along a road until he reaches the end.

"""

from karel import *

def turn_right():

turn_left()

turn_left()

turn_left()

def turn_around():

turn_left()

turn_left()

def fill_pothole():

turn_right()

move()

if not beeper_is_present():

put_beeper()

turn_around()

move()

turn_right()

begin_karel_program()

while front_is_clear():

move()

fill_pothole()

move()

end_karel_program()

Solving General Problems

Programs that can solve general problems in an elegant and efficient
manner are in many ways the holy grail for computer programmers.
In the real world, the activities of testing, debugging, and maintain-
ing program code often take up much more time than it does to cre-
ate the code itself. Thus, the more times and situations under which

20 karel the robot comes to calgary

you can use a well tested and verified program, the better.
Looking at our pothole problem one last time, as general as it al-

ready is, it still relies on some specific conditions that are unlikely to
be true. Namely, the requirement that potholes are exactly two av-
enues apart seems rather limiting. We would ideally want to write a
pothole filling program that works with as few specific requirements
as possible. For example:

• The program should work correctly on roads of any arbitrary length.
Although we do need a way to know when we’ve reached the end.

• The potholes may occur at any position on the road. A pothole is iden-
tify by an opening in the wall that represents the surface of the
road below Karel, but there should be no restrictions on their
number or spacing.

• Existing potholes may already have been repaired. Karel should not
place an additional beeper in potholes that are already filled.

begin_karel_program()

while front_is_clear():

if right_is_clear():

fill_pothole()

move()

end_karel_program()

Writing the general version of the program requires us the rethink
the strategy. Instead of having the while loop in the main part of
the program repeatedly execute fill_pothole(), we should get it
to check first whether there is a pothole to the south of Karel. The
required change in the code isn’t much, and you can rewrite the main
part of the program as shown on the right.

Figure 8: Karel fills a bunch of irregular
potholes on the road.

If you run the program with this modification on the world shown
on the left of Figure 8, you should get the output shown on the right.
Everything looks fine and dandy, right? What would happen if you
ran the program in the very similar world shown in Figure 9? You’ll
notice that Karel missed a pothole!

Figure 9: Oops! Karel missed a pothole!

This is an example of a commonly-encountered programming
mistake which we call an “off-by-one” error, or a “fencepost” error.
The latter term comes from the analogous problem of planting posts
to erect a fence. If you wanted to build a 10 metre fence that requires
a post to support it every metre, how many fenceposts do you need
in total? (Ten, right? No, we actually need eleven—don’t forget the
last one on the end!) This example also teaches us the importance of
testing our programs in a variety of situations that they are supposed
to work in.

control statements 21

Karel’s problem is essentially the same as the fence problem. To
repair a road seven blocks long, he needs to check for seven potential
potholes, but only needs to move forward six times to do so. The
best way to fix our program is to introduce one more instruction that
abstracts the task of checking for a pothole, then rewrite the main
section of the program to reflect our fence building strategy. Below is
a listing of our final pothole repair program.

road-repair-karel.py

"""

This program instructs Karel to fill potholes spaced two avenues

apart along a road until he reaches the end.

"""

from karel import *

def turn_right():

turn_left()

turn_left()

turn_left()

def turn_around():

turn_left()

turn_left()

def fill_pothole():

turn_right()

move()

if not beeper_is_present():

put_beeper()

turn_around()

move()

turn_right()

def check_for_pothole():

if right_is_clear():

fill_pothole()

begin_karel_program()

while front_is_clear():

check_for_pothole()

move()

check_for_pothole() # final "fencepost"

end_karel_program()

chapter 4

Stepwise Refinement

Even with the simple problems we’ve encountered thus far, you
can see there are many different programs we can write that would
all solve the problem correctly. Computer programming is often
called an “art”—it’s actually not that different from essay writing,
really—and one key aspect of this art is choosing which of the many
correct alternatives to employ for the problem.

When programming to solve computational problems, we would
naturally want to write code that is concise, correct, simple to read,
and easy to understand. But aside from going with our gut instincts
(which is usually good), how might we accomplish this?

As you might expect, programmers have contemplated this for
decades. Much of our understanding and knowledge on the subject
has been collected and studied under the discipline of software engi-
neering. Of course, we won’t be able to teach you all about software
engineering in a day, or even just a fundamentals, but there is one
tried-and-true strategy that we can use right now that will get you
a long way. We refer to this strategy as top-down design or stepwise
refinement.

The idea of stepwise refinement is to first look at the problem
you’re trying to solve as a whole. You make a concise plan of how
to solve the problem by breaking it down in to a handful of steps.
Then you look at each step in turn, breaking it down into smaller and
simpler steps again if necessary, until you’ve managed to organize
and describe your solution in terms of basic instructions. If it seems
intuitive, you’re right, it is, and you’ve probably applied this strategy
elsewhere in your life. The purpose of this chapter is to learn and
practice the technique of stepwise refinement by programming Karel
to accomplish a slightly more complex task.

A Beeper Collecting Problem

We imagine that by now you’re dreadfully tired of filling potholes.1 1 If you’re not tired of potholes by now,
we should either praise you for your
tenacity or reprimand you for skipping
the previous chapters.

Let’s teach Karel to solve a new problem—and a very useful one—of
picking things up and putting them away neatly. Karel is in a world

24 karel the robot comes to calgary

full of towers of beepers like that shown on the left in Figure 10.
Perhaps Karel was playing with his beeper collection, building a
city of tall towers with them, but now it’s time to put all the beepers
away. (If you ever played with LEGO® when you were young, you’d
probably understand Karel’s situation exactly.)

Figure 10: Towers of beepers for Karel
to collect and put away neatly in a pile
in the corner.

Each avenue in this world contains a tower of beepers starting on
1st street, though some avenues may be empty (e.g. 1st, 7th, and 9th
avenues in the above example). We want to program Karel to pick
up all the beepers from these towers and place them in a pile at the
easternmost corner of 1st street, then return back to where he started.
When Karel is finished, the world should like like what shown on the
right in Figure 10.

Just as we saw before, the key to solving this problem is to come
up with a good decomposition of the program. We’ll do this decom-
position as an exercise in stepwise refinement.

The Principle of Top-Down Design

The main principle of stepwise refinement is to start the design of
your program from the conceptually highest and most abstract level.
Looking at the description of Karel’s task at hand, we can see that it
is divided into three distinct stages: Following these stages, the main section

of our program may look like this:

begin_karel_program()

collect_all_beepers()

drop_all_beepers()

return_home()

end_karel_program()

1. Collecting all the beepers.

2. Putting the beepers down on the easternmost corner of 1st street.

3. Returning to the home position.

If we were to map these steps directly into our code, the main
section of the program, where Karel starts executing instructions,
it might look like the listing shown on the right. The result is that,
at least so far, we have a nice, descriptive program that is easy to
understand. Of course, the instructions we are using don’t exist yet,
but we have a mechanism for creating them, and we’ll do that next.

Right now, it’s important to look at the decomposition and con-
vince yourself that each subproblem is well defined, and that you

stepwise refinement 25

will be able to write a subroutine to solve that problem correctly. If
that is indeed the case, then you should have a solution to the prob-
lem as a whole.

Refining a Subproblem

Practicing stepwise refinement, our next job is to develop a solution
to the first subproblem: that of collecting all the beepers. This task
isn’t perfectly straightforward itself, since there are multiple towers
of beepers to collect. We can apply top-down design once again to
develop a solution to this subproblem. This is the “refinement” part
of stepwise refinement.

Let’s think about what collect_all_beepers() must do. We must
instruct Karel to move along 1st street, collecting towers of beepers
at each intersection, until2 he reaches the end of the street. Repeat- 2 The presence of the word “while”, or

its cousin “until”, in the task descrip-
tion is usually a strong sign to employ a
while loop in your code.

edly collecting towers tells us that an iterative statement will likely
be helpful. At this level, our new instruction for collecting all the
beepers may have a structure like this:

def collect_all_beepers():

while front_is_clear():

collect_one_tower()

move()

collect_one_tower() # watch for the last fencepost!

Now we’ve left ourselves with yet another undefined instruction,
collect_one_tower(). But we know not to worry about that now. In
fact, it’s a good thing! Think about the subproblem of collecting one
tower of beepers to yourself that it’s well defined, and that you can
create a new instruction to solve it. Then apply stepwise refinement.

Going Deeper

Let’s look at one more subproblem and see if we can get the bottom
of it. If we’ve understood our task and defined our subproblem right,
when Karel is instructed to collect one tower, he is either standing
on a beeper at the base of a tower, or on an empty street corner. In
the former case, Karel must collected the beepers in the tower. In the
latter case, he can simply move on. This sounds suspiciously like an
application of the if control statement, and we might want to write
something like

if beepers_present():

collect_actual_tower()

Before adding such a statement to the code, it’s best to think about
whether or not we actually need to make this condition test. Specific
conditions, such as avenues without towers in this example, often

26 karel the robot comes to calgary

appear in problems that look like they need to be treated as special
cases. Sometimes, if you think about it carefully, you may be able to
frame the problem in such a way that a special case is not needed.
It’s wroth putting thought into such cases because it may greatly sim-
plify the program design, and as we’ve already learned, simplicity
and generality are virtues.

With our current problem, the key insight is to think of every av-
enue as having a tower of beepers on it, but that the tower may be
zero beepers high. Then if we create the collect_one_tower() in-
struction to work for this definition of a beeper tower, we no longer
have to test for empty avenues. Collecting one such tower is still a
complex task, so we can decompose it one more time into the follow-
ing steps: Once again, these steps provide a good

model for how we might write the
tower-collecting instruction.

def collect_one_tower():

turn_left()

collect_line_of_beepers()

turn_around()

move_to_wall()

turn_left()

1. Turn left to face the beepers along the tower.

2. Collect the beepers in the tower, stopping when no more beepers
are found.

3. Turn around to face the bottom of the world.

4. Return to the wall at ground level (1st street).

5. Turn left to face east and be ready to move to the next tower.

Though the instructions are getting progressively simpler—
hopefully you noticed that!—we still haven’t reached the end of our
refinement process. We don’t have definitions for move_to_wall() or
collect_line_of_beepers() yet, but these last ones can be composed
from primitive Karel commands. At this point, we trust that you’re
very capable of defining these subproblems and instructions to solve
them correctly, and leave them as an “exercise for the reader”.

Pre-Conditions and Post-Conditions

When we wrote the code to solve some of the subproblems in this
chapter, you may have noticed that the new instructions would
not work correctly if certain things are not true. For example, the
collect_one_tower() instruction would not do what it was intended
to if Karel is facing the wrong way when he starts executing the com-
mands within that instruction. When we design a new instruction,
we often must make certain assumptions about the state of Karel
or that of the world he is in. In this example, collect_one_tower()
assumes that Karel is facing east at the start of the instruction.

Conditions that must hold true for an instruction to work cor-
rectly are called pre-conditions. Similarly, conditions that will be
true after an instruction completes are called post-conditions. For
example, a pre-condition for the built-in command put_beeper() is
that Karel has at least one beeper left in his bag. Post-conditions of

stepwise refinement 27

collect_one_tower() are that a line of beepers to the north of Karel
has been picked up, and Karel is facing east.

Whenever a new instruction you define requires such conditions
for it to function correctly, it is a very good idea to document these
conditions. Many programming errors are caused by mismatches or
misunderstandings of pre- and post-conditions when instructions or
subroutines are executed. If you make a habit of carefully document-
ing pre- and post-conditions when you define new instructions, you
cave yourself a lot of time, not to mention headaches, down the road.

The Complete Program

At this point, we’ve completed most of the hard work of using step-
wise refinement to decompose the problem. There are still a few in-
structions like drop_all_beepers() and collect_line_of_beepers()

that we have yet to define, but we’re confident that by now you have
all the knowledge of skills needed to write very good code for these
yourself. You can compare your definitions with those in our full
program that solves this problem, shown below. Note how pre-
conditions and post-conditions were documented where we thought
they’d be helpful.

beeper-collecting-karel.py

"""

This program instructs Karel collect all the beepers in a series of

vertical towers and deposit them at the southeasternmost corner.

"""

from karel import *

def turn_right():

turn_left()

turn_left()

turn_left()

def turn_around():

turn_left()

turn_left()

def collect_all_beepers():

"""

Move along 1st street and collect beepers in every tower.

Post-condition: Karel is on the easternmost corner of

1st street, fasting east.

"""

while front_is_clear():

collect_one_tower()

move()

collect_one_tower() # watch for the last fencepost!

def collect_one_tower():

"""

28 karel the robot comes to calgary

Collects all beepers in a single vertical tower to the north.

Pre-condition: Karel is on 1st street, facing east.

Post-condition: Karel is on the same corner, facing east.

"""

turn_left()

collect_line_of_beepers()

turn_around()

move_to_wall()

turn_left()

def collect_line_of_beepers():

"""

Collect a consecutive line of beepers in front of Karel.

"""

while beepers_present():

pick_beeper()

if front_is_clear():

move()

def drop_all_beepers():

"""

Drop all beepers Karel is carrying at his current location.

"""

while beepers_in_bag():

put_beeper()

def return_home():

"""

Return Karel to his favourite home position.

Pre-condition: Karel is on 1st street, facing east.

Post-condition: Karel is on 1st avenue and 1st street,

facing east.

"""

turn_around()

move_to_wall()

turn_around()

def move_to_wall():

"""

Move forward until Karel is blocked by a wall.

"""

while front_is_clear():

move()

The start of our program that instructs Karel to pick up all the

towers of beepers and place them in a pile in the corner.

begin_karel_program()

collect_all_beepers()

drop_all_beepers()

return_home()

end_karel_program()

chapter 5

Algorithms

The technique of stepwise refinement that we learned in the
last chapter is a powerful tool that helps us craft very concise, de-
scriptive, and correct programs to solve complex computational prob-
lems. It is easiest to apply when we encounter problems for which
there is a clear division into logical steps, and that we can decom-
pose into subproblems in a direct manner. Sometimes, we encounter
problems that require a considerable amount of creativity to solve,
not because they are excessively complex, but because it is not obvi-
ous how we might be able to apply our computational capabilities to
solve the problem.

The design and analysis of solution strategies to computationally-
solvable problems is a fundamental pillar of the discipline of com-
puter science. We use the term algorithm1 to refer to a solution strat- 1 The word algorithm comes from

the name of the 9th century Persian
mathematician Muh. ammad ibn Mūsā
al-Khwārizmı̄. He also wrote a book
whose title gave us the word algebra.

egy for a particular problem. Formally, in the context of computer
science, an algorithm is a finite, deterministic, and effective problem-
solving strategy that is suitable for implementation as a computer
program.2 The process of designing these strategies is called algorith- 2 Robert Sedgewick and Kevin Wayne.

Algorithms. Addison-Wesley, 4th edition,
2011

mic design.
You will surely learn dozens of algorithms to solve common com-

putational problems as you continue your study of computer science.
You will also spend time studying techniques for the design and
analysis of algorithms. But we’re getting ahead of ourselves here.
The purpose of this final chapter is to introduce you to few powerful
algorithms that can be used to solve some challenging problems in
Karel’s world.

Solving a Maze

Figure 11: Karel needs to find his way
out of a maze. The exit is marked by a
single beeper.

Do you think it would be possible to write a program that instructs
Karel to escape from a maze? That would seem like a tall order since
Karel has awareness only of his immediate surroundings, and we’ve
already seen that he has no memory to speak of.

In Karel’s world, a maze may look like Figure 11 on the right.
Without a birds-eye view though, it does look pretty hopeless. How-

30 karel the robot comes to calgary

ever, if you’ve ever been in a corn maze yourself, you might know
that there exist strategies you can use. (Yes, bumbling around ran-
domly is one of them, and that does work, but you probably won’t
make it out in time for dinner.)

For most mazes, including the one shown here, you can find your
way to the exit by following the right-hand rule. The strategy is named
this way because it instructs you to put your right hand against the
wall of the maze, then keep walking without ever taking your hand
off the wall until you find your way out.3 Another way to express 3 Formally proving that such a strategy

actually works is a topic of graph theory,
often studied under both mathematics
and analysis of algorithms. Can you
think of mazes for which this strategy
fails? Can you describe precisely the
conditions required of the maze for the
algorithm to be correct?

this strategy is to proceed through the maze one step at a time, al-
ways taking the rightmost available path.

Knowing this maze-solving algorithm, we are now able to write
a program that instructs Karel to find his way out of the maze. The
listing below is an implementation of this algorithm in the Karel pro-
gramming language. You should take some time to work through the
logic of the program to convince yourself that it indeed accomplishes
the goal. Note how compact the program is, despite the apparent
complexity of Karel’s task. Coming up with the best algorithm to
solve a problem often leads to extremely simple code.

maze-running-karel.py

"""

This program instructs Karel to find his way out of a maze, whose

exit is marked by a beeper, using the right-hand rule.

"""

from karel import *

def turn_right():

turn_left()

turn_left()

turn_left()

begin_karel_program()

while not beepers_present():

turn_right()

while not front_is_clear():

turn_left()

move()

end_karel_program()

Multiplying by Two

Trying to get Karel to do a little bit of math is another problem that
requires some interesting algorithmic design. Suppose we wanted to
write a program that instructs Karel to double the number of beepers
in a pile in front of him, as shown in Figure 12 on the right.

Figure 12: Karel’s job is to double the
number of beepers in the pile in front
of him, as shown in the world on top.
When he’s done, the world should look
like that immediately above.

Applying top-down design, we might immediately write

move()

algorithms 31

double_beepers()

move()

But then how do we write the double_beepers() instruction? It is
harder than it first appears, and here’s where we have to apply some
creative algorithmic design. Our initial thought might be to try to
count the beepers by repeatedly picking one up, but if Karel picks
them all up right away, he won’t be able to remember how many he
took! Like the solutions we’ve made for other Karel problems, we’ll
need to process the beepers one at a time.

One good solution to this problem involves the use of some extra
space, a temporary “storehouse”, to help us count out the correct
number of beepers. We’ll choose the corner of 1st street and 3rd av-
enue next door as the storehouse. Now, if every time Karel picks up
a beeper from the original pile, he puts two beepers into the store-
house, we will end up with the desired doubling of the beepers.
Thus, we might write a new instruction as follows:4 4 Assuming that we’ve already defined

the usual turn_around() instruction.

def double_into_storehouse():

while beepers_present():

pick_beeper()

move()

put_beeper()

put_beeper()

turn_around()

move()

turn_around()

Here is another instance where it’s important to understand and
document the pre-conditions and post-conditions for this new in-
struction. The pre-conditions are that Karel is standing at a corner
with a pile of beepers, and that the corner in front of Karel is not
blocked and empty of beepers. The post-conditions are that Karel is
in the same location and facing the same direction as he started, the
corner he is standing on has no more beepers, and the corner in front
of him has twice the number of beepers as were in the original pile.

Although our new instruction completes the tough algorithmic
work of multiplying by two, it does not satisfy the constraints of
the problem by itself. We wanted the pile of beepers at the original
location to have twice as many as it started with. We’ll need to pro-
gram Karel to move all the beepers from the temporary storehouse
back to their original location to achieve this. Luckily it’s pretty easy
to define a new instruction, which looks remarkably similar to our
previous instruction, to do this:

def transfer_beepers_back():

while beepers_present():

pick_beeper()

32 karel the robot comes to calgary

move()

put_beeper()

turn_around()

move()

turn_around()

Then we can write your double_beepers() instruction as follows:

def double_beepers():

double_into_storehouse()

move()

turn_around()

transfer_beepers_back()

move()

turn_around()

Don’t forget to document your pre-conditions and post-conditions!

The strategy just described is not the only one you can use to
solve this problem. In many cases, there are algorithms that solve
the same problem in a much more concise and efficient manner than
the obvious strategies, but they are often quite difficult to come up
with. Some require more sophisticated programming techniques that
you will learn later on. For example, using recursion, where we define
a new instruction for Karel that invokes itself, allows us to create a
version of double_beepers() that gets the job done without needing
a storehouse:

def double_beepers():

if beepers_present():

pick_beeper()

double_beepers()

put_beeper()

put_beeper()

While it might be fun to try to figure out what this form of the
instruction is doing, you shouldn’t worry if you find it hard to un-
derstand. We simply wanted you to see that there are often many
different algorithms for solving the same problem, some better than
others. As you continue to study computer science, you will gain the
knowledge and master the skills needed to take advantage of the best
algorithms and develop such programs on your own. For now, just
enjoy your time programming Karel!

	Introducing Karel the Robot
	What is Karel?
	Karel's World
	Karel's Commands

	Programming Karel
	Hello Karel
	A Slightly More Interesting Problem
	Defining New Instructions
	Problem Decomposition
	Which Decomposition Should I Choose?

	Control Statements
	Condition Tests
	Repetition
	Solving General Problems

	Stepwise Refinement
	A Beeper Collecting Problem
	The Principle of Top-Down Design
	Refining a Subproblem
	Going Deeper
	Pre-Conditions and Post-Conditions
	The Complete Program

	Algorithms
	Solving a Maze
	Multiplying by Two

