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Abstract—Causal consistency has emerged as an attractive middle-ground to architecting cloud storage systems, as it allows for high
availability and low latency, while supporting semantics stronger than eventual consistency. However, causally-consistent cloud storage
systems have seen limited deployment in practice. A key factor is these systems employ full replication of all the data in all the data
centers (DCs), incurring high cost. A simple extension of current causal systems to support partial replication by clustering DCs into
rings incurs availability and latency problems. We propose Karma, the first system to enable causal consistency for partitioned data
stores while achieving the cost advantages of partial replication without the availability and latency problems of the simple extension.
Our evaluation with 64 servers emulating 8 geo-distributed DCs shows that Karma (i) incurs much lower cost than a fully-replicated
causal store (obviously due to the lower replication factor); and (i) offers higher availability and better performance than the above

partial-replication extension at similar costs.

Index Terms—Causal Consistency, Partial Replication, Cloud Storage.

1 INTRODUCTION

LOUD storage is one of the pillars on which the entire
C cloud infrastructure rests. The application layers of the
cloud rely on the storage tier to offer low-latency, reliable,
available, consistent storage over geo-distributed scales [12],
[14], [16], [29], [33]. However, these goals are often at odds
with one another. In fact, the CAP theorem [23] (even the
more nuanced reading [9]) rules out certain strong flavors of
consistency (e.g., linearizability [14], [24]) for wide-area sys-
tems that are available and partition-tolerant. At the other
extreme, eventual consistency [16], [29] ensures liveness but
offers no static guarantees of when a value may become
visible (or even if values are seen in monotonic order).
Barring niche applications (e.g., banking), many cloud ap-
plications are satisfied with weaker consistency models than
linearizability — however, eventual consistency is inadequate
in many scenarios including those requiring causal ordering
of events.

Causal consistency [2], [17], [19], [30], [33], [34], has
emerged as an attractive middle-ground for cloud storage
systems since it preserves the intuitive happened-before
relationship, critical in many scenarios (e.g., announcements
of price drops reaching customers who then discover the
old, undiscounted prices).

Causally-consistent storage systems ensure that the
global ordering of operations respects each thread’s pro-
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gram order as well as the (transitive) ordering implied
by any inter-thread value communication, while staying
available and partition-tolerant.

Despite these advantages, causally-consistent systems
have seen limited adoption in practice. A key factor is
that current causally-consistent, distributed cloud storage
systems [2], [17], [19], [33], [34], suffer from a key drawback
that effectively renders them impractical; they require full
replication, where all the data is replicated in all the data
centers (DCs). Such full replication is infeasible because of
the immense size of the data stores as well as the large
numbers of DCs.

Partial replication, where each data object is replicated
in a subset of DCs, has been employed to reduce costs in
eventually-consistent (e.g., [16], [29], [47]) or linearizable
systems (e.g., [14]). Extending causal systems to support
partial replication is, however, not easy. Current causal sys-
tems [17], [33], [34] guarantee causality by statically binding
each client to one of many DCs, each of which contains one
full replica of the dataset. A simple extension to support
partial replication is to treat groups of (geographically close)
DCs as a single consistent-hashing ring, with one replica
per object in each ring. For example, eight DCs may be
clustered into three rings, with each object having three
rather than eight replicas (with one replica of each object per
ring). We consider such a system, which we call COPS-PR,
as our baseline for comparisons. However, COPS-PR faces
a fundamental challenge. Current causal systems require
strong consistency (specifically, linearizability [24]) within
each ring (except [2], which does not address partial replica-
tion, as we discuss in Section 7). When a ring spans multiple,
geographically-distributed DCs as with COPS-PR, strong
consistency, availability and partition tolerance cannot be
simultaneously satisfied [23]. As such, one unreachable DC
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may render the entire system unavailable because the DC’s
data is unavailable to the clients bound to the DC’s ring.

One may think that the above problem can be fixed by
accessing the unavailable data on a different ring. However,
the single-ring binding is central to achieving causal consis-
tency in current systems. To see why, consider two objects X
and Y that are each present in two rings with initial values,
Xoig and Y,4. A client’s new values — X,,¢, and Yj,ey, in
that order — propagate to the two rings independently. If the
single-ring restriction were not enforced, another client may
read Y,c,, from one ring and the causally-earlier X,;4 from
another ring even though causal order within each ring is
maintained.

The single-ring restriction degrades availability and la-
tency. First, an object is unavailable if the replica in that
ring is not reachable due to network partition or a failure of
the DC hosting the replica, even though replicas in other
rings may be reachable. Second, a client is constrained
to accessing a replica in its associated ring, even though
a replica in another ring may offer lower latency due to
transient network congestion.

Our contributions: In this paper, we present Karma, the first
system that both ensures causal consistency and achieves
high availability and low latency for partitioned data stores
with the cost advantages of partial replication across DCs.
Karma employs two novel ideas:

e First, unlike previous causal systems, which statically
bind a client to its associated DC (or ring), Karma allows
a client to be served by any replica based on availability or
latency. Karma leverages the key observation that causality
is violated only in the time window from when a causally-
later value is visible (Y},¢,,) until the causally-earlier value
(Xhew) is propagated to all the rings (i.e., becomes “stable”).
Specifically, reads from multiple rings may be inconsistent
only in this short window (e.g., 300-400 ms is typical for
the geo-distributed 8 DCs in Amazon’s AWS). Accordingly,
Karma temporarily restricts reads from a client to go to the
same ring as a previous read to an “in-flight” (i.e., as-yet not
stable) data object. Because each ring is updated in causal
order (like the previous systems), this restriction guarantees
that later reads obtain consistent values. Karma’s dynamic
ring restrictions (DRR) tracks in-flight objects to put the
threads reading such objects into the restricted mode and
to release the threads to the unrestricted, full-choice mode
when the objects becomes stable. Because this restriction is
transient, Karma mostly retains the choice of accessing any
ring. Finally, because Karma allows ring-switching, it avoids
the unavailability problem that may arise when DCs are not
reachable.

o Second, Karma is the first system to integrate causal consis-
tency across persistent DC-level storage caches and replicas.
Integrating consistency guarantees across the storage and
caching tiers is one of the key challenges preventing adop-
tion of stronger consistency models [1]. While all accesses
go to the local DC in full replication, many accesses go to
remote DCs in partial replication (and in Karma). To achieve
low latency with partial replication, it is natural to employ
both read caching and temporary, persistent write buffering
at each DC. Write buffering and caching each pose their own
consistency challenges. To avoid consistency problems due
to the write-buffer (WB), (1) we use thread-private WBs to
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prevent the premature reading of values by other threads
(which can violate causal-order write propagation), and (2)
we require client threads to check their own WBs to see if
reads can be satisfied from the WB before reading from the
cache or storage ring to avoid missing own writes. Similarly,
the cache poses a consistency challenge because it may miss
for some objects (unlike storage rings which are guaranteed
to be complete). For example, a client’s cache fill (upon a
miss) bringing in the in-flight Y,,.,, to a cache that holds
Xo1a can violate consistency because (1) the same or (2) a
different client may read Y., followed by X,4. For the
first case, we extend Karma’s DRR to force the clients, whose
read misses return in-flight values, to incur cache misses
temporarily for all the reads in the in-flight window. For
the second case, Karma allows demand fills only with stable
objects and not in-flight objects (the cached stable objects
are invalidated in causal order as part of write-propagation).
These two simple strategies — forced temporary cache misses
and disallowed demand fills — differ from conventional
caching which does not force misses nor disallow demand-
fills and are fundamental to ensuring causality in Karma.

We implemented Karma as a shim-layer between a key-
value storage tier consisting of individual (unmodified)
Cassandra instances and a YCSB client layer. Experimental
evaluation with 64 server nodes emulating 8 geo-distributed
data centers in 3 rings shows that Karma achieves 43%
higher throughput on average and significantly lower read
latencies than COPS-PR, while incurring similar costs. Note
that Karma achieves lower performance than impractical full
replication schemes where all accesses are local. However,
that is not a specific weakness of Karma; rather it is innate
to any partial replication scheme. Further, Karma offers
significantly stronger availability guarantees under failure,
and better performance under network congestion than
COPS-PR. Finally, despite only partially replicating data,
Karma guarantees full availability under a single availability
zone [25], [38] failure, and many common network partition
modes.

The remainder of this paper is organized as follows.
Section 2 defines the terminology we use and offers a
brief background on consistency in cloud storage. Section 3
and Section 4 describe Karma’s design and implementation,
respectively. Section 5 explains our experimental methodol-
ogy. We present experimental performance results and cost
analysis in Section 6. Section 7 compares Karma to related
work. Finally, Section 8 concludes this paper.

2 BACKGROUND AND OPPORTUNITY

In this section we offer a brief background on consistency in
cloud storage and identify Karma’s opportunity. In doing so,
we employ the following terms:

e Ring: A consistent-hashing ring contains a complete set
of data. In causally-consistent cloud storage systems that
require full replication [2], [17], [19], [33], [34], the entire
ring is contained within a single DC. In partial replication
based systems, however, a single ring may span multiple
DCs.

o Replica: Each object (key-value pair) in the data set is
replicated in all the rings. Each such individual instance of
data is referred to as a replica.

o Node: A physical server in the DC that stores data.
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Fig. 1. Inter and Intra thread causal dependencies

2.1 Consistency in cloud storage

Among the consistency models in cloud storage systems
are those limited to per-object guarantees. At the weak
end of the consistency spectrum are flavors of “eventual
consistency” wherein the system offers no guarantees other
than eventual propagation of updates to all copies. Eventual
consistency may not even guarantee read-your-own-write
ordering guarantees; a thread may write a new value and
then read an older value. There also exist consistency mod-
els which offer stronger per-key ordering guarantees [12],
[16], [21], but without any across-key guarantees (which is
the focus of this paper).

At the strong end of the spectrum, linearizability offers
global ordering of all reads and writes across all keys.
However, it is well known that these strong consistency
guarantees come at the cost of availability and/or partition
tolerance (the CAP theorem [23]).

2.2 Causal Consistency

Causal consistency is stronger than eventual consistency
with certain across-key ordering guarantees; yet it can
achieve both consistency and availability under partition.
Causal consistency is a model wherein the global ordering
of operations respects each thread’s program order as well
as the (transitive) ordering implied by any cross-thread
value communication [5], [17], [33], [36]. Writes in causal
consistency are not atomic (i.e., serializable) which means
that causally-unrelated writes to different objects may be
observed to occur in different orders by different readers.
For the special case of concurrent writes to the same object,
the writes must be ordered deterministically, which can be
achieved using version numbers [33]. The admission of lack
of global agreement due to non-atomic writes allows causal
consistency not to be constrained by the CAP theorem so
that all three of causal consistency, availability and partition
tolerance can be achieved. For instance, upon a network
partition, the two partitions can continue to be both causally
consistent and available by allowing two different orderings
of causally-unrelated writes to co-exist in the partitions. The
writes in one partition are not causally dependent on the
values in the other because the latter is not reachable from
the former due to the partition.

Causality defines a happens-before partial order among
puts (writes) and gets (reads). In this paper, we use the
notation X ~» Y to imply that X happens-before Y. As
is intuitive, the happens-before partial order is transitive.
A causality violation occurs when two operations are per-
ceived to violate the happens-before relationship. Causal
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systems track causal dependencies to ensure that reads and
writes cannot occur in an order that violates causality.

The basic primitive to enforce such ordering in dis-
tributed storage systems is “put-after ” [33]. This oper-
ation ensures that causal ordering is enforced in each ring
by initiating causally-later writes only after causally-earlier
writes are completed even though the items involved may
be stored on different servers (or DCs) in that ring. For
example, in Figure 1, put Z is initiated only after both put
X and put Y complete, though X, Y and Z may be stored
on different servers.

The updates occur in causal order in each ring, but pro-
ceed asynchronously across the rings. While this ordering
provides consistency within each ring, causality may be
violated by reading from different rings, as discussed in
Section 1. For this critical reason, all current implementa-
tions statically bind clients to rings. Recall from Section
1 that such static binding incurs availability and latency
problems. While the latency problem is intuitive, one may
think that the availability problem can be addressed by
chained replication (CR) [46]. CR is appropriate within DCs
to ensure individual server availability, but does not protect
against DC failures. However, using CR (which offers lin-
earizability) across DCs in the wide area is impractical as
that would violate the CAP theorem.

In the remainder of this paper, we assume a key-value
store that allows puts and gets on individual tuples. We
do not explicitly consider complex key-value store opera-
tions such as read-modify-write as they can be interpreted
as put s for consistency purposes. Transactional atomicity is
orthogonal to causal consistency which deals with ordering.
Note that general transactions that include both reads and
writes are ruled out in a wide-area setting because of the
CAP theorem. Some previous papers on causal consistency
have also examined limited forms of transactional support
(e.g., read-only [17], [33], [34], and write-only [34]) in ad-
dition to causal consistency as their motivating examples
require both atomicity and ordering. Because ordering is
important on its own accord (as illustrated by our exam-
ples), we focus on causal consistency. However, we show
later in Section 4.5 that Karma can support read-only get-
transactions by adopting the approach from prior work [34].

2.3 Karma’s opportunity

Karma’s opportunity arises from the key observation that
statically binding clients to rings, as in current systems, is
sufficient to ensure causal consistency; but is not necessary.

To illustrate this point, consider the two states any object
may be in. If an object has been written to (using a put)
and the write is complete (i.e., all rings have been updated
with the latest value) then the object is in a stable state. If one
replica of an object in one ring has been written to (and the
asynchronous updates of the other replicas in other rings
are in progress) the object is in an in-flight state.

When a client reads an in-flight value, the client is
vulnerable to causality violations because causally-earlier
writes may not yet have been applied to all the rings; so the
client may later read a stale value from the not-yet-updated
rings. For example, in Figure 2, we show User A writing new
values to X and Y in that order. As the values are propagated
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Fig. 2. Karma'’s opportunity

to the two rings in causal order, it is possible for another
user (User B) to read a new value of Y from Ring 1 and an
old value of X from Ring 2 — a causality violation. Karma’s
goal is to prevent such violations by binding User B to Ring
1 as soon as it reads the in-flight value. No violations are
possible under that scenario because each ring is updated
in causal order, the chosen ring is guaranteed to provide
causally-consistent values to later reads. Further, because
the window of vulnerability is transient (i.e., writes will
eventually complete), Karma applies this restriction only
until the in-flight value becomes stable, as mentioned in
Section 1. Upon write completion, the restrictions are lifted,
and clients can access data from any ring. The fact that
a client that has read only stable values (or has read in-
flight values that have since become stable) can not violate
causality is also illustrated in Figure 2 (see the second set of
reads from User B). This claim follows because all causally-
earlier updates must necessarily be complete because of
causal-order write-propagation in any given ring.
Restrictions caused by a single in-flight read does not
face cascading restrictions. However, if a user continuously
reads multiple in-flight objects, the client restrictions can
be lifted only after all such in-flight writes are complete.
Later in Section 6.3, we show that under typical read-heavy
workloads [4], [5], [12], [17], [33] (e.g., 95%:5% put-to-get
ratio), clients are rarely (< 2%) under such restrictions.

3 Karma: DESIGN OVERVIEW

Since partial replication results in remote accesses which can
hurt latency, Karma attempts to minimize remote accesses
via the use of per-DC caches and persistent write-buffers
(WBs). While the latency improvements from caches and
WBs are attractive, the challenge of using these multiple
tiers while preserving consistency must be addressed care-
fully. Karma ensures that there are no ordering violations as
values flow through the WBs, storage rings, and caches, as
we describe next.

Karma’s goal is to achieve causal consistency by ensuring
that no causally-older value may be read after a causally-
newer value has been read. Consider two put operations to
objects X and Y which previously had the values X,;4 and
Y14 and which are updated by the put operations to have
the values Xy, and Y. If there is a causal dependency
between the two put operations with X ¢, ~ Y0 (say),
then, Karma (any causally-consistent system) must ensure
that no client can read Y., and then read X,;4. Karma
achieves this overarching invariant by performing put s and
gets as outlined below.

DRR-
Bound to

from Cache from any ring
Fig. 3. 'Get’ operation in Karma (* explained in Section 4.1.2)

Write Operation: Newly written values enter the WB
where values are held in thread order. The values are
asynchronously propagated to the storage rings. Like prior
causal systems, Karma requires causal-order to be preserved
when propagating writes across rings [17], [33]. This ensures
that in any given ring, X, is stored before Y,.,, is stored.
As part of write propagation to a ring, all the ring’s cached
copies of the object are invalidated before writing to the ring.

Read Operation: The get operation is performed as
shown in Figure 3. To understand get operation, we con-
sider three cases based on where objects are read from.
In each case we show that Karma ensures that causality is
maintained.

Read Case 1: Objects are read from the WB. Because values
in the WB are invisible to other clients, there can be no other
causally-newer values outside the WB. Because causally-
newer values may be present in the read client’'s own WB,
reads first check the WB before looking in the caches and/or
storage rings (step 1 in Figure 3). (The check in the WB is
not as simple as testing presence; we present this detail later
in Section 4.1.2.) In our example, if Y},.,, was read from the
WB, then either X,,.,, will also be read from the WB (if X ;¢
has not been propagated from the WB (step 2 in Figure 3),
or X,,¢y Will be read from a storage ring or a cache (if Xy,¢y
has propagated to the ring or cache — steps 4, 5, and 6 in
Figure 3).

Read Case 2: Objects are read from the storage ring. In the
storage rings (i.e., if the object is not in the WB), there are
two cases to consider (step 3 of Figure 3). In the first case,
a client thread reads Y,,.,, from the ‘" ring R; (say) before
the value is fully propagated to all other rings. In this case,
Karma’s dynamic read restrictions (DRR) forces subsequent
reads from the thread to access values only from ring R;.
Because Y., was propagated to ring I?; in causal order,
any causally-older values (including X,,,) are guaranteed
to be present in ring R; (step 4). We refer to such threads
that face dynamic read restrictions as DRR-bound threads.

In the second case, a client thread reads Y,,.,, after the
value has been propagated to all rings. In this case, causal-
order write propagation ensures that X,,.,, was previously
propagated to all rings. Thus, the client may read X from the
cache (step 5) or from any ring (step 6) and is guaranteed
to see X0y, Or newer values. As such, Karma looks in the
cache, and serves the object from the cache (step 5) if it is a
hit and from any storage ring (step 6) if it is a miss.

Read Case 3: Objects are read from the cache. Caches can
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pose consistency problems if they allow causally-later val-
ues of some objects to be brought into the cache while there
are earlier values of other objects present in the cache (e.g.,
Yinew and X,q). Mixing of old and new values can occur
either in the cache (first case) or by accessing some objects
in the cache and others in the storage rings (second case).

For the first case, new values may enter the cache
through a traditional demand-fill where an object is brought
into the cache upon a miss. To prevent mixing of new and
old values through demand fills, we disallow the caching of
in-flight values that are brought in on demand fills. Thus,
the caches hold only stable values which are invalidated
upon writes (in causal order), preventing mixing of causally-
earlier and later values in the cache. In our example, if
Ynew becomes stable and is brought into the cache, then
Xo14 is guaranteed to have been invalidated. Note that the
disallowing is only during the in-flight window and does
not prevent caching in the common case (shown later in
Section 6.3).

We address the second case by forcing temporary cache
misses during DRRs which ensure access to the DRR-
constrained ring, preventing mixing accesses to the cache
and to the storage rings (step 4 in Figure 3). In our example,
if an in-flight Y., is read by a client, the client is put
under DRR forcing cache misses and forcing reads to the
DRR-constrained ring which is guaranteed to have X, .
These forced misses are only under DRRs which are tempo-
rary (during in-flight windows) permitting the benefits of
caching the vast majority of time.

In each of the above cases, Karma guarantees that it
is impossible to read X4 after reading Y,c,,. In the next
section, we describe Karma’s implementation to achieve the
operational behavior described above.

4 Karma: IMPLEMENTATION

For ease of exposition, we first present Karma’s dynamic
read restriction without caches in Sections 4.1 and 4.2, and
then add caches in Section 4.3. These sections assume fault-
free operation to focus on Karma’s consistency mechanisms.
In Section 4.4, we describe Karma’s fault-tolerance mecha-
nisms and guarantees.

4.1 Dynamic ring binding in Karma

Recall from Section 1 that Karma dynamically tracks in-flight
objects to put the storage clients reading in-flight objects into
the restricted mode and to release the clients to the normal,
full-choice mode when the objects becomes stable. Because
objects become stable when the corresponding write com-
pletes globally (i.e., in all the replicas), detecting global
write-completion is a key functionality of Karma. In con-
trast, prior causal systems enforce static client-ring binding
which requires detecting only local write-completion (i.e., in
the local ring). Karma’s other key functionality is dynamic
read restriction. Accordingly, we describe in Section 4.1.2
how Karma tracks objects” in-f1ight state to detect write-
completion; and in Section 4.2 how Karma imposes tempo-
rary read restrictions.

MM Middle Man
CC Client Coordinator

DS Datastore
(e.g. Cassandra)

Fig. 4. Karma Architecture Overview

4.1.1 Basic architecture overview

Figure 4 illustrates Karma’s organization. We use any stand-
alone key-value data store (DS) at each node. We assume
that the geo-clustered sets of DCs form one consistent-
hashing ring! holding one full replica set of the data. In Fig-
ure 4, there are three rings, one for each of the US and
Western Europe, Asia and Australia, and Brazil; and the
Brazilian ring is magnified to show some details discussed
below.

Karma requires per-client state (to track causal depen-
dencies) and per-object state (to track in-flight versus
stable status of individual objects). Karma employs a client
coordinator (CC) to redirect client requests to the appropriate
back-end servers much like other datastores including non-
causal datastores such as Cassandra. We augment CC with
the additional responsibility of tracking per-client causal
meta-state. There can be multiple CCs per DC. The CC is
responsible for two major tasks. First, it is responsible for
causality-preserving write-propagation to all rings from the
write-buffers and for satisfying the safety property of detect-
ing write-completion. Second, the CC enforces temporary
restrictions to ensure that causality is not violated in the
window of vulnerability (Section 4.2).

To track the per-object stable versus in-flight state,
one may either provision per-object state (1 bit/object) or
equivalently, use a set of in-flight objects. We introduce a
module in the storage layer called the middle man (MM)
which holds per-object metastate; there is an MM for the
replica in each ring. Figure 4 shows a CC in Brazil interacting
with an MM for an object’s replica in each of the three
rings. The MM and storage server can be co-located on
the same node so that the MM holds the metastate for the
data on the server. To prioritize modularity and separation
of concerns, we implement the MM as a separate module
isolating causality-related metastate from the underlying
datastore, though one could alternatively implement the
MM as an integral part of a causally-consistent datastore.

Together the MM and CC guarantee the safety property
for causality enforcement: a given version of an object must
be considered stable only if the version (or a later version)
of that object is present at all the replicas (rings). Safety is
not violated if a stable object is considered temporarily to be
in-flight.

1. Karma extends to directory-based object placement by having the
set of i*" replicas in each directory entry form the i*" ring.
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4.1.2 Global tracking of writes and detection of write com-
pletion

Every put starts with a write to a client-private persistent
WB, after which the client is free to proceed. Karma’s causal
order propagation of writes from the WBs to the rings uses
puts to the storage rings, orchestrated by the CC and MM
as in Figure 5. The CC appends any received puts to the
WB and to the tail of per-ring propagation queues (ENQ in
Figure 5). A per-ring propagator thread in the CC processes
entries in queue order and uses put or put-after to
propagate values to their corresponding ring. In Figure 5,
the propagator threads, PT1, PT2, and PT3, propagate the
values to MM1, MM2, and MMS3, respectively. As in the
previous causal systems, each propagator thread propagates
values to its ring at its own pace, not synchronizing with the
other propagator threads.

Similar to Orbe [17], Karma achieves causal-order write-
propagation from the front-end CC. This eliminates the
within-thread put-afters by using client-side program-
order write-propagation. For example, for the scenario in
Figure 1, the system generates a put-after at client 2
to ensure that put Z occurs after put X in client 1 to
enforce the inter-thread dependence induced by the get
X. However, because put Z and put Y are in the same
thread (client 2), no put—-after is needed if the puts are
completed in thread program order. This is distinct from
COPS [33] which does write-propagation not from the front-
end client but from the storage server where all thread-
program-order information is already lost. Consequently,
COPS uses put-afters even for within-thread ordering.
As a further optimization over Orbe [17], Karma includes
only the items that are in-flight as part of its put-after
dependencies, since stable items are known to be written.

Upon receiving a new put, the MM in each ring tran-
sitions the object to the in-flight state (by including it
in the in-flight set). After the local put is complete,
the MM sends an acknowledgment to the CC that initiated
the request. The CC marks the write as propagated to that
ring. Tracking the propagation to each ring is also useful
when determining whether a value can be forwarded from
the WB. Specifically, when a get request looks up the WB
while under DRR (bound to the ring R;, say), if the object
is already propagated to R;, the WB lookup fails forcing
the request to access I?; because the object may have seen
further updates (from other threads) in R; which are poten-
tially later in causal order. If the object is not propagated to
R; then the WB lookup returns the value. This corner case
(referred to in step 1 of Figure 3 and Section 3) is not satisfied
by merely checking the object’s presence in the WB.

The completion of the put on the local ring of the
object does not guarantee the object is stable. Rather, the
last propagator thread to process the per-ring put essen-
tially triggers the CC to detect global write-completion. By
waiting for all the propagator threads, the CC detects global
write completion despite asynchrony of write propagation
across rings. The CC sends a notification to each MM which
marks its object copy as stable (in Figure 5, see "WRITE
COMPLETE’ on the left and 'STABLE’ on the right). The CC
also evicts the object from the WB. Thus, the CC and MM
achieve the safety property of detecting write completion.

Client MM2

1 cuent i
W"L 3

CC PT1 PT2 PT3 MM1 MM3
1 1

IN-FLIGHT +
LOCAL PUT

TIME

PUT ACK
1=

write g,
COMPLETE

STABLE

STABLE

Fig. 5. Write-propagation in Karma

The only additional messages in Karma are the 'STABLE’
notifications that are sent to each ring. The first two phases
(i.e., copying the object to each ring and the corresponding
acknowledgment) are necessary even in baseline systems for
reliable write propagation. Moreover, ’'STABLE’ notifications
are off the critical path and do not add to the latency
observed by users. Thus, only the additional throughput
cost of 'STABLE’ notifications must be accounted for. We
show later in Section 6.4 that such bandwidth costs are neg-
ligible — the additional bandwidth of the small "'STABLE’
notification control messages is dwarfed by the bandwidth
savings due to partial replication.

4.2 Dynamic causality enforcement

The CC’s second major task is enforcing temporary read
restrictions to ensure causality. Recall from Section 2.3 that
clients that read (via gets) stable values are not vulnerable
to causality violations. As such, these clients operate in the
unrestricted mode which is the common case (which we
show experimentally in Section 6.3). For such clients, Karma
is free to route the gets to any ring based on availability
and network proximity.

In the uncommon case, when a client reads an in-flight
value from a ring (as indicated by the MM), the CC dy-
namically restricts the client to that ring by using a per-
client Dynamic Ring Restrictions (DRR) structure. Recall from
Section 2.3 that because each ring is updated in causal order,
this restriction ensures that the client’s later reads obtain
consistent values. DRRs are tied to an object and a version
number to avoid premature transitions to the unrestricted
mode when there are multiple restrictions. For example, a
client may read multiple in-flight values (or read multiple
in-flight versions of the same object). Such a client must
wait for all the restrictions to be lifted before returning to the
unrestricted mode. Nevertheless, the restrictions are short-
lived due to relatively fast write-propagation (e.g., 300-400
ms for 8 geo-distributed DCs in Amazon’s AWS under no-
load conditions).

Lifting the DRRs poses the interesting challenge that the
CC associated with a read of an in-flight object is not notified
of the object’s write-completion. Only the CC that originates
the write and the MMs responsible for the object in each ring
are made aware of write-completion (Section 4.1.2). Without
additional safeguards, a DRRs would become permanent
upon the first access to an in-flight object (and degrade
to static binding). A naive approach of maintaining per-
object state, that tracks the reader CCs for notifying write-
completion, would be cumbersome and would incur signifi-
cant tracking overhead. Fortunately, there is an elegant way
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Fig. 6. Write-propagation in Karma with caches

to capture write-completion without additional effort. We
exploit the fundamental transitivity property that whenever
a restricted client performs a put, the completion of that put
guarantees the completion of any earlier put (from any client)
that may have been read by the client. Because (1) writes within
each ring are done in causal order (via put-after) and
(2) the CC detects global write-completion across all the
rings, a client’s put can complete only after all causally-
earlier puts from any client are complete (e.g., in Fig-
ure 1, put 7 can complete only after put X). Consequently,
each put completion removes all restrictions due to earlier
gets in program order without reader CCs receiving write-
completion notifications.

Of course, one must also consider read-only clients
where such natural garbage collection of expired restric-
tions does not occur. To avoid permanent read restric-
tions for such clients, we propose write insertion which
inserts dummy writes periodically for the purpose of such
garbage collection via notify-after, a new primitive.
notify-after returns write-completion notification after
verifying the same dependencies as a put-after would,
but without actually writing to the DS (and hence avoiding
the full overhead of a write). One can tune the frequency of
the notify-afters to balance their overhead and removal
of expired DRRs.

4.3 Write-completion with caches

Write-propagation in the presence of caches is organized as a
two-step mechanism. In the first step writes are propagated
from the CC to the MM as described in Section 4.1.2. The
MM’s are responsible for write-propagation to the caches,
which is the second step. Each MM holds a cached-at set per
object which tracks the DC caches that obtained the object
from the MM. Because no single MM may naturally know
the location of all the cached copies, each MM tracks only a
subset of DCs where each object may be cached. The MM
conservatively assumes that any DC that accesses stable
objects may cache the object; and thus adds the DC to its
cached-at set for that object.

The second step of write-propagation from the MM to
the caches may be achieved via updates or invalidations.
While there are well-known tradeoffs in using either of
updates or invalidations, the latter are simpler and hence
our choice. After sending invalidations to the caches, the
MM must wait for acknowledgments from the caches before
sending its acknowledgment to the propagator threads, as
discussed in Section 4.2. This waiting ensures the safety
property of detecting write completion (Section 4.1.2). Fig-
ure 6 shows the acknowledgments from the caches (CI,
C2, and C3). The invalidations ensure causal-order write
propagation to caches. Instead of invalidations, cached data
may also be self-invalidated via leases that expire after a
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time-out. Writes would complete faster in this approach (no
invalidations needed) implying fewer DRRs, at the potential
cost of unnecessary discarding and refetching of valid data.
DC caches may evict objects from the cache without notify-
ing the MM (i.e., silent replacement). Upon the next write,
the MM will send an unnecessary invalidation and remove
the cache from the list.

4.4 Karma: Fault tolerance

We have designed Karma to be available under server fail-
ures, failure of a single availability zone (AZ) [25], [38], and
a broad class of network partitions. We use the same defini-
tion of availability as in the CAP theorem [22] that all users
should get responses to requests sent to non-failed servers.
Under this definition, a system is unavailable if it is available
only to a subset of users. Upon network partitions or an
AZ failure, Karma remains available but may operate in a
performance-degraded mode wherein causal consistency is
guaranteed, but dynamic ring switching remains prohibited
till all zones are up (or till all partitions are healed). To
put this degradation in perspective, (a) Karma’s common-
case, fault-free performance is better than that of COPS-
PR because of dynamic binding, and (b) though Karma
may temporarily prohibit ring-switching under some AZ
failures, it remains available — in contrast, COPS-PR is not
even available. In fact, Karma (under failure) incurs the static
binding penalty that COPS-PR always incurs (even when
fault-free). While Karma is not guaranteed to be available un-
der multiple, simultaneous AZ failures, such failure modes
are relatively rare.

We assume a reliable transport (e.g., TCP, or application-
level ack/retry mechanisms). Table 1 summarizes Karma’s
resilience under common failure modes, compares Karma
with other schemes and lists Karma’s mechanisms. We now
discuss individual failures:

o Individual MM/Backend-server/rack failure: Since the MM is
co-located with the storage server, Karma leverages Chain
Replication (CR) [46] within the same DC to protect both
data and metadata (in-flight status and cached-at sets)
against individual server or rack failures (assuming CR
spans multiple racks).

o Cache node failure: Because Karma caches only stable state,
the cache state can be re-fetched if lost. Loss of cached
data can never cause correctness problems (e.g., consistency
violations or unavailability); it may, at worst, lead to perfor-
mance penalties of remote data access. Also, a cache node
failure means invalidations, and hence writes, to the cached
data cannot complete potentially causing some DRRs, and
hence performance penalties, but no availability problems.
o CC failures (individual and DC): Failures involving the CC
requires more careful treatment since the CC is responsible
for write propagation. Liveness of write propagation is key
to achieving write completion which is central to Karma. It
is relatively easy to protect against individual CC failure,
by applying within-DC chain replication for CC’s as well.
However, if the entire DC containing a CC fails (or is
partitioned from the rest of the world), then the writes from
the CC will indeed stop propagating.

A client that is unaffected by the failure, and is DRR-
bound to the same ring as the failed DC which contains the
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TABLE 1
Impact of failures (fincludes COPS/Orbe/Eiger)

Failure Available? | Karma same as, better, or worse than | Protection Mechanism
Full Replicationt | COPS-PR
Backend Server Yes Same Same Chain replication
Cache Server Yes Not applicable Not applicable Stable state
Rack Yes Same Same Chain replication
CC server Yes Same Same Chain replication of CC
Single AZ Yes Same Better* Dynamic binding
AZ-B Cutoff Yes Better Better* Dynamic binding
AZ-F Cutoff No Worse* Same *Partial replication limit
Partition Yes Same Better* Dynamic binding
l Multi-AZ ‘ No ‘ Same ‘ Same ‘ *Unavailable for some ‘

write’s CC (because of reading the write before the failure),
may be indefinitely bound to the ring with the failed DC.
Data in the failed DC is no longer available to the client.

This corner case occurs because of a correlated failure
of the entire DC where both CC nodes and backend servers
fail. To prevent such correlated failures, we require that the
front-ends (including CCs) and back-ends (storage nodes)
reside in different availability zones. Note that DCs are typi-
cally architected using multiple availability zones, which are
isolated from each other and connected through low-latency
links [25], [38]. We refer to availability zones with front-ends
and back-ends as AZ-F and AZ-B respectively.

As such, though write-propagation has stopped due
to the CC’s (AZ-F) failure and the client is DRR-bound
to the AZ-F's ring (due to reading an incomplete write),
the complete data is available in the ring (the AZ-Bs are
operational). On the other hand, if an AZ-B fails, then write-
propagation of the DRR-causing object (i.e., the in-flight
object which the client read and got DRR-bound) and all
its dependencies will complete because (1) the writes of
the object (and its dependencies) have completed in the
ring to which the client is DRR-bound (by definition, since
that caused the DRRs originally), and (2) the writes are
guaranteed to propagate to the other rings (AZ-B in other
rings and all AZ-Fs are alive). Therefore, the DRR will lift
allowing access to the other rings with the complete data.
Note that, in this particular case, Karma is better than COPS
with full replication because COPS’ static binding prevents
clients from accessing data from other rings.

Resilience Analysis: We discuss the resilience of Karma

to AZ failures, and network partitions. We define a ring to
be completely-available if all AZs in that ring are reachable
from all clients. We make two observations:
(1) A client C' has no availability problems if (i) there is
at least one completely-available ring; and (ii) C' has no
DRRs, or is DRR-restricted to the completely-available ring.
(2) A client C' has no availability problems when it is DRR-
restricted to a ring with a single failed or unreachable
AZ (either AZ-F or AZ-B), provided all other rings are
completely-available.

Observation (1) is trivially true. For observation (2),
consider the two possible cases. First, upon a AZ-F failure,
the ring to which the client is DRR-bound has the complete
data because all AZ-B’s are reachable and available. Alter-
natively, if the failure is that of a AZ-B, write propagation
of the DRR-causing object (and all of its causally-earlier
dependencies) will eventually complete, allowing the DRR

restriction to be lifted (as argued for the corner case above).
C may then access other rings with no availability problems.
These observations enable the following claims:

Claim 1 [AZ failures]: Karma ensures availability under the
failure of an arbitrary number of AZs of the same type in
one ring (i.e., either AZ-F’s or AZ-B’s), provided all AZs in
all other rings are completely available.

This claim holds because a client which is DRR-restricted

to the ring with failures has no availability problems as per
observation(2). In all other cases, observation(1) holds.
Claim 2 [Partitions]: Karma ensures availability
(1) [intra-ring] under any intra-ring partition isolated to a
single ring provided AZs in all other rings can reach one
another, and there are no inter-ring partitions (i.e., AZs in
different rings can reach each other)
(2) [inter-ring] under an inter-ring partition where a pair of
AZs in two different rings are unreachable from each other,
but AZs in any other pair of rings can reach each other, and
there are no intra-ring partitions.

The proof for case 1 follows an identical argument to
Claim 1 above. For case 2, assume the partition occurs
between rings R1 and R2. If both AZs are of the same type
(both AZ-Fs, or both AZ-Bs), the partition trivially poses no
problem because data in all the rings is completely available
to all the clients. Consider that a AZ-F in R1 is partitioned
from a AZ-B in R2. For a client in R1, because all the rings
except R2 are completely-available, there are no availability
problems unless the client is DRR-restricted to R2. However,
by Observation 2 this DRRs does not lead to availability
problems.

Finally, we consider the unlikely case multi-AZ (or
multi-DC, in the case of COPS) failure that forces a choice
between consistency and availability in both Karma and
COPS. One may think that full replication (e.g., 8-way
replication for AWS’s 8 DCs) can tolerate the failures of all-
but-one DC (e.g., seven AZ-B failures). However, because of
COPS’s static binding, the clients bound to failed AZ-Bs are
unable to access data from other AZ-Bs. (The fact that clients
bound to other DCs still enjoy availability is not relevant.) If
COPS were to naively access data from other AZ-Bs, there
would be consistency issues if the in-flight values from the
failed DCs cannot be guaranteed to be propagated. Thus,
while it may appear that data is available even after multiple
DC failures, the system must choose between availability
(without consistency) or consistency (without availability).
As such, Karma’'s unavailability under multi-AZ failure is
similar to that of COPS and COPS-PR.
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In summary (Table 1), Karma’s flexibility of ring switch-
ing leads to (a) better availability than COPS-PR which
employs static-ring binding, and (b) similar availability as
full-replication systems which incur much higher cost than
Karma. Upon recovery from failures or partitions, any pend-
ing write-propagation is completed to ensure that writes
stabilize. Note that there are scenarios where full-replication
systems achieve better availability. For example, if one AZ-
F gets completely network-partitioned from the rest of the
world except its own AZ-B (i.e., AZ-F Cutoff), the clients
within that AZ-F would see unavailability under all partial-
replication schemes including Karma, independent of the
consistency model or system, but would have no availability
problems with full-replication systems.

4.5 Get-Transaction Support in Karma

Recall from Section 2 that the general case of read/write
transactions are not appropriate for our domain because our
goal is to offer consistency and availability even under par-
tition. The serializable semantics of read/write transactions
is ruled out because of the CAP theorem. However, read-
only transactions (get-transactions), which effectively offer
the ability to group a collection of gets such that they read
an instantaneous snapshot without any intervening writes
is achievable (i.e., not ruled out under the CAP theorem)
[17], [33], [34].

While our focus in this paper is on ordering which is
orthogonal to transactional atomicity, we show that Karma
can leverage prior designs to support read-only transac-
tions. Specifically, Eiger’s [34] read transactions are based
on (1) eagerly attempting to read the latest values, (2)
detecting if such reads form a snapshot without intervening
writes, and (3) if the reads are determined not to be a
snapshot, reconstructing a snapshot by reading appropriate
older versions (which must be saved). There are additional
optimizations to avoid indefinite retention of older values
and to abort/retry transactions if they cannot complete
within specified timeouts.

Karma can use the same get-transaction mechanism used
in Eiger with only two minor changes to address dynamic
ring binding and caching.

Interaction with Dynamic ring binding: Eiger's get-
transactions mechanism works within a single statically
bound ring/DC. Similarly, in Karma, all transactional reads
go a single ring. However, Karma can choose a different
ring for each transaction if there are no DRRs. Even within
a transaction, if the transaction aborts (because of a time-
out/failure), Karma can retry the transaction in a different
ring. This last feature is important for Karma because if
some data is not available in a ring, the transaction can be
reattempted at another ring.

Interaction with Caching: Karma can bypass all interaction
of transactions with caching by requiring all transactional
operations to bypass the cache.

Finally, while it is also possible to incorporate Eiger’s
write-only transactions in Karma, we believe it is not worth
the complexity because it involves implementing two phase
commit in the wide area.

5 EXPERIMENTAL METHODOLOGY
We used a 64-node cluster in the Probe test-bed [20].
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Modeling geo-replicated settings: To model geo-replicated
settings, we group DCs into multiple geographic regions, as
shown in Figure 4. We considered eight regions, modeled
after Amazon AWS, with three in the US, (two in the West
and one in the East Coast), one in Europe, one in South
America, and three in Asia/Australia. We measured delay
across EC2 instances in different regions and emulated these
delays in our cluster using Dummynet [11]. For instance,
the round-trip delay from US-West1 to US-East, US-West2,
Europe, Singapore, Tokyo, Sydney and Brazil were 86, 23,
175, 221, 143, 198 and 205 milliseconds respectively.
Clustering DCs into rings: Our evaluations of Karma used
three rings, comprising (i) all the DCs in the US and Europe;
(ii) all DCs in Asia and Australia; and (iii) the DC in South
America. This partitioning generally ensures that within-
ring delays are lower than across-ring delays. Because of our
target of three rings, Europe’s relative network proximity
to the US puts their DCs in the same ring. Karma’s design
is independent of partitioning heuristics. More generally,
factors besides network proximity may be considered in ring
partitioning.

Schemes: We compare Karma using the rings described
above with the following state-of-the-art schemes. We im-
plemented each of Karma and these schemes as a shim-layer
between a key-value storage tier consisting of unmodified,
individual Cassandra instances and a cloud client layer. The
MM maintains the necessary metastate for Karma, which is
minimal. There is a table of inflight objects which is small
because there are only a few in-flight objects at any given
time. The cached-at metastate holds 8 bits per object (a full
bitmap of eight DCs where the object is cached).

e COPS-Ideal: This full-replication scheme replicates all
data items in each of the eight DCs, and includes key
optimizations in COPS and Orbe (Section 2.2). To validate
that our implementation of COPS-Ideal is similar to COPS,
we measured the achieved throughput of our COPS-Ideal
implementation with the same configuration (2 DCs, 1
server/DC, and zero wide-area delays) as in the original
COPS paper. Because our hardware is different from that
in the COPS paper, absolute throughput comparisons are
not meaningful. As such, we compared throughput as a
fraction of peak sustainable throughput of pings between
servers. Such ping throughput represents an upper-bound
on achievable throughput. Our COPS-Ideal implementation
achieves comparable throughput (within 8%) and better
latency (99'" percentile) than COPS.

e COPS-PR: Recall from Section 1 that this more-practical
COPS-variant is a straightforward extension of previous
causal systems to support partial replication. This scheme
uses (1) the same three rings as Karma (therefore resulting in
identical cost), but with the restriction that reads arriving at
a DC may access only the replica in the DC’s ring; and (2)
write buffering for fast local writes but no caching (includ-
ing which would require the causality-preserving caching
techniques of Karma).

One may imagine an alternative system with equal cost
as Karma wherein the three replicas are located in three of
the eight DCs. The remaining 5 DCs will all see degraded
latencies and availability upon partition; as such, we limit
the comparison to COPS-PR which has the same cost as
Karma.
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Fig. 7. Throughput and latency comparison.

o Karma-NC: This Karma-variant excludes caches but in-
cludes write buffering for fast writes.

Experiment configuration: Each DC comprised of eight
storage nodes each of which ran a single-node Cassandra
datastore and our MM (per-object state) code. The CC’s
(which hold per-thread state) are also co-located on the
same nodes; however, any CC may access any back-end.
For Karma, we considered two cache nodes in each DC.
To avoid giving Karma a resource advantage, we reduce
the number of storage nodes in Karma to six per DC. This
paper focuses on achieving consistency and leaves design-
space exploration, such as optimizing the number of storage
and cache servers, to future work. Further, our performance
results include all the overhead of write-completion notifi-
cations and invalidations in Karma (Figure 5 and Figure 6).
Workloads: We used the well-known Yahoo! Cloud Serving
Benchmark (YCSB) [13]. We focus on read-heavy workloads
with a read-write ratio of 95-5, which is used extensively in
prior work [4], [5], [12], [17], [33]. For each configuration,
the number of client threads are empirically increased till the
system saturates. The number of client threads at saturation
for COPS-Ideal, Karma, Karma-NC, and COPS-PR, are 600,
1050, 1200 and 1200, respectively. Because we observed
that client performance suffers beyond (approximately) 300
threads per instance, we used as many client instances as
necessary to achieve system saturation. We also include
sensitivity analysis for more write-heavy workloads. Each
record has 200 bytes of data by default, but we report on
sensitivity of our results to object size (Section 6.3). We
run seven experiments for each configuration and show
the standard deviation to quantify run-to-run variation. For
each experiment, we loaded the system with 500 million
records, and ran for 10 million operations.

6 RESULTS

6.1 Performance Results

Figure 7(a) and (b) illustrate the sustainable throughput and
get latency (put latency is omitted as puts are always
local) achieved with each of the four schemes.

Several observations can be made from Figure 7. First,
Karma achieves 43% higher throughput on average, and
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significantly lower latency than the equivalent-cost COPS-
PR. COPS-PR has lower per-thread throughput than Karma
because of the absence of caches. However, COPS-PR uses
a higher number of client threads (1200 vs. 1050) to saturate
the system. Second, the throughput and latency of Karma-
NC and COPS-PR are similar as expected. The primary ad-
vantage of Karma-NC over COPS-PR is Karma-NC'’s ability
to adapt to failures and network congestion by accessing
other rings (Section 6.2). Third, the performance gap (both
in throughput and in latency) between COPS-Ideal (which is
impractical because of full-replication) and Karma is because
of partial replication. Specifically, (i) COPS-Ideal achieves
100% local gets by incurring the high cost of full repli-
cation. In contrast, Karma’s local reads come from caching,
which cannot achieve 0% miss rates. In addition to local
reads due to caching, Karma’s also benefits from local reads
in two other cases: get s that are served from the local write-
buffers, and gets of objects that are mapped to the local
DC in the storage ring. The aggregate effect is that Karma
achieves nearly 77% local accesses. Karma’s key advantage
over COPS-Ideal is its reduced write propagation costs.
However, this advantage is diminished in our read-heavy
workload where only 5% of operations are puts. Indeed,
our sensitivity experiments (Section 6.3) revealed that as
workloads become more write-heavy, Karma can match and
even out-perform COPS-Ideal in throughput.
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6.2

A key performance advantage of Karma is its ability to allow
clients to dynamically select replicas from any ring, rather
than statically binding a client to one ring. To evaluate the
dynamic ring switching ability of Karma separately from the
caching component, we focus on Karma-NC and COPS-PR.

Specifically, we examine system behavior when sub-
jected to network congestion, and evaluate the effectiveness
of Karma-NC in ensuring good performance even in such
scenarios. We emulate congestion by sharply increasing the
latency (by 300ms, 600ms, and 1200 ms) of all traffic in
and out of one randomly chosen DC (Europe). We maintain
this congestion for a period long enough for the systems to
settle (120s in our experiments), and then revert to the un-
congested state. Background processes continually monitor
the delays between DCs, and feed the information to the
systems.

Figure 8 shows the time-varying behavior (normalized
throughput in the top graph and read latency in the bot-
tom graph) of the two systems (the two curves) with the
1200ms added delay in the Europe DC. Karma-NC and
COPS-PR are similar in performance in an uncongested
environment. However, Karma-NC performs significantly
better than COPS-PR during the congestion event. This
improvement is because the static ring-binding in COPS-
PR forces clients in the ring which includes the congested
European DC to incur the full penalty for all accesses to the
European DC. In contrast, Karma-NC provides clients with
the flexibility to access data from other rings rather than
incur the high latency of going to the European DC. Finally,
Karma-NC does see some performance degradation during
the congestion event compared to its performance under
normal conditions. This degradation is because redirecting
accesses to remote rings does involve higher latencies than
local latencies under normal conditions. Further, the conges-
tion event extends write completion times of objects that are
held in the Europe DC which may also impact performance.

The two graphs in Figure 9 show the throughput and
latency degradation (averaged over the time of the conges-
tion event, relative to uncongested operation in percentage)
on their respective Y-axes, for congestion delays of 300ms,
600ms, and 1200ms (X-axis). Karma-NC demonstrates con-
sistently better performance under congestion and degrades
at a slower rate than COPS-PR because of Karma-NC’s
ability to switch to other rings as discussed above.

Importance of dynamic ring binding

6.3 Workload sensitivity and DRR behavior

While our results so far assume a read-write ratio of
95-5, Figure 10 presents throughput for workloads with
higher write ratios. Karma continues to out-perform the cost-
equivalent COPS-PR scheme across read-write ratios. Inter-
estingly, with increasing put fraction, Karma'’s performance
improves relative to COPS-Ideal. The performance is com-
parable at 80-20 (within 13%), while at 50-50, Karma achieves
32% higher throughput than COPS-Ideal. This trend is be-
cause COPS-Ideal incurs significantly higher replication cost
for each write than Karma (8X vs. 3X). Thus, Karma not only
achieves its primary objective of significantly reducing costs
as compared to COPS-Ideal, but also achieves comparable
or better throughputs at higher put ratios.
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Fig. 11. Impact of workload on access fraction under DRR

Figure 11 shows the fraction of accesses made while
under DRR (Y-axis) for different read-write ratios (X-axis).
For each ratio, we not only show performance under sat-
uration throughput, but also at 33% and 66% of saturation
load since real systems typically operate at loads lower than
their peak. With 95-5 traffic, fewer than 2% of accesses are
under DRR for all load levels. Even under the most extreme
datapoint (100% load with 50% puts), more than 30% of
accesses are not DRR-bound (i.e., they retain the ability to
switch rings). In contrast, prior static-binding approaches
are always bound to the local ring.

One key concern is that Karma has to bypass caches
during DRR. However, we show that the penalty of bypass-
ing the cache is more than compensated by the increasing
number of accesses that are served from the write buffer.
Figure 12 shows the aggregate fraction of gets that are
served locally on the Y-axis (i.e., from the cache or from
the write-buffer or local DC) for varying load levels and
read-write ratios (X-axis). As expected from the DRR trends,
higher load levels and higher put fractions are associated
with increasing DRR which correspondingly results in lower
cache hit ratios. However, there is a compensatory effect due
to reads being served from the write-buffer which results in
an overall improvement in the fraction of local accesses. This
result again is not surprising given the popularity skew in
typical cloud storage traffic which is modeled as a Zipfian
distribution in YCSB.

6.4 Cost Analysis

To quantify Karma’s cost savings over COPS-Ideal, we use
simple cost models for inter-DC bandwidth costs (OPEX)
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(Figure 13(a)), and compute and storage costs (CAPEX)
(Figure 13(b)), and Twitter traces [32] to ground our analysis.

We breakdown the storage and compute costs of a single
unit cost server as o and (1 — ), respectively. We then
scale the compute and storage costs independently to match
the compute and storage demand. We model compute cost
as proportional to the number of local operations (e.g.,
each put generates as many local operations as number
of replicas). Further, Karma has two local operations for
each cache miss (initial lookup + demand fill). Storage
cost scales in direct proportion to the degree of replication.
For Karma’s caches, we assume that storage costs scale the
same as compute costs. Finally, we model the inter-DC
communication costs to include put costs (replication cost
for every put) and get costs (misses). Because compute and
storage costs are capital expenditures and bandwidth costs
are operational expenditures, we treat these costs separately.
Bandwidth costs of Write-Completion detection: Though
the above simple models do not explicitly model the over-
heads of control messages (e.g., 'STABLE’ notifications), we
separately evaluated their additional cost and found it to
have little impact because the typical object size is much
larger than the typical control message size. For example,
for our baseline comparison with COPS, we assume 8-way
replication in COPS and 3-way replication in Karma. Assum-
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Fig. 14. Karma cost savings over COPS-Ideal

ing the average key-value object size of 231 B (as reported
by Facebook in [3]), each put results in 7 x 231 = 1,617
bytes of transfer to propagate the object to every non-local
DC. Further, the ACKs add another 28 (= 7 x 4) bytes.
In contrast, Karma needs only 3 x 231 = 693 bytes of
transfer to propagate three copies (in the worst case when
all three copies are non-local). The ACKs and the 'STABLE’
notifications each add 12 (= 3 x 4) bytes of overhead. Karma
uses less than half the bandwidth of COPS. Furthermore,
even against a partially replicated baseline (such as COPS-
PR), the overhead of Karma is a modest 12 bytes for every
705 bytes (i.e., under 2%).

Analysis using Twitter data: To drive our model with
realistic data, we used a single day of publicly-available
Twitter traces [32] which included a user-friendship graph, a
list of user locations, and public tweets sent by users (along
with timestamp). We assume every user reads each tweet
from a friend exactly once, which yields a 3.5% miss rate
for Karma. Note that miss rates would be lower if a user
accesses the same tweet multiple times.

Figure 14(a) plots the compute and storage cost (CAPEX)
savings of Karma over COPS-Ideal on the Y-axis for various
put fractions (X-axis) using the miss ratio obtained from
the Twitter analysis, and for multiple values of . Not
surprisingly, the cost savings exceed 50% for write-heavy
workloads. Even for read-heavy workloads, the cost savings
are between 32% and 43% (depending on ). Even under the
31% miss ratio seen in our 95-5 workload, the cost savings
vary from 8% to 26% (not shown).

Figure 14(b) presents the bandwidth cost (OPEX) sav-
ings with the Twitter trace. The bar on the left (workload-
agnostic) shows the cost savings assuming the partitioning
of DCs into rings described in Section 5. However, this
partitioning is not cognizant of the distribution of user
locations. In the Twitter trace, 70% of tweets were from users
in the US East Coast, and 29% of tweets from users in the
US West Coast. We considered cost savings with an alternate
workload-aware partitioning (right bar) which comprised
a single ring for the US East Coast DC, a ring for DCs
in the US West Coast, and another ring for all the other
DCs. While workload-agnostic partitioning already results
in cost savings of 14% in inter-DC traffic, a workload-aware
partitioning could lead to cost savings of over 30%. More
generally, these results point to the benefits of exploiting
user location information, when available, in addition to
network delays, as part of the partitioning strategy. Further,
we have used a simple model of just counting total bytes
of inter-DC traffic. In practice, shipping data over trans-
continental links costs more, and we expect Karma'’s savings
likely to be even more if this detail is factored in.
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6.5 Sensitivity to Object Size

We varied object size from 200 B (default) to 1 KB, and
4 KB. Recent work [3] has shown that fewer than 1% of
objects are larger than 4 KB in Facebook’s key-value store.
Karma's performance degrades gracefully to larger objects;
the throughput with 5X larger objects (1 KB) is within 13%
of the default Karma throughput (with 200 B objects) and
within 32% with 20X larger objects (4KB).

7 RELATED WORK

Classical works on causal consistency (e.g., [7], [36]), some
of which consider partial replication [7], are limited to single
node DSs. In contrast, we focus on large DSs that span hun-
dreds of nodes. Other recent and concurrent ongoing efforts
are investigating partial replication with causally-consistent
datastores. OPCAM [39], [40], [41] and SATURN [8] propose
causal systems with server-level partial replication (unlike
Karma which targets DC-level partial replication).

Because the data at each datacenter is partitioned across
servers in COPS, a single node/site does not see all writes
— only the writes to the data stored in the node/site. Both
OPCAM and SATURN correctly note that more metastate
is needed if each node/site does not receive every write-
propagation message. But under their server-level view,
COPS already falls under the partially-replicated category
even though data is fully replicated at the DC-level which
is COPSs and our definition. Specifically, the write prop-
agation messages in COPS are sent to individual servers
which results in each node seeing only a subset of write-
propagation messages. In fact, the put-after primitive in
COPS is designed specifically to handle the lack of visibility
of all writes at each node. (The put-after is an explicit-
message- based mechanism to enforce causal dependencies
when applying writes that go to different servers.)

Even if extended to DC-level partial replication, OPCAM
would be a subset of our COPS-PR (it uses static ring-
binding). Recall that static ring binding leads to availability
or consistency problems (ie., it is subject to CAP con-
straints). Hsu et al. [26] quantify the metastate overheads
of the various OPCAM variants. Karma uses the same
metastate as COPS-Ideal which includes per-thread write-
ordering (maintained in the write buffers) and cross-client
dependencies (maintained by the CC to enforce put-after
constraints). Recent work by Hsu [27] explores the use of
approximate causal consistency which trades off causality
violations for reduction in metastate overheads of partial
replication. Karma focuses on guaranteed causal consistency
and does not allow for any violations.

Crain et al. [15] focus on efficient dependency tracking
for arbitrary partial replication. Specifically, they recom-
mend a mechanism where the writers have to explicitly
track and notify other replicas when the updates are safe to
apply and use. Karma’s multi-DC rings and the use of tradi-
tional put-after primitive for dependency tracking obviates
the mechanism as all updates have to be propagated to all
wide-area rings. More importantly, their work [15] does not
solve the central issue of inconsistency if dynamic switching
of replicas is allowed, and unavailability under partition if
such switching is disallowed. Karma is the first scalable,
causally-consistent data store to support DC-level partial
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replication while offering both consistency and availability
under partition.

There are distributed stores that use primary-secondary
replication in which all writes are written to the primary
replica from where they are propagated to secondary copies
(e.g., [10], [45]). Specifically, Pileus [45] shows that causal
consistency can be achieved in such a system. However,
the design choice of directing writes to the primary replica
results in either unavailability under partition or violation
of consistency. Karma achieves both availability and consis-
tency under partition by not requiring writes to be funneled
to primary replicas. In addition, directing all writes to a
primary site also hurts write latency. In contrast, Karma
allows all writes to be local.

ChainReaction [2], which employs a variant of Chain
Replication within each DC, relaxes the requirement of
linearizability within the DC. However, because of static
binding, ChainReaction requires full replication; with partial
replication ChainReaction becomes unavailable when a DC
that holds the head of a chain is unavailable. There are other
full-replication based causal storage systems with orthogo-
nal performance improvements; e.g., (1) Cocaco [43], [44]
employs lazy dependence enforcement to defer dependency
checking of writes, and (2) proposals that disallow reads to
in-flight values [18]. In contrast to the above systems, Karma
enables and uses partial replication.

Bolt-on causal consistency(BOCC) [4], [5] enforces
programmer-annotated explicit causality and not for all po-
tential causality like Karma. SPANStore [47] seeks to reduce
costs through partial replication, but does not consider
causal consistency. Occult [35], another system based on
full replication and static binding, addresses an orthogonal
performance issue (slowdown cascades).

Many systems aim to support transactions in geo-
replicated storage systems [6], [14], [28], [33], [34], [42], [49].
Many of these systems (e.g., [6], [14]) use Paxos [31] in
the wide-area, which is incompatible with low latency, and
sacrifices availability under partitions. Causally-consistent
systems (including Karma) which are typically designed for
availability under partition offer limited forms of trans-
actional support as described in Section 4.5. Recent work
has extended causal read-only transactions to the client
caches [48]. While client caches are indeed not full replicas,
the work continues to assume fully replicated causal stores.

TxCache is a programmer-visible, application data
caching system that leverages programmer-specified stale-
ness tolerance to enable caching with transactional consis-
tency [37]. In contrast, Karma’s caches are transparent to
programmers. Unlike TxCache, Karma does not cache the
results of application fu