Karush-Kuhn-Tucker Conditions

Richard Lusby

Department of Management Engineering
Technical University of Denmark

Today's Topics

- Unconstrained Optimization
- Equality Constrained Optimization
- Equality/Inequality Constrained Optimization

Unconstrained Optimization

Unconstrained Optimization

Problem

$$
\begin{array}{rr}
\operatorname{minimize} & f(\mathbf{x}) \\
\text { subject to: } & \mathbf{x} \in \mathbb{R}^{n}
\end{array}
$$

First Order Necessary Conditions

If \mathbf{x}^{*} is a local minimizer of $f(\mathbf{x})$ and $f(\mathbf{x})$ is continuously differentiable in an open neighbourhood of \mathbf{x}^{*}, then

$$
\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}
$$

That is, $f(\mathbf{x})$ is stationary at \mathbf{x}^{*}

Unconstrained Optimization

Second Order Necessary Conditions

If \mathbf{x}^{*} is a local minimizer of $f(\mathbf{x})$ and $\nabla^{2} f(\mathbf{x})$ is continuously differentiable in an open neighbourhood of \mathbf{x}^{*}, then

$$
\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}
$$

$\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive semi definite

Second Order Sufficient Conditions

Suppose that $\nabla^{2} f(\mathbf{x})$ is continuously differentiable in an open neighbourhood of \mathbf{x}^{*}. If the following two conditions are satisfied, then \mathbf{x}^{*} is a local minimum of $f(\mathbf{x})$.

$$
\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}
$$

$\nabla^{2} f\left(x^{*}\right)$ is positive definite

Equality Constrained Optimization

Equality Constrained Optimization

Problem

$$
\begin{array}{rll}
\operatorname{minimize} & f(\mathbf{x}) & \\
\text { subject to: } & h_{i}(\mathbf{x}) & =0 \forall i=1,2, \ldots m \\
& \mathbf{x} & \in \mathbb{R}^{n}
\end{array}
$$

Equality Constrained Optimization

Consider the following example

Example

$$
\begin{array}{rr}
\operatorname{minimize} & 2 x_{1}^{2}+x_{2}^{2} \\
\text { subject to: } & x_{1}+x_{2}=1
\end{array}
$$

- Let us first consider the unconstrained case
- Differentiate with respect to x_{1} and x_{2}

$$
\begin{aligned}
& \frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}}=4 x_{1} \\
& \frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{2}}=2 x_{2}
\end{aligned}
$$

- These yield the solution $x_{1}=x_{2}=0$
- Does not satisfy the constraint

Equality Constrained Optimization

Example Continued

- Let us penalize ourselves for not satisfying the constraint
- This gives

$$
L\left(x_{1}, x_{2}, \lambda_{1}\right)=2 x_{1}^{2}+x_{2}^{2}+\lambda_{1}\left(1-x_{1}-x_{2}\right)
$$

- This is known as the Lagrangian of the problem
- Try to adjust the value λ_{1} so we use just the right amount of resource
$\lambda_{1}=0 \rightarrow$ get solution $x_{1}=x_{2}=0,1-x_{1}-x_{2}=1$
$\lambda_{1}=1 \rightarrow$ get solution $x_{1}=\frac{1}{4}, x_{2}=\frac{1}{2}, 1-x_{1}-x_{2}=\frac{1}{4}$
$\lambda_{1}=2 \rightarrow$ get solution $x_{1}=\frac{1}{2}, x_{2}=1,1-x_{1}-x_{2}=-\frac{1}{2}$
$\lambda_{1}=\frac{4}{3} \rightarrow$ get solution $x_{1}=\frac{1}{3}, x_{2}=\frac{2}{3}, 1-x_{1}-x_{2}=0$

Equality Constrained Optimization

Generally Speaking

Given the following Non-Linear Program

Problem

$$
\begin{array}{rrl}
\operatorname{minimize} & f(\mathbf{x}) & \\
\text { subject to: } & h_{i}(\mathbf{x}) & =0 \forall i=1,2, \ldots m \\
& \mathbf{x} & \in \mathbb{R}^{n}
\end{array}
$$

A solution can be found using the Lagrangian

$$
L(\mathbf{x}, \boldsymbol{\lambda})=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i}\left(0-h_{i}(\mathbf{x})\right)
$$

Equality Constrained Optimization

Why is $L(x, \lambda)$ interesting?
Assume \mathbf{x}^{*} minimizes the following

$$
\begin{array}{rrl}
\operatorname{minimize} & f(\mathbf{x}) \\
\text { subject to: } & h_{i}(\mathbf{x}) & =0 \forall i=1,2, \ldots m \\
& \mathbf{x} & \in \mathbb{R}^{n}
\end{array}
$$

Case 1: Example

Example

$$
\begin{array}{rr}
\operatorname{minimize} & x_{1}+x_{2}+x_{3}^{2} \\
\text { subject to: } & x_{1}=1 \\
& x_{1}^{2}+x_{2}^{2}=1
\end{array}
$$

- The minimum is achieved at $x_{1}=1, x_{2}=0, x_{3}=0$
- The Lagrangian is:

$$
L\left(x_{1}, x_{2}, x_{3}, \lambda_{1}, \lambda_{2}\right)=x_{1}+x_{2}+x_{3}^{2}+\lambda_{1}\left(1-x_{1}\right)+\lambda_{2}\left(1-x_{1}^{2}-x_{2}^{2}\right)
$$

- Observe that:

$$
\frac{\partial L\left(1,0,0, \lambda_{1}, \lambda_{2}\right)}{\partial x_{2}}=1 \quad \forall \lambda_{1}, \lambda_{2}
$$

- Observe $\nabla h_{1}(1,0,0)=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ and $\nabla h_{2}(1,0,0)=\left[\begin{array}{lll}2 & 0 & 0\end{array}\right]$

Case 2: Example

Example

$$
\begin{array}{rc}
\operatorname{minimize} & 2 x_{1}^{2}+x_{2}^{2} \\
\text { subject to: } & x_{1}+x_{2}=1
\end{array}
$$

- The Lagrangian is:

$$
L\left(x_{1}, x_{2}, \lambda_{1}\right)=2 x_{1}^{2}+x_{2}^{2}+\lambda_{1}\left(1-x_{1}-x_{2}\right)
$$

- Solve for the following:

$$
\begin{gathered}
\left.\frac{\partial L\left(x_{1}^{*}, x_{2}^{*}, \lambda_{1}^{*}\right.}{\partial x_{1}}\right)=4 x_{1}^{*}-\lambda_{1}^{*}=0 \\
\left.\frac{\partial L\left(x_{1}^{*}, x_{2}^{*}, \lambda_{1}^{*}\right.}{\partial x_{2}}\right)=2 x_{2}^{*}-\lambda_{1}^{*}=0 \\
\frac{\partial L\left(x_{1}^{*}, x_{2}^{*}, \lambda_{1}^{*}\right)}{\partial \lambda}=1-x_{1}^{*}-x_{2}^{*}=0
\end{gathered}
$$

Case 2: Example continued

- Solving this system of equations yields $x_{1}^{*}=\frac{1}{3}, x_{2}^{*}=\frac{2}{3}, \lambda_{1}^{*}=\frac{4}{3}$
- Is this a minimum or a maximum?

Graphically

Graphically

Geometric Interpretation

- Consider the gradients of f and h at the optimal point
- They must point in the same direction, though they may have different lengths

$$
\nabla f\left(\mathbf{x}^{*}\right)=\lambda^{*} \nabla h\left(\mathbf{x}^{*}\right)
$$

- Along with feasibility of \mathbf{x}^{*}, is the condition $\nabla L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right)=0$
- From the example, at $x_{1}^{*}=\frac{1}{3}, x_{2}^{*}=\frac{2}{3}, \lambda_{1}^{*}=\frac{4}{3}$

$$
\begin{gathered}
\nabla f\left(x_{1}^{*}, x_{2}^{*}\right)=\left[\begin{array}{ll}
4 x_{1}^{*} & 2 x_{2}^{*}
\end{array}\right]=\left[\begin{array}{ll}
\frac{4}{3} & \frac{4}{3}
\end{array}\right] \\
\nabla h_{1}\left(x_{1}^{*}, x_{2}^{*}\right)=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
\end{gathered}
$$

Geometric Interpretation

- $\nabla f(\mathbf{x})$ points in the direction of steepest ascent
- $-\nabla f(\mathbf{x})$ points in the direction of steepest descent
- In two dimensions:
- $\nabla f\left(\mathbf{x}^{\mathbf{0}}\right)$ is perpendicular to a level curve of f
- $\nabla h_{i}\left(\mathbf{x}^{\mathbf{o}}\right)$ is perpendicular to the level curve $h_{i}\left(\mathbf{x}^{\circ}\right)=0$

Equality, Inequality Constrained Optimization

Inequality Constraints

What happens if we now include inequality constraints?

General Problem

$$
\begin{aligned}
\operatorname{maximize} & f(\mathbf{x}) \\
\text { subject to: } & g_{i}(\mathbf{x}) \leq 0 \quad\left(\mu_{i}\right) \quad \forall i \in I \\
& h_{j}(\mathbf{x})=0 \quad\left(\lambda_{j}\right) \quad \forall i \in J
\end{aligned}
$$

- Given a feasible solution $\mathbf{x}^{\mathbf{0}}$, the set of binding constraints is:

$$
\mathcal{I}=\left\{i: g_{i}\left(\mathbf{x}^{\mathbf{0}}\right)=0\right\}
$$

The Lagrangian

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(x)+\sum_{i=1}^{m} \mu_{i}\left(0-g_{i}(\mathbf{x})\right)+\sum_{j=1}^{k} \lambda_{j}\left(0-h_{j}(\mathbf{x})\right)
$$

Inequality Constrained Optimization

Assume \mathbf{x}^{*} maximizes the following

$$
\begin{aligned}
\operatorname{maximize} & f(\mathbf{x}) \\
\text { subject to: } & g_{i}(\mathbf{x}) \leq 0 \quad\left(\mu_{i}\right) \quad \forall i \in I \\
& h_{j}(\mathbf{x})=0 \quad\left(\lambda_{j}\right) \quad \forall i \in J
\end{aligned}
$$

The following two cases are possible:
(1) $\nabla h_{1}\left(\mathbf{x}^{*}\right), \ldots, \nabla h_{k}\left(\mathbf{x}^{*}\right), \nabla g_{1}\left(\mathbf{x}^{*}\right), \ldots, \nabla g_{m}\left(\mathbf{x}^{*}\right)$ are linearly dependent
(2) There exist vectors $\boldsymbol{\lambda}^{*}$ and $\boldsymbol{\mu} *$ such that

$$
\begin{gathered}
\nabla f\left(\mathbf{x}^{*}\right)-\sum_{j=1}^{k} \lambda_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right)-\sum_{i=1}^{m} \mu_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)=0 \\
\mu_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0 \\
\boldsymbol{\mu}^{*} \geq 0
\end{gathered}
$$

Inequality Constrained Optimization

- These conditions are known as the Karush-Kuhn-Tucker Conditions
- We look for candidate solutions \mathbf{x}^{*} for which we can find $\boldsymbol{\lambda}^{*}$ and $\boldsymbol{\mu}^{*}$
- Solve these equations using complementary slackness
- At optimality some constraints will be binding and some will be slack
- Slack constraints will have a corresponding μ_{i} of zero
- Binding constraints can be treated using the Lagrangian

Constraint qualifications

KKT constraint qualification

$\nabla g_{i}\left(\mathbf{x}^{\mathbf{0}}\right)$ for $i \in I$ are linearly independent

Slater constraint qualification

- $g_{i}(\mathbf{x})$ for $i \in I$ are convex functions
- A non boundary point exists: $g_{i}(\mathbf{x})<0$ for $i \in I$

Case 1 Example

The Problem

$$
\begin{aligned}
\operatorname{maximize} & x \\
\text { subject to: } & y \leq(1-x)^{3} \\
& y \geq 0
\end{aligned}
$$

- Consider the global max: $(x, y)=(1,0)$
- After reformulation, the gradients are

$$
\begin{array}{ll}
\nabla f(x, y) & =(1,0) \\
\nabla g_{1} & =\left(3(x-1)^{2}, 1\right) \\
\nabla g_{2} & =(0,-1)
\end{array}
$$

- Consider $\nabla f(x, y)-\sum_{i=1}^{2} \mu_{i} \nabla g_{i}(x, y)$

Graphically

Case 1 Example

We get:

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]-\mu_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]-\mu_{2}\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

- No μ_{1} and μ_{2} exist such that:

$$
\nabla f(x, y)-\sum_{i=1}^{2} \mu_{i} \nabla g_{i}(x, y)=\mathbf{0}
$$

Case 2 Example

The Problem

$$
\begin{array}{rr}
\operatorname{maximize} & -(x-2)^{2}-2(y-1)^{2} \\
\text { subject to: } & x+4 y \leq 3 \\
x & \geq y
\end{array}
$$

The Problem (Rearranged)

$$
\begin{array}{rrl}
\operatorname{maximize} & -(x-2)^{2}-2(y-1)^{2} & \\
\text { subject to: } & x+4 y & \leq 3 \\
-x+y & \leq 0
\end{array}
$$

Case 2 Example

- The Lagrangian is:

$$
L\left(x_{1}, y, \mu_{1}, \mu_{2}\right)=-(x-2)^{2}-2(y-1)^{2}+\mu_{1}(3-x-4 y)+\mu_{2}(0+x-y)
$$

- This gives the following KKT conditions

$$
\begin{gathered}
\frac{\partial L}{\partial x}=-2(x-2)-\mu_{1}+\mu_{2}=0 \\
\frac{\partial L}{\partial y}=-4(y-1)-4 \mu_{1}-\mu_{2}=0 \\
\mu_{1}(3-x-4 y)=0 \\
\mu_{2}(x-y)=0 \\
\mu_{1}, \mu_{2} \geq 0
\end{gathered}
$$

Case 2 Example

Continued

We have two complementarity conditions \rightarrow check 4 cases
(1) $\mu_{1}=\mu_{2}=0 \rightarrow x=2, y=1$
(2) $\mu_{1}=0, x-y=0 \rightarrow x=\frac{4}{3}, \mu_{2}=-\frac{4}{3}$
(3) $3-x-4 y=0, \mu_{2}=0 \rightarrow x=\frac{5}{3}, y=\frac{1}{3}, \mu_{1}=\frac{2}{3}$
(9) $3-x-4 y=0, x-y=0 \rightarrow x=\frac{3}{5}, y=\frac{3}{5}, \mu_{1}=\frac{22}{25}, \mu_{2}=-\frac{48}{25}$

Optimal solution is therefore $x^{*}=\frac{5}{3}, y^{*}=\frac{1}{3}, f\left(x^{*}, y^{*}\right)=-\frac{4}{9}$

Case 2 Example

Continued

We have two complementarity conditions \rightarrow check 4 cases
(1) $\mu_{1}=\mu_{2}=0 \rightarrow x=2, y=1$
(2) $\mu_{1}=0, x-y=0 \rightarrow x=\frac{4}{3}, \mu_{2}=-\frac{4}{3}$
(3) $3-x-4 y=0, \mu_{2}=0 \rightarrow x=\frac{5}{3}, y=\frac{1}{3}, \mu_{1}=\frac{2}{3}$
(9) $3-x-4 y=0, x-y=0 \rightarrow x=\frac{3}{5}, y=\frac{3}{5}, \mu_{1}=\frac{22}{25}, \mu_{2}=-\frac{48}{25}$

Optimal solution is therefore $x^{*}=\frac{5}{3}, y^{*}=\frac{1}{3}, f\left(x^{*}, y^{*}\right)=-\frac{4}{9}$

Continued

The Problem

$$
\begin{aligned}
& \text { minimize }(x-3)^{2}+(y-2)^{2} \\
& \text { subject to: } \quad x^{2}+y^{2} \leq 5 \\
& x+2 y \leq 4 \\
& x, y \geq 0
\end{aligned}
$$

The Problem (Rearranged)

$$
\begin{array}{rrl}
\operatorname{maximize} & -(x-3)^{2}-(y-2)^{2} & \\
\text { subject to: } & x^{2}+y^{2} & \leq 5 \\
x+2 y & \leq 4 \\
-x,-y & \leq 0
\end{array}
$$

Inequality Example

- The gradients are:

$$
\begin{aligned}
\nabla f(x, y) & =(6-2 x, 4-2 y) \\
\nabla g_{1}(x, y) & =(2 x, 2 y) \\
\nabla g_{2}(x, y) & =(1,2) \\
\nabla g_{3}(x, y) & =(-1,0) \\
\nabla g_{4}(x, y) & =(0,-1)
\end{aligned}
$$

Inequality Example

Continued

- Consider the point $(x, y)=(2,1)$

It is feasible $\mathcal{I}=\{1,2\}$

- This gives

$$
\left[\begin{array}{l}
2 \\
2
\end{array}\right]-\mu_{1}\left[\begin{array}{l}
4 \\
2
\end{array}\right]-\mu_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- $\mu_{1}=\frac{1}{3}, \mu_{2}=\frac{2}{3}$ satisfy this

Sufficient condition

General Problem

$$
\begin{aligned}
\operatorname{maximize} & f(\mathbf{x}) \\
\text { subject to: } & g_{i}(\mathbf{x}) \leq 0 \quad \forall i \in I
\end{aligned}
$$

Theorem

If $f(\mathbf{x})$ is concave and $g_{i}(\mathbf{x})$ for $i \in I$ are convex functions then a feasible KKT point is optimal

- An equality constraint is equivalent to two inequality constraints:

$$
h_{j}(\mathbf{x})=0 \Leftrightarrow h_{j}(\mathbf{x}) \leq 0 \text { and }-h_{j}(\mathbf{x}) \leq 0
$$

- The corresponding two nonnegative multipliers may be combined to one free one

$$
\lambda_{j+} \nabla h(\mathbf{x})+\lambda_{j-}(-\nabla h(\mathbf{x}))=\lambda_{j} \nabla h(\mathbf{x})
$$

Equality constraints

General Problem

$$
\begin{aligned}
\operatorname{maximize} & f(\mathbf{x}) \\
\text { subject to: } & g_{i}(\mathbf{x}) \leq 0 \quad \forall i \in I \\
& h_{j}(\mathbf{x})=0 \quad \forall j \in J
\end{aligned}
$$

- Let $\mathbf{x}^{\mathbf{0}}$ be a feasible solution
- As before, $\mathcal{I}=\left\{i: g_{i}\left(\mathbf{x}^{\mathbf{0}}\right)=0\right\}$
- Assume constraint qualification holds

Equality constraints

Continued

KKT Necessary Optimality Conditions

If $\mathbf{x}^{\mathbf{0}}$ is a local maximum, there exist multipliers $\mu_{i} \geq 0 \forall i \in I$ and λ_{j}
$\forall j \in J$ such that

$$
\nabla f\left(\mathbf{x}^{\mathbf{0}}\right)-\sum_{i \in I} \mu_{i} \nabla g_{i}\left(\mathbf{x}^{\mathbf{o}}\right)-\sum_{j} \lambda_{j} \nabla h_{j}\left(\mathbf{x}^{\mathbf{o}}\right)=\mathbf{0}
$$

KKT Sufficient Optimality Conditions

If $f(\mathbf{x})$ is concave, $g_{i}(\mathbf{x}) \forall i \in I$ are convex functions and $h_{j} \forall j \in J$ are affine (linear) then a feasible KKT point is optimal

KKT Conditions - Summary

General Problem

$$
\begin{aligned}
\operatorname{maximize} & f(\mathbf{x}) \\
\text { subject to: } & g_{i}(\mathbf{x}) \leq 0 \quad \forall i \in I \\
& h_{j}(\mathbf{x})=0 \quad \forall j \in J
\end{aligned}
$$

KKT conditions

$$
\begin{aligned}
\nabla f\left(\mathbf{x}^{\mathbf{0}}\right)-\sum_{i} \mu_{i} \nabla g_{i}\left(\mathbf{x}^{\mathbf{0}}\right)-\sum_{j} \lambda_{j} \nabla h_{j}\left(\mathbf{x}^{\mathbf{0}}\right) & =\mathbf{0} \\
\mu_{i} g_{i}\left(\mathbf{x}^{\mathbf{0}}\right) & =0 \quad \forall i \in I \\
\mu_{i} & \geq 0 \quad \forall i \in I
\end{aligned}
$$

x^{0} feasible

Alternative Formulation
 Vector Function Form

General Problem

$$
\begin{aligned}
\operatorname{maximize} & f(\mathbf{x}) \\
\text { subject to: } & \mathbf{g}(\mathbf{x}) \leq 0 \\
& \mathbf{h}(\mathbf{x})=0
\end{aligned}
$$

KKT Conditions

$$
\begin{aligned}
\nabla f\left(\mathbf{x}^{\mathbf{o}}\right)-\boldsymbol{\mu} \nabla \mathbf{g}\left(\mathbf{x}^{\mathbf{0}}\right)-\lambda \nabla \mathbf{h}\left(\mathbf{x}^{0}\right) & =\mathbf{0} \\
\boldsymbol{\mu}\left(\mathbf{x}^{\mathbf{o}}\right) & =\mathbf{0} \\
\boldsymbol{\mu} & \geq \mathbf{0} \\
\mathbf{x}^{\mathbf{0}} \text { feasible } &
\end{aligned}
$$

Class Exercise 1

The Problem

$$
\begin{array}{rr}
\operatorname{maximize} & \ln (x+1)+y \\
\text { subject to: } & 2 x+y
\end{array}
$$

Class Exercise 2

The problem

$$
\begin{array}{rc}
\operatorname{minimize} & x^{2}+y^{2} \\
\text { subject to: } & x^{2}+y^{2} \leq 5 \\
& x+2 y=4 \\
x, y & \geq 0
\end{array}
$$

Class Exercise 3

Write the KKT conditions for

$$
\begin{aligned}
\operatorname{maximize} & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to: } & A \mathbf{x} \leq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

