Dr Clays A-level Chemistry

Kc and Kp Past Paper ANSWERS

Kc \& Kp Past Pape ANSWERS
M1.(a) Stage 1: Moles of acid at equilibrium
Moles of sodium hydroxide in each titration

$$
=\left(3.20 \times 2.00 \times 10^{-1}\right) / 1000=6.40 \times 10^{-4}
$$

Extended response

Sample $=10 \mathrm{~cm}^{3}$ so moles of acid in $250 \mathrm{~cm}^{3}$ of equilibrium mixture $=25 \times 6.40 \times 10^{-4}=1.60 \times 10^{-2}$

M2 can only be scored if $=$ answer to $M 1 \times 25$

Stage 2: Moles of ester and water formed
Moles of acid reacted $=8.00 \times 10^{-2}-1.60 \times 10^{-2}=6.40 \times 10^{-2}$
$=$ moles ester and water formed
M3 is $8.00 \times 10^{-2}-\mathrm{M} 2$

Stage 3: Moles of ethanol at equilibrium
Moles of ethanol remaining $=1.20 \times 10^{-1}-6.40 \times 10^{-2}=5.60 \times 10^{-2}$
M4 is $1.20 \times 10^{-1}-M 3$

Stage 4: Calculation of equilibrium constant
$K_{\mathrm{c}}=\left[\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]$
$=\left(6.40 \times 10^{-2}\right)^{2} /\left(1.60 \times 10^{-2}\right)\left(5.60 \times 10^{-2}\right)$
$=4.5714=4.57$
M6 is $\mathrm{M3}^{2} / \mathrm{M} 2 \times \mathrm{M} 4$
Answer must be given to 3 significant figures
(b)

Rough	1	2	3

Kc \& Kp Past Pape ANSWERS

Final burette reading $/ \mathbf{~ c m}^{3}$	4.60	8.65	12.85	16.80
Initial burette reading / cm				
	0.10	4.65	8.65	12.85
Titre $/ \mathbf{~ c m}^{3}$	4.50	4.00	4.20	3.95

(c) Mean $=4.00+3.95 / 2=3.98\left(\mathrm{~cm}^{3}\right)$

Allow 3.975 (cm ${ }^{3}$)

Titres 1 and 3 are concordant
Allow titre 2 is not concordant
(d) Thymol blue
(e) Percentage uncertainty: $0.15 / 3.98 \times 100=3.77 \%$

Allow consequential marking on mean titre from 2.3
(f) Use a lower concentration of NaOH

So that a larger titre is required (reduces percentage uncertainty in titre)

M2.(a) amount of $X=0.50-0.20=0.30$ (mol)
(b) Axes labelled with values, units and scales that use over half of each axis

All three of values, units and scales are required for the mark

Curve starts at origin

Then flattens at 30 seconds at 0.20 mol
(c) Expression $=K_{c}=\frac{[\mathrm{Z}]}{[\mathrm{X}][\mathrm{Y}]^{2}}$

$[\mathrm{Y}]=(0.35 / 0.40 \times 2.9)^{0.5}=0.5493=0.55\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
Answer must be to 2 significant figures
(d) Darkened / went more orange

The equilibrium moved to the right

To oppose the increased concentration of Y

Kc \& Kp Past Pape ANSWERS
(e) The orange colour would fade

M3.(a) $K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$

Penalise () in this part but can score units; mark on in (b)

If K_{c} expression wrong no marks in this part but can score M1 \& M3 in (b)

$$
\text { units }=\mathrm{mol}^{-1} \mathrm{dm}^{3}
$$

(b) $\quad\left[\mathrm{O}_{2}\right]=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2} \mathrm{~K}_{\mathrm{c}}}$ or $\frac{(0.055 / 1.4)^{2} \times 27.9}{}$ or $(0.055)^{2} \times 27.9$

Correct answer scores three marks
Ignore () in this part
Penalise contradiction in M1

M1
1
$0.061(4)$
If K_{c} expression wrong in (a) can score M1 here for rearrangement of their K_{c} \& M3 for multiplication by 1.4

M2
$\mathrm{mol} \mathrm{O}_{2}=0.0614 \times 1.4=0.086$ (allow $0.085-0.087$)
If K_{c} or rearrangement wrong here score only M3 for multiplication by 1.4

M3 = correct answer of (M2 $\times 1.4$)
M3

Kc \& Kp Past Pape ANSWERS
(c) (i) No effect $\mathbf{O R}$ none $\mathbf{O R}$ no change $\mathbf{O R}$ stays the same

M1

```
(ii) Effect: Increase or more \(\mathrm{SO}_{3}\)
Increase or more \(\mathrm{SO}_{3}\)
If wrong effect, no further marks, but M2 and M3 are independent of each other
SO
Increase or
    M3 are independent of each other
```

1

Fewer mole(cule)s on RHS or 3 moles to 2 moles
or (eqm shifts) to side with fewer moles
$\left(\mathrm{V}^{3} \mathrm{or}\right)$ residual V decreases in numerator of K_{c} expression
M2
1

Equilibrium moves / shifts to reduce the pressure / oppose the increase in pressure
to keep K_{c} constant,
ratio $\frac{\left(\mathrm{mol} \mathrm{SO}_{3}\right)^{2}}{\left(\mathrm{~mol} \mathrm{SO}_{2}\right)^{2}\left(\mathrm{~mol} \mathrm{O}_{2}\right)}$
must increase
Allow to oppose the change only if increase pressure mentioned

M3

M4.(a) (i) Award mark for \mathbf{X} on the time axis at the point where the lines just become horizontal Allow this mark if \boldsymbol{X} is above the letters "sh" in the word "show" in part(ii) - in the range of lines 31 to 33.
(ii) They are equal / the same

Kc \& Kp Past Pape ANSWERS

OR

Forward (rate) = Reverse / backward (rate)
Allow the word 'speed' in this context. Ignore reference to concentration.
(b) Both OR forward and reverse reactions occur at the same time

OR both are occurring at once
OR both occur all of the time
OR both are ongoing
OR both never stop
Ignore 'at equal rates'.
Ignore reference to concentration or equilibrium.
The idea that both reactions occur simultaneously is essential.
The simple idea of 'both reactions occurring' is insufficient for the mark.
(c) (i) M1 No effect / no change / none / stays the same

M2 requires correct M1
In M2, ignore reference to particles or atoms.
M2 Equal (number of) moles / molecules on both sides
(ii) M1 Less time or it decreases or (equilibrium) reached faster (ie M1 is a reference to time taken)

If M1 is 'more time / it increases' or 'no effect', then CE=O for the clip.
Reference to faster / increased rate / increased speed alone penalises M1, but mark on M2 and M3.

M2 More particles / molecules in a given volume / space
OR the particles / molecules are closer together
If M1 is blank, then look for all three marks in the text.
M3 More successful / productive collisions in a given time
OR more collisions with $E>E_{\text {Act }}$ in a given time

Kc \& Kp Past Pape ANSWERS
OR more frequent successful / productive collisions
OR increased / greater successful / productive collision frequency / rate

Ignore reference to reactants / products.
Penalise M3 if an increase / decrease in the value of $E_{\text {Act }}$ is stated.

M5.(a) Mol of E $1.6(00)$
Ignore extra zeros.

Mol of F $\quad 0.2(00)$
(b) $\quad K_{\mathrm{c}}=\frac{[\mathrm{G}]^{2}}{[\mathrm{E}][\mathrm{F}]^{2}}$

Penalise expression containing V.
Penalise missing brackets or ().
$\mathrm{mol}^{-1} \mathrm{dm}^{3}$
If K_{c} wrong, allow units consequential to their K_{c}, but no marks in (c) unless correct K_{c} used in (c).
(c) $\quad K_{c}=\frac{(0.85 / 1.5)^{2}}{(2.50 / 1.5)(1.20 / 1.5)^{2}}$

Vol missed or used wrongly - no marks.
If K_{c} correct in (b) but squared term missed here, no further marks.

Kc \& Kp Past Pape ANSWERS
Ignore units.
(d) M1 Decrease

If $M 1$ is incorrect $C E=0$ for the clip.
If M1 is blank, mark on and seek to credit the correct information in the explanation.

M2 More moles on LHS / reactants or fewer / less moles on RHS / products (allow correct ratio 3:2)
M2 not just a generic statement 'shifts to more moles'.

M3 (Equilibrium) shifts / moves either to oppose reduction in pressure / or to increase the pressure

M3 depends on a correct statement for M2.
Not 'favours'.
Allow 'to oppose change' only if reduction in pressure noted.
(e) M1 T_{1}

If M 1 is incorrect, $C E=0$ for the clip.
If M1 is blank, mark on and seek to credit the correct information in the explanation.

M2 (Forward*) reaction is exothermic
OR Backward reaction is endothermic
*Assume answer refers to forward reaction unless otherwise stated.

M3 (at T_{2} or lower temperature)
(Equilibrium) shifted / moved to oppose reduction in temp
OR
at T_{1} or higher temp, (Equilibrium) shifted / moved to oppose

Kc \& Kp Past Pape ANSWERS
(increase in temp)
M3 depends on a correct statement for M2
Allow "to oppose change" only if change in temperature is stated.
Not 'favours'.

M6.(a) (i) M 1 c (oncentrated) phosphoric acid / c(onc.) $\mathrm{H}_{3} \mathrm{PO}_{4}$
OR c(oncentrated) sulfuric acid / c(onc.) $\mathrm{H}_{2} \mathrm{SO}_{4}$
In M1, the acid must be concentrated.
Ignore an incorrect attempt at the correct formula that is written in addition to the correct name.

M2 Re-circulate / re-cycle the (unreacted) ethene (and steam) / the reactants
OR pass the gases over the catalyst several / many times
In M2, ignore "remove the ethanol".
Credit "re-use".
(ii) M 1
(By Le Chatelier's principle) the equilibrium is driven / shifts /
moves to the right / L to R / forwards / in the forward direction
M2 depends on a correct statement of M1
The equilibrium moves / shifts to

- oppose the addition of / increased concentration of / increased moles / increased amount of water / steam
- to decrease the amount of steam / water

Mark M3 independently

M3 Yield of product / conversion increase OR ethanol increases / goes up / gets more
(iii) M1 Poly(ethene) / polyethene / polythene / HDPE / LDPE

M2 At higher pressures

More / higher cost of electrical energy to pump / pumping cost
OR
Cost of higher pressure equipment / valves / gaskets / piping etc.
OR expensive equipment
Credit all converse arguments for M2

Kc \& Kp Past Pape ANSWERS
(b) M1 for balanced equation

M2 for state symbols in a correctly balanced equation
$2 \mathrm{C}(\mathrm{s} /$ graphite $)+3 \mathrm{H}_{2}(\mathrm{~g})+$
$1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{2} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})$
$\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$

Not multiples but credit correct state symbols in a correctly balanced equation.
Penalise $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ but credit correct state symbols in a correctly balanced equation.
(c) (i) M1 The enthalpy change / heat change at constant pressure when 1 mol of a compound / substance / element If standard enthalpy of formation $\mathbf{C E}=\mathbf{0}$

M2 is burned / combusts / reacts completely in oxygen
OR burned / combusted / reacted in excess oxygen
M3 with (all) reactants and products / (all) substances in standard / specified states
OR (all) reactants and products / (all) substances in normal states under standard conditions / $100 \mathrm{kPa} / 1 \mathrm{bar}$ and specified T / 298 K

For M3
Ignore reference to 1 atmosphere
(ii) M1

Correct answer gains full marks
$\underline{\Sigma \mathrm{B}}($ reactants $)-\Sigma \mathrm{B}($ products $)=\Delta H$
Credit 1 mark for (+) 1279 ($\mathrm{kJ} \mathrm{mol}^{-1}$)

OR
Sum of bonds broken - Sum of bonds formed $=\Delta H$
OR
$\mathrm{B}(\mathrm{C}-\mathrm{C})+\mathrm{B}(\mathrm{C}-\mathrm{O})+\mathrm{B}(\mathrm{O}-\mathrm{H})+5 \mathrm{~B}(\mathrm{C}-\mathrm{H})+3 \mathrm{~B}(\mathrm{O}=\mathrm{O})(\mathrm{LHS})$
$-4 B(C=O)-6 B(O-H)(R H S)=\underline{\Delta H}$
M2 (also scores M1)
$348+360+463+5(412)+3(496)$ [LHS = 4719]
(2060) (1488)
$-4(805)-6(463)[R H S=-5998]=\Delta H$
(3220) (2778)

OR using only bonds broken and formed (4256-5535)
For other incorrect or incomplete answers, proceed as follows

Kc \& Kp Past Pape ANSWERS

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with 2 C and 6 H and 70 OR a clear statement of M1 which could be in words and scores only M1

M3

$$
\begin{aligned}
& \Delta H= \frac{-1279}{}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
& \begin{array}{l}
\text { Allow a maximum of one mark if the only scoring point } \\
\text { is } L H S=4719 \text { OR } R H S=5998
\end{array} \\
& \hline
\end{aligned}
$$

Award 1 mark for +1279

Candidates may use a cycle and gain full marks

(d) (i) Reducing agent $\boldsymbol{O R}$ reductant $\boldsymbol{O R}$ electron donor OR to reduce the copper oxide

Not "reduction".
Not "oxidation".
Not "electron pair donor".
(ii) $\mathrm{CH}_{3} \mathrm{COOH}$

```
mol l}=0.1
    If answers reversed, ie
    mol H2=0.17
    mol l}=0.4
    then allow one mark (for second answer).
```

Kc \& Kp Past Pape ANSWERS
(ii)

Penalise expression containing V
But mark on in (a)(iv)
Penalise missing square brackets in this part(and not elsewhere in paper) but mark on in (a)(iv)
(iii) equal number of moles (on each side of equation)

OR
equal moles (top and bottom of $K c$ expression)

1
$=52(.1)$
(iv) $\frac{[1.94]^{2}}{[0.38] 0,19]}$

Ignore V
If Kc wrong in (a)(ii) (wrong powers or upside down etc) no marks here
(b) (i) D
(ii) B
(iii) \mathbf{A}
(iv) C

M8.
(a) $\quad \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{SO}_{2}} \times \mathrm{P}_{\mathrm{Cl}_{2}}}{\mathrm{P}_{\mathrm{SO}_{2} \mathrm{Cl}}}$
(1)
(b) $0.25+0.75+0.75=1.75$ (1) (1)
(c) (i) $p=$ Total pressure \times mol fraction (1)
(ii) Partial of $\mathrm{SO}_{2} \mathrm{Cl}_{2}: 125 \times \frac{0.25}{\frac{0.75}{1.75}}=17.9 \mathrm{kPa}$ (1)

Partial pressure of $C_{2}: 125 \times \frac{0.75}{1.75}=53.6 \mathrm{kPa}$ (1) (1)
(d) $\mathrm{K}_{\mathrm{p}}=\frac{53.6 \times 53.6}{17.9}$ (1) $=161$ (1) $\mathrm{kPa}(1)$
(e) Effect on K_{p} : increase (1)

Explanation: increase T sends equilibrium in endothermic direction (1)
(f) no effect (1)

Notes

(a) If K_{p} has [] lose mark in (a) but allow full marks in (d)

If K_{p} wrong/upside down etc, allow max 2 in (d) for substitution of numbers (1) and consequential units (1)

Kc \& Kp Past Pape ANSWERS
(b) Mark for moles of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ can be scored in part (c) (ii) if not gained in (b)

1.75 get (2)

If moles of $\mathrm{SO}_{2} \mathrm{Cl}_{2}=1$, this is a Chemical Error, hence a 2 mark penalty

- If total moles given in (b) =1.75, this scores [2] in (b); but if the no moles of $\mathrm{SO}_{2} \mathrm{Cl}_{2}=1 \mathrm{in}$ (c)(ii), lose both marks in (c)(ii) for pp of $\mathrm{SO}_{2} \mathrm{Cl}_{2}=(1 / 1.75) \times$ 125,
i.e. the 2 mark penalty is in (c)(ii).
- If total moles given in $(b)=2.5$, score zero in (b), but can gain full marks in (c)(ii) consequentially, i.e. the 2 mark penalty is in (b).
- If moles of $\mathrm{SO}_{2} \mathrm{Cl}_{2}=1$ and total in (b) does not equal 2.5, still lose both in (b)
but can get all 4 conseq in (c)(ii) for $1 / x$ etc and $0.75 / x$ etc
(c) (i) Allow "Total pressure $=$ sum of partial pressures" for (1) or $p_{A}=x_{A} \times p_{\text {tot }}$
(ii) First mark is for mole fraction. If either number in either mole fraction is not consequential on (b), then lose both marks for that partial p.
(d) If pCl_{2} is not equal to pSO_{2} or any number used in K_{p} is not conseq on (c)(ii), allow units only

SIG FIGS; must be 3 sig figs in (b) but then allow 2 sig figs in (c) and (d); (ignore extra figs) but penalise incorrect rounding
(e) If effect wrong, no marks for explanation. If effect missing, e.g. answer states "equm shifts to right", mark on. In the explanation, the word "endothermic" (or its equivalent) is essential.

Kc \& Kp Past Pape ANSWERS

M9. (a) (i) Moles of $\mathrm{PC}_{3}: 0.345-0.166=0.179$ (1)
Moles of $\mathrm{Cl}_{2}: 0.268-0.166=0.102$ (1)
3 sig figs
(ii) 0.447 (1)
allow 2 sig figs
conseq on (i)
(b) Mole fraction of $\mathrm{PCl}_{3}: 0.179 / 0.447(1)=0.4(00)$

$$
\text { Partial pressure of } \begin{aligned}
\mathrm{PCl}_{3}: \mathrm{pp} & =\text { mol } \mathrm{fn} \times \text { total } \mathrm{P}(\mathbf{1}) \\
& =0.400 \times 225=90(\mathbf{1}) \mathrm{kPa}(\mathbf{1})
\end{aligned}
$$

(c) (i) $\quad \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{PCl}}}{\mathrm{P}_{\mathrm{PCH}} \times \mathrm{P}_{\mathrm{Cl}_{2}}}$ (1)
ignore brackets except []
must show P
(ii) $\quad \mathrm{K}_{\mathrm{p}}=\begin{aligned} & \frac{83.6}{90.1 \times 51.3}(\mathbf{1})=1.8(\mathbf{1}) \times 10^{-2}(\mathbf{1}) \mathrm{Kpa}^{-1}(\mathbf{1})(\text { or } 1.81 \times \\ & \\ & \quad \begin{array}{l}\text { If } 83.6 \text { and } 51.3 \text { wrong way round, } A E-1, \\ \text { answer }=6.81 \times 10^{-3} \\ \\ \\ \\ \\ \text { If } K_{p} \times \text { in (i) allow max } 2 \text { for substitution of numbers units }\end{array}\end{aligned}$
(d) (i) increased (1)
(ii) increased (1)

Organic points
(1) Curly arrows: must show movement of a pair of electrons, i.e. from bond to atom or from Ip to atom / space e.g.

Kc \& Kp Past Pape ANSWERS

OR

(2) Structures
penalise sticks (i.e.

Penalise once per paper

M10. (a) (i) 0.86 (1)
(ii) total moles $=0.86+0.43+0.085=1.375$ (1)
\therefore mole fraction of $\mathrm{H}_{2}=\frac{0.86}{1.375}=0.625$ (1)
(0.62-0.63)

Conseq on (i)

Kc \& Kp Past Pape ANSWERS
(iii) $\mathrm{pp}=$ mole fract \times total P (1)

$$
\begin{aligned}
& =0.625 \times 1.75 \times 10^{4} \\
& =1.09 \times 10^{4}(\mathrm{kPa})(1)
\end{aligned}
$$

or 1.1(0)
Ignore units
Conseq on (ii)
(b) (i) $\quad \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{CH} 3 \mathrm{OH}}}{\mathrm{P}^{2} \mathrm{H}_{2} \times \mathrm{P}_{\mathrm{co}}}$ (1)

Penalise []
(ii) $K_{\mathrm{p}}=\frac{\frac{2710}{(12300)^{2} \times(7550)}}{O R 2.37 \times 10^{-15}}=2.37(2.4) \times 10^{-9}(1)$

Units: $\mathrm{kPa}^{-2}(1)$
or Pa^{-2}
not conseq to wrong K_{ρ} expression
(c) Isomer \mathbf{E} :

allow
(1) $\begin{gathered}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{1} \\ \text { or } \\ \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{CH}_{3}\end{gathered}$

(1)

Kc \& Kp Past Pape ANSWERS
M11.(a) Bonds broken $=2(\mathrm{C}=\mathrm{O})+3(\mathrm{H}-\mathrm{H})=2 \times 743+3 \times \mathrm{H}-\mathrm{H}$

$$
\text { Bonds formed }=3(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+3(\mathrm{O}-\mathrm{H})=3 \times 412+360+3 \times 463
$$

Both required
$-49=[2 \times 743+3 \times(\mathrm{H}-\mathrm{H})]-[3 \times 412+360+3 \times 463]$
$3(\mathrm{H}-\mathrm{H})=-49-2 \times 743+[3 \times 412+360+3 \times 463]=1450$
Both required
$\mathrm{H}-\mathrm{H}=483\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow 483.3(3)
(b) Mean bond enthalpies are not the same as the actual bond enthalpies in CO_{2} (and / or methanol and / or water)
(c) The carbon dioxide (produced on burning methanol) is used up in this reaction
(d) 4 mol of gas form 2 mol

At high pressure the position of equilibrium moves to the right to lower the pressure / oppose the high pressure

This increases the yield of methanol
(e) Impurities (or sulfur compounds) block the active sites

Allow catalyst poisoned
(f) Stage 1: moles of components in the equilibrium mixture Extended response question

$$
\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Initial moles	1.0	3.0	0	0
Eqm	$(1-0.86)$ $=0.14$	$(3-$ $3 \times 0.86)$ $=0.42$	0.86	0.86
moles				

Stage 2: Partial pressure calculations

Total moles of gas $=2.28$
Partial pressures $=$ mol fraction $\times \mathrm{p}_{\text {total }}$
$p_{\text {co2 }}=\mathrm{mol}$ fraction $\times \mathrm{p}_{\text {iotal }}=0.14 \times 500 / 2.28=30.7 \mathrm{kPa}$
$\mathrm{p}_{\text {स2 }}=$ mol fraction $\times \mathrm{p}_{\text {toaal }}=0.42 \times 500 / 2.28=92.1 \mathrm{kPa}$
M3 is for partial pressures of both reactants Alternative M3 =
$p p_{c o 2}=0.0614 \times 500$
$p p_{H 2}=0.1842 \times 500$
$p_{\text {снзон }}=$ mol fraction $\times p_{\text {total }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa}$
$p_{\text {H2o }}=$ mol fraction $\times p_{\text {Iotal }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa}$
M4 is for partial pressures of both products
Alternative M4 =
рр сноон $=0.3772 \times 500$
$p p_{\text {нго }}=0.3772 \times 500$

Stage 3: Equilibrium constant calculation
$K_{\mathrm{p}}=\mathrm{p}_{\text {снзон }} \times \mathrm{p}_{\text {нго }} / \mathrm{p}_{\mathrm{co2} 2} \times\left(\mathrm{p}_{\mathrm{H} 2}\right)^{3}$

Hence $K_{\mathrm{p}}=188.6 \times 188.6 / 30.7 \times(92.1)^{3}=1.483 \times 10^{-3}=1.5 \times 10^{-3}$ Answer must be to 2 significant figures

Units $=\mathrm{kPa}^{-2}$

M12.
(a) (i) $\quad\left(K_{\mathrm{p}}\right)=\left(\mathrm{p}_{\mathrm{z}}\right)^{2 /} /\left(\mathrm{p}_{\mathrm{x}}\right)\left(\mathrm{p}_{y}\right)^{3}$
(penalise use of square brackets, allow ())
(ii) $\quad \mathbf{X}(22-6) / 4=4(\mathrm{MPa})$
(mark is for value 4 only, ignore units)
\mathbf{Y} obtained by multiplying value for \mathbf{X} by 3
(allow conseq on wrong value for \boldsymbol{X})
1

$$
\begin{aligned}
& \text { Y } 4.0 \times 3=12(\mathrm{MPa}) \\
& \quad \text { (mark is for value } 12 \text { only) }
\end{aligned}
$$

(iii) $K_{p}=6.0^{2 /} 4.0 \times 12.0^{3}=5.21 \times 10^{-3}$
(allow conseq on wrong values for \boldsymbol{X} and Y e.g. $6^{2} / 3 \times 9^{3}=0.165$)
(if K_{p} wrong in (a)(i) CE)
MPa^{-2}
(allow any unit of P^{-2} provided ties to P used for K_{p} value)
(b) high pressure expensive (due to energy or plant costs)
(Rate is) slow (at lower temperatures)

1
[8]

M13.
(a) $12(\mathrm{kPa})$
$p p=$ mole fraction \times total pressure or mole fraction $=12 / 104$
$=0.115$
(allow 0.12)
(b) $68(\mathrm{kPa})$
(c) $\quad \mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{pSO}_{3}\right)^{2}}{\left(\mathrm{pSO}_{2}\right)^{2} \times\left(\mathrm{pO}_{2}\right)}$
(If K_{ρ} wrong, allow consequential units only)
(penalise square brackets in expression but then mark on)

$$
=\frac{68^{2}}{24^{2} \times 12}
$$

$$
=0.669
$$

(Allow 0.67)
(Allow full marks in calculation consequential on their values in (a) and (b))
kPa^{-1}
1
(d) T_{2}
(Must be correct to score any marks in this section)

Kc \& Kp Past Pape ANSWERS
Exothermic

Reduce T to shift equilibrium to the right or forward reaction favoured by low T or K_{p} increases for low T or low T favours exothermic reaction
(e) Increase

None
1

M14. (a) (must state correct effect on yield or rate to score the reason mark)
T effect: higher temp: yield greater or shifts equilibrium to right;
1 effect: higher temp: rate increased;
reason: endothermic
OR
more particles have $\mathrm{E}>\mathrm{E}_{\mathrm{a}}$

OR
more successful/productive collisions;

P effect: higher pressure: yield less or shifts equilibrium to left;
effect: higher pressure: rate increased;
reason: increase in gas moles L to R
OR
greater collision frequency;
(b) M1 equilibrium moles of $\mathrm{CO}=62.8-26.2=36.6$

M2 equilibrium moles of $\mathrm{H}_{2}=146-2(26.2)=93.6$

M3 total no moles $=36.6+93.3+26.2=156.4$

M4 partial pressure $=$ mole fraction x total pressure

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{PCH}_{3} \mathrm{OH}}{\mathrm{PCO} \times \mathrm{P}^{2} \mathrm{H}_{2}}
$$

M5
$=\frac{\left(\frac{26.2}{156.4} \times 9.50\right)}{\left(\frac{36.6}{156.4} \times 9.50\right) \times\left(\frac{93.6}{156.4} \times 9.50\right)^{2}}$
(0.168×9.5)
$(0.234 \times 9.50) \times(0.598 \times 9.5)^{2}$

$$
\frac{(1.59)}{(2.22) \times(5.69)^{2}}
$$

If no subtraction lose M1, M2 and M3)
(If $\times 2$ missed in M2, lose both M2 and M3)
(If M1 gained but moles of $\mathrm{H}_{2}=73.2$ (i.e. double CO), M2 and M3 lost)
(If M1 gained but mol $\mathrm{H}_{2}=2(146-26.2)$, M 2 and M 3 lost)
(If M1 and M2 correct but M3 lost for CE, penalise M6 also)
(M4 can be gained from the numbers in the expression for M6 even if these numbers are wrong) (If K_{ρ} contains [] lose M5 but then mark on) (If chemically wrong expression for K_{p}, lose M5, M6 and M7 (allow M8 conseq on their K_{p}))

Kc \& Kp Past Pape ANSWERS
(If divided by 9.5, or not used 9.5 at all, Iose M6 and M7 (and M4))
(If tried to convert to kPa and is factor(s) of 10 out, penalise in M6 and allow M8 for $k \mathrm{~Pa}^{-2}$)

M15.
(a) M1 $\mathrm{K}_{\mathrm{p}}=(\mathrm{p} \mathrm{Y})^{3} .(\mathrm{p} \mathrm{Z})^{2} /(\mathrm{pW})^{2} .\left({ }_{\mathrm{p}} \mathrm{X}\right) \quad$ NB [] wrong

M2 temperature

M3 increase

M4 particles have more energy or greater velocity/speed

M5 more collisions with $E>E_{a}$ or more successful collisions

M6 Reaction exothermic or converse

M7 Equilibrium moves in the left

Marks for other answers
Increase in pressure or concentration allow M1, M5, M6 Max 3
Addition of a catalyst;
Decrease in temperature;
Two or more changes made;
allow M1, M5, M6
allow M1, M2, M6 allow M1, M6

Max 3
Max 3
Max 2
(b) (i) Advantage; reaction goes to completion, not reversible or faster

Disadvantage; reaction vigorous/dangerous
(exothermic must be qualified)
or $\mathrm{HCl}(\mathrm{g})$ evolved/toxic
or $\mathrm{CH}_{3} \mathrm{COCl}$ expensive
NB Allow converse answers
Do not allow reactions with other reagents e.g.
water

Kc \& Kp Past Pape ANSWERS or ease of separation
(ii) $\Delta S=\Sigma S$ products $-\Sigma S$ reactants

$\square \square \square \square \square \square \Delta S=84$ ($\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) (lgnore units)
Allow - 84 to score (1) mark

$=-21.6-298 \times 84 / 1000$
$=-46.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ or $-46600 \mathrm{~J} \mathrm{~mol}^{-1}$

Allow (2) for - 46.6 without units
(Mark ΔG consequentially to incorrect ΔS)
(e.g. $\Delta S=-84$ gives $\Delta G=+3.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$)

