

Dr Clays A-level Chemistry

Kc and Kp Past Paper ANSWERS

Dr Chris Clay http://drclays-alevelchemistry.com/

M1.(a) Stage 1: Moles of acid at equilibrium

Moles of sodium hydroxide in each titration = $(3.20 \times 2.00 \times 10^{-1}) / 1000 = 6.40 \times 10^{-4}$ Extended response

Sample = 10 cm³ so moles of acid in 250 cm³ of equilibrium mixture = $25 \times 6.40 \times 10^{-4} = 1.60 \times 10^{-2}$ *M2 can only be scored if = answer to M1 × 25*

Stage 2: Moles of ester and water formed

Moles of acid reacted = $8.00 \times 10^{-2} - 1.60 \times 10^{-2} = 6.40 \times 10^{-2}$

= moles ester and water formed M3 is $8.00 \times 10^{-2} - M2$

1

1

1

Stage 3: Moles of ethanol at equilibrium

Moles of ethanol remaining = $1.20 \times 10^{-1} - 6.40 \times 10^{-2} = 5.60 \times 10^{-2}$ M4 is $1.20 \times 10^{-1} - M3$

1

Stage 4: Calculation of equilibrium constant

 $K_{c} = [CH_{3}COOCH_{2}CH_{3}] [H_{2}O] / [CH_{3}COOH] [CH_{3}CH_{2}OH]$

1

 $= (6.40 \times 10^{-2})^2 / (1.60 \times 10^{-2})(5.60 \times 10^{-2})$

= 4.5714 = 4.57M6 is M3° / M2 × M4 Answer must be given to 3 significant figures

1

	Rough	1	2	3
--	-------	---	---	---

(b)

Final burette reading / cm ³	4.60	8.65	12.85	16.80
Initial burette reading / cm ³	0.10	4.65	8.65	12.85
Titre / cm ³	4.50	4.00	4.20	3.95

1

1

1

1

1

1

1

(c) Mean = 4.00 + 3.95 / 2 = 3.98 (cm³) Allow 3.975 (cm³)

> Titres 1 and 3 are concordant Allow titre 2 is not concordant

(d) Thymol blue

- (e) Percentage uncertainty: 0.15 / 3.98 × 100 = 3.77% Allow consequential marking on mean titre from 2.3
- (f) Use a lower concentration of NaOH

So that a larger titre is required (reduces percentage uncertainty in titre)
1
[13]

M2.(a) amount of X = 0.50 - 0.20 = 0.30 (mol)

amount of $Y = 0.50 - 2 \times 0.20 = 0.10$ (mol)

(b) Axes labelled with values, units and scales that use over half of each axis

All three of values, units and scales are required for the mark

Curve starts at origin

Then flattens at 30 seconds at 0.20 mol

(c) Expression =
$$K_c = \frac{[Z]}{[X][Y]^2}$$

$$[Y]^2 = \frac{\begin{bmatrix} Z \\ [X] \end{bmatrix} \mathcal{K}_c}{1}$$

 $[Y] = (0.35 / 0.40 \times 2.9)^{0.5} = 0.5493 = 0.55 \text{ (mol dm}^{-3}\text{)}$ Answer must be to 2 significant figures

(d) Darkened / went more orange

The equilibrium moved to the right

To oppose the increased concentration of Y

1

1

1

1

1

1

1

(e) The orange colour would fade

1 [12]

1

1

1

M3.(a)
$$K_c = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$$

Penalise () in this part but can score units; mark on in (b) If K_c expression wrong no marks in this part but can score M1 & M3 in (b)

units = $mol^{-1} dm^3$

(b) $[O_2] = \frac{[SO_3]^2}{[SO_2]^2 K_c} \frac{(0.072/1.4)^2}{or(0.055/1.4)^2 \times 27.9} \frac{(0.072)^2}{or(0.055)^2 \times 27.9}$

Correct answer scores three marks Ignore () in this part Penalise contradiction in M1

M1 0.061(4) If K_c expression wrong in (a) can score M1 here for rearrangement of their K_c & M3 for multiplication by 1.4 M2 mol $O_2 = 0.0614 \times 1.4 = 0.086$ (allow 0.085 - 0.087) If K_c or rearrangement wrong here score only M3 for multiplication by 1.4

 $M3 = correct answer of (M2 \times 1.4)$

М3

1

	(c)	(i)	No effect OR none OR no change OR stays the sam	e	1	
		(ii)	Effect: Increase or more SO ₃			
			Increase or more SO₃ If wrong effect, no further marks, but M2 and M3 are independent of each other			
				M1	1	
			Fewer mole(cule)s on RHS or 3 moles to 2 moles or (eqm shifts) to side with fewer moles (V ³ or) residual V decreases in numerator of <i>K</i> c expr	ession		
				M2	1	
			Equilibrium moves / shifts to reduce the pressure / oppose the increase in pressure			
			to keep K_c constant,			
			ratio $\frac{(\text{mol SO}_3)^2}{(\text{mol SO}_2)^2(\text{mol O}_2)}$			
			must increase Allow to oppose the change only if increase pa mentioned	ressure		
				M3	1	[9]
Д	ward	mark	for X on the time axis at the point where the lines just Allow this mark if X is above the letters "sh" in word "show" in part(ii) - in the range of lines 3	the	al 1	

(ii) They are equal / the same

M4.(a) (i)

OR

Forward (rate) = Reverse / backward (rate) Allow the word 'speed' in this context. Ignore reference to concentration.

(b) Both **OR** forward and reverse reactions occur at the same time

OR both are occurring at once

OR both occur all of the time

OR both are ongoing

OR both never stop

Ignore 'at equal rates'. Ignore reference to concentration or equilibrium. The idea that both reactions occur <u>simultaneously</u> is essential. The simple idea of 'both reactions occurring' is insufficient for the mark.

(c) (i) M1 No effect / no change / none / stays the same

M2 requires correct M1 In M2, ignore reference to particles or atoms.

M2 Equal (number of) moles / molecules on both sides

2

1

1

(ii) **M1** Less time or it decreases or (equilibrium) <u>reached</u> faster (ie **M1** is a reference to time taken)

If **M1** is 'more time / it increases' or 'no effect', then **CE=0** for the clip.

Reference to faster / increased rate / increased speed <u>alone</u> penalises **M1**, but mark on **M2** and **M3**.

M2 More particles / molecules in a given volume / space

OR the particles / molecules are clos<u>er</u> together If **M1** is blank, then look for all three marks in the text.

M3 More successful / productive collisions in a given time

OR more collisions with E>EAct in a given time

OR <u>more frequent</u> <u>successful / productive</u> collisions

OR increased / greater successful / productive collision frequency / rate Ignore reference to reactants / products.

Penalise **M3** if an increase / decrease in the value of E_{Act} is stated.

[8]

3

1

1

1

1

1

M5.(a) Mol of E 1.6(00) Ignore extra zeros.

Mol of **F** 0.2(00)

(b)
$$K_{e} = \frac{[G]^{2}}{[E][F]^{2}}$$

Penalise expression containing V. Penalise missing brackets or ().

mol⁻¹ dm³

If K_c wrong, allow units consequential to their K_c , but no marks in (c) unless correct K_c used in (c).

(c)
$$K_{\rm c} = \frac{\frac{(0.85/1.5)^2}{(2.50/1.5)(1.20/1.5)^2}}$$

Vol missed or used wrongly – no marks. If K_c correct in (b) but squared term missed here, no further marks.

= 0.3(01) Allow 0.299-0.304

Ignore units.

(d) M1 Decrease

If M1 is incorrect CE=0 for the clip. If M1 is blank, mark on and seek to credit the correct information in the explanation.

M2 More moles on LHS / reactants or fewer / less moles on RHS / products (allow correct ratio 3:2) M2 not just a generic statement 'shifts to more moles'.

M3 (Equilibrium) <u>shifts / moves</u> either to oppose reduction in pressure / or to increase the pressure M3 depends on a correct statement for M2. Not 'favours'. Allow 'to oppose change' only if reduction in pressure noted.

(e) M1 *T*₁

If M1 is incorrect, CE=0 for the clip. If M1 is blank, mark on and seek to credit the correct information in the explanation.

M2 (Forward*) reaction is <u>exothermic</u> OR <u>Backward</u> reaction is <u>endothermic</u> *Assume answer refers to forward reaction unless otherwise stated.

1

1

1

1

1

1

M3 (at T_2 or lower temperature)

(Equilibrium) shifted / moved to oppose reduction in temp

OR

at T1 or higher temp, (Equilibrium) shifted / moved to oppose

(increase in temp) M3 depends on a correct statement for M2 Allow "to oppose change" only if change in temperature is stated. Not 'favours'.

[12]

1

M6.(a) (i) M1 <u>c(oncentrated) phosphoric acid / c(onc.) H_3PO_4 </u> **OR** <u>c(oncentrated) sulfuric acid / c(onc.) H_2SO_4 </u>

In **M1**, the acid must be concentrated. Ignore an incorrect attempt at the correct formula that is written in addition to the correct name.

M2 Re-circulate / re-cycle the (unreacted) ethene (and steam) / the reactants

OR pass the gases over the catalyst several / many times

In **M2**, ignore "remove the ethanol". Credit "re-use".

2

(ii) M1

(By Le Chatelier's principle) the equilibrium is <u>driven / shifts /</u> moves to the right / L to R / forwards / in the forward direction

M2 depends on a correct statement of M1

The equilibrium moves / shifts to

- <u>oppose the addition of / increased concentration of /</u> increased moles / increased amount of water / steam
- to decrease the amount of steam / water

Mark M3 independently

M3 Yield of product / conversion increase **OR** ethanol increases / goes up / gets more

3

(iii) M1 Poly(ethene) / polyethene / polythene / HDPE / LDPE

M2 At higher pressures

More / higher <u>cost</u> of electrical <u>energy to pump</u> / <u>pumping cost</u> **OR** <u>Cost</u> of higher pressure <u>equipment / valves / gaskets / piping etc</u>.

OR expensive equipment

Credit all converse arguments for M2

(b) M1 for balanced equation

M2 for state symbols in a correctly balanced equation

 $2C(s / graphite) + 3H_2(g) + \frac{1}{2}O_2(g) \longrightarrow CH_3CH_2OH(I) \\ (C_2H_5OH)$

Not multiples but credit correct state symbols in a correctly balanced equation. Penalise C_2H_6O but credit correct state symbols in a correctly balanced equation.

2

(c) (i) M1 The <u>enthalpy change</u> / <u>heat change at constant pressure</u> when <u>1 mol</u> of a compound / substance / element

If standard enthalpy of formation **CE=0**

M2 is <u>burned / combusts / reacts completely</u> in <u>oxygen</u> **OR** <u>burned / combusted / reacted in excess oxygen</u>

M3 with (all) <u>reactants and products /</u> (all) <u>substances in standard /</u> <u>specified states</u>

OR (all) <u>reactants and products /</u> (all) <u>substances in normal states</u> <u>under standard conditions /</u> 100 kPa / 1 bar <u>and</u> specified T / 298 K

For **M3** Ignore reference to 1 atmosphere

3

(ii) M1

Correct answer gains full marks

 $\frac{\Sigma B(\text{reactants}) - \Sigma B(\text{products}) = \Delta H}{Credit \ 1 \ mark \ for \ (+) \ 1279 \ (kJ \ mol^{-1})}$

OR <u>Sum of bonds broken – Sum of bonds formed = ΔH </u> OR B(C-C) + B(C-O) + B(O-H) + 5B(C-H) + 3B(O=O) (LHS) – 4B(C=O) – 6B(O-H) (RHS) = ΔH M2 (also scores **M1**) 348+360+463+5(412)+3(496) [LHS = **4719**] (2060) (1488) – 4(805) – 6(463) [RHS = – **5998**] = ΔH (3220) (2778) OR using only bonds broken and formed (**4256 – 5535**) *For other incorrect or incomplete answers, proceed as follows*

• check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (**M1** and **M2**)

• If no AE, check for a correct method; this requires either a correct cycle with 2C and 6H and 7O OR a clear statement of **M1** which could be in words and scores <u>only M1</u>

М3

∆H= <u>– 1279</u> (kJ mol⁻¹)

Allow a maximum of one mark if the only scoring point is LHS = 4719 OR RHS = 5998

Award 1 mark for +1279

Candidates may use a cycle and gain full marks

3

1

1

(d) (i) <u>Reducing agent OR reductant OR electron donor</u> OR to <u>reduce the copper oxide</u> Not "reduction". Not "oxidation". Not "electron pair donor".

(ii) CH₃COOH

[17]

M7.(a) (i) mol $H_2 = 0.47$

mol $I_2 = 0.17$

If answers reversed, ie mol $H_2 = 0.17$ mol $I_2 = 0.47$ then allow one mark (for second answer).

1

Penalise expression containing V But mark on in (a)(iv)

Penalise missing square brackets in this part(and not elsewhere in paper) but mark on in (a)(iv)

1

1

1

1

1

1

1

(iii) equal number of moles (on each side of equation)

OR

equal moles (top and bottom of Kc expression)

[1.94]² (iv) [0.38][0,19]

Ignore V

If Kc wrong in (a)(ii) (wrong powers or upside down etc) no marks here

(b) (i) **D**

(ii) B

(iii) A

(iv) **C** 1

M8. (a) $K_{p} = \frac{\frac{P_{SO_{2}} \times P_{Cl_{2}}}{P_{SO_{2}Cl_{2}}}}{(1)}$

(c) (i)
$$p = \text{Total pressure } \times \text{ mol fraction (1)}$$

(ii) Partial of SO₂Cl₂: 125 ×
$$\frac{0.25}{1.75}$$
 = 17.9 kPa (1)

Partial pressure of
$$C_{l_2}$$
: 125 × $\frac{0.75}{1.75}$ = 53.6 kPa (1) (1)

(d)
$$K_{p} = \frac{53.6 \times 53.6}{17.9}$$
 (1) = 161 (1) kPa (1)

Notes

(a) If K_{P} has [] lose mark in (a) but allow full marks in (d)

If K_P wrong/upside down etc, allow max 2 in (d) for substitution of numbers (1) and consequential units (1)

1

2

5

(b) Mark for moles of SO_2CI_2 can be scored in part (c) (ii) if not gained in (b)

1.75 get (2)

If moles of $SO_2CI_2 = 1$, this is a Chemical Error, hence a 2 mark penalty

- If total moles given in (b) = 1.75, this scores [2] in (b); but if the no moles of SO₂Cl₂ = 1 in (c)(ii), lose both marks in (c)(ii) for pp of SO₂Cl₂ = (1/1.75) × 125, i.e. the 2 mark penalty is in (c)(ii).
- If total moles given in (b) = 2.5, score zero in (b), but can gain full marks in (c)(ii) consequentially, i.e. the 2 mark penalty is in (b).
- If moles of SO₂Cl₂ = 1 and total in (b) does not equal 2.5, still lose both in (b)
 but can get all 4 conseq in (c)(ii) for 1/x etc and 0.75/x etc
- (c) (i) Allow "Total pressure = sum of partial pressures" for (1) or $p_A = x_A \times p_{tot}$
 - (ii) First mark is for mole fraction.
 If either number in either mole fraction is not consequential on (b), then lose both marks for that partial p.
- (d) If pCI_2 is not equal to pSO_2 or any number used in K_P is not conseq on (c)(ii), allow units only

SIG FIGS; must be 3 sig figs in (b) but then allow 2 sig figs in (c) and (d); (ignore extra figs) but penalise incorrect rounding

(e) If effect wrong, no marks for explanation.
 If effect missing, e.g. answer states "equm shifts to right", mark on.
 In the explanation, the word "endothermic" (or its equivalent) is essential.

[14]

M9. (a) (i) Moles of PCI_3 : 0.345 – 0.166 = 0.179 (1)

Moles of Cl_2 : 0.268 - 0.166 = 0.102 (1) 3 sig figs

(ii) 0.447 **(1)** allow 2 sig figs conseq on (i)

3

3

(b) Mole fraction of PCl_3 : 0.179/0.447 (1) = 0.4(00)

(c) (i) $K_{p} = \frac{\frac{P_{PCl_{s}}}{P_{PCl_{s}} \times P_{Cl_{2}}}}{\frac{P_{PCl_{s}}}{Must Show P}}$ (1) (ii) $K_{p} = \frac{\frac{83.6}{90.1 \times 51.3}}{\frac{90.1 \times 51.3}{11}}$ (1) = 1.8(1) × 10⁻² (1) Kpa⁻¹ (1) (or 1.81 × 10⁻⁵ Pa⁻¹)} If 83.6 and 51.3 wrong way round, AE - 1, answer = 6.81 × 10⁻³ If $K_{p} \times in$ (i) allow max 2 for substitution of numbers and conseq units

4

2

- (d) (i) increased (1)
 - (ii) increased (1)

[12]

Organic points

 <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space e.g.

(2) **Structures**

Penalise once per paper

 CH_3 <u>allow</u> CH_3 – or – CH_3 or | or CH_3 or H_3C-

M10. (a) (i) 0.86 (1)

(ii) total moles =
$$0.86 + 0.43 + 0.085 = 1.375$$
 (1)
 \therefore mole fraction of H₂ = $\frac{0.86}{1.375} = 0.625$ (1)
(0.62 - 0.63)

Conseq on (i)

(iii)
$$pp = mole fract^{n} \times total P (1)$$

= 0.625 × 1.75 × 10⁴
= 1.09 × 10⁴ (kPa) (1)
or 1.1(0)
Ignore units
Conseq on (ii)

5

(b) (i)
$$K_{p} = \frac{\frac{P_{CH30H}}{P^{2}_{H_{z}} \times P_{co}}}{Penalise []}$$

(ii)
$$K_{\circ} = \frac{2710}{(12300)^2 \times (7550)} = 2.37 (2.4) \times 10^{-9}$$
 (1)
 $OR 2.37 \times 10^{-15}$

3

2

[10]

M11.(a) Bonds broken =
$$2(C=O) + 3(H-H) = 2 \times 743 + 3 \times H-H$$

Bonds formed = $3(C-H) + (C-O) + 3(O-H) = 3 \times 412 + 360 + 3 \times 463$ Both required

1

1

1

1

1

1

1

1

1

$$-49 = [2 \times 743 + 3 \times (H-H)] - [3 \times 412 + 360 + 3 \times 463]$$

H–H = 483 (kJ mol⁻¹) Allow 483.3(3)

- (b) Mean bond enthalpies are not the same as the actual bond enthalpies in CO_2 (and / or methanol and / or water)
- (c) The carbon dioxide (produced on burning methanol) is used up in this reaction
- (d) 4 mol of gas form 2 mol

At high pressure the position of equilibrium moves to the right to lower the pressure / oppose the high pressure

This increases the yield of methanol

(e) Impurities (or sulfur compounds) block the active sites Allow catalyst poisoned

(f) Stage 1: moles of components in the equilibrium mixture Extended response question

> $CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$ Initial 1.0 3.0 0 0 moles (3– (1-0.86)Eqm 3×0.86) 0.86 0.86 = 0.14 moles = 0.42

Stage 2: Partial pressure calculations

Total moles of gas = 2.28

Partial pressures = mol fraction $\times p_{total}$

 p_{co2} = mol fraction x p_{total} = 0.14 x 500 / 2.28 = 30.7 kPa

 p_{H2} = mol fraction × p_{total} = 0.42 × 500 / 2.28 = 92.1 kPa M3 is for partial pressures of both reactants Alternative M3 = pp_{co2} = 0.0614 × 500 pp_{H2} = 0.1842 × 500

 p_{CH3OH} = mol fraction × p_{total} = 0.86 × 500 / 2.28 = 188.6 kPa

 p_{H20} = mol fraction × p_{total} = 0.86 × 500 / 2.28 = 188.6 kPa M4 is for partial pressures of both products Alternative M4 = $pp_{CH30H} = 0.3772 \times 500$ $pp_{H20} = 0.3772 \times 500$

Stage 3: Equilibrium constant calculation $K_{P} = p_{CH3OH} \times p_{H2O} / p_{CO2} \times (p_{H2})^{3}$

1

1

1

Hence $K_p = 188.6 \times 188.6 / 30.7 \times (92.1)^3 = 1.483 \times 10^{-3} = 1.5 \times 10^{-3}$ Answer must be to 2 significant figures

[16]

1

1

1

1

M12.		(a)	(i) $(K_{p}) = (p_{z})^{2}/(p_{x})(p_{y})^{3}$	
			(penalise use of square brackets, allow ())	1
		(ii)	X (22–6)/4 = 4 (MPa)	
			(mark is for value 4 only, ignore units)	1
			Y obtained by multiplying value for X by 3	
			(allow conseq on wrong value for ${f X}$)	1
			Y 4.0 × 3 = 12 (MPa)	
			(mark is for value 12 only)	1
		(iii)	$K_{\mu} = 6.0^2/4.0 \times 12.0^3 = 5.21 \times 10^{-3}$ (allow conseq on wrong values for X and	
			Y e.g. $6^2/3 \times 9^3 = 0.165$)	
			(if K₀ wrong in (a)(i) CE)	1
			MPa ⁻²	
			(allow any unit of P-2 provided ties to P used for K_p value)	1
	(b)	high	pressure expensive (due to energy or plant costs)	1

(Rate is) slow (at lower temperatures)

[8]

1

M13. (a) 12 (kPa)
p = mole fraction × total pressure or mole fraction = 12/104
= 0.115
(allow 0.12)
(b) 68 (kPa)
(c)
$$K_s = \frac{(pSO_3)^2}{(pSO_2)^2 \times (pO_2)}$$

(If K_s wrong, allow consequential units only)
(penalise square brackets in expression but then mark
on)
1
 $= \frac{68^2}{24^2 \times 12}$
1
= 0.669
(Allow 0.67)
(Allow full marks in calculation consequential on their
values in (a) and (b))
1
kPa-1
1

(d) T₂

(Must be correct to score any marks in this section)

Exothermic

		1	
	Reduce T to shift equilibrium to the right or forward reaction favoured by low T or K _p increases for low T or low T favours exothermic reaction	1	
(e)	Increase	1	
	None	1	[13]

M14.	(a)	(must state correct effect on yield or rate to score the reason mark	k)
	Т	effect: higher temp: yield greater or shifts equilibrium to right;	1
		effect: higher temp: rate increased;	1
		reason: endothermic	
		OR	
		more particles have E>E _a	1
		OR	
		more successful/productive collisions;	1
	Ρ	effect: higher pressure: yield less or shifts equilibrium to left;	1
		effect: higher pressure: rate increased;	
		reason: increase in gas moles L to R	
		OR	
		greater collision frequency;	

Vr	Q.	Vn	Dact	Danc		
ΝC	α	ĸμ	r ast	гаμе	: AIN.	SWERS

(Q of L mark)

(b) M1 equilibrium moles of CO =
$$62.8 - 26.2 = 36.6$$

M2 equilibrium moles of H₂ = $146 - 2(26.2) = 93.6$
M3 total no moles = $36.6 + 93.3 + 26.2 = 156.4$
M4 partial pressure = mole fraction x total pressure

M5

$$\frac{\left(\frac{26.2}{156.4} \times 9.50\right)}{\left(\frac{36.6}{156.4} \times 9.50\right) \times \left(\frac{93.6}{156.4} \times 9.50\right)^2}$$

M6

=

$$\frac{(0.168 \times 9.5)}{(0.234 \times 9.50) \times (0.598 \times 9.5)^2}$$

 $K_{p} = \frac{PCH_{3}OH}{PCO \times P^{2}H_{2}}$

M7 0.022(1) 2.2(l)×10⁻⁸ 2.2(l)×10⁻¹⁴

M8 MPa⁻² kPa⁻² Pa⁻²

If no subtraction lose M1, M2 and M3) (If x2 missed in M2, lose both M2 and M3) (If M1 gained but moles of $H_2 = 73.2$ (i.e. double CO), M2 and M3 lost) (If M1 gained but mol $H_2 = 2(146 - 26.2)$, M2 and M3 lost) (If M1 and M2 correct but M3 lost for CE, penalise M6 also) (M4 can be gained from the numbers in the expression for M6 even if these numbers are wrong) (If K_{ϕ} contains [] lose M5 but then mark on) (If chemically wrong expression for K_{ϕ} , lose M5, M6 and M7 (allow M8 conseq on their K_{ϕ})) 1

1

1

1

1

1

1

1

(If divided by 9.5, or not used 9.5 at all, lose M6 and M7 (and M4)) (If tried to convert to kPa and is factor(s) of 10 out, penalise in M6 and allow M8 for kPa^{-2})

[14]

M15.	(a)	<i>M1</i> $K_{p} = ({}_{P}Y)^{3}$. $({}_{P}Z)^{2}/({}_{P}W)^{2}$. $({}_{P}X)$ <i>NB[] wrong</i>	1
	М2	temperature	1
	МЗ	increase	1
	М4	particles have more energy or greater velocity/speed	1
	М5	more collisions with E > E _a or more successful collisions	1
	М6	Reaction exothermic or converse	1
	М7	Equilibrium moves in the left	1
	Incre Add Dec	ks for other answers ease in pressure or concentration allow M1, M5, M6 Max 3 allow M1, M5, M6 Max 3 erease in temperature; allow M1, M2, M6 Max 3 o or more changes made; allow M1, M6 Max 2	
(b)	(i)	Advantage; reaction goes to completion, not reversible or faster	1
		Disadvantage; reaction vigorous/dangerous (exothermic must be qualified) or HCl(g) evolved/toxic or CH ₃ COCI expensive NB Allow converse answers Do not allow reactions with other reagents e.g. water	-

Kc & Kp Past Pape ANSWERS
or ease of separation

(ii) $\Delta S = \Sigma S$ products – ΣS reactants		
	1	
$\Box \Box \Box \Box \Box \Box \Delta S = (259 + 187) - (201 + 161)$		
	1	
$\Box \Box \Box \Box \Box \Box \Delta S = 84 (JK^{-1} \text{ mol}^{-1}) (Ignore \text{ units})$		
Allow – 84 to score (1) mark		
	1	
$\Box \Box \Box \Box \Box \Box \Delta G = \Delta H - T \Delta S$		
	1	
$= -21.6 - 298 \times 84/1000$		
= - 46.6 kJ mol ⁻¹ or - 46 600 J mol ⁻¹		
	1	
Allow (2) for – 46.6 without units		
(Mark ΔG consequentially to incorrect ΔS)		
(e.g. $\Delta S = -84$ gives $\Delta G = +3.4$ kJ mol ⁻¹)	1	
	I	[15]