

Kdb+ Transitive Comparisons

15 May 2018

Hugh Hyndman, Director, Industrial IoT Solutions

Copyright © 2018 Kx

Kdb+ Transitive Comparisons

 1

Introduction

Last summer, I wrote a blog discussing my experiences running kdb+ on a Raspberry Pi, in particular making
use of published benchmark content from InfluxData to generate test data, perform ingestion, and invoke a
set of benchmarking queries. As a result of kdb+’s excellent performance, I concluded that it would be a
perfect fit for small platform or edge computing.

I felt that I owed it to the Kx community to take things a step further: to run performance tests against all of
the products that InfluxData documented, including Cassandra, ElasticSearch, MongoDB, and OpenTSDB –
and go beyond the Raspberry Pi and use a variety of other server configurations.

The difficulty with doing this is that I didn’t have time to install and configure these technologies (let alone on
the Raspberry Pi), so I decided to take a different approach and exploit the old transitivity argument, where if
a is greater than b, and if b is greater than c, then it follows that a is greater than c.

So, using this logic and taking InfluxData’s benchmark results at face value, I concluded that all I had to do
was run the tests on my hardware and compare my results with theirs to get a broad comparison across all
the other technologies. Moreover, as InfluxDB had pretty much outperformed all the other databases in their
tests, I reckoned that if kdb+ outperformed InfluxDB, then by transitivity, kdb+ was the fastest of them all!

This article summarizes the data, queries and hardware environment that I used and the resulting
performance figures.

Data

The raw data for the tests was based on capturing nine categories of system and application metrics (CPU,
memory, disk, disk I/O, kernel, network, Redis, PostgreSQL, and Nginx) over a 24-hour period on a standard
server environment. Depending on the test being undertaken the data was extrapolated to varying numbers
of servers (from 100 to 1,000) and different time periods (from 4 hours to 4 days).

All data sets were based on 100 measurements every 10 seconds yielding quite small data sets (by kdb+
standards anyway as kdb+ can easily support trillions of data points) ranging from roughly 150 million to 850
million entries. Because of this small size, I chose not to spread the data across multiple disks and partitions
to benefit from the parallelism inherent in kdb+.

Queries

The table below summarizes the queries that InfluxData ran, and that I correspondingly ran on kdb+, to
compare performance across other technologies. Note that the queries were not identical across each
technology in recognition of the fact that they are not all times-series databases (in particular, Cassandra,
MongoDB and ElasticSearch are not) so the tests were attuned to gauge the effects of concurrency and other
performance characteristics that yielded best results for each technology.

Kdb+ Transitive Comparisons

 2

Query Definition
Compared

Against
Data

Spanning

Query 1 Return maximum value, by minute, in a 1-hour time frame, for 1 host InfluxDB vs Cassandra 1 day

Query 2 Return maximum value, by minute, in a 12-hour time frame, for 1 host InfluxDB vs Cassandra 1 day

Query 3 Return maximum value, by minute, in a 12-hour time frame, for 8 hosts InfluxDB vs Cassandra 1 day

Query 4 Return maximum value, by minute, in a 1-hour time frame, for 1 host InfluxDB vs ElasticSearch 4 days

Query 5 Return maximum value, by minute, in a 1-hour time frame, for 1 host InfluxDB vs MongoDB 6 hours

Query 6 Return maximum value, by minute, in a 1-hour time frame, for 8 hosts InfluxDB vs OpenTSDB 4 hours

Unlike the tests run in my previous blog, this time I ran the kdb+ queries between a test-harness client and
the kdb+ server, which provides a more apples-to-apples comparison of performance and introduces network
latency.

Hardware

I ran Queries 1 to 5 on kdb+ over three different platforms, small to large, including a Raspberry Pi, my
personal MacBook Pro, and a fairly modest server. Their configurations and that of the InfluxData servers are
detailed as follows.

Platform CPU Memory Storage OS Database

Raspberry Pi 1.2Ghz quad-core ARM
Cortex-A53

1GB DDR2-900 MHz 32GB Micro SDHC Raspbian kdb+
(32-bit)

MacBook Pro (mid-

2014)  

3Ghz Intel Core i7
(2 cores)

16GB DDR3-1600 MHz 500GB SSD Flash MacOS 10.13.2 kdb+
(64-bit)

Kx Server* 3.2Ghz quad-core E5-
2667v3 Xeon (20MB
cache)

32GB DDR4-2133 MHz 300GB SAS 10K CentOS 7.3.1611 kdb+
(64-bit)

InfluxData Server* 3.6Ghz quad-core E5-
1271v3 Xeon (8MB
cache)

32GB DDR3-1600 MHz 1.2TB NVMe SSD Ubuntu 16.04 LTS InfluxDB

* denotes similar server configurations for head-to-head comparisons

The configuration for Query 6 was different as the OpenTSDB tests and corresponding InfluxData tests were
run in the Amazon Cloud on a 2-core m4.xlarge EC2 instance. I ran my tests on the same instance type.

Results

The table below summarizes the simple comparison of kdb+ versus other technologies by running the six
queries on my Raspberry Pi, my MacBook Pro and three different specifications of the Kx Server described

Kdb+ Transitive Comparisons

 3

above (i.e., using 1, 4, and 8 cores). The three rightmost columns indicate how much faster kdb+ is than
InfluxDB and, by transitivity, the other technologies.

Let’s look at Query 6. If kdb+ is faster than InfluxDB by 32.5 times, and InfluxDB is 3.8 times faster than
OpenTSDB (i.e., 400÷106=3.8), then by transitivity we can claim that kdb+ is 123 times faster than OpenTSDB.

 Kdb+ InfluxDB Transitive Comparisons

Query
Raspberry

Pi
MacBook 

Pro
Server
1-core

Server
4-cores

Server
8-cores

Server
4-cores

How much 
faster is kdb+?

Technology:
queries/sec

How much
faster is kdb+?

1 4,741 48,055 25,061 55,578 79,084 2,606 21.3× Cassandra: 1,912 29x

2 457 4,487 3,442 12,019 21,087 714 16.8× Cassandra: 442 27×

3 54 531 534 1,101 1,918 192 5.7× Cassandra: 66 17×

4 1,333 24,266 12,455 34,905 53,682 3,600 9.7× ElasticSearch: 79 442×

5 7,693 63,138 56,649 107,810 122,666 2,614 41.2× MongoDB: 2,850 38×

6 875 7,804 5,366 13,018 17,090 400 32.5× OpenTSDB: 106 123×

Note: units above are in queries per second

Perhaps a more dramatic way of presenting these numbers is by charting one of the queries. The chart below
shows the result of running Query 5 on kdb+ versus InfluxDB and MongoDB. The bars in blue are the results
of my tests and the two rightmost bars are the results from the original InfluxDB tests.

Query Rate: kdb+ vs InfluxDB vs MongoDB

As the kdb+ Server 4-Cores environment most closely resembles that of the InfluxDB server, we can use its
results for our quick comparison. In this case, the processing of 107,810 queries per second by kdb+
compared to 2,614 by MongoDB represents a 41.2 times faster performance. Similar charts for each of the
other queries are presented in the Appendix.

7,693

63,138
56,649

107,810

122,666

2,614 2,850

0

20,000

40,000

60,000

80,000

100,000

120,000

Raspberry Pi MacBook Server 1-Core Server 4-Cores Server 8-Cores InfluxDB MongoDB

Q
u

er
ie

s
p

er
 s

ec
o

n
d

kdb+

similar server configurations

Kdb+ Transitive Comparisons

 4

Summary

Kdb+ is well-known as the world’s fastest time-series database. We have industrial clients running kdb+
powered systems where up to 30-million sensor readings are being ingested per second, and over 10TB of
compressed data being stored daily – all of this happening while multiple analytical queries and CEP are run
against the database and inbound data streams.

I have to admit that the design of the benchmark that InfluxData published does not accurately mimic real-
world IIoT applications. The test database schema is simplistic, the volumes are small and the queries are
rudimentary. Because the correct technology choice is so important, and because are so many vendors out
there with often lavish claims on their processing capabilities, at Kx we always impress upon our clients how
important it is to base any technology choice on its performance at scale, with representative data volumes,
actual ingestion load, and complex with multi-table time-series queries. This is the only way to accurately
assess if the claims live up to reality and if the technology can truly serve the business. Any solution that
avoids such scrutiny should be similarly avoided itself.

I am sure that it is apparent that the results are neither a scientific nor an independent assessment of kdb+’s
performance capabilities, but my demonstrating that kdb+ outperform other time-series databases by one or
two orders of magnitude should give readers pause for thought.

For a more rigorous view, I would suggest you visit Mark Litwintschik’s blog discussing the Billion Taxi Ride
Benchmarks (http://tech.marksblogg.com/billion-nyc-taxi-kdb.html).

For completely independent and audited performance benchmarks, the STAC Benchmark Council has a
number of tests comparing low-latency, high volume technologies; kdb+ features well in STAC’s results. You
can visit STAC at https://stacresearch.com.

About Hugh Hyndman

Hugh Hyndman is the Director of Industrial IoT Solutions at Kx, based out of Toronto. Hugh has been involved
with high-performance big data computing for most of his career. His current focus is to help companies
supercharge their software systems and products by injecting Kx technologies into their stack. If you are
interested in OEM or partnership opportunities, please contact Hugh. You can reach him through
sales@kx.com.

http://tech.marksblogg.com/billion-nyc-taxi-kdb.html
https://stacresearch.com/

Kdb+ Transitive Comparisons

 5

Appendix

The following charts provide a graphic depiction of the performance differences amongst the various other
database products.

Queries 1, 2 and 3: Kdb+ vs InfluxDB vs Cassandra

4,741

48,055

25,061

55,578

79,084

2,606 1,912
457

4,487 3,442

12,019

21,087

714 442 54 531 534 1,101 1,918
192 66

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

Rasp Pi MacBook Server 1-Core Server 4-Cores Server 8-Cores InfluxDB Cassandra

Q
u

er
ie

s
p

er
 s

ec
o

n
d

Query 1 Query 2 Query 3

kdb+

Kdb+ Transitive Comparisons

 6

Query 4: Kdb+ vs InfluxDB vs ElasticSearch

1,333

24,266

12,455

34,905

53,682

3,600

79

0

10,000

20,000

30,000

40,000

50,000

60,000

Raspberry Pi MacBook Server 1-Core Server 4-Cores Server 8-Cores InfluxDB ElasticSearch

Q
u

er
ie

s
p

er
 s

ec
o

n
d

kdb+

Kdb+ Transitive Comparisons

 7

Query 6: Kdb+ vs InfluxDB vs OpenTSDB

875

7,804

5,366

13,018

17,090

4,957

9,788

400 106

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Raspberry Pi MacBook Server 1-Core Server 4-
Cores

Server 8-
Cores

AWS 1-Core AWS 2-Cores InfluxDB OpenTSDB
6 Nodes

Q
u

er
ie

s
p

er
 s

ec
o

n
d

 kdb+

