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Fig. 1: Visualizations that contain multiple views have multiple scales (e.g., xy scales, color scales). We develop and study authors’
reactions to a model that formalizes visual encoding consistency between scale pairs as the above constraints. C1.1, C1.2, C2.1, and
C2.2 require a pair of quantitative or nominal fields to be encoded using the same or different xy scales across two views depending
on whether the fields are the same or different. Applying a similar logic to color, C1.3 and C1.4 require the same quantitative and
nominal fields to have the same color scales. C2.3 requires different quantitative fields to have different hues, while C2.4 requires
palettes of different nominal fields to not overlap. C2.5 requires nominal palettes to not include constant colors of other views.

Abstract— Visualizations often appear in multiples, either in a single display (e.g., small multiples, dashboard) or across time or space
(e.g., slideshow, set of dashboards). However, existing visualization design guidelines typically focus on single rather than multiple
views. Solely following these guidelines can lead to effective yet inconsistent views (e.g., the same field has different axes domains
across charts), making interpretation slow and error-prone. Moreover, little is known how consistency balances with other design
considerations, making it difficult to incorporate consistency mechanisms in visualization authoring software. We present a wizard-of-oz
study in which we observed how Tableau users achieve and sacrifice consistency in an exploration-to-presentation visualization design
scenario. We extend (from our prior work) a set of encoding-specific constraints defining consistency across multiple views. Using the
constraints as a checklist in our study, we observed cases where participants spontaneously maintained consistent encodings and
warned cases where consistency was overlooked. In response to the warnings, participants either revised views for consistency or
stated why they thought consistency should be overwritten. We categorize participants’ actions and responses as constraint validations
and exceptions, depicting the relative importance of consistency and other design considerations under various circumstances (e.g.,
data cardinality, available encoding resources, chart layout). We discuss automatic consistency checking as a constraint-satisfaction
problem and provide design implications for communicating inconsistencies to users.

Index Terms—Visualization Design, Qualitative Study, Evaluation.
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1 INTRODUCTION

Visualizations are often created and presented in multiples. In anal-
ysis, users experiment with different combinations of variables and
encodings as they seek interesting patterns. The same quantitative field
that is encoded by an x scale in one view may be encoded by a color
scale in another view. Or, a field may be filtered differently across two
views, resulting in different x-axis domains ([min, max]). When indi-
vidual visualizations are combined for presentation in dashboards or
slideshow presentations, authors may overlook inconsistencies between
how the same variable is encoded differently across views, or cases
where different variables look exactly the same across views, leading
to confusion or misinterpretation among viewers.

Visualization systems typically leave it to the user to manually
choose the encoding specifics to present data consistently. However,
most existing visualization design criteria that users could rely on are
not informative for multi-view designs. Instead, criteria focus on single
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Fig. 2: Consistent y-scales (a, b) make it easier to relate mean horse-
power to the raw values. If the scales were inconsistent (a, c), assessing
the relation requires considerably more effort. Constraint C1.1 requires
quantitative xy scales encoding the same field (horsepower) to have the
same domain ([0,240]).

visualizations, such as maximizing the ratio of data to ink in a single
chart [28] or using the most perceptually effective visual encodings
given a nominal or quantitative data field [16]. As a result, users often
have to devise their own manual strategies to achieve encoding consis-
tency. For example, the author of two charts showing horsepower and
mean horsepower may manually align the scale domains to make the
mean value more comparable (Fig. 2). Here, deciding whether and how
to achieve encoding consistency requires careful consideration, because



making the scales comparable means not fully exploiting the available
space for depicting data. Ideally, visualization tools could help users
identify and decide when and how to maintain consistency and balance
with other design considerations. However, little is currently known
about when and what types of encoding consistencies authors want to
achieve as they create multiple views.

In this work, we take the first close look at how visualization authors
perceive and achieve consistency between views when designing mul-
tiple views. We present the results of a wizard-of-oz inspired study,
in which a “wizard” mimics an automated design assistant that eval-
uates the consistency of an author’s work at multiple stages in the
design process. To enable this study design, we contribute to prior work
on consistency guidelines for visualization [9, 19, 30] by extending a
set of consistency constraints for different encoding channels in 2D
multivariate visualizations [19]. We provide an initial validation of
consistency constraints by observing how authors perceive the im-
portance of various forms of consistency between visualizations. Our
work contributes the first detailed characterization of authors’ ratio-
nales for tolerating inconsistencies under some conditions. Finally,
we describe design implications for integrating consistency support in
visualization authoring tools that emerged as a product of our study.

2 RELATED WORK

Small multiples or trellis plots, a form of view faceting [18], are perhaps
the most common form of visualization where identical encodings must
be maintained across views to allow comparisons [4,27]. Encoding
consistency is also relevant in coordinated and multiple view (CMV)
visualization systems, which assume an analyst viewing a set of visu-
alizations simultaneously (e.g., [20]). Techniques like brushing and
linking, in which a mark that is highlighted or colored in one frame
is simultaneously highlighted or colored in other frames [3], help the
viewer identify data more easily across views. Wang Baldonado et
al. describe how consistency facilitates learning, makes comparisons
easier, and helps prevent false inferences in CMV systems [30]. Their
“Rule of Consistency” advocates consistency in system state through
mechanisms like brushing and linking to ensure that view interactions
like highlighting or zoom are applied across views of the same data.
They also advocate consistency in interface affordances across views
that a designer deems functionally equivalent, such as ensuring that
two calendar views afford the same interactions. Other proposed view
coordination operations from early CMV systems include allowing
users to copy visual elements across frames to ensure consistent rep-
resentation, and supporting aligning of multiple charts along common
axes [7,22]. More recently, six HCI and visualization experts identified
consistency as one of the top ten factors that can explain the widest
range of usability problems in visualizations [9]. However, a discussion
of specific consistency rules is still missing from the literature.

More recently, design defaults in visualization recommender systems
aim to ease cognitive processing of multiple charts, such as Voyager’s
consistent axes ranges [33, 34]. However, consistency guidelines have
not been well integrated in visualization design guidance nor authoring
tools. Common authoring systems, like Tableau [26], leave consistency
concerns to the user with the exception of a few basic defaults, like
Tableau’s support for maintaining nominal color encodings despite
different filters on a field. Instead, authoring suggestions that are
incorporated to guide users tend to be based on principles that assume
a single visualization target, such as expressiveness and effectiveness
criteria for generating the single best chart given a dataset [16,17].

Designing multiple views for presentation is a focus in narrative
visualization, where models of the cognitive cost between pairs of
views in a set have been proposed to help authors [11, 13]. However,
the purpose of measuring the cost between views is for ordering views
or designing animated transitions, rather than for ensuring consistency.

Munzner proposed that a general way of understanding the relation
between multiple views is by examining whether two views have the
same or different encodings, and whether they share all, some, or none
of their data [18]. Our consistency constraints describe multiple view
relations at the level of scales (instead of views), and describe detailed
requirements for scale properties.

We take inspiration from Kosslyn [15], who proposed evaluating
the semantic clarity of a graph by assessing, e.g., representativeness,
whether elements represent the meaning of the viewer’s preferred rep-
resentation, congruence, whether the appearance of the marks is com-
patible with their meanings, and between-level mapping, whether every
mark has only one meaning. Kosslyn advised applying the framework
to multi-chart composite visualizations first by analyzing each chart
separately, then by analyzing the composite view. However, examples
are largely absent from the visualization literature. Similarly, the re-
cently proposed principles of invariance and unambiguity state that the
impression of a visualization should be determined by data, and that
changes in the data should be clearly visible in the representation [14].
However, the algebraic process model comprised by these principles
provides a theoretical contribution to demonstrate how a human can
evaluate a single visualization. Our goal is to work towards automated
support for encoding consistency in visualization authoring systems.

In prior work, we formulated an initial consistency model describing
encoding-specific rules for consistency [19]. The model is organized
around two high level constraints that operationalize Kosslyn’s prin-
ciples: C1: Encode the same data in the same way, and C2: Encode
different data in different ways. The original model specifies constraints
for xy, color, size and shape mappings, and was developed through
analysis of media examples and visualization specification prototyping
using declarative languages [25] to test specific cases. We continue
to focus on xy and color mappings in the current work based on their
prevalence. However, we also extend this model in several ways for our
wizard-of-oz study. First, we formally define a scale and its constituent
parts, and distinguish a scale from an axis or legend. We describe
consistency using this new scale definition and add heuristics for iden-
tifying the same/different fields in Tableau (see Sec. 3). We add new
constraints for nominal xy scales and constant color, add special cases
for scales encoding measure names, and make several existing con-
straints stricter to solicit more reflections from participants. Finally, by
studying participants’ reactions to the resulting constraints, we provide
an initial validation of the constraint model (see Sec. 5).

3 CONSISTENCY CONSTRAINT MODEL

In order to systematically observe how participants spontaneously main-
tain consistency and catch inconsistencies in our wizard-of-oz study,
we adapt a consistency model from our prior work [19] that defines
what counts as consistent and inconsistent views. The model starts
from two high level constraints that can be specialized to specific scales
(e.g., x ory scale, color scale). A scale is a function and its inverse [31],
between a data domain D and retinal range R:

Scale: {data values in D} é {retinal values in R}
f—l

There are two mappings in a scale. The mapping f encodes abstract
data as retinal values (e.g., position values, color values) that can be
perceived after rendering. The inverse mapping f~! allows a viewer
to decode data from the graph. We borrow the scale definition from
ggplot2 [31] and the domain and range terminologies from D3 [5, 6].
We henceforth use “domain” to refer to data domain and use “range” to
refer to the domain of retinal values.

We distinguish scale from axis and legend. The scale itself is a
relation and not readily perceivable by the eyes [32]. However, a scale
becomes perceivable after being visualized as an x or y axis, or a color,
size or shape legend. Both the scale’s domain and range should be
visualized. For an axis, the domain is visualized by the tick labels and
the range is visualized by the axis line. For a color legend, the domain
is visualized by the data labels and the range is visualized by the colors
in the legend. Therefore we sometimes use “domain” to talk about the
data labels and use “range” to talk about the position or color ranges.

A scale is typically associated with one field and one encoding
resource. A field is slice of the dataset that forms a meaningful semantic
concept (e.g., horsepower, origin are distinct concepts). An encoding
resource is a visual attribute for encoding data (e.g., xy, color, size,
shape). The field and encoding resource define a scale’s type (e.g.,
quantitative/nominal, xy/color). Multiple views may contain scales that
encode the same field, or use the same encoding resource, or both [18],



making room for potential inconsistencies. We propose two high level
constraints to check consistency between any two scales that have the
same encoding resources (e.g., two position scales, two color scales):

C1 Same Field = Same Scales: The same data field is encoded the
same way.

C2 Different Fields = Different Scales: Different data fields are
encoded differently.

At a high level, C1 implies that the viewer’s attention is not drawn to
visual changes given a constant data field across views. When Cl1 is
satisfied, C2 aims to ensure that any field that does change between
visualizations is likely to draw the viewer’s attention.

When two scales encode the same field, the axis or legend titles
will naturally contain the same field name. In addition, the “same
scales” requirement in C1 demands the scales’ domain, range and
mapping functions all to be the same. This may not be necessary
for all scale and data types, but we intentionally keep C1 and its xy
and color derivations strict to better elicit participants’ actions and
reactions to consistency concerns. On the other hand, when two scales
encode different fields, the axis or legend titles will naturally differ, and
the “different scales” requirement in C2 demands at least the domains
(and sometimes the ranges and the mapping functions) to be different
between the two scales. We present the specific constraints for xy, color
channels together with their validations and exceptions in Sec. 5.

How to classify fields and their transformations as the same or differ-
ent so as to match people’s intuitions and expectations for consistency
remains an unsolved problem. A field has a title (e.g., “horsepower”),
a type (e.g., quantitative, nominal), a domain, a set of data values in
the domain, and sometimes a unit. A field, or multiple fields, can
be transformed to create a new field. For example, Tableau supports
aggregation, count, binning and grouping [26]; SYSTATS supports
mathematical, statistical, and multivariate transforms [32]. The field
transformations can affect the new field’s title (e.g., “average horse-
power”), data type (e.g., count of nominal values), domain, data values
and unit. One can build a model to classify fields as same or different
using one or all of the above mentioned field properties and also infer
from field transformations, but building and validating such a model
with viewers is beyond the scope of this paper. Instead, for our wizard-
of-oz study, we classified “same” and “different” fields from a Tableau
user’s perspective, using several heuristics. (1) Treat distinct dimen-
sions and measures in the Ul as different fields. (2) If the participant
explicitly created a new dimension or measure and gave it a name, treat
as a different field from the original field(s). (3) Log, average, mean,
median, min, max, bin and partition transformations do not create new
measures in the Ul by default, therefore the new field is the same as
the original field. (4) Variance, standard deviation, quantile, rank, sum,
count and group transformations create a new field that is different
from the original field. (5) A filtered field is generally considered the
same field as the original field (e.g., after filtering out null values, we
still consider a field same as original). (6) If the participant applied
different filters on a field to create multiple subfields, and the subfield
domains do not overlap, we consider the subfields different fields. For
example, Fig. 3 compares the most expensive camera brands and the
least expensive brands. We consider them different fields because the
brand names do not overlap.

4 STUDY DESIGN AND OBJECTIVES

We present a qualitative study in which participants with prior visual-
ization design experience authored multiple views for presentation. We
use a wizard-of-oz style design, as used in prior visualization research
to understand the implications of novel tools like whiteboard visual-
izations [29] and brain visualizations [2]. The wizard-of-oz approach
enabled us to detect inconsistencies at various different decision points
in view creation and evaluate their impact in a realistic context. Our
specific research goals in using this study design were twofold. First,
we wished to observe participants’ spontaneous and warning-prompted
strategies for maintaining encoding consistency across views. These be-
haviors indicate agreement with particular constraints, providing input

for validating specific consistency constraints. Second, we wished to
learn what types of rationales participants use to defend inconsistencies,
and override particular constraints. Together these observations provide
insight into how consistency concerns manifest in their work. In the
interest of understanding how interactions with consistency unfold in
an authentic authoring scenario, we noted where the participants’ inten-
tions were and were not well supported by the visualization authoring
system. As a result, we later describe opportunities for enhancing
authoring systems with novel forms of consistency support that were
suggested by our observations.

4.1 \Visualization Software, Participants and Datasets

We chose Tableau [26] for our study because (1) its dashboard and
storyboard features allow easy transition from data exploration to pre-
sentation, and (2) it offers rich organization of multiple views: small-
multiples in the same worksheet, worksheets in the same workbook,
and worksheets organized as dashboards or storyboards.

We recruited 10 participants (4 males, 6 females, age 18 - 56) through
an HCI email list at a large university. Their professions included
graduate student, data librarian, market research consultant, and IT
service representative. All participants were familiar with Tableau and
had at least moderate experience with data visualization (i.e., had taken
a class before or worked in visualization design, see supplementary
material for details). All participants received two $25.00 Amazon gift
certificates, one for each session.

Participants chose among possible datasets of cameras, cereals, coun-
try development, films, seat belts, and speed dating [1, 8]. We wanted
participants to have a choice to increase the chances they would find a
dataset genuinely interesting, making their work more authentic.

4.2 Detailed Procedure

Session 1 - Exploratory Analysis: Participants had about 50 minutes
to get familiar with the dataset of their choice by making charts, and
to export five or more charts from their exploration. We asked them
to pretend that they were to publish their results online at the end of
session 2, but we assured them that in session 1 they could focus on
exploration and leave presentation to the next session. All participants
were given a quick demo of Tableau’s dashboard, storyboard, and
annotation features, commonly used for organizing multiple views and
highlighting data. To ensure that consistency violations were not due
to a participant’s lack of knowledge about the tool, we told participants
that they could ask us for help if they encountered technical difficulties
by sketching what they have in mind and we would make the changes
between the sessions.

Before starting their exploration, participants completed a brief
warm-up exercise on how to use a think-aloud protocol. In both ses-
sions, we prompted the participants to talk about their goals and narrate
their actions, particularly when they appeared to be making choices re-
lated to consistency across views. At the end of session 1, we exported
all worksheets, dashboards, and storyboards created by the participant,
and any sketches the participant created to specify intended revisions.
Between sessions: The experimenter made any requested revisions to
an exported copy of participants’ work. The consistency constraints
(Sec. 5) were then applied to the generated views by comparing pairs
of encodings of data fields across views. Each constraint violation
was noted on a paper handout as a “system warning” that included
screenshots of conflicting views and a warning message. For example,
Bob (pseudonym) who created Fig. 5 received the following warning:

The data field “Price” has different scale domains in worksheets
“Bang For the Buck Over Time” ([0, 600]), “Price Per Brand” ([0, 900])
and “Released in 2007 ([0, 6000]).

Session 2 - Presentation: Participants had about 50 minutes to refine
the views for online presentation and reconcile system feedback where
they felt it necessary. We first confirmed that participants were satisfied
with any view modifications based on their sketches, then presented the
paper handout and told participants that they had received warnings on
their work from an automatic tool. We did not inform them in advance
that the warnings would be related to consistency. Participants were
encouraged to reflect on the warnings, including whether they would
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Fig. 3: Bob manually made the scale domains the same for five pairs of
y-axes in a dashboard, to support the comparison of camera properties
between the most and least expensive brands.

revise their designs to try to resolve the inconsistencies or ignore them,
and to talk aloud about their thoughts. After a short time, participants
were asked whether they would ignore or revise for each warning.

For the remainder of session 2, as the participant continued to refine
their visualizations for presentation, we surfaced additional warnings
when the constraints were violated in new ways. The warnings were
written down and placed near the participant’s laptop, where she could
read them when ready. After the participant had read the warnings, she
was asked for her decision and rationale.

We observed and warned inconsistencies between views despite of

their organization. That is, we applied constraints to all basic views
in the same Tableau workbook, ignoring whether the views were on
the same worksheet/dashboard/storyboard or not. Our “bag of views”
approach elicited participants’ reactions that started to form boundaries
for various constraints (see Sec. 6.2).
Interview: Immediately after session 2, we conducted a four-question
interview (see supplementary material) to gauge participants’ opinions
about the warnings and discuss where an automatic tool could help in
the exploration-presentation process.

4.3 Counting Validations and Exceptions

We collected approximately 20 hours of audio and screen recordings
in August 2016. In total, the 10 participants made 15 presentations (4
storyboards, 11 dashboards) containing 88 basic views (including trellis
plot cells). The actual number of views created during exploration was
much higher, as not all worksheets were selected for presentation.

We systematically applied the specific constraints in Sec. 5 to the
data and summarized evidence that validates each constraint (partici-
pants achieving consistency on their own, or after warning) as well as
exceptions to many constraints (based on the explicit reasons partici-
pants gave for not achieving consistency after being reminded).

We count instances of constraint validations by the number of scale
revisions or verifications participants performed to make them consis-
tent. If Bob aligned five pairs of y axes to achieve C1.1 consistency, we
count these as ten instances of validations for C1.1. When participants
ignored warnings generated by constraints, we identify the distinct
reasons they gave as exceptions. For each exception, we count their
instances by the number of scale revisions that would have to be made,
if the constraint were to be satisfied. The count measures the “effect”
of an exception by the number of scale revisions waived by it.

5 FINDINGS

We present specific derivations of C1 and C2 (see Sec. 3) for x, y
and color scales that encode quantitative or nominal fields. For each
specific constraint C1.* or C2.*, we summarize their validations and
exceptions using counting methods detailed in Sec. 4.3.

5.1 Quantitative XY Scales

C1.1 Same Field = Same XY Scale: If two x or y scales encode
the same quantitative field, the scales should have the same data
domain, retinal range, and mapping functions.
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Fig. 5: Bob’s dashboard of camera development and price changes
over time. He overrode C1.1 which required price to have consistent
scales in a, b and c. His rationale was that the price axes weren’t
juxtaposed and their x-axes encoded different fields. On the other hand,
he manually set the measure names order in a and c to satisfy C1.2.

Recall that xy scales are visualized as axes. “Same domain” requires
the two axes to have identical start and end tick labels. “Same retinal
range” requires the two axes to have the same rendered length. “Same
mapping functions” requires the function types to be the same. For
example, a linear scale and a log scale encoding the same field would
trigger a warning. Using these requirements to examine Fig. 2, which
compares horsepower to mean horsepower (we treat as the same field
using heuristics in Sec. 3), we can see that view a and b satisfies this
constraint while view a and c fail the “same domain” requirement.

C1.1 Validation (28): Axis domains were manually made the same.

We observed 28 instances of validations (31% of total validations) from
three participants spending conscious effort to achieve C1.1 consistency.
In Fig. 3 and Fig. 4, Bob spontaneously enforced same domains for
eight pairs of y scales to support comparison of the same field across
two small multiples. For each scale pair, Bob manually picked the larger
domain and applied it to both scales. The “same range” requirement
was naturally fulfilled by the small multiples design. “Same mapping
functions” was automatically satisfied by the default /inear mapping
option for all fields. In addition, Ada and Joy received six total C1.1
warnings prompting revisions. Ada manually set a pair of x scales to
the same domain, even though the domain difference was very small:
“The scale inconsistencies are very subtle (for human eyes). I wouldn’t
have caught on my own.” Joy stated that she would have fixed five pairs
of x axes if they were in her final presentation.

C1.1 Exception (15): Axes not juxtaposed, so scales can differ.
In Fig. 5-a, b and c, price had different domains and ranges. Upon
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Fig. 6: Tim’s oil & natural gas storyboard. He reasoned the overlapping nominal colors between the maps and the scatter plots was benign

because in the scatter plots color encoded a high-cardinality field.

receiving an warning about this inconsistency, Bob reasoned he didn’t
want to revise because the y axes were not juxtaposed for comparison,
and the perpendicular x axes encoded different fields (release date,
brand, and model). Bob commented: “If these charts (containing price)
were to go side-by-side, I would consider making the scales the same.”
For the same reason, he also allowed resolution to be inconsistent.

Bob’s rationale was consistent with his design decisions for other
sets of views. For example, in Fig. 3 and Fig. 4 where pairs of y axes
were juxtaposed for comparison and the x axes did encode the same
field (with different filters applied), he aligned the domains sponta-
neously (C1.1 validations). However, when Bob first made the two
small multiples Fig. 4-a and b, they were separated as two single work-
sheets. At that point he chose not to make the price, resolution and
weight scale pairs consistent in domain.

Zoe and Tim also had non-juxtaposed axes with inconsistent domains
and used the same reason as Bob for not revising. Zoe had two time-
series where the y-axes encoded car accident occurrences and the
x-axes encoded time (by month and by year). She expected the y axis
domains to be inconsistent because they were not juxtaposed and the x
time units were different.

The juxtaposition exception suggest that if a comparison should be
made, it may be more important for the scales encoding the same fields
to be consistent, so that the “real” changes in data can show.

C1.1 Exception (18): That would be too much whitespace.

In addition to view juxtaposition, Bob was also concerned that making
the scale domains the same would create too much whitespace when
contemplating revisions for Fig. 3-5. He tried making scale domains the
same and different and commented that making scale domains the same
often means adding whitespace to one of the views, leaving details and
trends harder to see in that view (e.g., Fig. 3-b price).

Although whitespace was a valid concern affecting many x y scales,
it was not the deciding factor for Bob. After careful thinking, Bob
made his decisions to revise versus ignore using the “juxtaposition for
comparison” criteria. He left the inconsistent scales in Fig. 5 (counted
as exceptions) and revised scales in Fig. 3 and Fig. 4 (counted as
validations). Bob said if two views (Fig. 3-a and b) should be compared,
revealing the quantitative differences across views on consistent scales
becomes more important than preserving local details: “the y (axes)
should have the same scales to support comparison, even if re-scaling
will sacrifice a lot of screen space.”

C2.1 Different Fields = Different XY Domains: If two x or y scales
encode different quantitative fields, the two scale domains should
differ, unless the field domains happen to be identical.

If two fields are different, the axis titles should naturally be different.
Different fields also imply that the scale domains would automatically
differ in most cases (e.g., it would be unlikely for horsepower and miles
per gallon to have identical domains). Only when the different fields
happen to have identical domains (e.g., probabilities, all within [0, 1])
will the scales have the same data domain. Note that C2.1 does not

enforce same or different retinal ranges. Two axes can have same or
different lengths depending on view organization (e.g., layout). Nor
does C2.1 impose same or different mapping functions. Linear, log,
and power functions are commonly used for quantitative fields.

C2.1 Validation (10): Axis domains automatically differed.

As expected, numerous scale combinations satisfied C2.1 (i.e., scales
encoding different fields typically have different domains). In most of
these cases, the participant did not spend any conscious effort to achieve
consistency. We do not count these “constraint naturally satisfied”
cases because we want the validation count to quantify where authors’
conscious, manual effort was spent (see Sec. 5.5 for analysis of effort).

We observed ten instances where Tim spent conscious effort related
to C2.1. First, Tim consciously picked different mapping functions
(log and linear) for two different fields (military expenditures, military
expenditures/GDP%) in the same dashboard: “For percentages, don’t
make it log scale.” Next, Tim manually set up the log scale for eight
different fields (exports, imports, production and consumption for oil
and natural gas, in Fig. 6-b and d). Tim’s different choices in the
two scenarios verified that the constraint should not prescribe same or
different mapping functions for x y scales encoding different fields. The
choice of mapping functions may be more dependent on the encoded
data field than the consistency between scales.

5.2 Nominal XY Scales

C1.2 Same Field = Same Values in Same Order: If two x or y
scales encode the same nominal (or ordinal) field, then the two
scales should have the same data domain, retinal range, and map-
ping functions.

Following C1.2, two scales encoding the same field would have iden-
tical axes, which should facilitate comparison. “Same data domain”
requires the two axes to contain the same nominal labels. “Same retinal
range” requires the two axes to have the same lengths. “Same mapping
functions” requires the nominal values to be sorted in the same order.
The “same domain” requirement is intentionally strict and may not be
satisfied in all cases. Even when two scales do not have exactly the
same nominal values, we still require the overlapping nominal values to
be sorted in the same order. For example, in an overview + detail design,
the scale in the detail view will only encode a subset of values from the
overview. It is helpful for the subset of values to be in consistent order
with the overview.

We treat nominal x or y scale that encode measure names as a special
instance of C1.2. Measure names is commonly used in Tableau to
construct small multiples that compare different fields. For example,
Fig. 5-c compares resolution, price, and weight. These fields are “nom-
inal values” of measure names. The values of measure names are
typically manually specified by the user in creating the particular trellis
plot. Therefore, when two x or y scales encode measure names, we do
not enforce same domain (or range), but only require the overlapping
measures to be sorted in the same order.
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Fig. 7: Kai’s dashboards on world economy and health. He made sure the color for each country stayed consistent in all views (including filters).

Go Out @  Go on Dates b
Female Male Female Male

Several times a week 21 21 Several times a week 2 4

Twice a week 20 21 Twice a week

Once a week 19 19 Once a week

Twice a month 11 9 Twice a month

Once a month 3 5 Once a month

Several times a year 1 4 Several times a year

Almost never 1 1 Almost never

Fig. 8: Iva created two separate worksheets counting the frequency
of people going out versus going on dates. She devoted considerable
effort to make the color scale consistent across tables, including when
interactive filters were applied.

C1.2 Validation (9): Apply same filter and sort to get identical axes.

Three participants spontaneously maintained C1.2 consistency. Kai
had two bar charts with country names on x in a top-bottom layout
(Fig. 7-a). He intentionally ensured each country’s bar was vertically
aligned. Whenever he revised filters or sorting criteria (which could
affect the x values), Kai conscientiously verified that the two country
axes still had the same nominal values, in the same order. Ann had
two country heatmap tables in a left-and-right layout. Ann applied
the same null filters and sorted country names alphabetically in both
heatmaps to achieve C1.2 consistency. Similarly, Iva found when she
added interactive filters to her heatmap table (Fig. 8-a), the table rows
could change. This bothered Iva: “I don’t like the graph to change (on
filter)”. She manually made the table rows show the raw data domain.

C1.2 Validation (10): Measure names were manually ordered.
When working on Fig. 3-ab and Fig. 4-ab, Bob duplicated worksheets
to ensure measure names have consistent hand-picked order. When
working on Fig. 5, Bob adjusted measure names order three times in
response to three instances of C1.2 warnings.

Before the first adjustment, Bob received a warning saying that
in his chart “Bang For the Buck Over Time,” measure names was
ordered [resolution, price] while in his chart “Release 2007,” measure
names was ordered [price, resolution, weight]. Bob remarked “that’s a
good warning” and changed “Release 2007 measure names order to
[resolution, price, weight] to match “Bang For the Buck.”

Later in the session, Bob felt the chart title “Bang For the Buck Over
Time” emphasized price, so price should appear at the top of the chart.
After revising, Bob received the same measure names order warning
again, provoking him to think deeply about this design. He played with
different orders, considering each chart’s message and the consistency
between them. He decided resolution should be the most important
property for cameras and therefore should be on top for both the “Bang
For the Buck” and “Release 2007” charts. Bob preferred to change the
title to better fit the order [resolution, price], because having the same
order in both charts seemed more important.

Bob received a third warning between Fig. 5 ([resolution, price,
weight]) and Fig. 3 ([resolution, weight, price]). Bob said: “I"d defi-
nitely take a warning for that. And I will have to think about it pretty
hard.”. He again experimented with orders but didn’t find a satisfying
solution: “That’s difficult, and I don’t have a good answer for that.”

C1.2 Exception (3): Nominal values sorted by different metrics.

In Joy’s cereal nutrition dashboard (Fig. 9), cereal name appeared
in three charts, sorted by rating, serving size and calories. When
asked if she would adjust the name order, Joy said: “Each one (chart)
individually is easiest to look at by its measure, instead of by name.
I think it’s more important for each graph to individually make sense
than all of them being sorted in the same way.”

We note that in Joy’s dashboard, the nominal xy axes with different
orders are not juxtaposed for comparison, which may have motivated
the rationalization of the inconsistency (just like C1.1 exception). How-
ever, Joy did not bring up “juxtaposition” as a reason.

C2.2: Different Fields = Different Nominal Values: If two x or
y scales encode different nominal (or ordinal) fields, the two scale
domains should differ, unless the field domains coincide.

Like C2.1, we expected C2.2 to be automatically satisfied in many
cases except when the nominal fields encoded happen to have exactly
the same values (e.g., Likert scale answers).

C2.2 Validation (4): Nominal axis labels naturally differed.

Like C2.1 validations, participants created many examples where axes
domains naturally differed, complying with C2.2. We only count the
instances that involved conscious effort.

In Fig. 3, Bob compared two different fields $8$ brands and $ brands
(by filtering the brands sorted by camera price). The two x scales differ
in domain, satisfying C2.2. Similarly, in Fig. 4, Bob filtered and
compared camera models released in 1997 versus models released in
2007. Bob’s confirmed: “I’m fully aware that the models are different
(in different release years), and that’s the way it should be”.

We also observed a case where the two fields encoded happen to have
identical domains, matching the “unless” clause in C2.2. In Fig. 8, Iva’s
two heatmap table rows contained survey responses: go out frequency
and go on dates frequency. The two ordinal fields had identical domains.
Iva manually sorted the values in the same order.

5.3 Quantitative Color Scales

C1.3 Same Field = Same Color Scale: If two color scales encode
the same quantitative (or ordinal) field, they should have the same
data domain, retinal range, and mapping functions.

Color scales are often illustrated by legends. “Same domain” means
the start and end numbers should be identical between two color scales
(or legends). The “same range” requirements means the start and end
colors should be identical. “Same mapping functions” means the same
numbers should be mapped to the same colors. For stepped color scales,
this requires the break points to be the same.

C1.3 Validation (2): Color scale reused.

We did not observe many instances of validation related to C1.3 because
using quantitative color scales to encode the same field across views
was rare in our study. Iva spontaneously made colors consistent when
applying different interactive filters to a heatmap to generate multiple
views (Fig. 8-a). The color scale’s range and mapping functions were
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Fig. 9: Joy’s dashboard of the ten most popular cereals. She used
different constant colors to distinguish fields (e.g., calories, carbs) and
sorted cereal names by different quantitative fields.

handcrafted by Iva to map the high-middle-low values of participant
count to green-yellow-white. By default, the color scale domain in the
heatmap would change when difterent filters were applied. Bothered
by this inconsistency, Iva hard coded the color scale domain to [0, 21],
so that “you get the context” when different filters are applied. After
handcrafting the color scale’s domain, range and mapping functions for
heatmap a, Iva used it as a template to create heatmap b.

C2.3 Different Fields = Non-overlapping Hues: If two color scales
encode different quantitative (or ordinal) fields, the color scales
should differ in data domain and retinal range.

Similar to C2.1, “different domains” require the two color scales to
encode different numerical domains. This should be naturally satisfied
in most cases, unless the color scales coincidentally encode different
fields that have identical domains. Because color hues tend to be
interpreted as nominal, we expected different hues might be associated
with different fields. “Different retinal ranges” forbids two color scales
from containing the same hues. When examining the ranges, we check
the start, end, and (for diverging scales) middle hues of two quantitative
color scales. This constraint does not require the scales’ mapping
functions to be different (e.g., two scales can both use Jenks’ natural
breaks [12] to map data to color).

C2.3 Validation (2): Hues can denote different quantitative fields.

As expected, we observed hues associated with different quantitative
color scales with Ada, who used a green scale for HIV infection rate
and a red scale for infant mortality rate in two choropleth maps. Both
scales had five color steps. Ada confirmed with us in the study that the
same number of color steps (i.e., same mapping functions) for different
fields was fine for her design as it is a common practice.

C2.3 Exception (7): Hues can also denote high & low, good & bad.

To our surprise, not all participants used distinct hues for different fields.
We also observed hues used to denote categorical semantics (e.g., high-
low, good-bad) derived from the original quantitative domain.

For example, Tom associated {red, yellow, green} to high, middle,
and low values of three different quantitative fields. He said he didn’t
want viewers to relearn the color scheme: “I think that having the color
scheme (hues) the same would be important, because if you are going
through a whole bunch of these (charts), you get trained to think that
red is the top and green is the bottom.”

Later, Tom and Ann both associated green with “good” (e.g., positive
GDP growth rate, low external debt) and red with “bad” (e.g., negative
GDP growth rate, high external debt). Participants noted that their color
choices for “good” and “bad” were not arbitrary: “It would be a major
problem if you switch (red and green mappings).” (Tom) Participants
also spontaneously avoided using red and green for other semantics
when they were using them for “good” and “bad”.

We conjecture that using hues to denote different fields, high-low
semantics, or good-bad semantics might be three parallel strategies
that cannot be used at the same time in the same set of views. For
example, when Tom used hues for good-bad, he was no longer using
hues to denote high-low or different fields. He expected that “text can
help” to convey the concept of different fields: “if the variable that’s
been shown changes, that’s been changed by the title of the map/graph,
in my opinion.” Tom also brainstormed when he might use hues for
different fields: “If I have four maps next to each other, and they all
show different variables, and I want to show the differences between the
variables, maybe you do color differently but I think you can still have
all colors as the same because you want to compare the four maps.”

5.4 Nominal Color Scales

C1.4 Same Field = Same Value-Color Mapping: If two color
scales encode the same nominal field, they should have the same
data domain, retinal range and mapping functions.

Using C1.4, the same nominal values in a field would be presented by
the same colors across charts. For example, temperature={hot, cold}
will always be associated with color={red, blue}.

Just as nominal xy scales can encode measure names (see C1.2),
nominal colors can encode measure names to help viewers distinguish
different fields. As a special instance of C1.4, if two visualizations use
color to encode measure names, the measure-color mappings should be
identical. We do not require the scale domain or range to be identical
as measure names are hand-picked in Tableau.

C1.4 Validation (6): Color meanings assigned and reused.

Three participants demonstrated conscious effort in ensuring that the
same field was mapped to consistent colors across charts. Iva and
Mia assigned semantically meaningful colors to nominal fields gender
and hot/cold and reused the customized encodings throughout their
presentation. Kai also checked to make sure that the same countries
had the same colors in two charts (Fig. 7-a and b).

C1.4 Validation (12): Allocated color palette for measure names.
Many participants spontaneously hand-picked unique constant colors
to distinguish different fields. For example, Joy commented on Fig. 9:
“I like the different colors. It makes them (calories, carbs, fat etc.)
distinct from each other.” Similarly, Tim allocated distinct colors for
imports, exports, production and consumption in Fig. 6-a and c.

In total, four participants (Zoe, Tim, Ada, Joy) allocated five nominal
color palettes to five sets of measure names, but only one participant
spontaneously kept the measure name colors consistent across views
that appeared in a dashboard, presentation, or worksheet. The other
three participants received six instances of C1.4 warnings saying either
the same field had different colors or different fields had the same color.
Participants considered these warnings to be important. They either
reselected colors (five instances) or stated they would have reselected
colors if the conflicting charts were presented together (one instance).

We also notice that participants were willing to revise colors even
when the conflicting charts occurred on separate worksheets or different
pages in a storyboard. One possible explanation is that changing the
constant color for a chart is relatively easy in Tableau compared to other
consistency revisions. Another possibility is that participants thought
it would be beneficial for viewers’ recognition of data if they could
re-apply what they learned for field-color associations across pages.

C2.4 Different Fields = Non-overlapping Palettes: If two color
scales encode different nominal fields, the two scales should differ
in data domain, retinal range, and mapping functions.

C2.4 requires the same color should not be reused for different nominal
values. If different fields are encoded, the “different domains” require-
ment should be naturally satisfied, unless by coincidence. “Different
retinal range” requires two nominal palettes should contain no over-
lapping colors. For nominal scales, the mapping functions are defined
by the data values and the retinal values. Hence the mapping functions
should also differ. C2.4 intends to reduce the chance of misinterpreting
the meanings of colors and lower the cognitive load of learning and
re-learning the mappings when the viewer transitions between views.
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Fig. 10: Validation and exception counts by constraint origin, encoding resource, and data type (a) and their ratios per constraint (b).

C2.4 Validation (5): Avoided multiple meanings for the same color.

Multiple participants devoted conscious effort to ensuring singular
color meanings across views. Iva spontaneously chose non-overlapping
color palettes for two nominal fields: gender={female, male} = {pink,
blue}, looking for serious relationship={true, false} = {red, gray}.
Iva reasoned: “I wouldn’t use this (pink) color (for serious relationship)
because that’s the girl color that I used.” On the other hand, Mia
received a warning between cereal type={hot, cold} = {red, blue}
and cereal names encoded by many different colors including red
and blue, which meant different things across charts. Mia devoted
considerable effort to resolving this issue. She reasoned that encoding
a high-cardinality field like cereal names with nominal colors was not
an effective design anyways, so she calculated a new ordinal field with
low cardinality, and hand-picked colors other than red and blue.

C2.4 Exception (4): High-cardinality overlaps are more forgivable.

When a high-cardinality nominal field (e.g., cereal names, country) is
encoded by color, it is less likely that the average viewer will remember
the meaning of all colors well enough to recall it when viewing subse-
quent visualizations. Perhaps for this reason, C2.4 conflicts seemed less
problematic to some participants when working with high-cardinality
fields. For example, Tim used overlapping color palettes to encode
measure names (Fig. 6-a,c) and country names (Fig. 6-b,d). He argued
for his use of color: “Color may not be the best for countries, but it
helps distinguish different countries.” However, not all participants re-
acted the same when handling color conflicts involving high-cardinality
fields. As we have seen in C2.4 validations, Mia painstakingly resolved
the same type of inconsistency instead of using Tim’s rationale.

C2.5 Non-overlapping Nominal and Constant Colors: If a color
scale encodes a nominal field and another color scale does not en-
code any field (and just has a constant color), the two scales’ reti-
nal ranges should not overlap.

C2.5 addresses conflicts that can be created despite the previous two
color constraints: even when the color scale is unmapped in a chart, a
default constant mark color (e.g., all blue bars) could contradict nominal
color encodings in another view.

C2.5 Validation (2): Changed constant color to avoid ambiguity.

Iva spontaneously changed the constant color of a bar chart from blue
to gray because she had already used same blue to encode male in the
same dashboard.

C2.5 Exception (2): High-cardinality overlaps are more forgivable.

Participants treated high-cardinality color conflicts as more forgivable,
perhaps because such colors are less likely to be memorable. Tim and
Kai gave this reason to overwrite C2.4 and C2.5, respectively. Before
Kai finalized Fig. 7-b, he experimented with removing the nominal
colors, making all points blue. He was pretty satisfied with this design
and kept it for a while, even though the same blue color was also
used in Fig. 7-a. In his view, the nominal colors in Fig. 7-a were
for distinguishing different countries, not for establishing memorable
mappings: “you might have multiple countries shown as peach color”.
In contrast, in Iva’s dashboard the nominal color scale encoded a low-
cardinality gender field, and the participant spontaneously avoided the
constant color conflict.

5.5 Reflections on the Consistency Constraint Model

Though based on a small sample, the detailed validation and exception
instances we observed enable the initial evaluation of the consistency
constraint model (Fig. 10). Overall, we observed more validations than
exceptions: 90 instances of validations and 49 instances of exceptions
associated with five distinct constraints. For validations, we distinguish
participants’ conscious, spontaneous consistency maintenance strate-
gies (blue) from those revisions triggered by our consistency warnings
(teal). The spontaneous strategies depict where participants spend their
mental and manual effort, achieving consistency on their own. The
revisions triggered by warnings represent inconsistencies that are more
likely to be overlooked. They point to where an automatic tool can
be particularly helpful. The exceptions shed light on conditions when
consistency should give room to other design considerations.

The lengths of the stacked bars in Fig. 10-a represent how often a
type of constraint became relevant during exploration and presentation.
C1.* constraints are more frequently a concern than C2.* constraints,
as many C2.* requirements can be naturally satisfied. Constraints
related to xy are considered more often than constraints related to color,
probably because position encoding is used more often. We also notice
that all revisions were made to comply with C1.* constraints. Out
of the 26 revision instances, about half (14) were related to nominal
scales encoding measure names (C1.2 and C1.4 special cases), which
means participants tended to agree that measure names consistency was
important but couldn’t always achieve it on their own. Participants did
not raise any explicit exceptions associated with measure names.

Fig. 10-b compares validation and exception instances of constraints.
C1.4, C2.1, C2.2, and C1.3 were not challenged by exceptions in our
study. On the other extreme, C1.1 and C2.3 saw high portions of
exceptions, signaling “juxtaposition for comparison, whitespace” and
“hue semantics” should be considered in the consistency trade-off.

Some of our observations suggest a more nuanced notion of the same
or different fields may be necessary. For example, Tim dealt with many
“similar” fields (e.g., oil imports, gas imports). Tim clearly separated
the oil views and the gas views to convey the field difference, but he
also intentionally matched the measure names order for oil and natural
gas fields in Fig. 6-a&c, b&d to convey the field similarity.

Finally, we observed participants using several other strategies to
achieve consistency that were not covered by our constraints. For ex-
ample, Joy worked to assign consistent value labels across charts. Ada
and Kai worked to apply consistent trendlines across charts. As an
extreme example, although Kai knew that compared to logarithmic
or exponential trend lines, linear trend line was a worse fit for GDP
per capita in Fig. 7-b, he still chose the linear trend line because the
other two fields used linear fits. Future work might incorporate consis-
tency constraints for text elements and statistics, as well as considering
consistent interactions, which we did not study here.

6 DESIGN IMPLICATIONS FOR AUTHORING TOOLS

Our work provides an initial foundation for consistency support mecha-
nisms in visualization authoring tools. We discuss two implications of
our results: 1) the potential for automated detection of inconsistencies
during view creation, and 2) the design of mixed-initiative interface
mechanisms for suggesting detected inconsistencies to a user.



6.1

We envision an automatic consistency design assistant embedded in
visualization authoring tools that can detect inconsistencies and propose
revisions using a constraint-satisfaction approach [21,23]. In Sec. 3 we
formalized scales as (datadomain, retinalrange, mapping functions)
tuples. The scale components can be declaratively represented using
grammars such as [24,25]. By applying the constraints on scale rep-
resentations, the system could output a high-level conclusion about
whether two views are consistent as well as details about any inconsis-
tent scale components, solving the detection problem. Revisions for
resolving inconsistencies could be proposed given a built-in model of
visualization effectiveness (e.g., codifying expressiveness and effective-
ness [16] as criteria for guiding the search through alternative possible
scales). However, searching for scale representations that satisty all
constraints in a large design space may be time and resource consuming.
More than one solution may exist. Feedback from the user may be
necessary to direct and accelerate the search results.

Automatic Inconsistency Detection & Resolution

6.2 Designing A Mixed-Initiative Interface for Consistency

In the interview, all participants stated that having an automatic tool
to monitor consistency would be helpful. However, participants also
expressed concerns about how such a tool would surface warnings. Sev-
eral of their responses echo known design principles of mixed-initiative
systems [10]: warning at the right time (i.e., during presentation rather
than exploration), minimizing intrusiveness, and minimizing warning
repetition. Additionally, our study observations and participants’ ex-
plicit comments about tool possibilities point to several more specific
suggestions for designing automated support for encoding consistency
in visualization software.

Acknowledge Different Boundaries for Different Constraints Par-
ticipants’ reactions to some constraints suggest that different circum-
stances, such as distinct view configurations, impact when a constraint
is perceived as worth surfacing. For example, C1.1 was perceived
by participants as applicable primarily when the axes of interest are
juxtaposed. On the other hand, participants did not appear to perceive
C1.2 for measure names to require that charts to be juxtaposed (on the
same page). We also observed participants’ reactions validating that the
quantitative and nominal color constraints (C2.3, C1.4) apply to views
across pages. A constraint model implemented in a consistency tool
may set up different applicability boundaries for different constraints.
Enable Personalization of Constraint Models Participants varied at
times during their sessions in how important they considered consis-
tency constraints. For example, we observed various different reactions
to C2.3, using non-overlapping hues in color scales for different quanti-
tative variables. A tool could allow for customization of a constraint
model to fit users’ preferences in a single session (e.g., equate field
I and field 2 as same data) and across sessions (e.g., suppress warn-
ings about nominal color inconsistency when colors represent measure
names). Such rules could be learned implicitly from the users’ patterns
of warning dismissal over time.

Estimate the Cost for Revision Though we did not attempt to system-
atically measure revision difficulty, some participants seemed more
likely to revise their designs based on warnings when the revisions
were relatively easy to achieve (e.g., changing constant color of a
chart). Modeling how difficult a violated constraint is likely to be to
fix would allow a tool to account for revision difficulty in selecting and
prioritizing which warnings to surface.

Give Revision Previews & Accept/Reject Options Modeling poten-
tial revisions that satisfy constraints for different chart configurations
could ease the users’ perception of the burden of manual revision, and
alleviate concerns voiced by our participants that the suggestion may
change something more important than consistency. As Bob described,
“When a tool is giving me warnings, it would be nice to see a little
window that has a preview of the adjusted view. Then I can have the
opportunity to see what my data could look like, and accept / reject.”
Such a model could incorporate design principles for single visualiza-
tions (such as expressiveness and effectiveness [16]) to support revision
suggestions that minimize negative impacts to individual charts.

Clearly Convey Inconsistency Some of our participants had devel-
oped sophisticated notions of some consistency concerns but had not
considered others. Visual or textual warnings should be carefully
worded and closely tied to the specific chart elements to ensure that
users understand the potential impacts of inconsistency before making
revision decisions. Quantifying or otherwise representing the impact
of inconsistency on individual plots (e.g., what percentage of pairwise
point comparisons in a scatterplot are lost if the axis scale is changed,
assuming a perceptual model) could help in communicating the poten-
tial impact of inconsistencies.

6.3 Limitations

We did not study how consistency impacts viewers’ perception. In this
way, our work begins from the same premise as Wang Baldonado et
al. [30], who take it as a premise in proposing guidelines for CMV
systems that consistency makes comparisons easier, reduces inaccurate
inferences, and facilitates learning despite a potentially complex set of
charts. Future work might use controlled studies to identify what types
of inconsistencies are most likely to lead to misinterpretations among
viewers with varying experience levels.

Our study results are based on in-depth, qualitative observation of
a small sample of moderately experienced Tableau users from one
university. While studying ordinary users allowed us to confirm that
an automatic tool could help authors achieving consistency and we
received a lot of valuable inputs from our participants, experts might
be able to provide more insightful justifications for their consistency
decisions. The similar institutional background of our participants
might also have biased participants’ decisions through visualization
education. It is important to corroborate our findings with other author
populations such as professional designers, users of other tools, and
authors from more diverse organizations in future work. Because partic-
ipants were aware that they were participating in a research study, they
may have deduced that the experimenter was involved in developing the
“tool” that provided the warnings. This may have lead to acquiescence
bias, where participants express more positive opinions to please the
experimenter.

For the purposes of our study, we focused on constraints that were
limited to xy and color encodings of quantitative and nominal data.
Our constraint model could be further expanded and tested for ordi-
nal, temporal and geographical data encoded by other visual attributes.
Additionally, we do not cover constraints to deal with interaction consis-
tency, such as the benefits of making sure that functionally equivalent
views afford the same interactions [30].

Although we systematically applied constraints to views created by
participants between sessions and played back our screen recordings
in our analysis, we might still have missed certain validations and
exceptions during the sessions.

7 CONCLUSION

We presented a wizard-of-oz study in which participants were presented
with warnings about encoding inconsistencies across views. Our work
extends and validates a constraint model describing desirable consis-
tencies in xy and color encodings across views based on the identity
of data in those views. Our wizard-of-oz study provides the first close
investigation of visualization authors’ perceptions and practices around
encoding consistency. Considering how sets of visualizations make
data similarities and differences across views immediately recognizable
to viewers is an important but often overlooked aspect of visualization
design. Consistency warnings impacted this process by reminding
authors of consistency among other design considerations.

We identified existing strategies used by authors to achieve partic-
ular forms of consistency, exceptional cases where authors wished to
overwrite consistency concerns, and perceived tool needs, setting the
foundation for future development of encoding consistency principles
and tool support. For example, future work could pursue constraint
satisfaction approaches to surface consistency warnings, as well as
additional development and study of how the authoring process can be
supported by human-in-the-loop tools.



REFERENCES

(1]
[2]

[3]

[4]

(51
(6]

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

R datasets. https://stat.ethz.ch/R-manual/R-devel/library/
datasets/html/00Index.html. Accessed: 2016-09-13.

D. Akers. Wizard of oz for participatory design: inventing a gestural
interface for 3d selection of neural pathway estimates. In CHI’06 Extended
Abstracts on Human Factors in Computing Systems, pp. 454-459. ACM,
2006.

R. A. Becker and W. S. Cleveland. Brushing scatterplots. Technometrics,
29(2):127-142, 1987.

R. A. Becker, W. S. Cleveland, and M.-J. Shyu. The visual design and con-
trol of trellis display. Journal of computational and Graphical Statistics,
5(2):123-155, 1996.

M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.
IEEE transactions on visualization and computer graphics, 15(6), 2009.
M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
transactions on visualization and computer graphics, 17(12):2301-2309,
2011.

M. C. Chuah, S. F. Roth, J. Mattis, and J. Kolojejchick. Sdm: Selective
dynamic manipulation of visualizations. In Proceedings of the 8th annual
ACM symposium on User interface and software technology, pp. 61-70.
ACM, 1995.

J. R. Eagan. Igr 204 project datasets. IGR 204: Visualization class at
Télécom ParisTech. Accessed: 2016-09-13.

C. Forsell and J. Johansson. An heuristic set for evaluation in information
visualization. In Proceedings of the International Conference on Advanced
Visual Interfaces, pp. 199-206. ACM, 2010.

E. Horvitz. Principles of mixed-initiative user interfaces. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems, pp.
159-166. ACM, 1999.

J. Hullman, S. Drucker, N. H. Riche, B. Lee, D. Fisher, and E. Adar. A
deeper understanding of sequence in narrative visualization. IEEE TVCG,
19(12):2406-2415, 2013.

G. F. Jenks and F. C. Caspall. Error on choroplethic maps: definition, mea-
surement, reduction. Annals of the Association of American Geographers,
61(2):217-244, 1971.

Y. Kim, K. Wongsuphasawat, J. Hullman, and J. Heer. Graphscape: A
model for automated reasoning about visualization similarity and sequenc-
ing. In Proceedings of ACM Computer-Human Interaction (CHI), 2017.
G. Kindlmann and C. Scheidegger. An algebraic process for visualization
design. IEEE TVCG, 20(12):2181-2190, 2014.

S. M. Kosslyn. Understanding charts and graphs. Applied Cognitive
Psychology, 3(3):185-225, 1989.

J. Mackinlay. Automating the design of graphical presentations of rela-
tional information. ACM Transactions On Graphics (TOG), 5(2):110-141,
1986.

J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presenta-
tion for visual analysis. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1137-1144, 2007.

T. Munzner. Visualization analysis and design. CRC Press, 2014.

Z.Qu and J. Hullman. Evaluating visualization sets: Trade-offs between
local effectiveness and global consistency. In BELIV, pp. 44-52, 2016.

J. C. Roberts. State of the art: Coordinated & multiple views in exploratory
visualization. In Coordinated and Multiple Views in Exploratory Visualiza-
tion, 2007. CMV’07. Fifth International Conference on, pp. 61-71. IEEE,
2007.

F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming.
Elsevier, 2006.

S. F. Roth, M. C. Chuah, S. Kerpedjiev, J. A. Kolojejchick, and P. Lu-
cas. Toward an information visualization workspace: combining multiple
means of expression. Human-computer interaction, 12(1):131-185, 1997.
S. Russell, P. Norvig, and A. Intelligence. A modern approach. Artificial
Intelligence. Prentice-Hall, Egnlewood Cliffs, 25:27, 1995.

A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. /EEE Transactions on Visualization
and Computer Graphics, pp. 1-1, 2017.

A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative interaction
design for data visualization. In UIST, pp. 669-678. ACM, 2014.

C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, anal-
ysis, and visualization of multidimensional relational databases. IEEE
Transactions on Visualization and Computer Graphics, 8(1):52-65, 2002.
E. R. Tufte. Envisioning information. Optometry & Vision Science,
68(4):322-324, 1991.

[28]

[29]

(30]

(31]
[32]

[33]

(34]

E. R. Tufte and P. Graves-Morris. The visual display of quantitative
information, vol. 2. Graphics Press Cheshire, CT, 1983.

J. Walny, B. Lee, P. Johns, N. H. Riche, and S. Carpendale. Understanding
pen and touch interaction for data exploration on interactive whiteboards.
IEEE Transactions on Visualization and Computer Graphics, 18(12):2779-
2788, 2012.

M. Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for
using multiple views in information visualization. In Proceedings of the
working conference on Advanced visual interfaces, pp. 110-119. ACM,
2000.

H. Wickham. A layered grammar of graphics. Journal of Computational
and Graphical Statistics, 19(1):3-28, 2010.

L. Wilkinson. The grammar of graphics. Springer Science & Business
Media, 2005.

K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Voyager: Exploratory analysis via faceted browsing of visualiza-
tion recommendations. IEEE TVCG, 22(1):649-658, 2016.

K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual anal-
ysis with partial view specifications. In Proceedings of ACM Computer-
Human Interaction (CHI), 2017.


https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html

	Introduction
	Related Work
	Consistency Constraint Model
	Study Design and Objectives
	Visualization Software, Participants and Datasets
	Detailed Procedure
	Counting Validations and Exceptions

	Findings
	Quantitative XY Scales
	Nominal XY Scales
	Quantitative Color Scales
	Nominal Color Scales
	Reflections on the Consistency Constraint Model

	Design Implications for Authoring Tools
	Automatic Inconsistency Detection & Resolution
	Designing A Mixed-Initiative Interface for Consistency
	Limitations

	Conclusion

