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ABSTRACT 

We study the stability of an interface between two fluids of different densities flowing parallel to each other in the 
presence of a transverse magnetic field. A simple theory based on fully developed flow approximations is used to derive 
the dispersion relation for the growth rate of KHI. We replace the effect of boundary layer with Beavers and Joseph slip 
condition. The dispersion relation is derived using suitable boundary and surface conditions and results are discussed 
graphically. The magnetic field is found to be stabilizing and the influence of the various parameters of the problem on 
the interface stability is thoroughly analyzed. These are favorable to control the surface instabilities in many practical 
applications discussed in this paper. 
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1. Introduction 

The Kelvin-Helmholtz instability (KHI) occurs when two 
fluids are in relative motion on either side of a common 
boundary. The KHI is important in understanding a vari-
ety of space and astrophysical, geophysical phenomena 
involving plasma flow. The linear study of the KHI was 
investigated by Chandrasekhar [1]. He discussed the ef-
fect of surface tension, variable density, rotation and ap-
plied magnetic field on the behavior of the stability. The 
study of electrohydrodynamic (EHD) K-H instability of 
free charges, separating two semi-infinite dielectric strea- 
ming fluids and influenced by an electric field, has been 
discussed by Lyon [2]. Also, he added the effect of com-
pressibility and applied electric field, but he neglected 
the surface tension. The nonlinear development of the 
KHI has been studied by Drazin [3] for the case of where 
the amplitude of an unstable wave is uniform in space 
and growing in time. Weissman [4] extended the Drazin 
[3] work, and treated the case where the amplitude of an 
unstable wave is dependent on both time and space. 
Hsieh and Chen [5] first formulated the KHI problem in 
terms of a variational principle. By choosing a single 
Fourier mode with time-dependent amplitudes, they de-
rived the evolution equations of the amplitudes. They 

analyzed and discussed the limiting states and their sta-
bility of the evolution equation. Also, they studied a si-
nusoidal wave state and derived a nonlinear dispersion 
relation. Elhefnawy [6] studied the nonlinear KHI prob-
lem under the influence of an oblique electric field by 
employing the method of multiple scales. He found that 
the nonlinear effects may be stabilized or destabilized 
depending on both density and dielectric constant. The 
dynamic instability of an excited horizontal interface 
supporting surface charges and admitting mass and heat 
transfer has been investigated by Moatimid [7]. Also, he 
[8] studied the dynamic instability of an excited cylin-
drical interface supporting surface charges and admitting 
mass and heat transfer. He investigated the linear stabil-
ity of two dielectric inviscid fluids separated by a cylin-
drical interface. The interface allows mass and heat 
transfer. The system is stressed by radial periodic electric 
field that allows the presence of surface charges at the 
interface. The presence of surface charges made the ra-
dial electric field play a dual role in the criterion, which 
shows some analogy to the nonlinear theory of stability. 

Many technological processes involve the parallel 
flow of fluids of different viscosity and density through 
porous media. Such parallel flows exist in packed bed 
reactor in the chemical industry, in petroleum production 
engineering, in boiling in porous media (countercurrent *Corresponding author. 
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flow of liquid and vapour), and in many other processes. 
The instability of the plane interface between two uni-
form superposed and streaming fluids through porous 
medium has been investigated by Sharma and his col-
laborators [9-11] for different cases of interest. A linear 
theory of the KHI for parallel flow in porous media was 
introduced by Bau [12] for the Darcian and non-Darcian 
flows. In both cases, Bau found that the velocities should 
exceed some critical value for the instability to manifest 
itself. The instability of plane interface between two uni-
form superposed fluids through a porous medium was 
investigated by Kumar [13], and the KHI for flow in po-
rous media was studied by El-Sayed [14]. They used 
linear stability analysis to obtain a characteristic equation 
for the growth of the disturbance.   

Electrohydrodynamics, on the other hand, is the field 
of the mechanics of continua, which studies the motion 
of media interacting with the electric field. This subject 
is treated in vast literature [15]. The least stueid is the 
class of electrohydrodynami problems where the electric 
field or electric charges arise as a result of a contact be-
tween media of different nature. The relations between 
electrohydrodynamics parameters at the interfaces of 
different meida are of critical importance for solution of 
these problems. Problems of linear and nonlinear elec-
trohydrodynamic stability of the plane interface between 
two uniform superposed fluids have been treated exten-
sively by Melcher [16], Mohammed and Elsehehawey 
[17], Mohamed et al. [18] and El-Sayed [19], among 
others. Later, El-Sayed [20] has studied the EHD KHI in 
viscous porous medium permeated with suspended parti-
cles. In this paper he deals with the effect of suspended 
particles and a horizontal electric field on the stability of 
suspended streaming dielectric fluids in porous medium. 
The problem finds its usefulness in chemical engineering 
and several geophysical situations, since in many geo-
physical fluid dynamical problems encountered, the fluid 
is dielectric and the uniform electric field of the earth 
pervades the system. The stability conditions are dis-
cussed in detail in the absence and presence of surface 
tension.  

The nonlinear Kelvin-Helmholtz instability of a hori-
zontal interface between a magnetic inviscid incom-
pressible liquid and an inviscid laminar subsonic mag-
netic gas is investigated in the presence of a normal 
magnetic field by Zakaria [21]. El-Sayed [22] investi-
gated the RTI problem of rotating stratified conducting 
fluid layer through porous medium in the presence of an 
inhomogenous magnetic field. This problem corresponds 
physically (in astrophysics) to the RTI of an equatorial 
section of a planetary magnetosphere or of stellar at-
mosphere when rotation and magnetic field are perpen-
dicular to gravity. The KHI of two superposed viscous 
fluids in a uniform vertical magnetic field is discussed in 

the presence of effects of surface tension and permeabil-
ity of porous medium by Bhatia and Sharma [23]. Fol-
lowing Babchin et al., [24] and Rudraiah et al., [25], a 
simple theory based on Stokes and lubrication approxi-
mations is used in this study by replacing the effect of the 
boundary layer with a Beavers and Joseph [26] slip con-
dition, with the primary objective of using porous layer 
to suppress the growth rate of KHI. In the above studies 
the fluid has been considered to be Newtonian. El-Dib 
and Matoog [27] have studied the Electrorheological 
Kelvin-Helmholtz instability of a fluid sheet. This work 
deals with the gravitational stability of an electrified 
Maxwellian fluid sheet shearing under the influence of a 
vertical periodic electric field. The field produces surface 
charges on the interfaces of the fluid sheet. Due to the 
rather complicated nature of the problem a mathematical 
simplification is considered where the weak effects of 
viscoelastic fluids are taken into account. Asthana and 
Agrawal [28] applied the viscous potential theory to 
analyze Kelvin-Helmholtz instability with heat and mass 
transfer and observed that heat and mass transfer has 
destabilizing effect on relative velocity when lower fluid 
viscosity is low while it has stabilizing effect when lower 
fluid viscosity is high. Khalil Elcoot [29] has studied the 
new analytical approximation forms for non-linear insta-
bility of electric porous media. In this work, we have 
examined the effects of stability of the normal electric 
field on the porous media, in view of the non-linear the-
ory. The main purpose is to discuss a modulation insta-
bility of a finite wavetrain solution by using the method 
of multiple scales perturbation, and comparing the results 
with the linear instability theory. Non-linear electrohy-
drodynamic Kelvin-Helmholtz instability (EKHI) was 
developed in the parallel flow of two statically stable 
fluids through porous media for Darcian and non-Darcian 
flows. The interface separating two semi-infinite dielec-
tric fluids were influenced by a normal electric field in 
the absence of surface charges. Recently, Chavaraddi et 
al., [30] have studied the electrohydrodynamic Kelvin- 
Helmholtz instability in a fluid layer bounded above by a 
porous layer and below by a rigid surface. The objective 
of this paper is to study the effect of Kelvin-Helmholtz 
discontinuity between two viscous conducting fluids in a 
transverse magnetic field through a porous medium in 
the presence of the effects of surface tension using B-J 
condition at the interface. 

The paper is organized as follows. The basic equations 
are established in Section 2 together with Maxwell’s 
Equations. The basic equations are simplified and non- 
dimensionalized using the Stokes and lubrication ap-
proximations in this section. The resulting dispersion 
relation is derived using suitable boundary and surface 
conditions in Section 3. The cutoff and maximum wave 
numbers and the corresponding maximum growth rate 
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are also obtained in Section 3. The results are discussed 
and some important conclusions are drawn in final sec-
tion of this paper. 

2. Mathematical Formulation 

The physical configuration is shown in Figure 1. We 
consider a thin target shell in the form of a thin film of 
unperturbed thickness h (Region 1) filled with an incom-
pressible, viscous, poorly electrically conducting light 
fluid of density f  bounded below by a rigid surface at 
y = 0 and above by an incompressible, viscous poorly 
conducting heavy fluid of density p  saturating a dense 
porous layer of large extent compared to the shell thick-
ness h. The co-ordinates x and y spans the horizontal and 
vertical directions. The interfacial y = h is denoted by 
 , x t . When the interface is flat then 0 


 when y = 

h. The fluid velocity vector  and the fluid is 
assumed to be Newtonian, viscous electrically conduct-
ing and incompressible. The viscosity of fluid (porous 
medium) is given by 

 ,u vq

 f p  ,   the porous parameter, 
 the permeability of the porous medium and    is the 

slip parameter at the interface. The stress gradient   is 
related to the gravitational acceleration through the rela-
tion  p fg   . The perturbed interface  ,x t  
is along the y direction.  

The basic equations for clear fluid layer (Region-1) 
and those for porous layer (Region-2) are as given below: 

Region-1. 

0 q                   (2.1) 

  2
0f fp

t
           

q
q q q J H   (2.2) 

Maxwell’s Equations:  

0, 0,

,
t t

    


     
 

E H

B D
E H J

       (2.3) 

and the auxiliary equations  

 
0 0, , 


 

    

D E B H

J B E q B B
         (2.4) 

Region-2.  

k p
Q

x


 


                (2.5) 

where  the fluid velocity, E the electric field, 
H the magnetic field, J the current density, D the dielec-
tric field, B the magnetic induction, 

 ,u vq 

  the electrical 
conductivity, k the permeability of the porous medium, p 
the pressure, 0  magnetic permeability,  ,0,0QQ  
the uniform Darcy velocity,   the fluid viscosity and 
  the fluid density.  

The basic equations are simplified using the following  

 

Figure 1. Physical configuration. 
 
Stokes and lubrication and electrohydrodynamic ap-
proximations (See Rudraiah et al. [25]):  

1) The electrical conductivity of the liquid, , is negli-
gibly small, i.e., 1  . 

2) The film thickness h is much smaller than the thick-
ness H of the dense fluid above the film. That is  

h H  

3) The surface elevation  is assumed to be small 
compared to film thickness h. That is  

h   

4) The Strauhal number S, a measure of the local ac-
celeration to inertial acceleration in Equation (2.2), is 
negligibly small.   

That is  

1
L

S
TU

   

where U L  is the characteristic velocity,   the 
kinematic viscosity, L    the characteristic length 
and 3 2T h   the characteristic time. 

Under these approximations Equations (2.1) and (2.2) 
for fluid in the film, after making dimensionless using  

2 2

2

, ,

, , ,

f f

ff

u v p
u v p

hh h

Q t x
Q t x y

h hh

   

  

  

  

   ,

y

h
   

  (2.6) 

become (after neglecting the asterisks for simplicity) 
Region-1. 

0
u v

x y

 
 
 

                (2.7) 

2
2

2
0

p u
M u

x y

 
   

 
           (2.8) 

0
p

y





                  (2.9) 
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where 0 0 f fM H h    is the Hartmann number 
which is the ratio of Darcy resistance to the viscous 
force. 

Region-2. 

2

1

p

p
Q

x


 


              (2.10) 

where p h k   is the porous parameter.  

3. Dispersion Relation 

To find the dispersion relation, first we have to find the 
velocity distribution from Equation (2.8) using the fol-
lowing boundary and surface conditions:  

0 at 0u y                  (3.1) 

p p B

u
u Q

y
 

  


  at y = 1        (3.2) 

where  

at 1

at 1

Bu u y

v y
t


 


 


               (3.3) 

2

2

1
p

B x

 
  


 at y = 1.          (3.4) 

Here 2B h   is the Bond number and  , ,x y t   
is the elevation of the interface. 

The solution of (2.8) subject to the above conditions is  

  2
2 1

2

cosh sinh 1My a a M My
u P

M

 
 

  




M

     (3.5) 

where 

 1 cosh tanhp pa M M     

 
2

2 cosh 1 sinhp p p
p

M
a M M  


    M  

p
p

x





. 

After integrating Equation (2.7) with respect to y be-
tween y = 0 and 1 and using Equation (3.5), we get  

 
2 4

22 4

1
1v

Bx x

   
    





         (3.6) 

where  

  4 5
2 3

4

sinh 1 cosha M M a M

a M

  
  . 

Then Equation (3.3), using Equations (3.6) and (3.4), 
becomes  

2 4

22 4

1

t Bx x

     
      

.         (3.7) 

To investigate the growth rate, n, of the periodic per-
turbation of the interface, we look for the solution of 
Equation (3.7) in the form 

  exp y i x nt              (3.8) 

where  is the wave number and   y  is the ampli-
tude of perturbation of the interface.  

Substituting Equation (3.8) into (3.7), we obtain the 
dispersion relation in the form  

2
2

21n
B

 
   

 

 .           (3.9) 

Also, Equation (3.9) can be expressed as  

bn n va                 (3.10) 

where  

2 2

1
3bn

B

 
  

 

 
, 

2

2 1
B


 

    
 

 , 

2
2

2

1 3
1

3av
B

  
   

 



. 

Setting n = 0 in Equation (3.9), we obtain the cut-off 
wavenumber,  in the form  ct

ct B                 (3.11) 

because  and  2  are non-zero. 
The maximum wavenumber,  obtained from Equa- 

tion (3.9) by setting 

m

0
n



 is   

2 2
ct

m

B
 


              (3.12) 

because  and    are different from zero. 
The corresponding maximum growth rate, nm, is  

24m

B
n                  (3.13) 

Similarly, using 2m B , we obtain  

12bm

B
n                 (3.14) 

and hence  

23m
m

bm

n
G

n
   .           (3.15) 

The growth rate given by Equation (3.9) is computed 
numerically for different values of parameters and the 
results are presented graphically in Figures 2-4.   
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Figure 2. Growth rate, n versus the wavenumber,  for 
different values of Hartmann number, M when p = 0.1, B = 
0.02 and p = 4. 
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Figure 3. Growth rate, n versus the wavenumber,  for 
different values of Bond number, B when p = 0.1, M = 5 
and p = 4. 
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Figure 4. Growth rate, n versus the wavenumber,  for 
different values of Porous parameter, p when p = 0.1, B = 
0.02 and M = 5. 



4. Results and Discussion  

In this study we have shown the surface instability of KH 
type in a fluid layer bounded above by a porous layer and 
below by a rigid surface is affected by the effect of mag-
netic field. Numerical calculations were performed to 
determine the growth rate at different wavenumbers for 
various fluid properties like Hartmann number M, Bond 
number B and porous parameter p. We have plotted the 
dimensionless growth rate of the perturbation against the 
dimensionless wavenumber for some of the cases only.  

When we fix all the input parameters except the ratio 
of the Hartmann number M, we find that the higher the 
Hartmann ratio the more stable the interface is. In Figure 
2, we have plotted the the growth rate against the wave 
number in the case where p = 0.1, B = 0.02 and p = 4 
for different values of the Hartmann number M. Increas-
ing the Hartmann ratio results in slightly increasing the 
critical wavenumber and decreasing the maximum growth 
rate. It thus has a stabilizing effect for the selected values 
of input parameters due to the increased in Hartmann 
ratio (Lorentz force to viscous force).  

In addition, we have investigated the effect of the sur-
face tension of the fluid on the instability of the interface. 
In our sample calculations, we have taken p = 0.1, M = 
5 and p = 4 and varied the Bond number B. For this in-
put parameters, the critical wavenumber and maximum 
growth rate decreased as the ratio of the Bond number B 
decreased from 0.4 to 0.1 as observed in Figure 3. The 
Bond number is reciprocal of surface tension and thus 
showing that an increase in surface tension decreases the 
growth rate and hence make the interface more stable.  

However, in order to understand the effect of the po-
rous properties on the instability, we now fix values of 
other parameters p = 0.1, B = 0.02 and M = 5 and vary 
the ratios of the porous parameters. Figure 4 displays the 
results of our calculations, showing that increasing the 
ratio of porous parameters p from 4 to 100 (and thus 
increasing the Darcy resistance compared to the viscous 
force) increases the critical wavelength and decreases the 
maximum growth rate, thus having a stabilizing effect by 
this parameter. We conclude that an increase in p also 
stabilizes the EKHI due to the resistance offered by the 
solid particles of the porous layer to the fluid.  

5. Conclusion 

We have studied the linear stability of a two-fluid flow in 
a channel where the fluids are assumed to be Newtonian 
with different fluid properties (Hartmann number, Sur-
face tension and porous parameter) and subjected to 
magnetic field normal to their interface. For this purpose, 
we have derived and then linearized the equations of mo-
tion where the interaction between the hydrodynamic and 
electric problems occurs through the stress balance at the  
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fluid interface. The growth rate of the perturbation was 
then computed by using the normal mode method and its 
variation studied as a function of the dimensionless pa-
rameter Hartmann M, as well as Bond number B and 
porous parameter p. While two layer flows in channels 
of small dimensions are rather stable, the instability of 
the fluid-porous interface is highly desirable in certain 
cases, particularly for chemical industry, in petroleum 
production engineering applications where the mixing of 
reagents are crucial steps in the process. However, in 
systems of larger scale, the instability of the fluid-porous 
interface in a channel is often an undesired physical 
phenomemon. In such situations, controlling the flow 
requires the stabilization of the interface. In searching for 
a method capable of either stabilizing a potentially un-
stable interface or destabilizing a potentially stable one, 
we have investigated the role of the magnetic field on the 
two-layer channel flow problem, demonstrated that either 
destabilization or stabilization can be obtained and pre-
sented growth rates in situations where the magnetic field 
is stabilizing or destabilizing over a broad range of 
wavenumbers for increasing in Hartmann number M. But 
in the case of variation in Bond number is to increase in 
surface tension decreases the growth rate and hence 
make the interface more stable. Also we conclude that 
the increase in the porous parameter is to decrease the 
growth rate showing thereby the stabilizing effect on the 
interface.  
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