KERALA TECHNOLOGICAL UNIVERSITY

(KOLAM CLUSTER - 02)

SCHEME AND SYLLABI

of

M. TECH. in

POWER SYSTEMS

OFFERING DEPARTMENT

ELECTRICAL & ELECTRONICS ENGINEERING

CLUSTER LEVEL GRADUATE PROGRAM COMMITTEE

NO	MEMBER
1	Dr. S. Mohan, Professor, IIT Madras, Chennai
2	Principal, TKM College of Engineering, Kollam
3	Principal, Baselios Mathews II College of Engineering, Sasthamcotta, Kollam
4	Principal, College of Engineering, Karunagapally, Kollam
5	Principal, College of Engineering, Perumon, Kollam
6	Principal, Pinnacle School of Engineering and Technology, Anchal, Kollam
7	Principal, Shahul Hameed Memorial Engineering College, Kadakkal, Kollam
8	Principal, TKM Institute of Technology, Ezhukone, Kollam
9	Principal, Travancore Engineering College, Parippally, Kollam
10	Principal, Younus College of Engineering and Technology, Pallimukku, Kollam

This is to certify that

- 1. The scheme and syllabi are prepared in accordance with the regulations and guidelines issued by the KTU from time to time and also as per the decisions made in the CGPC meetings.
- 2. The suggestions/modifications suggested while presenting the scheme and syllabi before CGPC on 8.6.2015 have been incorporated.
- 3. There is no discrepancy among the soft copy in MS word format, PDF and hard copy of the syllabi submitted to the CGPC.
- 4. The document has been verified by all the constituent colleges

Coordinator in charge of syllabus revision of the programme

Mr. Johnson Y Head of the Department (EEE) UKF College of Engineering & Technology Parippally, Kollam

Dr. E. Gopalakrishna Sarma

Principal

UKF College of Engineering & Technology, Parippally, Kollam

Date: Place: Dr S. Mohan, Professor, IIT, Madras Chairman

Programme Educational Objective

- I. This Course aims at training graduate engineers in the field of Power Systems. This course deals with the state of the art techniques in Power System analysis, stability evaluation planning, reliability and forecasting.
- II. The course also covers subjects on High Voltage DC Transmission, Industrial electronics and controls, Power electronics and drives and wind and solar energy electric conversion systems which are very much needed for today's power system engineer.
- III. Projects of practical relevance in these areas are carried out in the final semester of the course.

Programme outcome

After successful completion of the programme the student should be able to

- 1. Evaluate and analyze problems related to Power Systems and be able to synthesize the domain knowledge and incorporate the principles in the state of art systems for further enrichment.
- 2. Be able to critically investigate the prevailing complex PS scenarios and arrive at possible solutions independently, by applying the acquired theoretical and practical knowledge
- 3. Be able to solve PS problems such as load flows, state estimation, fault analysis and stability studies
- 4. B e able to develop broad-based economically viable solutions for unit commitment and scheduling
- 5. Be able to identify optimal solutions for improvising power transfer capability, enhancing power quality and reliability
- 6. Be able to evolve new schemes based on literature survey, and propose solutions through appropriate research methodologies, techniques and tools, and also by designing and conducting experiments
- 7. Be able to interpret power system data and work on well-defined projects with well defined goals to provide real time solutions pertaining to PS
- 8. Be able to develop, choose, learn and apply appropriate techniques, various resources including hardware and IT tools for modern power engineering, including prediction

and modeling with an understanding of the limitations

- 9. Be able to develop dedicated software for analyzing and evaluating specific power system problems
- 10. Be able to participate in collaborative-multidisciplinary engineering / research tasks and work as a team member in such tasks related to PS domain, giving due consideration to economic and financial intricacies, and lead the team in specific spheres
- 11. Be able to confidently interact with the industrial experts for providing consultancy
- 12. Be able to pursue challenging professional endeavors based on acquired competence and knowledge
- 13. Be a responsible professional with intellectual integrity, code of conduct and ethics of research, being aware of the research outcomes and serve towards the sustainable development of the society
- 14. Be capable of examining critically the outcomes of research and development independently without any external drive.

Scheme of M. Tech Programme in Power systems <u>SEMESTER 1 (Credits 21)</u>

Exam	Course No	Name of the Subject	L-T-P	Internal		Semester xam	Credits
Slot	Course no	Name of the Subject	L-1-F	02EErks	02EEr ks	Duration (hrs)	Creats
A	02EE6111/ 02EE6211	Advanced Engineering Mathematics	4-0-0	40	60	3	4
В	02EE6221	Computer Aided Power System Analysis	2-2-0	40	60	3	4
С	02EE6131/ 02EE6231	Dynamics of Linear Systems	4-0-0	40	60	3	4
D	02EE6241	Solid State Power Converters	3-0-0	40	60	3	3
Е	Elective 1 02EE6251	 02EE6151.1./02EE6251.1. Optimization Techniques in Electrical Engineering 02EE6151.3./02EE6251.2. Advanced Digital Signal Processing 02EE6251.3. Power Distribution Systems 02EE6251.4. Modelling of Electrical Machines 	3-0-0	40	60	3	3
	02CA6001	Research Methodology	0-2-0	100	0	0	2
	02EE6261	Seminar		100	0	0	2
	02EE6271	Power System Simulation Lab	0-0-2	100	0	0	1
		Total Credit	\$				23

Scheme of M. Tech Programme in Power systems <u>SEMESTER 2 (Credits 21)</u>

Exam	Course	Name of the Subject	L-T-P	Internal		emester xam	Credits
Slot	No	Name of the Subject	1-1-1	02EErks	02EErk s	Duration (hrs)	Creats
Α	02EE6212	Digital Protection of Power Systems	4-0-0	40	60	3	4
В	02EE6222	Power System Dynamics and Control	3-0-0	40	60	3	3
С	02EE6232	Transient Analysis in Power Systems	3-0-0	40	60	3	3
D	Elective2 02EE6242	02EE6142.1./02EE6242.1. Soft Computing Techniques 02EE6242.2. FACTS and Custom Power 02EE6242.3. Power System Economics 02EE6142.4/02EE6242.4. Electric Drives	3-0-0	40	60	3	3
E	Elective3 02EE6252	 02EE6252.1. Power Quality 02EE6152.2./02EE6252.2. Energy Auditing and Management 02EE6252.3. Distributed Generation 02EE6252.4.SCADA systems and Applications 	3-0-0	40	60	3	3
	02EE6262	Mini Project	0-0-4	100	0	0	2
	02EE6272	Power Equipments Laboratory	0-0-2	100	0	0	1
		Total Credits					19

Scheme of M. Tech Programme in Power systems <u>SEMESTER 3 (Credits 14)</u>

Exam	Course	Name of the Subject	L-T-P	Internal		Semester xam	Credits
Slot	No	Name of the Subject	1-1-1	02EErks	02EEr ks	Duration (hrs)	Creans
A	Elective4 02EE7211	 02EE7211.1. Electric and Hybrid Vehicles 02EE7211.2. Power System Reliability 02EE7211.3. Digital Signal Processing Applications 02EE7111.4./02EE7211.4. Power System Instrumentation 	3-0-0	40	60	3	3
В	Elective5 02EE7221	 02EE7221.1. EHV AC & DC Transmission System 02EE7221.2. Grid Integration Technology of DG 02EE7221.3. Dynamics of Power Converters 02EE7221.4. Power System Operation and Control 	3-0-0	40	60	3	3
	02EE7231	Seminar	0-0-2	100	0	0	2
	02EE7241	Project (Phase 1)	0-0-12	50	0	0	6
	1	Total Credits	1	1			14

Scheme of M. Tech Programme in Power systems <u>SEMESTER 4 (Credits 12)</u>

Exam Slot	Course No	Name of the Subject	L-T-P	Internal 02EErks		Semester xam Duration (hrs)	Credits
-	02EE7212	Project (Phase 2)	0-0-21	70	30	0	12
		Total Credits					12

SEMESTER 1

Course No.	. Course Name	L-T-P-Credits	In	Year of troduction
02EE6111/ 02EE6211	Advanced Engineering Mathematics	4-0-0-4		2015
view 2. To c Syllabus Vector S Distributi Expected o Upon succe in many pro References 1. David C 2. Richard Press, 2nd 1 3. Otto Bre	 acquire basic ideas of linear transformation way of matrix vector multiplication letermine the optimal solution of multivarial pace, Calculus of Variations, Special F on, Constrained non-linear programming. utcome essful completion of this course, students with blems of mathematical physics and enginee <i>Lay, "Linear Algebra", Pearson Edn., 4th Bronson, Gabriel B. Costa, "Linear Algebra"</i> 	ble problem by dynamic unctions, linear progra Il be able to attain a tho ring <i>Edn.</i> , 2012 <i>a - An Introduction", El</i> <i>Pearson Education., 4th</i>	rough u	amming.
 5. Handy A 6. B. S. Go 7. K. V. M 	Taha, "Operations Research- an Introduc el and S. K. Mittal, "Operations Research", littal and C. Mohan, "Optimization Meth Brd Edn., New Age International Publishers	tion", PHI, 9th Edn., 20 Pragathi Prakashan, 2 oods in Operations Re	011 25th Ed	n., 2009.
	Course Pla	n		
Module	Contents	H	lours	Sem. Exam Marks
I	Probability Distribution : Estimation (point parameters, unbiased-consistency-efficience definition, problems of joint probability dis discrete and continuous random variables, r distribution, Cauchy's distribution.	y and sufficiency, tribution of	08	09
II	Constrained non-linear programming: Kuhi conditions, Convex programming problem, programming, gradient of a function, stee method, conjugate gradient method, Dynam Minimal path problems.	Quadratic pest descent	09	09
	FIRST INTERNAL	LEXAM		

ш	Special Functions: Bessel function, Recurrence relation, properties, generating function, orthogonality property, Legendre function, Rodrigues formulae, Legendre polynomials, Recurrence relations (without proof), orthogonality, generating function.	10	09
IV	Dual simplex method, Integer programming: Cutting plane method, Branch and bound method, Zero– One Programming, Unconstrained non-linear programming: Powel's method, Hooke-Jeeves method.	08	09
	SECOND INTERNAL EXAM		
v	Vector Space: Vector space, subspace, linear independence of vectors, Dimension and basis (Definitions, theorems without proof and problems), linear transformations, Rank and nullity, Inner product, Norm of a vector, Orthogonal vectors, Gram Schmidst Orthogonalization process. Matrix factorization-QR factorization, Singular value decomposition and least square problems.	11	12
VI	Calculus of Variations : Basic problems of calculus of variations, other forms of Euler's equation, problems, Problems of the minimum surface of revolution, minimum energy problem Brachistochrone problem, isoperimetric problem.	11	12
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P-Credits	In	Year of troduction
02EE6221	Computer Aided Power System Analysis	2-2-0-4		2015
Course Obj	, i i i i i i i i i i i i i i i i i i i		1	
1. To provid	e a strong foundation on classical and mode	ern control theory.		
	e an insight into the role of controllers in a	system.		
	compensators using classical methods.			
	controllers in the state space domain.			
*	an in-depth knowledge in observer design.			
Syllabus				
•	f Power Systems under normal conditions	-		
	inding the operating point of power system	ns considering the g	generator	characteristic
and cost fu				
Expected O				
-	sful completion of this course, students wil			
	ny power system for any timeframe of anal	ys1s.		
	t load flow analysis of any power network,			
	at short circuit and contingency analysis of			
	state estimation on any power system from			
S. Conduc	t scheduling of different types of generators	•		
2. I. J. Nag Hill Publist 3. J. Arrili Public 4. G.W .St 5. Hadi Sa	cal and Computer Engineering, 1994 rath and D. P. Kothari, Modern Power syst hers, 1980. ga and N. R. Watson, Computer Modelling ations,2001 agg and El-Abiad, Computer Methods in Po adat, Power System Analysis, McGraw-Hil Ilaga, Bruce C. Smith, Neville R. Watson, A	of Electrical Power ower System Analysis l Publisherss.	Systems, N s, McGrav	Wiley v Hill, 1968.
Analysis,		<i>iun 11000, 101101 5</i>	Stellt Hull	monne
•	Viley and Sons, 1997.			
7. S.A. Son System 8. G. L. Kı	nan, S.A. Khaparde, Shubha Pandit, Comp as Analysis: An Object Oriented Approach, usic, Computer Aided Power System Analys own, Large Networks by Matrix Methods, J	Kluwer Academic Pu is, Prentice Hall, 198	ıblishers	parse Power
	Course Pla	n		
Module	Contents		Hours	Sem. Exan Marks
I	Review of solution of Linear System of e Jordan method, Gauss elimination, LU LDU factorization. Elementary linear Incidence and network matrices. Develo	factorization and graph theory – pment of network	10	9

	FIRST INTERNAL EXAM		
Ш	Short Circuit studies–Types of Faults–Short circuit study of a large power system – Algorithm for calculating system conditions after fault–three phase short circuit, three phase to ground, double line to ground, line to line and single line to ground fault	8	9
IV	State estimation – least square and weighted least square estimation methods for linear and non-linear systems. Static state estimation of power systems - injections only and line only algorithms, Treatment of bad data-detection, identification and suppression of bad data.	8	9
	SECOND INTERNAL EXAM		
V	Contingency Analysis - adding and removing multiple lines, Analysis of single and multiple contingencies, Contingency Analysis by DC model, System reduction for contingency and fault studies.	8	9
VI	Three-phase Load Flow and Harmonic Load flow. Sparsity techniques, Triangular factorization and Optimal ordering. Incorporation of FACTS devices in Load Flow: Static Tap Changing, Phase Shifting (PS), Static VAR Compensator (SVC), Thyristor Controlled Series Compensator (TCSC) and Unified Power Flow Controller (UPFC). System optimization - strategy for two generator systems – generalized strategies – effect of transmission losses - Sensitivity of the objective function- Formulation of optimal power flow-solution by Gradient method-Newton's method.	12	15
	END SEMESTER EXAM	I	

Course No.	. Course Name	L-T-P-Credits	In	Year of troduction
02EE6131/ 02EE6231	Dynamics of Linear Systems	4-0-0-4		2015
2. To provid 3. To design 4. To design	jective de a strong foundation on classical and moderr de an insight into the role of controllers in a sy n compensators using classical methods. n controllers in the state space domain. t an in-depth knowledge in observer design.	•		
systems, S	feedback control systems, Compensator design State space analysis and design, Linear state vaters, MIMO systems		•	•
 Analyse Design Design Realise Design References Thomas I Benjamir M. Gopa Richard 1998. Gene K. 	ssful completion of this course, students will be a given system and assess its performance. a suitable compensator to meet the required sp and tune PID controllers for a given system. a linear system in state space domain and to e a controller and observer for a given system a Kailath, "Linear System", Prentice Hall Inc., I a C. Kuo, "Control Systems", Tata McGraw-H l, "Control Systems-Principles and Design", T C. Dorf & Robert H. Bishop, "Modern Control Franklin & J. David Powell, "Feedback Edition, 2009	pecifications. valuate controllabi nd evaluate its per Eaglewood Cliffs, I fill, 2002 Fata McGraw-Hill, ol Systems", Addis	formance. NJ, 1998 2002 son Wesle	v, 8th Edition
6. Friedland Hill,2005	d B., "Control System Design: An Introduction	n to State Space Mo	ethods", T	Tata McGraw
	Course Plan			Sem. Exam
Module	Contents		Hours	Marks
I	Design of feedback control systems- Appro design-compensators-performance measure compensation networks-phase lead and l design using both Root locus and Bode plot integration networks, systems with pre-filter.	es - cascade ag compensator	10	9
п	Lyapunov's stability theory for Linear Syster points and stability concepts, Stability de system stability, The Direct method of Ly Lyapunov's method in feedback design.	finitions, Linear	9	9
	FIRST INTERNAL I	EXAM		
ш	State Space Analysis and Design- Analysis o pole cancellation – Canonical realizations cascade realizations - reachability and stabilizability - controllability - observability	f stabilization by - Parallel and constructability	9	9

IV	Linear state variable feedback for SISO systems, Analysis of stabilization by output feedback-modal controllability- formulae for feedback gain -significance of controllable Canonical form-Ackermann's formula- feedback gains in terms of Eigen values - Mayne-Murdoch formula - Transfer function approach – state feedback and zeros of the transfer function - non controllable realizations and stabilizability - controllable and uncontrollable modes - regulator problems - non zero set points - constant input disturbances and integral feedback.	10	9
	SECOND INTERNAL EXAM		
v	Observers: Asymptotic observers for state measurement-open loop observer-closed loop observer-formulae for observer gain - implementation of the observer - full order and reduced order observers - separation principle - combined observer - controller – optimality criterion for choosing observer poles -	09	12
VI	Direct transfer function design procedures - Design using polynomial equations - Direct analysis of the Diophantine equation. MIMO systems: Introduction, controllability, observability, different companion forms.	09	12
	END SEMESTER EXAM		

Course No	. Course Name	L-T-P-Credits	In	Year of troduction
02EE6241	<u>Solid State Power</u> <u>Converters</u>	3-0-0-3		2015
Course Ob To Familian	jective ize various Power Electronic conversion tec	hniques.		
Syllabus A better un the basis fo Expected o 1. A bo whice 2. To a appl 3. To 1 to a 4. To a imp References 1. Ned Mor 2. V. Rama	derstanding of the merits and demerits of cr r valid techniques in solving power system p utcome etter understanding of the merits and demeri ch are the basis for valid techniques in solvin analyze the operation of Power electronic cir ication earn the basics of state of art techniques use oply the same in higher learning. analyse the use resonant circuits in reducing roved efficieny.	ritical analytical solu problems ts of critical analytic ng power system pro- cuits involved in Ren d in mitigating powe the stress in power e Design and Application	al solution blems newable e er quality p electronic c ions," Wil	n methods nergy problems and circuits with
 G. K. Du John Vitl Bin Wu, L. Uman 	bey, et.al., "Thyristorised Power Controllers hayathil, "Power Electronics: Principles and "High Power Converters and AC Drives," II and, "Power Electronics: Essentials and App y L. Skvarenina, "The Power electronics han	s," New Age Internat Applications", Tata EEE Press, Wiley Int Dications," Wiley, 20	McGraw l terscience, 009	
 G. K. Du John Vitl Bin Wu, L. Uman 	bey, et.al., "Thyristorised Power Controllers nayathil, "Power Electronics: Principles and "High Power Converters and AC Drives," II and, "Power Electronics: Essentials and App	s," New Age Internat Applications", Tata EEE Press, Wiley Int plications," Wiley, 20 adbook", CRC press,	McGraw l terscience, 009	
 G. K. Du John Vitl Bin Wu, L. Uman 	bey, et.al., "Thyristorised Power Controllers hayathil, "Power Electronics: Principles and "High Power Converters and AC Drives," II and, "Power Electronics: Essentials and App y L. Skvarenina, "The Power electronics har	s," New Age Internat Applications", Tata EEE Press, Wiley Int plications," Wiley, 20 adbook", CRC press,	McGraw l terscience, 009	
 G. K. Du John Vitl Bin Wu, L. Uman Thimothy 	bey, et.al., "Thyristorised Power Controllers nayathil, "Power Electronics: Principles and "High Power Converters and AC Drives," II and, "Power Electronics: Essentials and App y L. Skvarenina, "The Power electronics har Course Plan Course Plan AC voltage controllers: Analysis of single-p controller with R and RL load, Performance	s," New Age Internat Applications", Tata EEE Press, Wiley Int blications," Wiley, 20 adbook", CRC press, n phase ac voltage e parameters,	McGraw I terscience, 009 2002	, 2006. Sem. Exam
 3. G. K. Du 4. John Vitl 5. Bin Wu, 6. L. Uman 7. Thimothy Module	bey, et.al., "Thyristorised Power Controllers nayathil, "Power Electronics: Principles and "High Power Converters and AC Drives," II and, "Power Electronics: Essentials and App y L. Skvarenina, "The Power electronics har Course Plan Course Plan AC voltage controllers: Analysis of single- controller with R and RL load, Performance Sequential control of single-phase ac voltag DC-DC converters: Buck, boost, buck Topologies-Representation with ideal swi analysis in continuous conduction mode u sec balance current and voltage ripples. I inductor and capacitors. Discontinuous operation of basic buck and boost conve converters: Steady-state analysis of fly ba pull and bridge topologies.	Applications", Tata Applications", Tata EEE Press, Wiley Int blications," Wiley, 20 adbook", CRC press, n phase ac voltage e parameters, ge controllers. c-boost and C'uk tches, Steady state sing inductor volt- Design relations for Conduction Mode rter-Isolated dc-dc ck, forward, push-	McGraw I terscience, 009 2002 Hours	, 2006. Sem. Exam Marks
3. G. K. Du 4. John Vitl 5. Bin Wu, 6. L. Uman 7. Thimoth Module I	bey, et.al., "Thyristorised Power Controllers hayathil, "Power Electronics: Principles and "High Power Converters and AC Drives," II and, "Power Electronics: Essentials and App y L. Skvarenina, "The Power electronics han Course Plan Course Plan AC voltage controllers: Analysis of single- controller with R and RL load, Performance Sequential control of single-phase ac voltag DC-DC converters: Buck, boost, buck Topologies-Representation with ideal swi analysis in continuous conduction mode u sec balance current and voltage ripples. I inductor and capacitors. Discontinuous operation of basic buck and boost conver converters: Steady-state analysis of fly ba	Applications", Tata Applications", Tata EEE Press, Wiley Int blications," Wiley, 20 adbook", CRC press, n phase ac voltage e parameters, ge controllers. c-boost and C'uk tches, Steady state sing inductor volt- Design relations for Conduction Mode rter-Isolated dc-dc ck, forward, push-	McGraw I terscience, 009 2002 Hours 7	, 2006. Sem. Exam Marks 9
3. G. K. Du 4. John Vitl 5. Bin Wu, 6. L. Uman 7. Thimoth Module I	bey, et.al., "Thyristorised Power Controllers nayathil, "Power Electronics: Principles and "High Power Converters and AC Drives," II and, "Power Electronics: Essentials and App y L. Skvarenina, "The Power electronics har Course Plan Course Plan AC voltage controllers: Analysis of single- controller with R and RL load, Performance Sequential control of single-phase ac voltag DC-DC converters: Buck, boost, buck Topologies-Representation with ideal swi analysis in continuous conduction mode u sec balance current and voltage ripples. I inductor and capacitors. Discontinuous operation of basic buck and boost conve converters: Steady-state analysis of fly ba pull and bridge topologies.	a," New Age Internat Applications", Tata EEE Press, Wiley Int Dications," Wiley, 20 adbook", CRC press, a phase ac voltage e parameters, ge controllers. c-boost and C'uk tches, Steady state sing inductor volt- Design relations for Conduction Mode rter-Isolated dc-dc ck, forward, push- LEXAM single-phase half- ge Voltage Source ches- stepped wave	McGraw I terscience, 009 2002 Hours 7	, 2006. Sem. Exam Marks 9

	current control. Current Source Inverters: Analysis of capacitor commutated single phase CSI feeding resistive and pure-inductor loads		
	SECOND INTERNAL EXAM		
V	Resonant Converters - Second-Order Resonant Circuits - Load Resonant Converters - Resonant Switch Converters – Resonant DC-Link Converters with ZVS Series-Resonant Inverters: Voltage-Source Series , Voltage-Source Parallel-	7	12
VI	The Resonant DC-Link Inverter - The Parallel-Resonant DC- Link Inverter - Current Research Trends Auxiliary Resonant Commutated Pole Inverters: Losses in Hard-Switched Inverters - Analysis of ARCP Phase Leg - Analysis of ARCP H-Bridge - Analysis of ARCP Three-Phase Inverter	7	12
END SEMESTER EXAM			

Course N	o. Course Name	L-T-P-Credits	In	Year of troduction
02EE6151 02EE6251		3-0-0-3		2015
tech 2. Equ	jective ip the Students with a thorough understand iniques. ip the Students with a basic idea of optima em and control system applications.	-	-	
	d and Uncontrained optimization using cor to Electrical Engineering field with	ventional and non-co	nventional	techniques.
 Apply co application Determin software to References Ref Ref R.L R. H R. H R. Han B. S K. Maa K. Maa 		tion techniques to all f sues in Electrical Engin rom IEEE journal, Els ction,Prentice Hall of I Design", Addition Wel ns Research , Scitech. duction, PHI, 9th Edn. rch, Pragathi Prakasha ethods in Operations R blishers.	evier etc. ndia,2003 lsey, 1971 1st edn., 2 , 2011 n, 25th Eo esearch an	ing modern 5. 3. Fox, 2010 dn., 2009. nd System
	Course Pl	an		
Module	Contents		Hours	Sem. Exam Marks
Ι	Linear programming –formulation-Gra methods-Big-M method. Two phase m method-Primal Dual problems. Numeri on power system/control system implementation using Software packages	ethod-Dual simplex cal examples based applications and	7	9
П	Unconstrained one dimensional optimizat Necessary and sufficient conditions –Unra methods-Fibonacci and golden section me Interpolation methods, cubic interpolation methods. Numerical examples based on p system applications and implementation to packages	ion techniques - estricted search ethod Quadratic and direct root ower system/control	7	9

ш	Dynamic programming- principle of optimality- numerical solution of unit commitment problems - implementation using software packages. Genetic Algorithm -Introduction - basic concepts –application	7	9
IV	Transportation problems- application to shortest route, cargo- loading, allocation and production schedule problems. Allocation of shortest path for Electrical Engineering	7	9
	SECOND INTERNAL EXAM		
V	Unconstrained n dimensional optimization techniques – direct search methods – Random search –pattern search and Rosen brooch's hill claiming method. Descent methods-Steepest descent, conjugate gradient, quasi -Newton method. Any two numerical examples like economic load dispatch problems, harmonic eliminations of inverters and implementation of the problems using software packages.	7	12
VI	Constrained optimization Techniques- Necessary and sufficient conditions – Equality and inequality constraints- Kuhn-Tucker conditions-Gradient projection method-cutting plane method- penalty function method. Numerical examples based on tuning of excitations controllers, Controller parameters for Automatic Generation Controllers of Generators of Power stations.	7	12
END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6151.3/ 02EE6251.2	<u>Advanced Digital Signal</u> <u>Processing</u>	3-0-0-3	2015

Course Objective

To learn about modern signal processing techniques, theory and implementation of FFT algorithms, digital filters, mathematical basis of discrete time signal analysis.

Syllabus

Review of DTS, Structures for discrete time system, Digital Filter Design Techniques, Spectral estimation, Time frequency analysis, Introduction to Digital Signal Processors

Expected outcome

Upon successful completion of this course, students will be able to

- 1. Solve various types of practical problems in DSP
- 2. Apply signal processing strategies.
- 3. Design FIR and IIR filters.

References:

1. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing: A Practical Approach", Pearson Education India Series, New Delhi, 2nd Edition, 2004

2. Sanjit K. Mitra, "Digital Signals Processing: A Computer Based Approach", Tata McGraw-Hill Publishing Company Limited, 2nd Edition, 2004.

3. Alan Oppenheim V., Ronald W. Schafer, "Digital Signal Processing", Prentice Hall of India Private. Limited. New Delhi, 1989.

4. John G. Proakis and Manolakis. D.G, "Digital Signal Processing: Principles Algorithms and Applications", Prentice Hall of India, New Delhi, 2004.

5. Oppenheim V. and Ronald W. Schafer, "Discrete Time Signal Processing", Prentice Hall of India Private Limited., New Delhi, 2001.

6. Leon Cohen, "Time Frequency Analysis", Prentice Hall, 1995.

7. P. P. Vaidyanathan, "Multirate systems and Filter Banks", Prentice Hall, 1993

8. Avatar Singh and Srinivasan S., "Digital Signal Processing: Implementation using DSP", 2004

9.M. H. Hayes: "Statistical Signal Processing and Modeling", John Wiley and Sons, 1996

Course Plan			
Module	Contents	Hours	Sem. Exam Marks
I	Review of DTS-Discrete time Signals-Sequences –Stability and Causality –Frequency domain Representation of Discrete time Systems and Signals –Two-dimensional Sequences and Systems –Z-Transform –Z- Transform Theorems and Properties –Two-dimensional Z-Transform.	7	9
П	Structures for discrete time system– Direct, cascade and parallel forms –Lattice structure. Representation of Periodic Sequences-the Discrete Fourier Series –Properties of the discrete Fourier series –Sampling, Z-transform –discrete Fourier transform –properties of discrete Fourier Transform – Linear Convolution –Decimation –in- Time and Decimation in- Frequency –FFT Algorithms.	7	9

	FIRST INTERNAL EXAM			
III	Digital Filter Design Techniques-Introduction – Design of IIR Digital Filters from Analog Filters-Analog–Digital Transformation–Properties of FIR Digital Filters–Design of FIR Filters Using Windows–A Comparison of IIR and FIR Digital Filters. Finite Register Length Effects- Introduction- Effects of coefficient on Quantization–Quantization in Sampling-Analog Signals-Finite Register Length effects in realizations of Digital Filters-discrete Fourier Transform Computations.	7	9	
IV	Spectral estimation: Periodogram, Bartlett's method, Welch's method, Blackman-Tukey method, ARMA modeling, Yule- Walker equation and solution	7	9	
	SECOND INTERNAL EXAM			
V	Time frequency analysis, the need for time frequency analysis, Time frequency distribution, Short time Fourier Transform, Wigner distribution. Multi rate digital signal processing: Basic multi rate operation (up sampling, down sampling), Efficient structures for decimation and interpolation, Decimation and interpolation with poly phase filters, Non integer sampling rate conversion, Efficient multi rate filtering Applications, Oversampled A/D and D/A converter.	8	12	
VI	Introduction to Digital Signal Processors-Commercial DSP devices – TMS C240 processor and ADSP 2181 processor – Architecture – Addressing modes – Program control – Instruction and programming –Simple programs.	7	12	
END SEMESTER EXAM				

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6251.3	Power Distribution Systems	3-0-0-3	2015
Course Obje			
Objective of t	he course is to introduce various advance	ments in the distribution s	systems
Syllabus			
Power Distrib	ution system planning, reliability and pric	ing	
Expected out	come		
Upon success	ful completion of this course, students wil	l be able to do:	
1. Distribution	n system planning		
2. Distribution	n automation		
References:			
1. A. S. Pabla	, 'Electrical Power Distribution Systems',	4th edn., TMH, 1997	
2. Turan Gone	en, 'Electrical Power Distribution Engined	ering', McGraw-Hill, 198	6
3. Colin Bayli	ss, 'Transmission and Distribution Electric	ical Engineering', Butterv	worth
Heinemann, 1	996		
4. Pansini, 'El	lectrical Distribution Engineering'		
5. E. Lakervi	& E. J. Holmes, 'Electricity Distribution I	Vetwork Design', 2ndEdi	tion, Peter

5. E. Lakervi & E. J. Holmes, '*Electricity Distribution Network Design*', 2ndEdition, Peter Peregrimus Ltd.

6. Dhillon B. S., 'Power System Reliability, Safety and Management', An Arbor Sam 1981

Course Plan			
Module	Contents	Hours	Sem. Exam Marks
Ι	Power System: General Concepts - Distribution of power - Management - systems study - Loads and Energy Forecasting: Power loads - Area Preliminary survey load forecasting - Regression analysis - Correlation analysis - Analysis of time series - Factors in power system loading -Technological forecasting— Sources of error	7	9
II	Planning, Design and Operation methodology: System calculations, Network elements - Distribution load flow: Radial systems, distribution systems with loops - fault studies - effect of abnormal loads, Voltage control - line circuits - harmonics- urban distribution - load variations Distribution system expansion planning – load characteristics – load forecasting – design concepts – optimal location of substation – design of radial lines – solution technique.	7	9
	FIRST INTERNAL EXAM		
ш	Optimization of distribution systems: Introduction, Costing of Schemes, Typical network configurations - Long and Short term planning, network cost modelling, voltage levels - Synthesis of optimum line networks -Application of linear programming to network synthesis -Optimum Phase sequence – Economic loading of distribution transformers- Worst case loading of distribution transformers	7	9
IV	Distribution automation: Distribution automation - Definitions - Project Planning - Communication, Sensors, Supervisory Control and Data Acquisition (SCADA), Consumer Information systems (CIS), Geographical Information Systems (GIS)	7	9
	SECOND INTERNAL EXAM		
			Daga 31

V	Power System reliability: Basic Reliability Concepts and Series, Parallel, Series-Parallel Systems- Development of State Transition Model to Determine the Steady State Probabilities Consumer Services: Supply industry - Natural monopoly - Regulations - Standards – Consumer load requirements — Cost of Supply - load management - theft of power ~ Energy metering	7	12
VI	Tariffs: Costing and Pricing, Classification of Tariffs – Deregulated Systems: Reconfiguring Power systems- Unbundling of Electric Utilities- Competition and Direct access Voltage control –Application of shunt capacitance for loss reduction – Harmonics in the system – static VAR systems –loss reduction and voltage improvement.	7	12
END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6251.4	<u>Modeling of Electrical</u> <u>Machines</u>	3-0-0-3	2015

Course Objective

To develop the basic elements of generalized theory and to derive the general equations for voltage and torque of all type of rotating machines and to deal with their steady state and transient analysis.

Syllabus

Power Distribution system planning, reliability and pricing

Expected outcome

Upon successful completion of this course, students will be able to:

1. To analyse machine behaviour based on the voltage and torque equations of the machine.

2. To analyse the transient behaviour of machines.

References:

1. P. S. Bhimbra, 'Generalized Theory Of Electrical Machines', Khanna Publishers, 2002

2. Charles V. Johnes, 'Unified Theory Of Electrical Machines' Butterworth & Co Publishers Ltd (December 1967).

3. Adkins, Harley, 'General theory of ac machines', Chapman and Hall, 1957

4. C. Concordia, 'Synchronous Machines' Theory and Performance, John Wiley & Sons, New York, 1951.

5. M. G. Say, 'Introduction to Unified Theory of Electrical Machines' Pitman 1971.

6. E. W. Kimbark, 'Power System Stability - Vol. II' Wiley, New York, 1948.

Course Plan			
Module	Contents	Hours	Sem. Exam Marks
I	Unified approach to the analysis of electrical machine performance - per unit system - basic two pole model of rotating machines- Primitive machine -special properties assigned to rotor windings -transformer and rotational voltages in the armature voltage and torque equations resistance, inductance and torque matrix.	7	9
П	Transformations - passive linear transformation in machines- invariance of power -transformation from three phase to two phase and from rotating axes to stationary axes-Park's Transformation	7	9
	FIRST INTERNAL EXAM		
ш	DC Machines: Application of generalized theory to separately excited, shunt, series and compound machines. Steady state and transient analysis, transfer functions. Sudden short circuit of separately excited generator, sudden application of inertia load to separately excited dc motor.	7	9
IV	Synchronous Machines: synchronous machine reactance and time constants-Primitive machine model of synchronous machine with damper windings on both axes. Balanced steady state analysis-power angle curves. Transient analysis- sudden three phase short circuit at generator terminals - armature currents and torque Transient power angle curve	7	9
	SECOND INTERNAL EXAM		
V	Induction Machines: Primitive machine representation- Steady state operation-Equivalent circuit-Double cage rotor	7	12

	representation - Equivalent circuit -Single phase induction motor- Voltage and Torque equations.			
VI	Traction systems: Electrification, 1- j system and its problems. Traction mechanics: Speed-time curve. Traction motors: Characteristics, series motor, Traction motor control: Series-parallel control.	7	12	
	END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6261	Seminar	0-0-2-2	2015

Syllabus

The student is expected to present a seminar in one of the current topics in Power and Energy Systems and related areas. The student will undertake a detailed study based on current journals, published papers, books, on the chosen subject and submit seminar report at the end of the semester.

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6271	Power System Simulation Lab	0-0-2-2	2015

Course Objective

Familiarizing the students with various simulation software tools for power system simulation and power electronic circuit simulations

List of Experiments/ Exercises

- Simulation of Single Area and Two Area Systems using Matlab Package.
- Study of load frequency control problem of (i) uncontrolled and (ii) controlled cases-
- Economic Dispatch of (i) Thermal Units and (ii) Thermal Plants using Conventional and ANN and GA algorithms
- MVAR Compensation studies on normal and heavily loaded power systems using software package
- Contingency evaluation and analysis of power system
- Development of single line diagram of power system components
- State estimation of power systems.
- Use of Essential Software tools for Power system Simulation
- Simulation of Power Electronic Circuits using PSCAD
- Simulation study on Power Line Series Compensator

Course No	Course Name	L-T-P-Credits	Ir	Year of troduction	
02CA6001	CA6001 <u>RESEARCH</u> 1-1-0-2			2015	
research pr To develope To study al according t Course Out Students wi associated research ca References 1. Don 2. Stud and 3. C. K 4. Leeu 5. Don 6. Turd pape 7. J. W	ould get the ability to identify problem related oblems. ed physical insight about the research design out the research by the methods of data analy o the data come: Il develop an understanding of the potential b with conducting a research and the developm rried out.	and to develop a m lysis and to develop penefits and technica ent of thesis and rep s Research Methods lethodology: An Int nd Technique, Tata ch : Planning and E on Learning. ennert, A., A Manua cago press. d Scientist, McGrav	ore reliab report an al challen, ports acco s, Tata Mc roduction McGraw- Design, Pr el for write v Hill.	le design. d thesis ges ording to the Graw-Hill. for Science Hill. entice Hall	
Madula	Course Plan		Harris	Sem. Exam	
Module	Contents Meaning and definition of Research- Objectives of research-Types of research applied descriptive-analytical– qualita conceptual-empirical-research and scie research process-criteria for good research	1- fundamental – ative-quantitative-	Hours 7	Marks 9	
п	Features of good design- different resc Laboratory and field experiments- measu scales and levels- Measurement of variables- validation- Internal and external validat Stability methods- Development of experim designs.	rement concepts- - Factors affecting tion- Reliability-	7	9	
	FIRST INTERNAL				
ш	Features of good design- different resultaboratory and field experiments- measures and levels- Measurement of variables- validation- Internal and external validation Stability methods- Development of experimentables.	rement concepts- - Factors affecting tion- Reliability-	7	9	
	designs.				

	Probabilistic and non-probabilistic samples- Sample size determination issues- Pri02EEry and secondary data analysis- Use of computers, internet and library- Data analysis with statistical packages- Preparation of data for analysis		
	SECOND INTERNAL EXAM		
V	Purpose of written reports- Concept of audience- Types of reports- Structure and components of reports- Technical report and thesis- Features of a good thesis- Layout and language of reports- Illustrations- Tables- Referencing- Footnotes- Intellectual contents of the thesis- 02EEking oral presentations- Effective communications- Publishing research findings-Defending the thesis.	7	12
VI	Application of results of research outcome- environmental impacts- Professional ethics- Ethical issues and committees- Copy right- Royalty- Intellectual property rights- Patent laws and patenting- Reproduction of published 02EEterial- Plagiarism- Citation and acknowledgement- Reproducibility and accountability- Developing research proposals.	7	12
	END SEMESTER EXAM		

SEMESTER 2

	C	ourse Name	L-T-P-Credits	Ir	Year of ntroduction
02EE6212		L PROTECTION OF WER SYSTEM	4-0-0-4		2015
Course objecti	ve:				
Objective of th them	e course is to dis	scuss various power qua	lity issues and differ	ent method	ls to control
Course Outcor	ne:				
-	-	this course, students wi uitable mitigating techn	•	the power	quality
2. Badri Ram 1 3. C R Mason. 4. M V Deshp 5."Power syste 6 . J.L. Blackb 1987.	DM & Viswakarr 'The art and scie ande, 'Switchgea m protection. Vo urn,, Marcel Dek	system protection Stati ma, Power system prote ence of protective relays or Protection', TMH, 199 blume-1,11 & 111 edite cker, "Protective Relaying 'Computer Relaying fo	ction and switchgear ', Wiley Eastern 93 d by the Electricity C ng : Principles and A	, TMH, 19 Council'' pplications	s' New York,
		Course Pla	n		
Module		Course Pla Contents	n	Hours	Sem. Exan Marks
Module	 types of faults backup protecti protective relay Classification of transformers fo Static relays: M Amplitude and 	Contents ctive systems – nature a s – Zones of Protection on – Performance and o ys – Components of a pro- of protective schemes – or protection. Ierits and demerits-Con Phase Comparators-Du phase Comparators - T	nd causes of faults – Primary and Classification of rotective system – Current parators- ality between	Hours 7	
	 types of faults backup protecti protective relay Classification of transformers fo Static relays: M Amplitude and Amplitude and and Phase Com Over current p current Protecti directional Rela Combines Ea different types 	Contents ctive systems – nature a s – Zones of Protection on – Performance and o ys – Components of a pro- of protective schemes – or protection. Ierits and demerits-Con Phase Comparators-Du phase Comparators - T	nd causes of faults – Primary and Classification of rotective system – Current aparators- hality between ypes of Amplitude characteristic-Over power or hase fault protection It protective – lays-Static over		Marks

III	Differential Protection: Differential Relays – Some basic differential Protection Transformer Protection – Bus zone protection – Frame leakage protection – Numerical Relay – Numerical Over current Protection – Numerical Distance Protection – Numerical Differential Protection	7	9
IV	Distance protection scheme: Standard 3 zone protection – Types of static distance relays-impedance, reactance, Mho, quadrilateral, elliptical, Distance Relay characteristics – Effect of arc resistance and power surges in the performance of distance relays – Pilot Relaying Scheme – wire pilot protection – carrier current protection	7	9
	SECOND INTERNAL EXAM		
v	Microprocessor based protective relays: Over current relay- Impedance relay-Directional relay-reactance relay – Generalized mathematical expression for distance relays – Measurement of R and X.	7	12
VI	Computer application to protected relays: Digital computer- Digital simulation of power system disturbances – Digital simulation of CT and PT – Digital simulation of distance relay during transients-On line and Offline application of digital computers to protection - Relaying system for preventive control of power system disturbances.		
	END SEMESTER EXAM	1	<u> </u>

Course N	o.	Course Name	L-T-P-Credits	s In	Year of troduction
02EE622	22	POWER SYSTEM DYNAMICS AND CONTROL	3-0-0		2015
Course obje	ctive:				
		ous types of small signal stability problem ace means to overcome them	ms that will encou	nter in po	wer systems
Syllabus:					
Power Syst	em S	tability and Synchronous machine ma	odeling-Modeling	of other	components-
-		g-Small Signal Analysis-Power System			-
	-	Power &Voltage control		100001 0	
Course Outo		ower & vonage control			
stability pro	blems	completion of this course, students will b , analyse them and to design power syste a power system.	•		•
References	:				
1. Kundur P	, "Pov	ver System Stability and Control", TMH	[.		
2.Anderson	and F	ouad, "Power System Control and Stabil	lity", Galgotia Pub	olications,	
Compensati	on 19	81. 3. Ramanujam R, "Power System Dy	mamics- Analysis	& Simula	tion", PHI
learning Priv	vate L	imited.			
4. Padiyar K	K R, "I	Power System Dynamics", 2 nd Edition,	B.S. Publishers, 2	003.	
5. Sauer P	W & F	Pai M A," Power System Dynamics and	Stability", Pearson	n, 2003.	
6. Olle I Elg	gerd, "	Electric Energy Systems Theory an Intro	oduction", 2nd Edi	ition, McC	Braw-Hill,
1983.					
7. Kimbark	EW,	"Power System Stability", McGraw-Hil	l Inc., 1994, Wile	y & IEEE	Press, 1995.
8. Yao-Nan-	-Yu, "	Electric Power Systems Dynamics", Aca	ademic Press, 198	3	
	1	Course Plan			
Module		Contents		Hours	Sem. Exam Marks
Ι	Powe of s Mach Basic per quad	er System Stability and Synchronous mac er System Stability- Concept of Power syste stability. Synchronous machine modelin nine - Mathematical Description of a Synch e equations of a synchronous machine - dq unit representation- equivalent circuits rature axes. Equations of motion - Swi ant calculation - Representation in system s	em stability-Types ng: Synchronous ronous Machine - 0 Transformation- for direct and ng Equation, H-	7	9

П	Excitation System Modeling - Excitation System Requirements – Functional block diagram. Turbine modeling: Functional block diagram of Power Generation and Control – Schematic of a hydroelectric plant – Classical transfer function of a hydraulic turbine – special characteristic of hydraulic turbine – electrical analogue of hydraulic turbine. Load modeling concepts	7	9
	FIRST INTERNAL EXAM		
III	Fundamental Concepts of Stability of Dynamic Systems: State-space representation- stability of dynamic system - Linearisation, Eigen properties of the state matrix – eigenvalue and stability - Small Signal Stability of Single Machine Infinite Bus(SMIB) System: Generator represented by the classical model Effect of field flux variation on system stability-Effects of Excitation System - Block diagram representation with exciter and AVR- Effect of AVR on synchronizing and damping torque components	7	9
IV	Power System Stabilizer (PSS): State matrix including PSS-Small Signal Stability of Multi Machine Systems. Special Techniques for analysis of very large systems- Analysis of Essentially Spontaneous Oscillations in Power Systems (AESOPS) algorithms-Modified Arnoldi Method (MAM). Small Signal Stability Enhancement: Using Power System Stabilisers-Supplementary control of Static VAR Compensators	7	9
	SECOND INTERNAL EXAM		
V	Active Power and Frequency control Active Power and Frequency control:-Fundamentals of speed governing-Control of Generating unit power output-composite regulating characteristic of Power system-Responds rates of turbine-Governing systems- Fundamentals of Automatic Generation control (AGC) - implementation of AGC	7	12
VI	Reactive Power &Voltage control:-Production and absorption of Reactive power-Methods of voltage Control-Shunt reactors-Shunt capacitors-series capacitors-synchronous condensers - Static Var systems-Principles of transmission system compensation – Modelling of reactive compensating devices-Application of tap- changing transformers to transmission systems distribution system voltage regulation.	7	12
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P-Credits	In	Year of troduction
02EE6232	TRANSIENT ANALYSIS IN POWERSYSTEM	3-0-0-3		2015
Course Ob To introduc them.	jective e various types of transient over-voltages in	power system and th	ne method	s to overcome
 Identify c Model di Design pr References Allen Gree Bewely York, 1963 Gallagha Wiley and S Klaus Ra 	ssful completion of this course, students will lifferent types of transient over-voltages. ifferent equipments for transient study. cotective devices against transient over-volta eenwood, 'Electrical Transients in Power Sy L. W., 'Travelling Waves and Transmi ar P. J. and Pearmain A. J., 'High Voltag Sons, New York, 1982. gallea, 'Surges and High Voltage Networks of W., 'Overvoltages on High Voltage Sy	ages. /stems', Wiley Inters ission Systems', Do e Measurement, Tes ', 1980.	over Publi	cations, New Design', Johr
10IR, 1771.	Course Pla	n		
Module	Contents		Hours	Sem. Exam Marks
I	Lightning and travelling waves -Transients in electric power systems - internal and external causes of over voltages - lightning strokes - mathematical model to represent lightning - stroke to tower and midspan - travelling waves in transmission lines selection of typical wave to represent over voltages			9
п	Switching Transients : Switching transic closing transient - the recovery transier removal of the short circuit — double frequ	nt initiated by the	7	9
	FIRST INTERNAL	L EXAM		
ш	Abnormal switching transients - curre capacitance switching - arcing ground - current – ferro resonance - neutral connect switching a three phase reactor- three phase	transformer inrush tions - transients in	7	9
	Surges in transformers: Step voltage - volta	-		

transformer winding -winding oscillations - Travelling wave

solutions - Transformer core under surge conditions. Voltage

SECOND INTERNAL EXAM

surges -Transformers - Generators and motors -Transient parameter values for transformers - Reactors - Generators

Transmission lines Protective Devices and Systems: Basic

idea about protection - surge diverters - surge absorbers -

IV

V

9

12

7

7

	ground fault neutralizers - protection of lines and stations by shielding -ground wires - counter poises - driven rods - modern lightning arrestors - insulation coordination - protection of alternators- industrial drive systems.		
VI	Generation of high AC and DC-impulse voltages, currents- measurement using sphere gaps-peak voltmeters-potential dividers and CRO.	7	12
	END SEMESTER EXAM	1	

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6142.1/ 02EE6242.1	<u>Soft Computing</u> <u>Techniques</u>	3-0-0-3	2015

Course Objective

• To initiate the students into the pervasive field of soft computing.

• To understand the nuances of conventional mathematical approaches and unorthodox soft computing methods in vogue.

• To be able to apply some important soft computing methods to different facets of problems encountered in Electrical Engineering.

Syllabus

Introduction to Soft computing, Fuzzy Sets, Set operations, Member Functions, Fuzzy Rules, reasoning and inference Systems, Mamdani, Sugeno and Tsukamoto Fuzzy Models, Genetic Algorithms, Derivative-based Optimization methods, Derivative-free methods, Neural Networks – Introduction, Supervised Learning Neural Networks, Radial Basis Function Networks, Unsupervised networks, Competitive Learning Networks, Hebbian Learning, Applications

Expected outcome

The student will be in a position to tackle problems in the field of Electrical Engineering, Power Systems with a deeper insight of alternate solutions extracted from Soft Computing techniques.

References:

- 1. 1 S. R. Jang, C. T. Sun and E. Mizutani, 'Neuro-Fuzzy and Soft Computing', PHI, Pearson Education 2004.
- 2. 2. Davis E. Goldberg, 'Genetic Algorithms: Search, Optimization and Machine Learning' Addison Wesley, N.Y., 1989.
- 3. S.Rajasekaran and G.A.V.Pai, 'Neural Networks, Fuzzy Logic and Genetic Algorithms', PHI, 2003.
- 4.. R.Eberhart, P.Simpson and R.Dobbins, 'Computational Intelligence PC Tools', AP Professional, Boston 1996.

	Course Plan				
Module	Contents	Hours	Sem. Exam Marks		
I	Soft Computing terminology, Introduction to Fuzzy Sets, Set theoretic operations, Member Function Formulation and parameterization, Fuzzy rules and reasoning, Extension principle and fuzzy relations, Fuzzy If-Then rules, Fuzzy reasoning	7	9		
п	Fuzzy inference systems, Mamdani fuzzy model, Sugeno fuzzy models, Tsukamoto fuzzy model, Input space partitioning and fuzzy modeling	7	9		
	FIRST INTERNAL EXAM	1	1		

ш	Derivative-based optimization, Descent methods, method of steepest descent, Classical Newton's Method, step size determination, Derivativefree optimization	7	9
IV	Genetic Algorithms, Simulated Annealing, Random Search, Downhill simplex search Neural networks- Introduction, Supervised learning neural networks	7	9
SECOND INTERNAL EXAM			
v	Neural networks contd., Perceptrons, Adaline, Back propagation, Multilayer perceptrons, Radial Basis Function Networks, Numerical examples, Unsupervised learning, other neural networks, Competitive learning networks, Numerical examples	7	12
VI	Kohonen self-organizing networks, Learning vector quantization, Hebbian learning, Numerical examples Applications – Inverse kinematics problem, Printed character recognition, Automobile fuel efficiency prediction, Power system Unit Commitment problem, Electronics applications, Soft computing for colour recipe prediction.	7	12
END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6242. 2	FACTS and Custom Power	3-0-0-3	2015

Advances in Power electronics Industry led to rapid development of Power Electronics controllers for fast real and reactive power control and to introduce these advancements.

Course Outcome:

Upon successful completion of this course, students will be able to select suitable FACTS device for the enhancement of power transfer capability and to control the power flow in an efficient manner.

References:

1. T. J. E. Miller, 'Reactive Power Control in Power Systems', John Wiley, 1982

2. J. Arriliga and N. R. Watson, 'Computer Modelling of Electrical Power Systems', Wiley, 2001

3. N.G. Hingorani and L. Gyugyi, 'Understanding FACTS', IEEE Press, 2000

4. K. R. Padiyar, '*FACTS Controllers in Power Transmission and Distribution*', New Age International Publishers, 2007

5. Y.H. Song and A.T. Johns, 'Flexible ac Transmission Systems (FACTS)', IEE Press, 1999

6. Ned Mohan et al., 'Power Electronics', John Wiley and Sons.

7. Dr. Ashok S. & K. S. Suresh Kumar, 'FACTS Controllers and Application' Course Book for STTP2003

8. Ghosh, Arindam, and Gerard Ledwich. *Power quality enhancement using custom power devices*. Springer Science & Business Media, 2012.

9. Current Literature

Course Plan			
Module	Contents	Hours	Sem. Exam Marks
Ι	Power flow in Power Systems-Benefits of FACTS Transmission line compensation- Uncompensated line -shunt compensation - Series compensation -Phase angle control. Reactive power compensation – shunt and series compensation principles – reactive compensation at transmission and distribution level – Static vs. Passive VAR Compensators – Converters for Static Compensation.	7	9
Ш	Static shunt Compensator - Objectives of shunt compensations, Methods of controllable VAR generation - Variable impedance type VAR Generators - TCR, TSR, TSC, FC-TCR Principle of operation, configuration and control.	7	9

ш	Static Series compensator - Objectives of series compensations, Variable impedance type series compensators - GCSC. TCSC, TSSC - Principle of operation, configuration and control.Application of TCSC for mitigation of SSR. Switching converter type Series Compensators (SSSC)- Principle of operation, configuration and control.	7	9
IV	Static Voltage and Phase Angle Regulators (TCVR &TCPAR): Objectives of Voltage and Phase angle regulators, Thyristor controlled Voltage And Phase angle Regulators	7	9
v	Unified Power Flow Controller: Circuit Arrangement, Operation and control of UPFC- Basic principle of P and Q control- independent real and reactive power flow	7	12
• •	control- Applications - Introduction to interline power flow controller. Modelling and simulation of FACTS controllers	7	12
VI	Custom Power Devices- Introduction-Utility Customer Interface-Distribution STATCOM (DSTATCOM)- Dynamic voltage restorer (DVR)-Unified power quality conditioner (UPQC)-Custom Power Park	7	12

Course	No.	Course Name	L-T-P-Credits	Ir	Year of troduction
02EE62	42. 3	Power System Economics	3-0-0-3		2015
demand and 2. To give b generation 3. To provi restructured <i>Course Out</i>	rt basic k d supply basic idea capacity de basic d markets tcome:	concepts and an overview of transn	y price in the restruct	ured mark ributed ge	et and neration in
Zuyi Li ,A 2. Understa Dekker Pul 3. Power sy 2002. 4. Operatio Boolen, Kl 5. Restruct Shahidehpo 6. W. H. J. systems op 42–47. 7. M. A. Ol in electricit Hawaii, Jan 8. X. Guan market: Ne pp 331–350 9. Turner,V 10. Industri	CES perations John Will anding elec b, 1998. ystem ecc on of restr uwer Aca ured elec bur, Muw R. Dunn eration, I lson, S. J ty market nuary 5–8 , P. B. Lu w challer). Vayne.C. ial Econo	th: Integrated resource scheduling a nges, Special Issue J. Discrete Even , Energy Management Hand Book., pmics-an Introductory text book R	orrin Philipson, H. Le ctricity Steven Stoft, attacharya, Jaap E. E ding and volatility M ub., 2001. act of market restruc wer Engineering, vol- ign and motivated hu ternational Conferent and bidding in the dea to Dynamical System ,2nd Edition R Barathwal- Profess	ee Willis, N John Wile Daadler, M Iohammad turing on p . 8, Januar iman tradi ice System regulated e s, Vol. 9, 1 sor IIT Ka	Marcel y & Sons, ath H.J. oower y 1995, pp ng behaviors is Science, electric power No. 4, 1999,
		cs-Theory and Application by Anin K.Jain – Vikas Publishing House. Course Pla			
Module		Contents		Hours	Sem. Exam Marks
I	and ope market	system restructuring: - Introduction, eration:- Objective of market operat models, Power market types, Marke nents in market operation.	ion, Electricity	7	9

П	Demand and supply, Demand analysis - theory of demand, Elasticity of demand, Demand forecasting types- techniques of forecasting. Costs: short run –long run- relationship between short run and long run costs, perfect competition- Monopoly- Monopolistic and Oligopolistic, Determination of market price, Price discrimination.	7	9
	FIRST INTERNAL EXAM		
ш	Electricity price: price volatility, ancillary services in electricity power market, automatic generation control and its pricing, Generation assets valuation and risk analysis- introduction, VaR for Generation Asset Valuation, Generation Capacity Valuation	7	9
IV	Transmission Congestion Management and Pricing- transmission cost allocation methods, LMP, FTR and Congestion Management.	7	9
	SECOND INTERNAL EXAM		
V	Role of FACTS devices in competitive power market, Available Transfer Capability, Distributed Generation in restructured markets.	7	12
VI	Reactive power requirements under steady state voltage stability and dynamic voltage stability, reactive power requirements to cover transient voltage stability, System losses and loss reduction methods, Power tariffs and Market Forces shaping of reactive power, reactive power requirement of the utilities.	7	12
	END SEMESTER EXAM	1	

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6152.4/ 02EE6252.4	Electric Drives	3-1-0-4	2015

- 1. To familiarize students with the concepts of electric drives
- 2. To provide in-depth knowledge of power converters fed dc and ac drives in open and closed loop, and mathematical modeling of drives.

Syllabus

Vector Space, Calculus of Variations, Special Functions, linear programming, Probability Distribution, Constrained non-linear programming.

Expected outcome

Upon successful completion of this course, students will be able to attain a thorough understanding of electric drives and its applications.

References:

- 1. Dubey G. K., "Fundamentals of Electric Drives", 2nd Ed., Narosa Publishing House, 2007.
- 2. Pillai S. K., "A First Course in Electric Drives", 2nd Ed., New Age International Private Limited, 2008.
- 3. Mohan N., Undeland T.M. and Robbins W.P., "Power Electronics Converters, Applications and Design", 3rd Ed., Wiley India, 2008.
- 4. Dubey G. K., "Power Semiconductor Controlled Drives", Prentice-Hall International Editions, 2001.
- 5. Murphy J. M. D. and Turnbull F. G., "Power Electronics Control of AC Motors", Pregamon Press, 1990.
- 6. Bose B. K., "Power Electronics and Variable Frequency Drives", IEEE Press, Standard Publisher Distributors, 2001.
- 7. Krishnan R., "Electric Motor Drives Modeling, Analysis and Control", Prentice Hall of India Private Limited, 2007.

Course Plan				
Module	Contents	Hours	Sem. Exam Marks	
Ι	Introduction: Definition of electric drive, types of load; Speed-torque characteristic of driven unit/loads, motors, steady state and transient stability of drives; Classification and components of load torque; Selection of motor power capacity for different duty cycles. Speed Control of Motors: Review of braking and speed control of dc motor and induction motor, multi-quadrant operation, loss minimization in adjustable speed drives.	06	09	
п	Converter fed DC Drives: Principle of operation of converter fed separately excited dc motor drives, operation of dc drive under continuous and discontinuous armature current, armature voltage and current waveforms, effect of free- wheeling diode, analysis and performance evaluation, expression for speed-torque characteristic; Dual converter fed	06	09	

	dc drives, MATLAB simulation.		
	FIRST INTERNAL EXAM		
III	Inverter fed AC Drives: Constant V/f controlled induction motors, controlled current and controlled slip operations; variable frequency controlled induction motor drives; PWM inverter drives, operation of closed loop slip-speed controlled VSI and CSI fed ac drives, multiquadrant operation, MATLAB simulation.	08	09
IV	 Slip Power Controlled AC Drives: Static rotor resistance control, static Kramer drive. Stability Analysis: Mathematical modeling of induction motor drives, transient response and stability analysis. 	08	09
	SECOND INTERNAL EXAM		
V	Resonant-Link Converter fed Drive: Principle of soft switching in inverters and converters utilizing resonant circuits, modulation strategies and application in IM drives. Synchronous Motor Drives: Adjustable frequency operations, voltage fed and current fed self controlled drives.	07	12
VI	Modern Control Theory Applications: Fundamental of Fuzzy Logic Control; Fuzzy control of closed loop dc drive; Fundamentals of ANN control; Neural current and speed control of induction motor, field oriented control of induction motor drives.	07	12
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6252. 1.	Power Quality	3-0-0-3	2015

Objective of the course is to discuss various power quality issues and different methods to control them.

Course Outcome:

Upon successful completion of this course, students will be able to identify the power quality problems, causes and suggest suitable mitigating techniques.

References:

- 1. R. C. Durgan, M. F. Me Granaghen, H. W. Beaty, 'Electrical Power System Quality', McGraw
- 2. Jose Arillaga, Neville R. Watson, 'Power System Harmonics', Wiley, 1997
- 3. C. Sankaran, 'Power Quality', CRC Press, 2002
- 4. G. T. Heydt, 'Power Quality', Stars in circle publication, Indiana, 1991
- 5. Math H. Bollen, 'Understanding Power Quality Problems'
- 6. Power Quality Handbook
- 7. J. B. Dixit & Amit Yadav, 'Electrical Power Quality'
- 8. Recent literature

1
1.

Module	Contents	Hours	Sem. Exam Marks
I	Understanding Power Quality - Power quality issues in distribution systems - Sources and Effects of power quality problems, Power quality monitoring: Need for power quality monitoring,	7	9
п	Types of power quality disturbances - Voltage sag (or dip), Transients, short duration voltage variation, Long duration voltage variation, voltage imbalance, waveform distortion, and voltage flicker- methods of characterization- Power Quality Costs Evaluation - Causes and effects of power quality disturbances.	7	9

III	Harmonics -mechanism of harmonic generation-harmonic indices (THD, TIF, DIN, C – message weights). standards and recommended practices - Harmonic sources - SMPS, Three phase powerconverters, arcing devices, saturable devices, fluorescent lamps.	7	9
IV	Harmonic Analysis - Fourier series and coefficients, the Fourier transforms, discrete Fourier transform, fast Fourier transform, Window function- Effects of Power System harmonics on Power System equipment and loads	7	9
V	Modeling of networks and components under non-sinusoidal conditions-transmission and distribution systems-shunt capacitors-transformers-electric machines-ground systems- loads that cause power quality problems-power quality problems created by drives and its impact on drives.	7	12
VI	Harmonic elimination - Design philosophy of filters to reduce harmonic distortion - Power conditioners ,passive filter, active filter - shunt , series, hybrid filters, Computation of harmonic flows- Voltage regulation- devices for voltage regulation-capacitors for voltage regulation. Dynamic Voltage Restorers for sag, swell and flicker problems	7	12

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6152.2/ 02EE6252.2.	Energy Auditing and Management	3-0-0-3	2015

Objective of the course is to discuss various about energy auditing and management.

Course Outcome:

Upon successful completion of this course, students will be able to understand importance of energy and energy security.

References:

- 1. Success stories of Energy Conservation by BEE (www. Bee-india.org)
- 2. Utilization of electrical energy by S.C. Tripathi, Tata McGraw Hill.
- 3. Energy Management by W.R. Murphy and Mackay, B.S. Publication.
- 4. Generation and utilization of Electrical Energy by B.R. Gupta, S. Chand Publication.
- 5. Energy Auditing made simple by Balasubramanian, Bala Consultancy Services.
 - 1.

Course Plan

	Course Flai			
Module	Contents	Hours	Sem. Exam Marks	
Ι	Energy Scenario ;Classification of Energy resources, Commercial and non-commercial energy, primary and secondary sources, commercial energy production, final energy consumption, Energy needs of growing economy, short terms and long terms policies, energy sector reforms, distribution system reforms and up-gradation, energy security, importance of energy conservation, energy and environmental impacts, emission check standard, United nations frame work convention on climate change, Global Climate Change Treaty, Kyoto Protocol, Clean Development Mechanism, salient features of Energy Conservation Act 2001 and Electricity Act 2003. Indian and Global energy scenario. Introduction to IE Rules. Study of Energy Conservation Building Code (ECBC), Concept of Green Building	7	9	
Π	Demand Management ; Supply side management (SSM), various measures involved such as use of FACTS, VAR Compensation, Generation system up gradation, constraints on SSM. Demand side management (DSM), advantages and Barriers, implementation of DSM, areas of development of demand side management in agricultural, domestic and commercial consumers. Demand management through tariffs (TOD). Power factor penalties and incentives in tariff for demand control.	7	9	

	Apparent energy tariffs. Role of renewable energy sources in energy management, direct use (solar thermal, solar air conditioning, biomass) and indirect use (solar, wind etc.)		
III	Energy Audit ; Definition, need of energy audit, types of audit, procedures to follow, data and information analysis, energy audit instrumentation, energy consumption – production relationship, pie charts. Sankey diagram, Cusum technique, least square method and numerical based on it. Outcome of energy audit and energy saving potential, action plans for implementation of energy conservation options. Bench- marking energy performance of an industry. Energy Audit Report writing as per prescribed format. Audit case studies of sugar, steel, paper and cement industries.	7	9
IV	: Energy Conservation in Applications (09 hrs) Motive power (motor and drive system). b) Illumination c) Heating systems (boiler and steam systems) c) Ventilation(Fan, Blower, Compressors) and Air Conditioning systems d) Pumping System e) Cogeneration and waste heat recovery systems f) Utility industries (T and D Sector) g) Diesel generators.	7	9
LL			
V	Energy Conservation in Applications ; Motive power (motor and drive system). b) Illumination c) Heating systems (boiler and steam systems) c) Ventilation(Fan, Blower, Compressors) and Air Conditioning systems d) Pumping System e) Cogeneration and waste heat recovery systems f) Utility industries (T and D Sector)	7	12
VI	Financial Analysis and Case Studies ; Costing techniques; cost factors, budgeting, standard costing, sources of capital, cash flow diagrams and activity chart. Financial appraisals; criteria, simple payback period, return on investment, net present value method, time value of money, break even analysis, sensitivity analysis and numerical based on it, cost optimization, cost of energy, cost of generation, Energy audit case studies such as IT sector, Textile, Municipal corporations, Educational Institutes, T and D Sector and Thermal Power station.	7	12
END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6252.3	Distributed Generation	3-0-0-3	2015

1. Have a working knowledge of the emerging power generation technologies such as photovoltaic arrays, wind turbines, and fuel cells.

2. Model renewable electrical energy systems for analysis and design.

3. Calculate the basic performance parameters of these systems, such as efficiency and cost.

4. Perform basic assessment and design of a renewable electrical energy system for a given application.

Course Outcome:

Upon successful completion of this course, students will be able to choose the right renewable energy source and storage method

References:

1. Twidell J N& Weir A D, "Renewable Energy Sources", University press, Cambridge.

2. Sukhatme, S.P., "Solar Energy -Principles of Thermal Collection and Storage", Tata McGraw-Hill, New Delhi.

3. Kreith F and Kreider J F, "Principles of Solar Engineering", Mc-Graw-Hill Book 4. Soo S L, "Direct Energy Conversion", Prentice Hall Publication.

5. James Larminie, Andrew Dicks, "Fuel Cell Systems", John Weily & Sons Ltd.

6. Manwell J F, Mcgowan J G, Rogers A L, "Wind Energy Explained", John Weily & SonsLtd.

7. Chapman and Womack E J, "MHD Power Generation Engineering Aspects", Hall Publication.

8. G.D, Rai "Non Conventional Energy Sources", Khanna Publications,

1.					
	Course Plan				
Module	Contents	Hours	Sem. Exam Marks		
I	Energy conversion –Introduction - Principle of Renewable energy systems-Technical and social implications. Solar energy: Overview of solar energy utilization methods- Solar energy collectors - Flat plate collectors –Different type of flat plate collectors - Energy balance equation-Collector efficiency-Concentrating collector –Focusing type-Advantage and Disadvantage of concentrating collectors.	7	9		
П	Solar energy storage systems-solar pond-Extraction of thermal energy-Applications of solar ponds-solar thermal applications–Water heating - space cooling-water distillation- solar thermal electric power generation systems- Drying and cooking	7	9		
	FIRST INTERNAL EXAM				

III	DEC devices-Solar PV modules from Solar cells-Upper limits of cell parametersDesign and structure of PV modules -Rating of PVmodules-Batteries of PV system- water pumping applications.	7	9
IV	Fuel cells: Classification -Types- Advantages-Disadvantages Conversion efficiency-Work output and EMF of fuel cell Applications; MHD systems-Advantages-Design problems- Electrical conditions -voltage and power output of MHD generator	7	9
	SECOND INTERNAL EXAM		
v	Wind energy: Characteristics-Wind energy extraction- Classification wind turbines-Types of rotors-Design of wind turbine rotor –Wind power generation curve-Modes of wind power generation –Advantages –Disadvantages.	7	12
VI	Biomass conversion technologies-Methods for obtaining energy from biomass. Ocean thermal energy conversion systems; open cycle system-limitations-Modified OTEC plant plant Cogeneration of electricity and Fresh water from open cycle OTEC closed cycle OTEC	7	12
END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE6252.4	SCADA systems and Applications	3-0-0-3	2015

To introduce SCADA systems, its components, architecture, communication and applications.

Course Outcome:

Upon successful completion of this course, students will be able to use SCADA systems in different engineering applications such as utility, communication, automation, control, monitoring etc.

References:

1. Stuart A Boyer. *SCADA-Supervisory Control and Data Acquisition*', Instrument Society of America Publications. USA. 1999.

2. Gordan Clarke, Deon RzynAzvs, Practical Modern SCADA Protocols: DNP3, 60870J

	Course Plan			
Module	Contents	Hours	Sem. Exam Marks	
I	Introduction to SCADA Data acquisition systems - Evolution of SCADA, Communication technologies Monitoring and supervisory functions- SCADA applications in Utility Automation, Industries	7	9	
П	- SCADA System Components: Schemes- Remote Terminal Unit (RTU), Intelligent Electronic Devices (IED),Programmable Logic Controller (PLC), Communication Network, SCADA Server, SCADA/HMI Systems			
	FIRST INTERNAL EXAM			
ш	SCADA Architecture: Various SCADA architectures, advantages and disadvantages of each system - single unified standard architecture -IEC 61850-SCADA	7	9	
IV	Communication:Various industrial communication technologies -wired and wireless methods and fibre optics-Open standard communication protocols.	7	9	
	SECOND INTERNAL EXAM			
V	Operation and Control of Interconnected power system – Automatic substation control –SCADA configuration-Energy management system, system operating states , system security, state estimation unit.			

	Exercises END SEMESTER EXAM	7	12
VI	SCADA Applications: Utility applications- Transmission and Distribution sector -operations, monitoring, analysis and improvement. Industries - oil, gas and water. Case studies, Implementation. Simulation Exercises	7	9

Course No.	Course Name	L-T-P-Credits	Year of Introduction	
02EE6271	Power Equipments Laboratory	0-0-2-2	2015	
Course Obje	ective			
Familiarizing	the students with various hardware tools	for power system		
List of Ex	periments/ Exercises			
• Testir	ng the dielectric strength of given sample of	of Transformer oil.		
• Testir	ng the dielectric strength of given solid die	lectric samples.		
• Electr	romechanical type under voltage relay			
• Electr	romechanical earth fault relay			
• Flash	over voltage			
• Measurement of soil resistivity and earth resistance.				
Measurement of insulating resistance				
• String Efficiency				
Electromechanical type overvoltage relay				
Static Over current relay				

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE7211. 1.	Electric and Hybrid Vehicles	3-0-0-3	2015

To present a comprehensive overview of Electric and Hybrid Electric Vehicle.

Course Outcome:

Upon successful completion of this course, students will be able to:

1. Choose a suitable drive scheme for developing an electric of hybrid vehicle depending on resources.

2. Design and develop basic schemes of electric vehicles and hybrid electric vehicles.

3. Choose proper energy storage systems for vehicle applications.

4. Identify various communication protocols and technologies used in vehicle networks..

References:

1. Iqbal Hussein, *Electric and Hybrid Vehicles: Design Fundamentals*, CRC Press, 2003.

2. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric

and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.

3. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

Course F	Plan
----------	------

Course Fian			
Module	Contents	Hours	Sem. Exam Marks
Ι	Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.	7	9
Π	 Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drivetrain topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. 	7	9
	FIRST INTERNAL EXAM		I
ш	Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.	7	9
IV	Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices.	7	9

SECOND INTERNAL EXAM			
V	Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology,Communications, supporting subsystems: In vehicle networks- CAN	7	12
VI	 Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV). 	7	12
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE7211.2	Power system Reliability	3-0-0-3	2015

Course Objective: To equip ike engineers for operating power systems more effectively and reliably utilizing the resources in an optimal manner

Course Outcome:

References:

1. K R Padiyar, 'Power System Dynamics', 2003

2. P Kundur, 'Power system Stability and Control\ McGraw-Hill Inc., 1994

3. T Van Cutsem, C Vournas, ' Voltage Stability of Electric Power Systems', Kluwer Academic Publishers, 1998

4. J JEndrenyi, 'Reliability modeling in electric power systems', John Wiley & Sons

5. Singh C, and Billinton R. 'System reliability modeling and evaluation', Hutchinston, London, 1977

1	
1	
-	1

	Course Plan				
Module	Contents	Hours	Sem. Exam Marks		
I	Concept of Power system stability-Types of stability Transient stability analysis: An Elementary View of Transient Stability-Structure of a complete power system model for transient stability analysis-Transient Stability Enhancement	7	9		
Π	Voltage Stability Analysis-Definition and Criteria- Mechanism of Voltage Collapse-Static Analysis: V-Q sensitivity analysis, Q-V modal analysis-Determination of Shortest distance to instability-The continuation load flow analysis-Important voltage stability indices-Prevention of Voltage Collapse.	7	9		
	FIRST INTERNAL EXAM				
ш	Concept of reliability, non-repairable components, hazard models, components with preventive maintenance, ideal repair and preventive maintenance, repairable components, normal repair and preventive maintenance	7	9		
IV	System reliability, monotonic structures, reliability of series- parallel structures, the V out of 'rf configuration, the decomposition methods, minimal tie and cut method, state space method of system representation, system of two independent components, two components with dependent failures, combining states, non-exponential repair times failure effects analysis, State enumeration method, application to non-repairable systems.	7	9		
	SECOND INTERNAL EXAM				

V	Other methods of system reliability, fault free analysis. Monte Carlo simulation, planning for reliability, outage definitions, construction of reliability models. Generating capacity reserve evaluation, the generation model, the probability of capacity deficiency, the frequency and duration method, comparison of the reliability indices, generation expansion planning, uncertainties in generating unit failure rates and in load forecasts. Operating reserve evaluation, state space representation of generating units, rapid start and hot-reserve units, the security function approach.	7	12
VI	Interconnected systems, two connected systems with independent loads, two connected system with correlated loads, more than two systems interconnected	7	12
END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE7211.3	DSP Applications	3-0-0-3	2015

Course Objective: To equip ike engineers for operating power systems more effectively and reliably utilizing the resources in an optimal manner

Course Outcome:

References:

1. John G. Proakis, and Dimitris G. Manolakis, Digital Signal Processing (third edition), Prentice-Hall of India Pvt. Ltd, New Delhi, 1997.

2. Emmanuel C. Ifeachor, Barrie W. Jervis, Digital Signal Processing-A practical Approach, Addison. Wesley, 1993.

3. Abraham Peled and Bede Liu, Digital Signal Processing, John Wiley and Sons, 1976.

4. Oppenheim and Schaffer, "Discrete time Signal processing", PHI, 1999.

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
I	Analysis of Discrete Time Signalsand LTI systems:Discrete time signals- Linear shift invariant systems- Stability and causality- Convolution and correlation-Sampling of continuous time signals	7	9
Ш	Discrete time Fourier transform- Discrete Fourier series- Discrete Fourier Transform- Z- transform and Properties of different transforms. LTI systems- FIR and IIR systems-Unit sample response- system function-difference equation – frequency response representations and their relations.	7	9
	FIRST INTERNAL EXAM		-
ш	Computation of DFT and Spectrum Analysis: Computation of Discrete Fourier Transform of elementary and arbitrary sequences. Fast Fourier transform: Radix-2 FFT-Decimation in time and decimation in frequency algorithms- Circular and linear convolution and correlation of two finite length sequences using DFT/FFT -linear convolution through circular convolution and implementation	7	9
IV	Sectioned convolutions, overlap add and overlap save method: Spectral analysis of deterministic signals – bias- frequency resolution-Windowing of data. Estimation of power spectrum of stationary random signals:-periodogram methods- Bartlett's method and Welch method of Power spectrum estimation.	7	9
	SECOND INTERNAL EXAM	L	1
V	Digital Filter Design and Realization Structures: Design of IIR digital filters –Butterworth and Chebyshev filters- from	7	12

	analog filters- Impulse invariance method and Bilinear transformation method- FIR linear phase filter design using window functions- Comparison of IIR and FIR digital filters – Basic IIR and FIR filter realization structures-direct, cascade and parallel realizations.		
VI	Analysis of Finite Word-length Effects: Quantization process and errors- Coefficient quantization effects in IIR and FIR filters- A/D conversion noise- Arithmetic round-off errors – Dynamic range scaling- Overflow oscillations and zero input limit cycles in IIR filters. Effect of quantization noise in cascade and parallel operations	7	12
END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE7111.4/ 02EE7211.4	Power system Instrumentation	3-0-0-3	2015

Course Objective: To equip ike engineers for operating power systems more effectively and reliably utilizing the resources in an optimal manner

Course Outcome:

References:

1. "Modern Power Station Practice, Volume F: Control and Instrumentation", British Electricity International, Peragmon Press. 1990

2. Elliott T. C., "Standard Hand Book of Power Plant Engineering", McGraw-Hill International Book Company. 1989

3. Van A. R. and Warrington C., "Protective Relays- Their Theory and Practice", Vol. 1, Chapman and Hall Ltd. 1968

4. Rao T. S. M., "Power System Protection – Static Relays with Microprocessor Applications", 2nd Ed., Tata McGraw-Hill Publishing Company Limited. 2008

Course Plan			
Module	Contents	Hours	Sem. Exam Marks
I	Measurement of Electrical Quantities: Measurement of voltage, current, phase angle, frequency, active power and reactive power in power plants; Energy meters and multipart tariff meters	7	9
Ш	Voltage and Current Transformers: Voltage transformers for measurement and protection, errors, transient performance; capacitive voltage transformers and their transient behavior; Current transformers for measurement and protection, composite errors, transient response.	7	9
	FIRST INTERNAL EXAM	1	
ш	Hydro Electric Power-Plant Instrumentation: Measurement of flow, level, pressure, temperature, hydraulic head and mechanical vibrations; Temperature scanners; Alarm annunciators.	7	9
IV	Thermal Power-Plant Instrumentation: Measurement of gas flow; Gas and feed-water analysis; Flame monitoring; Steam turbine instrumentation.	7	9
SECOND INTERNAL EXAM			
V	Nuclear Power-Plant Instrumentation: Reactor safety, neutron flux measurement; Reactor power level and coolant measurements.	7	12

VI	Proactive Relays: Organization of protective relay; Single input, two-input and multi-input relays; Electromagnetic, electronic and digital relays.	7	12	
END SEMESTER EXAM				

Course N	0.	Course Name	L-T-P-Credits	Ir	Year of troduction
02EE722	1.1	EHV AC & DC TRANSMISSION SYSTEM	3-0-0-3		2015
Course Ol ●	ojective				
Syllabus					
Expected	outcome				
 P.Kundu Arrillag Rao S," 	dre R.D,"EHVA r,"Power Syster a J,"HVDC Trat EHV AC & HV	C Transmission Engineer n Stability and Control", I nsmission", Peter Peregrir DC Transmission System ower Transmission System	Mc Graw Hill Publicati nus Pub. s", Khanna Publishers.		
•		Course F	Plan		
Module		Contents		Hours	Sem. Exam Marks
Ι	Analysis of long line theory Long line theory- long distance transmission problems-corona power loss- Charge Voltage Diagram with corona-Attenuation of travelling waves due to corona		7	9	
II	Audible noise: Generation and characteristics-Limits for audible noise- AN measurement and Meters-Relation between single phase and three phase AN levels- day Night Equivalent Noise level. Radio Interference RIV and excitation functions: Generation and properties of corona pulses-Limits for radio interference fields- The CIGRE Formula- Rules for addition of RI levels of three phases-S/CS Line-Rules for addition of RI Levels for a D/C Line			7	9
		FIRST INTERN	ALEXAM		
Ш	EHVAC transmost and The Circu breaker-Over v induction curre	Sequential impedances of mission over voltages- Sho it Breaker- Recovery volta voltages caused by interru- ent-Interruption of Capaci er voltages- Calculation of quivalents.	ort Circuit Current age and Circuit ption of Low tive currents-Ferro	7	9
IV	voltage testing Voltages- Volt voltmeter and	witching surges on EHV s of AC equipments: Meas tage dividers-High speed of sphere gap- Digital Recor rgeLayout of EHV Labor	urement of High oscilloscope-Peak der-Measurement of	7	9
		SECOND INTER	NAL EXAM		
V	Introduction to	HVDC system Comparis	son of EHV AC & DC	7	12

	conversion and inversion- Analysis of three phase bridge converter and Performance equations - abnormal operations of converter.			
VI	Control of HVDC system Control of HVDC system- Principle of DC link control- current and Extinction angle control power and reactive power control- alternative inverter control modes. Harmonics and AC/DC filtersInfluence of AC system strength on AC/DC system interaction. Responses to DC and AC system faults	7	12	
	END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction
02EE7221.3	DYNAMICS OF POWER CONVERTERS	3-0-0-3	2015

To equip the students with the dynamic aspect of different converters and their analysis.

Course Outcome:

Upon successful completion of this course, students will be able to:

1. Develop dynamic models of switched power converters using state space averaging and circuit averaging techniques.

- 2. Develop converter transfer functions.
- 3. Design closed loop controllers for DC-DC power converters.
- 4. Design and implement current mode control for DC-DC converters.

References:

1. Robert Erickson and Dragan Maksimovic, '*Fundamentals of Power Electronics*', Springer India 2. John G. Kassakian, *et al.*, '*Principles of Power Electronics*', *Pearson Education*

Module	Contents	Hours	Sem. Exam Marks
I	Fundamentals of Steady state converter modelling and analysis, Steady-state equivalent circuits, losses and efficiency. Inclusion of semiconductor conduction losses in converter model.Small-signal AC modelling- Averaging of inductor/capacitor waveforms- perturbation and linearisation.	7	9
Ш	State-Space Averaging-Circuit Averaging and averaged switch modelling- Canonical Circuit Model Manipulation of dc-dc converters' circuit model into Canonical Form-Modelling the pulse width Modulator.	7	9
	FIRST INTERNAL EXAM		
ш	Converter Transfer Functions:-Review of frequency response analysis techniques- Bode plots Converter transfer functions-graphical construction. Measurement of ac transfer functions and impedances.	7	9
IV	Controller Design: Effect of negative feedback on the network transfer functions-loop transfer function-Controller design specifications- PD, PI and PID compensators - applications to the basic dc -dc topologies - Practical methods to measure loop gains: Voltage and current injection.	7	9
	SECOND INTERNAL EXAM		

VI	 equivalent circuit modelling of the discontinuous conduction mode-Generalised Switch Averaging-small-signal ac modelling of the dcm switch network- Current-Mode Control: Average Current- mode Control, Peak Current-mode control-first order modelsaccurate models for current-mode control-application to basic dc-dc converter topologies-Subharmonic oscillation for d > 0.5; Slope compensation- Discontinuous conduction mode in current-mode control. 	7	12
V	DC-DC converter with isolation: Fly back converters- other fly back converter topologies, forward converter, The forward converter switching transistor- Variation of the basic forward converter, Push pull converter-Push pull converter transistor-Limitation of the Push Pull circuit-circuit variation of the push pull converter-the half bridge and full bridge DC-DC converters. High frequency inductor design and transformer design considerations, magnetic core, current transformers.Converters in Discontinuous Conduction Mode: AC and DC	7	9

Course No.	Course Name	L-T-P-Credits	In	Year of troduction		
02EE7221.4	POWER SYSTEM OPERATION AND CONTROL	3-0-0-3		2015		
Course objectiv	<i>e</i> :					
	e course is to make the students aware the of power system.	he importance of Eco	nomic ope	eration as		
Dispatch commitment an	<i>e:</i> Upon successful completion of this of a power system economically consider d security constraints. AGC including excitation system and	ring take or pay fuel of		nit		
Allen J.Wood, V Second Edition, 2. S S. Vadhera 3. Kirchmayer I 4. <i>Nagrath, I.J.</i> 5. B. M. Weedy 6. A Montieelli, 7. Ali Abur & A <i>Theory and Imp</i> 8. Hadi Sadat, <i>H</i>	 References: Allen J.Wood, Wollenberg B.F., <i>Power Generation Operation and Control</i>, John Wiley & Sons, Second Edition, 1996. 2. S S. Vadhera, <i>Power System Analysis and Stability</i>, Khanna Publishers 3. Kirchmayer L.K., <i>Economic Control of Interconnected Systems</i>, John Wiley & Sons, 1959. 4. Nagrath, I.J. and Kothari D.P., Modern Power System Analysis, TMH, New Delhi, 2006. 5. B. M. Weedy, 'Electric Power Systems', John Wiley and Sons, New York, 1987 6. A Montieelli., <i>State Estimation in Electric Power System-A Generalised Approach</i> 7. Ali Abur & Antonio Gomez Exposito, Marcel Dekkerjnc, <i>Power System State Estimation-Theory and Implementation.</i> 8. Hadi Sadat, <i>Power System Analysis</i>, Tata McGraw-Hill 9. Recent literature. 					
	Course Pla	n				
Module	Contents		Hours	Sem. Exam Marks		
Ι	Introduction-Review of Thermal units. iteration method-First order gradient m base point and participation factors. Generation with limited supply-Take o composite generation production cost function- solution of gradient search te limits and slack variables	ethod r pay fuel contract-	7	9		
П	Hydro-thermal coordination-Long rang scheduling- Hydro-electric plant models- scheduling problems types of problems. Scheduling energy -short-ten hydrothermal scheduling problem- Pur plants- pumped storage hydro scheduling λ - γ iteration. Inter change evaluation and power poor interchange evaluation with unit commitments.	scheduling m nped storage hydro	7	9		

ш	Types of interchange. Energy banking-power pools. Power system security-system monitoring-contingency analysis- security constrained optimal power flow- Factors affecting power system security. monitoring-contingency analysis- security constrained optimal power flow- Factors affecting power system security. State estimation in power system- Introduction	7	9
IV	Control of generation-Automatic Generation control Review- AGC implementation - AGC features - Modelling exercise using SIMUL1NK. AGC with optimal dispatch of Generation- Voltage control-AGC including excitation system. MVAR control - Application of voltage regulator – synchronous condenser – transformer taps – static VAR compensators	7	9
V	Optimal power flow –solution-grdient method -newton method –linear sensitivity analysis-sensitivity coefficients of an AC networksecurity constrained optimal powerflow Interior point algorithm –Bus incremental costs.	7	12