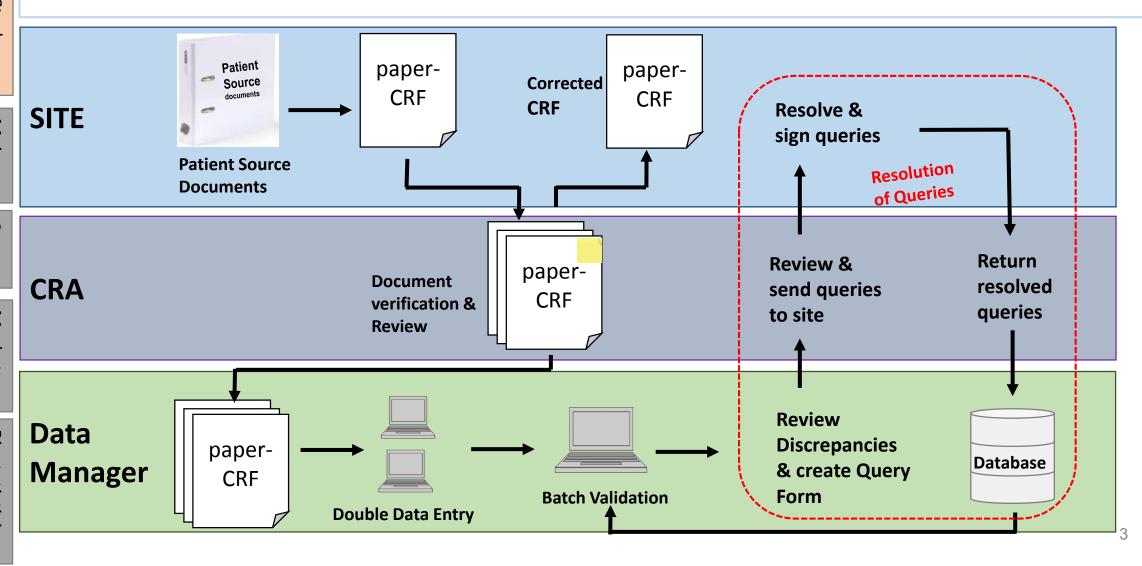
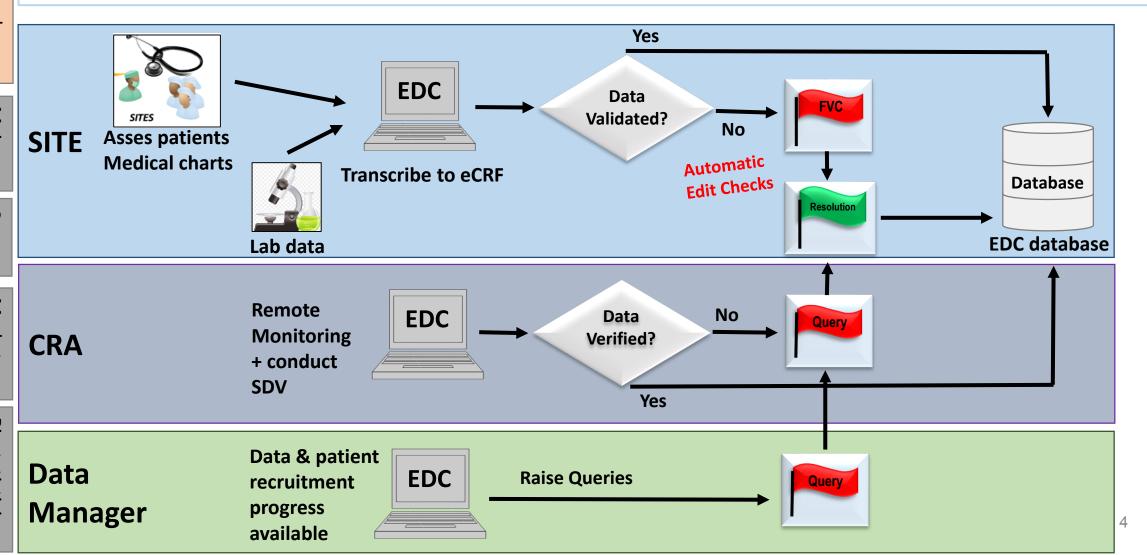

KEY CONSIDERATIONS AND CHALLENGES OF EDC IN THE IMPLEMENTATION AND STATISTICS OF CLINICAL TRIALS

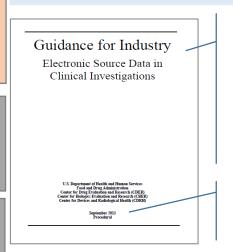
Liora Bosch

Biostatistician and EDC expert,
Omrix Biopharmaceuticals, Johnson & Johnson


A Brief Survey:

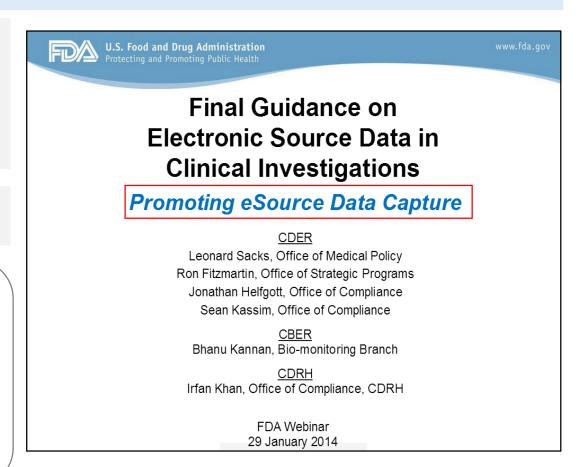
Which of the following describes your organization's Data Management?


- Full EDC system
- Hybrid combination of paper-CRF and EDC
- Paper-CRF

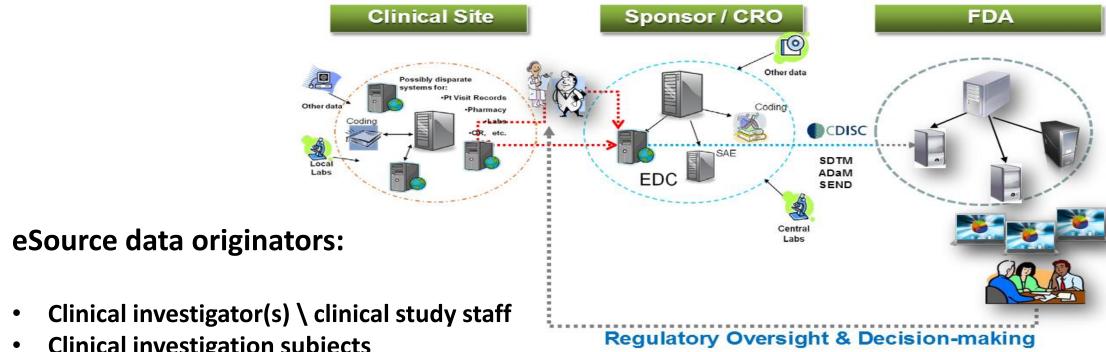

Data collection using paper-CRF

Data collection using eCRF

FDA 2013: Promoting eSource

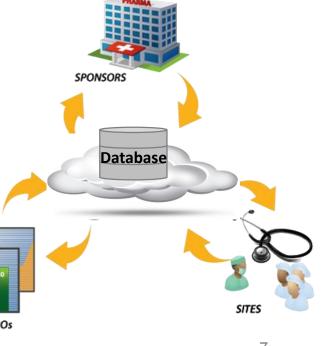

Guidance for Industry

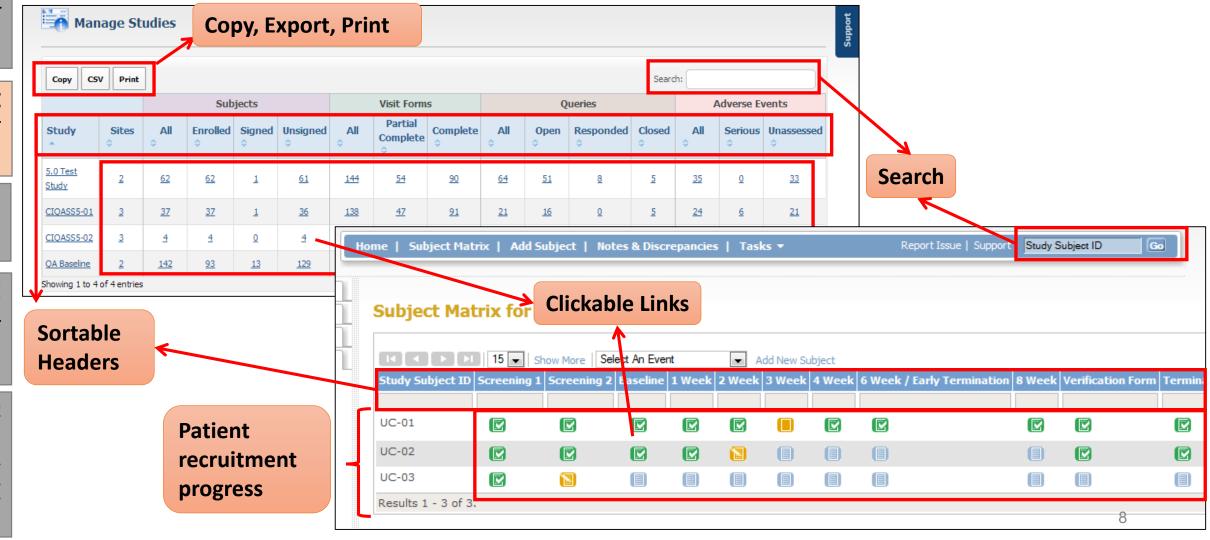
Electronic Source Data in Clinical Investigations


September 2013

Why eSource?

- "...promotes capturing source data in electronic form...,"
- [assists] "in ensuring the reliability, quality, integrity, and traceability of electronic source data."

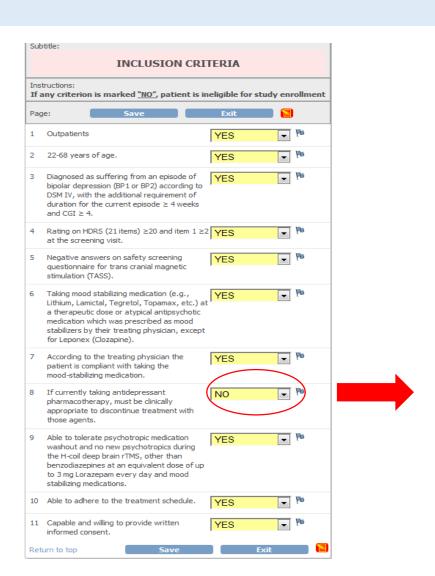

Data initially recorded in electronic format – no intermediary

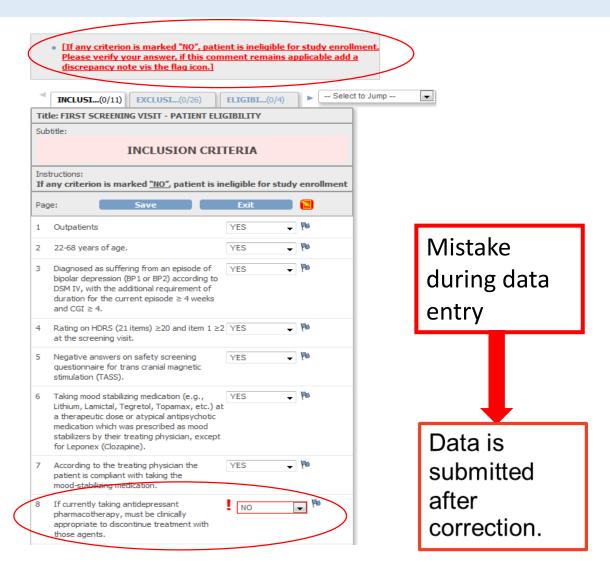

- **Clinical investigation subjects**
- **Consulting services** (e.g., a radiologist reporting on a CT scan)
- **Medical devices**
- **Electronic health records** (EHRs)
- **Automated laboratory reporting systems**

Benefits of EDC deployment

- REAL TIME Automatic Edit Checks
- Worldwide Connectivity Real Time Data Accumulation
- REAL TIME Recruitment progress and status updates automatically on EDC dashboard
- Ability to control both hierarchical data access and data transparency
- Higher data quality increased statistical power
- Mid-term reports easily accomplished

EDC Applications Dashboards




REAL TIME Edit Checks

- Predefined in the EDC system, usually by the data manager.
- Prevent the end-user from entering mistaken invalidated data.
- Simplify monitoring activities

Edit Check type	Example
Patient Eligibility	If any Exclusion Criteria are yes , then error message that Subject should not participate .
Comment availability	If a body system is selected as Abnormal , a reason must be provided.
Chronologic dating	End date is not before Start Date
Range checks	Age is between 18 and 85

Example for a Failed Validation Check (1):

Example for a Failed Validation Check (2):

[Make sure you convert the Temperature from F to C! If the temperature was entered in Celsius and is still out of range: 35.5-41°C, please add a discrepancy note via the flag icon.]

System Alert!

4	VS_BMSE(0/19)	Select to Jump				
Title	Title: BL					
Subt	Subtitle:					
BASELINE VISIT						
Page	e: 🔲 Mark CRF	Complete Save		Exit		
	DATE OF VISIT:	05-Dec-2011	* /Po (D	D-MMM-YYYY)		
	VITAL SIGNS					
	Pulse Rate:	80	№ (/min)	Temperature:	98.4	(°C)
		Pulse was not obtained		Temp wa	s not obtained 🏴	

Temperature entered in F instead of °C.

Data is submitted after correction.

Data Element Identifiers (DEIs) enable Audit Trail

- The eCRF should include the capability to record Audit Trail:
 - Who entered / transmitted and When?
 - What changes were made? When? Why?

- DEIs should be attached to each data element:
 - Originators of the data element
 - Date and time of data entry into the eCRF
 - Subjects to which the data element belongs

- Allowing sponsors, FDA, and other authorized parties to examine
 the audit trail of the eCRF data.
- Allowing <u>FDA</u> to reconstruct and evaluate the <u>clinical investigation</u>.

Possible EDC implementation obstacles

- High upfront cost
- Inability to work offline
- Need to invest in technical knowledge
- Resistance to change
- Restrictive Data Entry
- Loss of flexibility

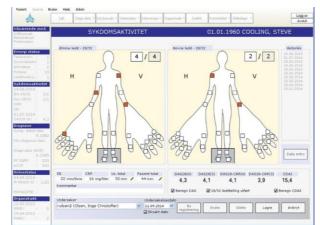
Pros or Cons?

Let's have a closer look

NOR-DMARD Case Study (1): Transition from paper-CRF to EDC system

• 2000 -> the NORwegian Disease Modifying Anti-Rheumatic Drugs (NOR-DMARD) registry started recording disease activity, quality of life measures and adverse events during DMARD treatment

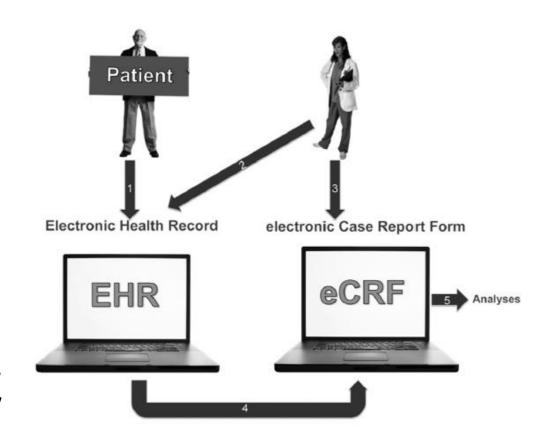
in 5 different rheumatology departments.


• 2011 -> new protocol with focus on biologic DMARD treatment

• In addition **Electronic Health Record system** was implemented to enhances disease monitoring, e.g. providing a graphic and numeric display of data.

EHR system limitations:

- 1. The study tool was quite rigid and limited to pre-specified modules;
- 2. Adverse Events and other protocol-specific information couldn't be adequately captured;
- 3. No Audit Trail or query handling;
- 4. The data were stored locally without a central database.



NOR-DMARD Case Study (2): Transition from paper-CRF to EDC system

Data flow in the NOR-DMARD registry:

- 1. The **Patient records** his patient registered outcomes (**PROs**) into the EHR system;
- 2. The treating nurse/physician also records clinical information into the EHR system;
- 3. Adverse Events are registered directly to the EDC system.
- 4. The EDC system generates a unique patient number, which is then registered in the EHR. Enabling transfer from one system to the other.
- **5. Data** in the eCRF is **available for analyses at any time.**

NOR-DMARD Case Study (3): Transition from paper-CRF to EDC system

Previous paper-CRF vs. current EDC system costs comparison:

	paper-CRF
CRO Costs	14 EUR per visit\CRF
Total	~88,000 EUR

	EDC
Initial set-up costs (+ licensing fees)	18,000 EUR
Yearly licensing fees	1,800 EUR
Total	24,000 EUR*

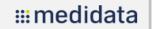
^{*}Exclude the costs of the EHR system and some internal data management costs.

This illustration is based on data from almost **6400 visits** in **3400 patients** included in the EDC system between May 2012 and August 2014.

NOR-DMARD Case Study (4): Transition from paper-CRF to EDC system

EDC Advantages:

- Data feasibility,
- Lower cost,
- Data quality, and
- Routine data extraction within minutes


Problems and challenges:

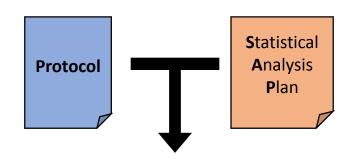
- Export/Import routine is complex and relies on SAS programming expertise: <u>only one</u> <u>person</u> within the study management had the necessary knowledge to import from the EHR into the EDC system.
- The export/import routine is quite time consuming ~ 10 hours per transfer.

EDC available at the market

	Commercial EDC	Open-Source EDC
Developer:	For-profit company or developer group	A single or group of developers, often as a voluntary effort.
Charges:	User licenses with or without annual support contracts	Free of charge *requires personnel training
Source Code:	Not published	Published online and can be downloaded for free
Some examples include:	Oracle® Clinical (Oracle, USA) Clinsys® (Jubilant Organosys, USA) InForm™ (Phase forward, USA) DATATRAK EDC (DATATRAK, USA) Medidata Rave® (Medidata Solutions)	OpenClinica® (Akaza Research, USA) DADOS P (Research group, Duke University, USA) Redcap (Vanderbilt University, USA) TrialDB (Yale University, USA)

Considerations when comparing systems available at the market

- Availability of relevant personnel to support the system?
- Multi -central / single site?
- Payment per study? Or monthly fee to run all your studies?
- Payment per system user? per site?
- Training site personnel? Support number?


• There are no clear rules!

Biostatistician involvement in EDC system design

Principal Investigator

- **Study purpose** and objectives
- Define **tests** and **evaluations**
- Operational aspects

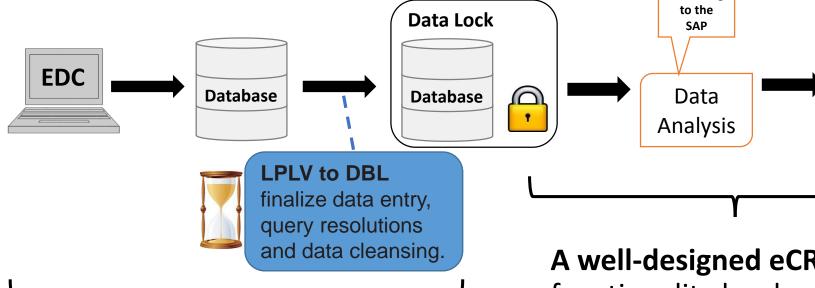
Biostatistician

- Study endpoints
- **Sample size** calculation
- Interim analysis planning
- Statistical methods

CRF review and approval

Case
Report
Form

- Ensure data requested will answer the aims of the study
- Review edit checks



Data Manager

 Develop electronic database

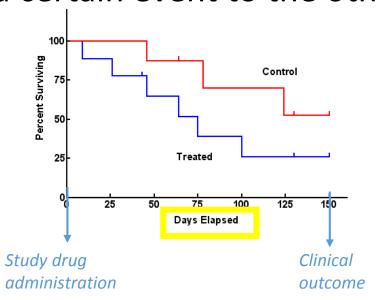
The clock is ticking -> Data analysis

Efficient database- less time to review /clean data

A well-designed eCRF, whose functionality has been matched to the needs of your particular protocol brings huge benefits in data quality —> increases statistical power.

Report

According


When statisticians review CRFs, they can be useful with:

- Making sure that only essential information is collected
- Consistent coding of variables -to avoid data loss or late detection.
- Identifying relevant data checks used to find errors early —in order to gain greater efficiencies
- Risk based monitoring helping decide which questionable data values are worth querying

Data error example:

Missing times - the most common missing variables in CRFs

• **Survival analysis:** is an analysis of the expected duration of time from a certain event to the other.

Expected survival Times	Required units
Long-term survival times	Calendar dates
Shorter-term survival times	Calendar dates+ clock times (sometimes even seconds!)

• In case the CRF design fails to capture time with sufficient accuracy, we will loss statistical power.

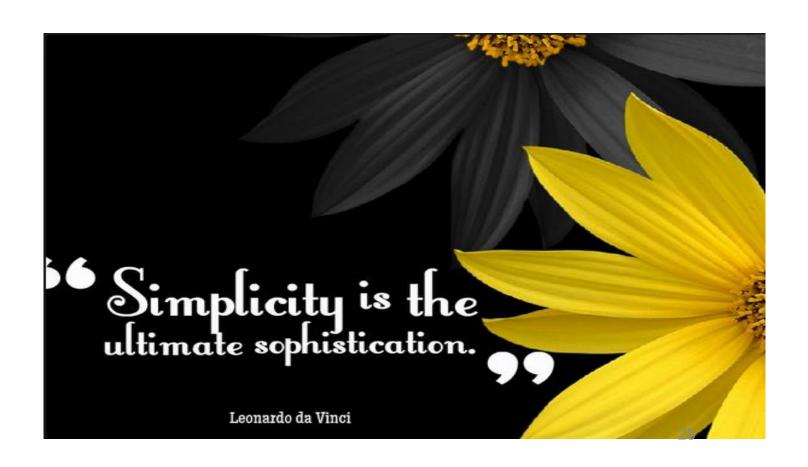
The future holds:

Implementation of statistical process control into the eCRF

For monitoring complex systems:

Patient recruitment – continues data entry

Ongoing <u>review</u> of emerging data


Identify any unexpected changes in baseline values

Verify change cannot be explained by random variation

- This could be done while the trial is still running!
- In a conventional locked clinical database such artefacts are identified only during data analysis, it is then lowering the trial power.

Thanks for listening!!!

