
Page 1

ECE597/697 Koren Part.13 .1 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Israel Koren

UNIVERSITY OF MASSACHUSETTS
Dept. of Electrical & Computer Engineering

Introduction to Cryptography
ECE 597XX/697XX

Part 13

Key Establishment

ECE597/697 Koren Part.13 .2 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

♦ Introduction

♦ The n2 Key Distribution Problem

♦ Symmetric Key Distribution

♦ Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

Content of this part

Page 2

ECE597/697 Koren Part.13 .3 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Classification of Key Establishment
Methods

In an ideal key agreement protocol, no single
party can control what the key value will be.

ECE597/697 Koren Part.13 .4 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

It is often desirable to frequently change the key in a
cryptographic system.

Reasons for key freshness include:

• If a key is exposed (e.g., through hackers), there is limited
damage if the key is changed often

• Some cryptographic attacks become more difficult if only a
limited amount of ciphertext was generated under one key

• If an attacker wants to recover long pieces of ciphertext,
he has to recover several keys which makes attacks harder

Key Freshness

Page 3

ECE597/697 Koren Part.13 .5 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Key Derivation

� In order to achieve key freshness, we need to generate new keys

frequently.

� The key kAB is fed into a key derivation function (KDF) together

with a nonce r („number used only once“).

� Every different value for r yields a different session key

� Rather than performing a full key

establishment every time (which is

costly in terms of computation

and/or communication), we can

derive multiple session keys kses from

a given key kAB.

ECE597/697 Koren Part.13 .6 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Key Derivation

� The key derivation function is a

computationally simple function, e.g.,

a block cipher or a hash function

Alice Bob

generate nonce r

derive session key
Kses= ekAB (r)

r

derive session key
Kses= ekAB (r)

� Example for a basic protocol:

�Other alternatives:

Kses= HMACkAB (r) or Kses= ekAB (Counter)

Page 4

ECE597/697 Koren Part.13 .7 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

The n2 Key Distribution Problem

� Simple situation: Network with n users. Every user wants to

communicate securely with every of the other n-1 users.

�Naive approach: Every pair of users obtains an individual pair key

ECE597/697 Koren Part.13 .8 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

The n2 Key Distribution Problem

Shortcomings

� There are n (n-1) ≈ n2 keys

stored in the system

� There are n (n-1)/2 pair keys

� If a new user Esther joins the

network, new keys kXE have to be

transported via secure channels

to each of the existing users

⇒⇒⇒⇒ Only works for small networks

which are relatively static

Example: mid-size company with 750 employees

� 750 x 749 = 561,750 keys must be distributed securely

Page 5

ECE597/697 Koren Part.13 .9 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Key Distribution Center (KDC)

Alice Bob

derive session key

Kses= e-1
KA (yA)

KDC

KEK: kA KEKs: kA , kB KEK: kB

RQST (IDA ,IDB) Generate random session
key kses

yA = eKA (kses)

yB = eKB (kses)
yA yB

derive session key

Kses= e-1
KB (yB)

y= eKses (x) y x= e-1
Kses (y)

� KDC = Central party, trusted by all users

� KDC shares an individual key encryption key (KEK) with each user

� KDC sends session keys to users which are encrypted with KEKs

message y

� Example: Use AES with KEKs & fast stream cipher w/ short-lived kses

ECE597/697 Koren Part.13 .10 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Key Establishment with Key
Distribution Center

�Advantages over previous approach:

−Only n long-term key pairs are in the system

−If a new user is added, a secure key is only needed

between him and the KDC (other users not affected)

−Scales well to moderately sized networks

�Replay attack: Oscar breaks an old session key, resends

old messages yA and yB , and can then decrypt all messages

�Key confirmation attack: Oscar intercepts Alice‘s request

RQST (IDA ,IDB) and sends to KDC RQST (IDA ,IDo). Alice believes

that she communicates with Bob and Oscar will decrypt her

messages – there is no key confirmation

Page 6

ECE597/697 Koren Part.13 .11 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Kerberos - Authentication and Key
Distribution Standard Protocol

Alice Bob

Kses ,r`A,T,IDB= e-1
KA (yA)

verify r`A =rA , IDB and T
generate time-stamp Ts

yAB = eKses (IDA,Ts)

KDC
KEK: kA KEKs: kA , kB KEK: kB

RQST (IDA ,IDB ,rA) Generate random kses

generate lifetime T

yA = eKA (kses,rA,T,IDB)

yB = eKB (kses,IDA, T)
yA ,yB

y= eKses (x) y x= e-1
Kses (y)

yAB ,yB

Kses ,IDA,T= e-1
KB (yB)

ID`A ,Ts = e-1
Kses (yAB)

verify ID`A= IDA

verify T and Ts

� Protects against both attacks

� Adds Lifetime T, Time stamp Ts and Nonce (only KDC can send

new keys)

ECE597/697 Koren Part.13 .12 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Key Establishment with Key
Distribution Center

Remaining problems:

�No Perfect Forward Secrecy: If the KEKs are

compromised, an attacker can decrypt past messages if he

stored the corresponding ciphertext

� Single point of failure: The KDC stores all KEKs. If an

attacker gets access to this database, all past traffic can

be decrypted.

� Communication bottleneck: The KDC is involved in every

communication in the entire network (can be countered by

giving the session keys a long life time)

� Initialization: when a new user joins – public key cipher for

new key transport

Page 7

ECE597/697 Koren Part.13 .13 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Alice

Recall: Diffie–Hellman Key Exchange (DHKE)

Bob
Choose random private key

kprA = a ∈∈∈∈ {1, 2,…, p-1}

Choose random private key

kprB = b ∈∈∈∈ {1, 2,…, p-1}

Compute public key

kpubA = A = αa mod p
Compute public key

kpubB = B = αb mod p

Compute common secret

kAB = Ba = (αa)b mod p
Compute common secret

kAB = Ab = (αb)a mod p

A

B

� If the parameters are chosen carefully (especially a prime

p>21024), DHKE is secure against passive (i.e., listen-only) attacks

�However, if the attacker can actively intervene in the

communication, the man-in-the-middle attack becomes possible

Public parameters α, p

ECE597/697 Koren Part.13 .14 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

y = AESkA,O (x)
y

re-encrypt y´= AESkB,O (x)

y´
x = AES-1

kB,O (y´)

decrypt x = AES-1
kA,O (y)

Alice
Man-in-the-Middle Attack

Bob

kprA = a

kpubA =A= αa mod p

kAO = (B´)a = (αo)a mod p

A

�Oscar computes a session key kAO with Alice, and kBO with Bob

� Alice and Bob think they are communicating with each other

� The attack performs 2 DH key-exchanges: Oscar-Alice & Oscar-Bob

kprB = b
Oscar

kpubB = B = αb mod p
A´substitute A´ = αo

mod p

B´ Bsubstitute B´ = αo

mod p
kBO=(A´)b =(αo)b mod p

kAO = Ao = (αa)o mod p

kBO = Bo = (αb)o mod p

�Oscar has complete control over the channel, e.g., if Alice wants

to send an encrypted message x to Bob, Oscar can read it:

Page 8

ECE597/697 Koren Part.13 .15 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Important facts about the Man-in-
the-Middle (MIM) Attack

� The man-in-the-middle-attack is not restricted to DHKE; it

is applicable to any public-key scheme, e.g. RSA encryption.

ECDSA digital signature, etc.

� Attack works always by the same pattern: Oscar replaces

the public key from one of the parties by his own key.

� The attack is also known as Janus attack

�What makes the MIM attack possible?

� A: The public keys are not authenticated: When Alice receives a public

key which is allegedly from Bob, she has no way of knowing whether it is

in fact his.

Even though public keys can be sent over unsecure

channels, they require authenticated channels.

ECE597/697 Koren Part.13 .16 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Certificates
� In order to authenticate public keys (and thus, prevent the MIM

attack) , all public keys are digitally signed by a central trusted

authority. Such a construction is called certificate

certificate = public key + ID(user) + digital signature over public

key and ID

� In its most basic form, a certificate for the key kpub of user Alice is:

Cert(Alice) = (kpub, ID(Alice), sigKCA(kpub,ID(Alice))

� Certificates bind the identity of user to her public key

� The trusted authority that issues the certificate is referred to as

certifying authority (CA)

� „Issuing certificates“ means in particular that the CA computes the

signature sigKCA(kpub) using its (super secret!) private key kCA

� The party who receives a certificate, e.g., Bob, verifies Alice‘s public

key using the public key of the CA

Page 9

ECE597/697 Koren Part.13 .17 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Certificate generation

CA generated keys:

User provided keys:

ECE597/697 Koren Part.13 .18 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Alice

Diffie–Hellman Key Exchange (DHKE)
with Certificates

Bob

verify certificate
verKpub,CA (Cert(Bob))

if verification is correct:
Compute common secret
kAB = Ba = (αa)b mod p

if verification is correct:
Compute common secret
kAB = Ab = (αb)a mod p

Cert(Alice)

kprA = a

kpubA = A

Cert(Alice) = ((A, IDA), sigKCA

(A,IDA))

Cert(Bob)

kprB = b

kpubB = B = αb mod p

Cert(Bob) = ((B, IDB), sigKCA

(B,IDB))

verify certificate
verKpub,CA (Cert(Alice))

CA
Cert(A

lice) Cert(Bob)

Page 10

ECE597/697 Koren Part.13 .19 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

♦Verfication requires the public key of the CA for verKpub,CA

♦In principle, an attacker could run a MIM attack when kpub,CA is
being distributed ⇒ The public CA keys must also be distributed
via an authenticated channel

Certificates

�Have we gained anything? After all, we try to protect a public

key (e.g., a DH key) by using yet another public-key scheme

(digital signature for the certificate)?

� Yes, the difference from a DHKE without certificates is that we

only need to distribute the public CA key once, often at the

set-up time of the system

� Example: Most web browsers are shipped with the public keys of

many CAs. The „authenticated channel“ is formed by the

(hopefully) correct distribution of the original browser software.

The entire system that is formed by CAs together
with the necessary support mechanisms is called a
public-key infrastructure (PKI).

ECE597/697 Koren Part.13 .20 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

♦ Certificates contain more information
than just a public key and a signature.

♦ X509 is a popular signature standard.
The main fields of such a certificate
are:

♦ The „Signature“ is computed over all
other fields in the certifcate (after
hashing of all those fields).

♦ Note that there are two public-key
schemes involved in every certificate:

1. The public-key is protected by the
signature („Subject‘s Public Key“).
This was the public Diffie-Hellman
key in the earlier examples.

2. The digital signature algorithm used
by the CA to sign the certificate
data.

Certificates in the Real World

Page 11

ECE597/697 Koren Part.13 .21 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

There are additional problems when certificates are to be used in
systems with a large number of participants. The more pressing
ones are:

1. Users communicate with other whose certificates are issued
by different CAs

•This requires cross-certification of CAs, e.g.. CA1 certifies
the public-key of CA2. If Alice trusts „her“ CA1, cross-
certification ensures that she also trusts CA2. This is called
a „chain of trust“ and it is said that „trust is delegated“.

2. Certificate Revocation Lists (CRLs)

•Another real-world problem is that certificates must be
revoked, e.g., if a smart card with certificate is lost or if a
user leaves an organization. For this, CRLs must be sent out
periodically (e.g., daily) which is a burden on the bandwidth
of the system.

Remaining Issues with PKIs

ECE597/697 Koren Part.13 .22 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

�Key agreement vs. Key transport

�Key freshness

�Key derivation

�Key establishment can be done using symmetric or
asymmetric (public key) techniques

�Key establishment with a Key Distribution Center

�Certificates

Lessons Learned

