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♦ Introduction

♦ The n2  Key Distribution Problem

♦ Symmetric Key Distribution

♦ Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

Content of this part
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Classification of Key Establishment 
Methods

In an ideal key agreement protocol, no single 
party can control what the key value will be.
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It is often desirable to frequently change the key in a 
cryptographic system. 

Reasons for key freshness include:

• If a key is exposed (e.g., through hackers), there is limited 
damage if the key is changed often

• Some cryptographic attacks become more difficult if only a 
limited amount of ciphertext was generated under one key

• If an attacker wants to recover long pieces of ciphertext, 
he has to recover several keys which makes attacks harder

Key Freshness
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Key Derivation

� In order to achieve key freshness, we need to generate new keys 

frequently.

� The key kAB  is fed into a key derivation function (KDF) together 

with a nonce r („number used only once“).

� Every different value for r yields a different session key

� Rather than performing a full key 

establishment every time (which is 

costly in terms of computation 

and/or communication), we can 

derive multiple session keys kses from 

a given key kAB.
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Key Derivation 

� The key derivation function is a 

computationally simple function, e.g., 

a block cipher or a hash function

Alice Bob

generate nonce r

derive session key
Kses= ekAB (r)

r

derive session key
Kses= ekAB (r)

� Example for a basic protocol:

�Other alternatives:

Kses= HMACkAB (r)   or   Kses= ekAB (Counter)
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The n2 Key Distribution Problem

� Simple situation: Network with n users. Every user wants to 

communicate securely with every of the other n-1 users.

�Naive approach: Every pair of users obtains an individual pair key
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The n2 Key Distribution Problem

Shortcomings

� There are n (n-1) ≈ n2 keys 

stored in the system

� There are n (n-1)/2 pair keys

� If a new user Esther joins the 

network, new keys kXE have to be 

transported via secure channels

to each of the existing users  

⇒⇒⇒⇒ Only works for small networks 

which are relatively static

Example: mid-size company with 750 employees

� 750 x 749 = 561,750 keys must be distributed securely
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Key Distribution Center (KDC)

Alice Bob

derive session key

Kses= e-1
KA (yA)

KDC

KEK: kA KEKs: kA , kB KEK: kB

RQST (IDA ,IDB) Generate random session 
key kses

yA = eKA (kses)

yB = eKB (kses)
yA yB

derive session key

Kses= e-1
KB (yB)

y= eKses (x) y x= e-1
Kses (y)

� KDC = Central party, trusted by all users

� KDC shares an individual key encryption key (KEK) with each user

� KDC sends session keys to users which are encrypted with KEKs

message y

� Example: Use AES with KEKs & fast stream cipher w/ short-lived kses

ECE597/697 Koren Part.13 .10 Adapted from Paar & Pelzl, “Understanding Cryptography,” and other sources

Key Establishment with Key 
Distribution Center

�Advantages over previous approach: 

−Only n long-term key pairs are in the system

−If a new user is added, a secure key is only needed 

between him and the KDC (other users not affected)

−Scales well to moderately sized networks

�Replay attack: Oscar breaks an old session key, resends 

old messages yA and yB , and can then decrypt all messages

�Key confirmation attack: Oscar intercepts Alice‘s request 

RQST (IDA ,IDB) and sends to KDC RQST (IDA ,IDo). Alice believes 

that she communicates with Bob and Oscar will decrypt her 

messages – there is no key confirmation
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Kerberos - Authentication and Key 
Distribution Standard Protocol

Alice Bob

Kses ,r`A,T,IDB= e-1
KA (yA) 

verify r`A =rA , IDB and T 
generate time-stamp Ts 

yAB = eKses (IDA,Ts)

KDC
KEK: kA KEKs: kA , kB KEK: kB

RQST (IDA ,IDB ,rA) Generate random kses 

generate lifetime T

yA = eKA (kses,rA,T,IDB)

yB = eKB (kses,IDA, T)
yA ,yB

y= eKses (x) y x= e-1
Kses (y)

yAB ,yB

Kses ,IDA,T= e-1
KB (yB)   

ID`A ,Ts = e-1
Kses (yAB) 

verify ID`A= IDA       

verify T and Ts

� Protects against both attacks

� Adds Lifetime T, Time stamp Ts  and Nonce (only KDC can send 

new keys)
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Key Establishment with Key 
Distribution Center

Remaining problems: 

�No Perfect Forward Secrecy: If the KEKs are 

compromised, an attacker can decrypt past messages if he 

stored the corresponding ciphertext 

� Single point of failure: The KDC stores all KEKs. If an 

attacker gets access to this database, all past traffic can 

be decrypted.

� Communication bottleneck: The KDC is involved in every 

communication in the entire network (can be countered by 

giving the session keys a long life time)

� Initialization: when a new user joins – public key cipher for 

new key transport
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Alice

Recall: Diffie–Hellman Key Exchange (DHKE)

Bob
Choose random private key

kprA = a ∈∈∈∈ {1, 2,…, p-1}

Choose random private key

kprB = b ∈∈∈∈ {1, 2,…, p-1}

Compute public key

kpubA = A = αa mod p
Compute public key

kpubB = B = αb mod p

Compute common secret

kAB = Ba = (αa)b mod p
Compute common secret

kAB = Ab = (αb)a mod p

A

B

� If the parameters are chosen carefully (especially a prime 

p>21024), DHKE is secure against passive (i.e., listen-only) attacks

�However, if the attacker can actively intervene in the 

communication,  the man-in-the-middle attack becomes possible

Public parameters α, p 
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y = AESkA,O (x)
y

re-encrypt  y´= AESkB,O (x)

y´
x = AES-1

kB,O (y´)

decrypt  x = AES-1
kA,O (y)

Alice
Man-in-the-Middle Attack

Bob

kprA = a

kpubA =A= αa mod p

kAO = (B´)a = (αo)a mod p

A

�Oscar computes a session key kAO with Alice, and kBO with Bob

� Alice and Bob think they are communicating with each other 

� The attack performs 2 DH key-exchanges: Oscar-Alice & Oscar-Bob

kprB = b
Oscar

kpubB = B = αb mod p
A´substitute A´ = αo 

mod p

B´ Bsubstitute B´ = αo 

mod p
kBO=(A´)b =(αo)b mod p

kAO = Ao = (αa)o  mod p

kBO = Bo = (αb)o mod p

�Oscar has complete control over the channel, e.g., if  Alice wants 

to send an encrypted message x  to Bob, Oscar can read it:
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Important facts about the Man-in-
the-Middle (MIM) Attack

� The man-in-the-middle-attack is not restricted to DHKE; it 

is applicable to any public-key scheme, e.g. RSA encryption. 

ECDSA digital signature, etc.

� Attack works always by the same pattern: Oscar replaces 

the public key from one of the parties by his own key.

� The attack is also known as Janus attack

�What makes the MIM attack possible?

� A: The public keys are not authenticated: When Alice receives a public 

key which is allegedly from Bob, she has no way of knowing whether it is 

in fact his. 

Even though public keys can be sent over unsecure 

channels, they require authenticated channels.
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Certificates
� In order to authenticate public keys (and thus, prevent the MIM 

attack) , all public keys are digitally signed by a central trusted 

authority.    Such a construction is called certificate

certificate = public key + ID(user) + digital signature over public 

key and ID

� In its most basic form, a certificate for the key kpub of user Alice is:

Cert(Alice) = (kpub, ID(Alice), sigKCA(kpub,ID(Alice) )

� Certificates bind the identity of user to her public key

� The trusted authority that issues the certificate is referred to as 

certifying authority (CA)

� „Issuing certificates“ means in particular that the CA computes the 

signature sigKCA(kpub) using its (super secret!) private key kCA

� The party who receives a certificate, e.g., Bob, verifies Alice‘s public 

key using the public key of the CA
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Certificate generation

CA generated keys:

User provided keys:
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Alice

Diffie–Hellman Key Exchange (DHKE) 
with Certificates

Bob

verify certificate
verKpub,CA (Cert(Bob))

if verification is correct:
Compute common secret
kAB = Ba = (αa)b mod p

if verification is correct:
Compute common secret
kAB = Ab = (αb)a mod p

Cert(Alice)

kprA = a

kpubA = A

Cert(Alice)  = ((A, IDA), sigKCA

(A,IDA))

Cert(Bob)

kprB = b

kpubB = B = αb mod p

Cert(Bob)  = ((B, IDB), sigKCA

(B,IDB))

verify certificate
verKpub,CA (Cert(Alice))

CA
Cert(A

lice) Cert(Bob)
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♦Verfication requires the public key of the CA for verKpub,CA

♦In principle, an attacker could run a MIM attack when kpub,CA is 
being distributed ⇒ The public CA keys must also be distributed 
via an authenticated channel

Certificates

�Have we gained anything?  After all, we try to protect a public 

key (e.g., a DH key) by using yet another public-key scheme 

(digital signature for the certificate)?

� Yes, the difference from a DHKE without certificates is that we 

only need to distribute the public CA key once, often at the 

set-up time of the system

� Example: Most web browsers are shipped with the public keys of 

many CAs. The „authenticated channel“ is formed by the 

(hopefully) correct distribution of the original browser software.

The entire system that is formed by CAs together 
with the necessary support mechanisms is called a 
public-key infrastructure (PKI).
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♦ Certificates contain more information 
than just a public key and a signature.

♦ X509 is a popular signature standard. 
The main fields of such a certificate 
are:

♦ The „Signature“ is computed over all 
other fields in the certifcate (after 
hashing of all those fields).

♦ Note that there are two public-key 
schemes involved in every certificate:

1. The public-key is protected by the 
signature („Subject‘s Public Key“). 
This was the public Diffie-Hellman 
key in the earlier examples.

2. The digital signature algorithm used 
by the CA to sign the certificate 
data.

Certificates in the Real World
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There are additional problems when certificates are to be used in 
systems with a large number of participants. The more pressing 
ones are:

1. Users communicate with other whose certificates are issued 
by different CAs

•This requires cross-certification of CAs, e.g.. CA1 certifies 
the public-key of CA2. If Alice trusts „her“ CA1, cross-
certification ensures that she also trusts CA2. This is called 
a „chain of trust“ and it is said that „trust is delegated“.

2. Certificate Revocation Lists (CRLs)

•Another real-world problem is that certificates must be 
revoked, e.g., if a smart card with certificate is lost or if a 
user leaves an organization. For this, CRLs must be sent out 
periodically (e.g., daily) which is a burden on the bandwidth 
of the system.

Remaining Issues with PKIs
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�Key agreement vs. Key transport

�Key freshness

�Key derivation

�Key establishment can be done using symmetric or 
asymmetric (public key) techniques

�Key establishment with a Key Distribution Center

�Certificates

Lessons Learned


