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range migration is discussed in a number of papers, e.g. [1],[2]. 

2 The Problem  
Conventional range-Doppler (RD) processing collects a coherent processing interval (CPI) of fast-
time/slow-time data (“ft” and “st”) and performs a slow-time discrete Fourier transform (DFT) on all 
range bins to convert it to an RD matrix. Implicit is the assumption that the target velocity v, CPI 
duration Ta, and range bin spacing δR are such that the target’s range change within the CPI is less than 
one range bin, avT Rδ< . In other words, the target stays in the same range bin over the duration of the 

CPI. If this is the case, all of the target signature will be in the same range bin and a 1D slow-time DFT 
will result in a well-formed, full-resolution Doppler spectrum. For a constant-velocity target without 
slow-time windowing, this spectrum will be just an asinc1 function in the Doppler coordinate with a 
Rayleigh width of approximately 1/Ta Hz (assuming no windowing for sidelobe control). Figure 1a is a 
diagram of a notional data matrix in which the target stays in the same (gray-shaded) range bin over the 
CPI. 

A simulated range-Doppler matrix was generated by modeling a target in range bin #100 that 
approaches the radar at 20 m/s. It is assumed that waveform and matched filtering used are such that 
the range response of the radar is an unwindowed sinc function with a Rayleigh resolution of ∆R = c/2B 
m. The radar frequency is F0 = 10 GHz and its bandwidth is B = 200 MHz, giving ∆R = 0.75 m. However, 
the fast-time axis is oversampled by a factor of 2.3×, so the spacing of the range bins is δR = 0.3261 m. 
The CPI is M = 101 pulses long at a PRF of 10 kHz, giving a CPI duration of Ta = 10.1 ms. In this time, the 
target moves 0.202 m or 0.62 range bins. The target velocity corresponds to a Doppler shift of FD = 

                                                           
1 “aliased sinc” function, also sometimes called a “digital sinc” (dsinc) or Dirichlet function [3]. 
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13.33 kHz and an unaliased normalized Doppler shift of fD = +0.133 cycles/sample. Note that the range-
Doppler spectrum peak does occur at l = 100 and fD = 0.133. 

 

 

 

 
(a)  (b) 

Figure 1. Range-Doppler matrix for a single target without range migration. (a) Arrangement of fast-
time/slow-time data. (b) Resulting range-Doppler matrix. See text for parameters. 

 

When the target does not remain within a single range bin over the CPI, range migration is said to occur. 
The target Doppler signature will smear in both range and Doppler. It smears in range because portions 
of the target signature appear in more than one range bin. It smears in Doppler because any one range 
bin contains the signature for only a portion of the CPI. Since Doppler resolution (width of the asinc 
mainlobe) in a given range bin is inversely proportional to signal duration in that range bin, the reduced 
duration degrades the Doppler resolution (broadens the mainlobe). Range migration is obviously more 
severe for fast-moving targets. However, it is also made worse in wide-bandwidth systems. Such 
systems have fine range resolution and therefore smaller spacing between range bins, so that a given 
amount of motion crosses more bins. 

Consider an L×M ft/st matrix yrd[l,m]. 2 Suppose a radar transmits a series of M = 2Ma+1 pulses which 
reflect from a target. The slow-time sampling interval (the radar PRI) is Tst seconds. Assume the slow-
time span of the CPI is from –Ta/2 = −MaTst to +Ta/2 = +MaTst, so that the center of the CPI is at time t = 
0 and pulse M = 0. Note that the unambiguous Doppler range is 1 2 stT±  Hz. 

                                                           
2 A lower case r or d in the subscript to a signal y or Y indicates a signal in the time domain in the corresponding 
dimension. An upper case R or D indicates that the signal is in the frequency domain in that dimension. An upper 
case Y is used when at least one of the dimensions is in the frequency domain. Thus yrd is raw fast time/slow time 
data, while YrD is a function of fast time and Doppler frequency, i.e. the range-Doppler matrix. Square brackets 
indicate discrete variables, parentheses indicate continuous variables. 
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If the fast-time sampling interval is Tft seconds, the range bin spacing is δR = cTft/2 meters. It is usually 
the case that Tft ≈ 1/B, where B is the instantaneous bandwidth of the radar waveform; but we do not 
require this. Assume the range corresponding to the first range bin (l = 0) is R0. Express the target range 
Rref at the center of the CPI as Rref = R0 + Rrel, i.e. Rrel is the reference range relative to R0. Let the range 
bin corresponding to Rrel be lrel. Thus, lrel = (2Rrel/c)/Tft = Rrel/δR. 

The target radial velocity relative to the radar is v m/s, with positive v representing approaching targets. 
The target range on the mth pulse ( a aM m M− ≤ ≤ ) will be ref stR vT m−  = 0 rel stR R vT m+ − , 

corresponding to range bin 2rel st ftl vT m cT−  = rel stl vT m Rδ− . (The range bin number is rounded to 

the nearest integer.) 

Assume the RF is F0 Hz. The radar transmits a pulse of the form ( ) ( ) ( )0exp 2x t x t j F tπ= , where x(t) is 

the baseband waveform (for example, a simple pulse or LFM chirp, etc.). After taking out the delay of 
mTst to the beginning of that pulse’s transmission and demodulation to baseband by multiplication with 
the function ( )0exp 2j F tπ− to remove the carrier, the received fast-time signal for the mth pulse will be 

of the form [3] 

 
( ) ( ) ( )

( )

0

0 0

42 exp

4 42 exp exp

m ref st ref st

ref st ref st

Fy t x t R vT m j R vT m
c c

F Fx t R vT m j R j vT m
c c c

π

π π

  = − − − −      
    = − − − +          

 (1) 

Amplitude factors are of no concern here and so have been ignored. 

Now assume this baseband signal is passed through the matched filter for the envelope x(t). Regardless 
of the particular waveform the matched filter output (after removing the matched filter delay) can be 
modeled as consisting of a dominant peak of Rayleigh width approximately 1/B seconds at the 
appropriate time delay, surrounded by low-amplitude sidelobes. For this analysis, a sinc function in fast 
time with a zero spacing of 1/B seconds, i.e. x(t) = ( ) ( )sin Bt Btπ π  ( )sinc Bt≡ , has been selected to 

represent a typical matched filter output.3 The demodulated and matched-filtered output becomes 

 ( ) ( )0 04 4 2exp exp sincm ref st ref st
F Fy t j R j vT m B t R vT m

c c c
π π       ≈ − + − −            

 (2) 

This analog data is converted to discrete fast-time data by sampling at the range bin interval of Tft 
seconds. Sampling begins at the time delay corresponding to R0, so samples are taken at times t = 

02 ftR c l T+ ⋅ , 0, , 1l L= − . The resulting fast-time vector is 

                                                           
3 The definition sinc(x) = sin(πx)/πx is consistent with that used in both MATLAB® and [3]. 
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[ ] ( )0 0

0 0

0 0

4 4 2exp exp sinc

4 4 22exp exp sinc

4 4exp exp

m ref st ft rel st

st
ref st ft rel

ft ft

ref

F Fy l j R j vT m B T l R vT m
c c c

F F vTj R j vT m BT l R m
c c cT cT

F Fj R j vT
c c

π π

π π

π π

      ≈ − + − −            
       = − + − +             

 = − + 
 

sinc st
st ft rel

vTm BT l l m
Rδ

    − +    
    

 (3) 

The returns from each of the M pulses in the CPI are assembled into the raw fast-time/slow-time matrix 
yrd[l,m]: 

 [ ] ( )( )0 04 4, exp exp sincrd ref st ft rel m
F Fy l m j R j vT m BT l l l

c c
π π   ≈ − + − +   

   
 (4) 

where lm = vTstm/δR. Note that lm is not integer in general. 

Figure 2a illustrates the pattern of data corresponding to Eq. (4) for the same case used in Fig. 1. Again, 
the simulation was carried out for L = 128 range bins and M = 101 pulses. The normalized Doppler shift 
is ( )02D D st stf F T vF c T= =  = 0.133 cycles/sample. There is no significant range migration (0.62 range 

bins over the CPI) from the reference range bin of lrel = 100 at the center of the CPI. Figure 2a shows the 
magnitude of the range bin vs. pulse number (fast time/slow time) data, illustrating that the signal peak 
stays within range bin #100. The oversampling factor of 2.3× in fast time makes it possible to see some 
of the sidelobe structure of the sinc response in fast time. Figure 2b shows the central portion of the 
resulting range-Doppler spectrum. The white dotted lines mark the reference range bin at the middle of 
the CPI (lrel = 100) and normalized Doppler shift (fD = 0.133) of the spectrum, and thus the expected 
spectrum peak location. The white square shows the expected Rayleigh resolution extent (expected 
location of first null) in each dimension. In the absence of range migration, the spectrum is a clean two-
dimensional sinc/asinc with its peak at the correct location and full resolution in both range and 
Doppler. 

Figure 3 shows a similar example, with two changes. The target velocity is now 440 m/s, giving a 
significant range migration of 13.63 bins over the CPI. The RF frequency has been reduced to F0 = 1 GHz, 
making the Doppler shift FD = 2.933 kHz and the normalized Doppler frequency now fD = 0.2933 
cycles/sample. The reduction in F0 allows for an unaliased Doppler at this velocity; see Section 6. It is 
clear that the signature is spread over a little more than 13 range bins and that its mainlobe in the 
Doppler dimension, while correctly centered, has also been severely broadened. 
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(a) (b) 

Figure 2. Range-Doppler matrix with no range migration. (a) Range vs. pulse number. (b) Zoom into 
the central portion of the resulting range-Doppler matrix. 

 

  
(a) (b) 

Figure 3. Range-Doppler matrix with range migration. Compare to Fig. 2. (a) Range vs. pulse number. 
(b) Zoom into non-zero portion of the resulting range-Doppler matrix. 

3 Compensation by Range Shifting 
The goal of the keystone transformation is to develop a process that will compensate for the range 
migration so that the range-Doppler spectrum of the data in Fig. 3a looks like Fig. 2b instead of Fig. 3b. 
To begin, consider compensating for range migration in the not-very-useful case of a single target with 
known radial velocity. The target moves vTst/δR range bins closer to the radar on each successive pulse. 
This is easily corrected by shifting each successive fast-time vector by –vTst/δR bins with respect to the 
previous pulse data. The reference range to which all echoes will be shifted can be chosen arbitrarily. 
One obvious choice is the range Rref (equivalently, Rrel relative to the first range bin at R0) at the middle 
of the CPI. 
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The range can be shifted using properties of the discrete-time Fourier transform (DTFT). Recall that ym[l] 
is the fast-time data for the mth pulse given in Eq. (3), and let Ym(ωl) be its DTFT. Then standard DTFT 
properties state that 

 ( ) ( ){ } [ ] [ ]1 exp l m m l m m mj l Y y l l y lω ω− ′− = − ≡F  (5) 

where F–1{·} represents the inverse DTFT (IDTFT). Because the desired shift lm = vTstm/δR is not integer 

in general, the quantity [ ]m my l l−  means the corresponding shifted analog signal ( )( )m sty t vT R mδ−  

sampled at the times Tftl. 

The shift is applied in practice by first computing the Kl-point DFT Ym[kl] of the fast time data, 
performing an “fft shift” operation to circularly shift the resulting vector of Kl DFT samples so that the 
sample corresponding to kl = 0 (and thus to ωl = 0) is in the center of the vector. The DFT size Kl must be 
greater than or equal to the number of range bins, L. The shifted DFT is then multiplied by the phase 
function of Eq. (5). The modified DFT is circularly rotated back to its original order, 4 and finally an 
inverse DFT is computed to obtain [ ]my l′ . The inverse DFT returns a Kl-point fast-time sequence; only 

the first L points are retained. 

Figure 4 illustrates the result of applying this compensation procedure to the data of Fig. 3a. The results 
are excellent: the target signature data is re-centered into range bin 100 for all pulses, resulting in a 
range-Doppler spectrum with the full expected resolution in both dimensions. The spectrum shape is 
nearly indistinguishable in shape from that of the negligible-migration case of Fig. 2, except for being 
centered at a different Doppler value in accordance with the change in velocity. 

 

 
 

(a) (b) 
Figure 4. Range-Doppler matrix with range migration and compensation using DFT phase multiplies. 
Compare to the spectrum shape in Figs. 2 and 3. (a) Range vs. pulse number. (b) Zoom into non-zero 

portion of the resulting range-Doppler matrix. 

                                                           
4 The MATLAB® functions fftshift and ifftshift implement the required rotations. 
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While the results in Fig. 4 are very good, they require two assumptions, both problematic: 

1. The target velocity v is known. This is required to compute the DFT phase modification function 
in Eq. (5). Knowledge of v implies that the target is already under track or that other sensors or 
information sources provide this information. Alternatively, the data can be processed with a 
series of different trial values of v in an attempt to identify the velocity by finding the value that 
best “focuses” the spectrum, usually interpreted as that value that provides the largest peak. if 
the target velocity might be aliased, it may also be necessary to estimate both the aliased 
velocity and the ambiguity number (number of foldovers); see Section 6. 

2. There is only one target (or all targets have the same radial velocity). Otherwise, there is more 
than one value of v to be corrected, so there is no single DFT phase modification function that 
can be used. 

Notice that if there were only a single target with a known velocity, the range migration could also be 
compensated by simply adjusting the start of the fast-time sampling times for each successive pulse so 
that the target remained at a constant delay relative to the transmission time for the current pulse. 

4 The Keystone transformation 
A more robust range migration compensation method can be developed as follows. First let us establish 
the goal, which is to obtain the range-Doppler spectrum of Fig. 4b corresponding to a target at relative 
range Rref and normalized Doppler shift fD, with full resolution in both dimensions as determined by the 
waveform bandwidth B and CPI duration (aperture time) Ta. It is convenient to work with continuous 
fast time t instead of sampled fast time l. In the fast time (range) dimension the desired response is, to 

within a complex constant, ( )sinc 2 relB t R c −  . The fast-time Fourier transform (FT) of this function 

would have unit magnitude over the fast-time baseband frequency interval [ ]2, 2F B B∈ −  and zero 

elsewhere, and a phase of ( ) ( )exp 2 2 exp 4rel relj F R c j R F cπ π − = −   within that interval. This would 

be the same for each pulse (value of m) because there would be no range migration. In the cross-range 
dimension, the desired Doppler spectrum is the DTFT of a constant-frequency discrete-time sinusoid at 
the Doppler frequency 2vF0/c, sampled at the interval Tst. The corresponding slow-time phase 

progression is the sequence ( )( )0exp 2 2 stj vF c T mπ  = ( )( )0exp 4 stj vT F c mπ . Combining the fast- and 

slow-time data patterns gives the ideal two-dimensional fast time/slow time data function 

 ( ]_ 0 0
4 4 2, exp exp sincrd ideal ref st refy t m j F R j F vT m B t R
c c c
π π       = − + −      

      
 (6) 

 Now form the two-dimensional function ( ]_ ,Rd idealY F m  by computing the FT of ( ]_ ,rd idealy t m  in fast 

time. The result will be 
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 ( ] ( )0 0
_

2 2,4 4exp exp ,
,

0, otherwise

ref st
a aRd ideal

B F B
j F F R j F vT m

M m MY F m c c
π π − < < +    − + +     − < < +=    




 (7) 

Notice that the fast-time baseband frequency F and the velocity v are uncoupled, that is, they appear in 
separable terms. If the fast-time Fourier transform of the actual data ( ],rdy t m  can be manipulated to be 

in the form of Eq. (7), the corresponding range-Doppler spectrum will be correctly centered and well-
focused in both dimensions. 

To that end, now consider the Fourier transform of the actual fast-time signal of Eq. (2). Using 
arguments similar to those leading to Eq.(7) gives 

 

( ){ } ( )

( ) ( )

( ]

0 0

0 0

4 4 2exp exp exp 2

2 2,4 4exp exp ,

,

m ref st ref st

ref st
a a

Rd

F F
y t j R j vT m j F R vT m

c c c
B F B

j F F R j F F vT m
M m Mc c

Y F m

π π
π

π π

      ≈ − + − −            
− < < +   = − + + +    − < < +   

≡

F

 (8) 

We see that the fast-time frequency and velocity are not separable in this expression, but instead are 
coupled in the slow-time phase term (the second exponential phase term). At frequencies greater than 
F0 (F > 0) the sample-to-sample slow-time phase progression rate is faster than the desired value of 

0 stF vT , while at frequencies lower than F0 (F < 0) it is slower than desired. 

Equation (8) is the model for the structure of the fast-time FT ( ],RdY F m  of the available measured data 

matrix ( ],rdy t m . We now seek an operation on ( ],RdY F m  that will transform it to the desired form 

( ]_ ,Rd idealY F m  of Eq. (7), to within a constant. An obvious approach is to multiply ( ],RdY F m  by the 

phase term ( )( )exp 4 stj c FvT mπ− . However, this technique has the same flaws (and in fact is identical 

to) the range-shifting method of the previous section: one would have to know v and the process would 
only work for one target. 

A clever way to remove the frequency-velocity coupling proceeds as follows. Concentrate on the slow-
time term, since that is where the coupling occurs. ( ],RdY F m  is sampled in slow time at the times τm = 

m∙Tst, a aM m M− ≤ ≤  where M = 2Ma+1. It is convenient to rewrite ( ],RdY F m  in terms of a continuous 

slow-time variable τ : 

 ( ) ( ) ( )0 0
2 2,4 4, exp exp ,Rd ref

a st a st

B F B
Y F j F F R j F F v

M T M Tc c
π πτ τ

τ
− < < +   = − + + +    − < < +   

 (9) 

Define a new slow-time variable that rescales the slow-time axis as a function of fast-time frequency 
according to 
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 0 0

0 0

F F F
F F F

τ τ τ τ
   +′ ′= ⇒ ≡   +   

 (10) 

At F = 0 the slow-time dimension is unchanged. For F > 0 it is expanded in slow time ( )τ τ′ > , while for 

F < 0 it is contracted ( )τ τ′ < . For F > 0 this will have the effect of stretching the sample-to-sample 

phase progression over a longer time interval, thus reducing the time rate of phase change and 
therefore the slow-time frequency. For F < 0 the slow-time frequency will be increased in the rescaled 
data. 

Substituting from Eq. (10) for τ in Eq. (8) gives the new function 

 

( )

( ) ( )

( )

( )

0
_

0

0
0 0 0

0

0 0

_

, ,

4 4exp exp

4 4exp exp

,

Rd key Rd

ref

ref

Rd ideal

F
Y F Y F

F F

F
j F F R j F F v

c c F F

j F F R j vF
c c

Y F

τ τ

π π τ

π π τ

τ

  
′ ′≡    +  

    ′= − + + +     +    
   ′= − + +   
   

′=

 (11) 

Equation (11) is the desired result. It shows that a fast-time FT and a slow-time rescaling according to Eq. 
(10) will result in a new function that is the fast-time FT/slow-time inverse FT of the desired range-
Doppler spectrum. An inverse FT in the range dimension and a forward FT in the pulse number 
dimension will result in the focused range-Doppler image with no degradation in either range or Doppler 
due to range migration. 

The rescaling of Eq. (10) implies one-dimensional interpolation of the sampled slow-time data in each 
fast-time frequency bin. The interpolation factor varies with fast-time frequency. Specifically, constant 
sampling intervals of Tst in τ ′ , m stT mτ ′ = , require values of the original data ( ),RdY F τ  at the points 

( )( ) ( )( )0 0 0 0m m stF F F F F F T mτ τ ′= + = + . An appropriate approach is bandlimited interpolation 

using sinc-based interpolation kernels [4], though simpler methods such as spline interpolation might be 
adequate in some cases. 

The region of support (ROS) of ( )_ ,Rd keyY F τ ′  in fast-time frequency is the same as that of the original 

data ( ),RdY F τ , namely ( )2, 2B B− + . The ROS in slow-time varies with fast-time frequency. The 

original slow-time variable τ is confined to the interval ( ),a st a stM T M T− + . The range of the new slow-

time variable τ ′ is therefore 

 0 0

0 0
a st a st

F F F FM T M T
F F

τ
   + +′− ≤ ≤ +   
   

 (12) 
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This implies that the range of the slow-time index m in the transformed data will be 

 0 0

0 0
a a

F F F FM m M
F F

      + +
− ≤ ≤ +      

         
 (13) 

The floor and ceiling functions are needed to restrict m to an integer range. For F < 0 this range will be 
less than the original full range of a aM m M− ≤ ≤ . For F > 0 Eq. (13) states that the range should be 

greater than aM± . In practice, however, the range is limited to aM±  because there is no data to 

support interpolation into a larger range. 

Figure 5 illustrates the results of applying the keystone transformation to the same scenario used for Fig. 
3. A Hamming-windowed bandlimited sinc interpolating filter was used to interpolate ( ),RdY F τ  in slow 

time. The filter length was 11 times the maximum of the slow-time sample spacing before and after 
interpolation;5 the specific value varies with fast-time frequency because of the variation in the 
interpolation factor F0/(F0+F). Note in Fig. 5a that the range migration has been removed. The fading 
and fast-time smearing of the ft/st signature at the beginning and end of the CPI is due to end effects of 
the interpolation: the first and last few slow-time samples cannot be fully interpolated because the 
interpolation filter impulse response extends beyond the ends of the available data. This will result in a 
slight loss of Doppler resolution that will become more severe for longer interpolation filters. Figure 5b 
shows the resulting range-Doppler spectrum. The peak is correctly centered and obtains very nearly full 
resolution in both dimensions. Some modification of the sidelobe structure is evident in the “X-shaped” 
Doppler sidelobes, but this is of little consequence and can be reduced by windowing. 

 

  
(a) (b) 

Figure 5. Range-Doppler matrix with range migration and compensation using the keystone 
transformation. Compare to Figs. 3 and 4. (a) Range vs. pulse number. (b) Zoom into non-zero portion 

of the resulting range-Doppler matrix. 

                                                           
5 See the MATLAB® code for the function sinc_interp included at the end of this memo for details. 
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A major advantage of the keystone transformation for range migration correction over the shifting 
process discussed earlier is that it correctly handles multiple targets. Notice that the rescaling of Eq. (10) 
does not depend on target velocity v. Consequently, target velocity need not be known, and this process 
will simultaneously correct range migration for multiple targets of various velocities. Figure 6 illustrates 
this with another example using three targets having (reference range bin,velocity (m/s)) pairs of 
(30,−200), (60,0), and (65,650). All radar parameters are unchanged. The resulting range migrations over 
the CPI are −6.1947, 0, and +20.1327 bins, while the normalized Doppler shifts are −0.1333, 0, and 
+0.4333 cycles/sample. Figure 6 illustrates the results. Part (a) of the figure shows the ft/st data pattern. 
Note that two of the targets cross during the CPI. Figure 6b shows the range-Doppler spectrum before 
the keystone transformation. The zero-velocity (non-migrating) target is well-focused; the other two are 
not, with the degree of defocus increasing at higher velocities (more range migration). 

 

  
(a) (b) 

Figure 6. Range-Doppler matrix with multiple targets at different velocities. (a) Range vs. pulse 
number. (b) Zoom into non-zero portion of the resulting range-Doppler matrix. 

 

Figure 7 shows the results of applying the keystone transformation to this example. Figure 7a shows that 
each target’s signature has been realigned to a single range bin. Figure 7b shows the resulting range-
Doppler spectrum, now having nearly full resolution in both dimensions on all three targets, despite 
their differing velocities. 
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(a) (b) 

Figure 7. Result of applying the keystone transformation to example of Fig. 6. (a) Range vs. pulse 
number. (b) Zoom into non-zero portion of the resulting range-Doppler matrix. 

 

5 Why “Keystone”? 
Why is the process of resampling ( ],RdY F m  to obtain the new function called a “keystone” 

transformation? The reason is illustrated in Fig. 8. Part (a) of the figure shows ( ],RdY F m , the 

magnitude of the range frequency/slow time spectrum obtained by taking the DFT of the raw ft/st data 
in the fast-time dimension only. The parameters are those of the three-target example used above. 
Notice that the spectrum support in fast time is 200 MHz wide, centered on the 1 GHz RF. Part (b) of the 

figure shows the magnitude of the modified spectrum ( ]_ ,Rd keyY F m  resulting from the slow-time 

interpolation process. Obviously, the spectral support region is no longer a rectangle but is now a 
keystone shape.6 This occurs because of the contraction of the slow-time axis for frequencies below F0 
(F < 0) and its expansion for frequencies greater than F0 (F > 0) as discussed earlier, giving the 
keystone-shaped support region seen in Fig. 8b. 

It follows that we would expect the slow-time width of ( ]_ ,Rd keyY F m  to match that of ( ],RdY F m  at 

F = F0 because the slow-time sample spacing is the same at that frequency. Furthermore, 

( ]_ ,Rd keyY F m  should have wider support than ( ],RdY F m  for frequencies above F0. However, the 

slow-time region of support of ( ]_ ,Rd keyY F m  is reduced at each end by about one-half the width of 

the sinc interpolating function. Furthermore, the slow-time extent of the interpolated data can never 
exceed that of the original data as discussed earlier. Consequently, the keystone interpolation process 

                                                           
 
6 A keystone is the stone at the top of a masonry arch that locks all of the 
arch stones in place, allowing it to be self supporting and bear weight. 
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entails a small loss of slow-time support and therefore a small loss of Doppler resolution that increases 
with interpolating filter size, and must therefore be traded off against the interpolation quality. 

 

  
(a) (b) 

Figure 8. Why it’s called a keystone transformation. (a) Magnitude of the range frequency/slow-time 
spectrum of the raw data. (b) Magnitude of the range frequency/slow-time spectrum after keystone 

interpolation. 

6 Effect of Doppler Ambiguity 
In all of the examples considered here, the Doppler frequencies of all targets were within the 
unambiguous Doppler interval for data sampled in slow time at an interval of Tst seconds, namely 

2 1 2 stPRF T± = ±  Hz . Figure 9 shows a single-target case where this is not true. All parameters are the 

same as in the single-target case used earlier, except that the RF is increased by 10× to 10 GHz, thus 
increasing the Doppler frequency by 10× to FD = 29.33 kHz. The normalized Doppler shift at 10 GHz is 
then fD = 2.933 cycles/sample, which aliases to fDn = −0.0667 cycles/sample = fD − 3. The number of 
“wraps” of the Doppler (three in this case) is called the Doppler ambiguity number Namb and is given by 
Namb = fD – fDn. Namb can be positive or negative. The raw ft/st data and its range-Doppler spectrum are 
essentially identical to those of Fig. 3, except that the range-Doppler response is now centered at 
−0.0667 cycles/sample. Figure 9 shows that the keystone transformation fails to correct the range 
migration in this case. 
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(a) (b) 

Figure 9. Result of applying the keystone transformation to Doppler-aliased target. See text for 
parameters. (a) Range vs. pulse number. (b) Zoom into non-zero portion of the resulting range-

Doppler matrix. 

 

Consider the ideal fast-time frequency/slow time spectrum ( ]_ ,Rd idealY F m  of Eq. (7). It is sufficient to 

inspect only the slow-time phase term. Assuming the velocity v is low enough that it is not ambiguous 
anywhere in the frequency band ( )0 02, 2,F B F B− + ,7 the slow-time phase term can be rewritten in 

terms of Doppler shift, ( )( )0exp 4 stj c F vT mπ+  = ( )0exp 2 D stj F T mπ+ , where FD0 is the Doppler shift at 

frequency F0. Now suppose that the target velocity is such that the Doppler shift is ambiguous at the 
slow-time sampling interval Tst and in particular has folded over Namb times. The slow-time phase term in 

( ]_ ,Rd idealY F m  becomes ( )( )0exp 2 1D amb st stj F N T T mπ  + −   = ( )0exp 2 D stj F T mπ+  again; there is 

no change in the desired result. 

Now consider the effect of ambiguous Doppler on the slow-time term of the actual range-
frequency/slow time spectrum ( ),RdY F τ : 

 

( ) ( )

( )

0 0

0

4 2 1exp exp 2

4exp exp 2

amb
st

amb

st

vj F F v j F F N
c c T

N
j F F v j

c T

π τ π τ

π τ π τ

    + + ⇒ + + −            
   = + + −         

 (14) 

The rescaling τ τ ′→  to obtain ( )_ ,Rd keyY F τ ′  will, as before, correct the first slow-time phase term to 

match the ideal result, but will leave an additional phase term due to the Doppler ambiguity: 

                                                           
7 This assumption allows us to avoid the messiness of the situation where the number of ambiguity wraps is 
different for different frequencies within the radar bandwidth. 
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This equation shows that the effect of Doppler ambiguity can be removed by multiplying ( )_ ,Rd keyY F τ ′  

by the phase function ( )( ) ( )( )0 0exp 2 amb stj N F F F Tπ τ ′+ + , resulting in a focused range-Doppler 

spectrum for Doppler-ambiguous targets. Taking into account the sampling of the slow-time axis 

stmTτ ′ = , the required operation to obtain the final result is 

 ( ] ( ] 0
_ _

0

ˆ , , exp 2Rd key Rd key amb
F

Y F m Y F m j N m
F F

π
  

= +   +  
 (16) 

The ambiguity correction requires that Namb be known, perhaps from tracking data or other sensors, and 
that it be the same for all targets. If there are multiple targets and the ambiguity numbers are not the 
same for all targets, only the target(s) having an ambiguity number that matches that used in Eq. (16) 
will be focused. 

Figure 10 illustrates the ambiguous Doppler correction process. The same multitarget example used 
previously was repeated, but with the RF increased to 10 GHz. The resulting target ambiguity numbers  
−1, 0, and +4. Figure 10a is the range-Doppler plot of the data before the keystone transformation and 
ambiguity correction. Figure 10b shows the range-Doppler spectrum after the keystone transformation 
and the correction of Eq. (16) using Namb = −1. The negative-Doppler target is well-focused. The zero-
velocity target is slightly defocused because of processing with the incorrect ambiguity number, 
although that effect is not very visible in this image. The smearing of the positive-Doppler target is also 
slightly worsened. Figure 10c repeats the processing with Namb = +4, appropriate for the positive-Doppler 
target. That target is now well-focused, while the other two are severely smeared. 

The varying amplitude of the target responses in Fig. 10 also shows that the amplitude of the range-
Doppler signature of a target varies with the difference between the assumed and correct ambiguity 
numbers. If the ambiguity number is not known for a given target, it can be estimated by forming the 
corrected range-Doppler spectrum using several different values, and choosing the one that produces 
the highest-amplitude peaks. Figure 11 shows the peak amplitude in decibels of the positive-Doppler 
target as a function of Namb. The maximum response is obtained when the correct value of Namb = 4 is 
used. Thus, processing the data with several different values of Namb can identify the correct value and 
thus the true velocity. 

This ambiguity compensation technique is discussed in both [1] and [2]. In [1], the phase compensation 
factor is of the same form (after adjusting for notation and a difference in sign in the definition of 

velocity) given in Eq. (16). In [2], it is given in the form ( ) ( )( )0exp 2 amb stj N F F Tπ τ ′− . The two forms 
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can be reconciled by noting that, for small fractional bandwidths ( )0F F , ( )0 0F F F+  = 

( )( )0 01 1 1F F F F+ ≈ − . Combining this approximation with sampling of the slow-time axis at 

stmTτ ′ =  gives 

 

( ] ( ]

( ]

_ _
0

_
0

ˆ , , exp 2 1

, exp 2

Rd key Rd key amb

Rd key amb

FY F m Y F m j N m
F

FY F m j N m
F

π

π

   
= + −        

  
= −     

 (17) 

The form of Eq. (16) is preferred because the fractional bandwidth may not be particularly small in low-
RF, fine-resolution systems. 

 

 
(a) 

  
(b) (c) 

Figure 10. Result of applying keystone processing to Doppler-aliased target. See text for parameters. 
(a) Before keystone transformation. (b) After keystone transformation with Namb = −1. (c) After 

keystone transformation with Namb = +4. 

 



M. A. Richards, “The Keystone Transformation for Correcting Range Migration in 
Range-Doppler Processing” March 28, 2014 

 

17 | P a g e  
 

 

Figure 11. Peak magnitude of the positive-Doppler target response from the example of Fig. 10 as a 
function of the ambiguity number used in the keystone transformation. The correct ambiguity number 

of Namb = 4 produces the largest peak response. 
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8 Demonstration MATLAB® Code 
Following are the two scripts used to generate the examples in this memo. The script keystone.m was 
used to generate the single target examples, while keystone_multitarget was used for the three-
target example. Also included is the script sinc_interp.m used for the keystone interpolation. The 
scripts hline.m and vline.m used for some plot markings are available from the MATLAB® File 
Exchange at http://www.mathworks.com/matlabcentral/fileexchange/. 

  

http://www.mathworks.com/matlabcentral/fileexchange/
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keystone.m 

% keystone 
% 
% Demo of keystone formatting for correcting range-Doppler 
% measurements for range migration. 
% 
% This code closely follows the equations in the tech memo "The Keystone 
% Transformation for Correcting Range Migration in Range-Doppler 
% Processing" by Mark A. Richards, Mar. 2014, available at www.radarsp.com. 
% 
% Mark Richards 
% 
% March 2014 
  
clear all 
close all 
  
c = 3e8;  % speed of light 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  USER INPUT SECTION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
L = 128; % fast time dimension, samples 
M = 101;  % slow-time dimension, samples; keep it odd. 
  
% K_L and K_M must be even to avoid labeling problems later 
K_L = 2^(nextpow2(128)+1); % fast-time DFT size for interpolation and shifting 
K_M = 2^(nextpow2(512)+1); % slow-time DFT size 
  
% Lref is the range bin # of the target, on a 0:L-1 scale, at the center of 
% the CPI (middle pulse) 
% Lref = round(L/2); % puts target at middle range bin on the middle pulse 
Lref = 100; 
  
F0 = 1000e6; % RF (Hz) 
B = 200e6; % waveform bandwidth (Hz) 
  
v = 440; % velocity in m/s towards the radar 
  
% sampling intervals and rates 
Fsft = 2.3*B; 
  
PRF = 10e3; 
  
% Order of sinc interpolating filter 
Nsinc = 11; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  END USER INPUT SECTION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Some derived parameters 
m_end = (M-1)/2; 
ms = (-m_end:m_end);  % slow time index labels 
Fd = 2*v*F0/c;  % Doppler shift, Hz 
Tft = 1/Fsft;  % fast time sampling interval 
dr = c*Tft/2; % range bin spacing 
Tst = 1/PRF;  % slow-time sampling interval (PRI) 
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Dfd = 1/M; % Rayleigh Doppler resolution in cycles/sample 
Drb = (1/B)/Tft; % Rayleigh fast-time resolution in range bins 
  
if (PRF < Fd/2) 
    fprintf('\nWarning: PRF < Fd/2. PRF = %g, Fd = %g.\n',PRF,Fd) 
end 
  
% Compute and report total range migration over the CPI in range bins 
RM = v*Tst/dr; % amount of range migration per pulse in range bins 
RMtot = M*RM;  % total range migration over the dwell, in range bins 
fprintf('\nTotal range migration = %g m = %g range bins.\n',RMtot*dr,RMtot) 
  
if ( (floor(Lref-RMtot/2) < 0) || (ceil(Lref+RMtot/2) > L-1) ) 
    fprintf(['\nWarning: Target will migrate out of range.', ... 
        'RMtot = %g range bins, Lref = %g, L = %g range bins.\n'],RMtot,Lref,L) 
end 
  
% Compute normalized Doppler frequency and wrap it 
fd = Fd*Tst; 
fdn = mod(fd + 0.5,1) - 0.5;  % alias it back into [-0.5,+0.5] 
amb_num = round(fd - fdn); % number of Doppler wraps 
  
% Define corners of a box centered on the expected target coordinates, and 
% one Rayleigh width wide in each direction and each dimension (i.e., a 
% null-to-null resolution box for a well-formed sinc spectrum). Will use 
% this to draw such a resolution box on some of the figures. 
L1 = Lref - Drb; 
L2 = Lref + Drb; 
fd1 = fdn - Dfd; 
fd2 = fdn + Dfd; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Create synthetic data. First compute pulse-to-pulse phase shift. Then set 
% up a matrix.  Loop over pulses, computing current range. The range 
% profile of the compressed data for a single pulse is assumed to be a sinc 
% function with a zero spacing equal to 1/B seconds, and a phase shift of 
% the usual -(4*pi*F0/c)*R, where R = Rref - v*Tst*m and m = pulse number. 
% Don't worry about amplitude.  Also don't bother with the 
% -(4*pi*F0/c)*Rref phase term, it is the same for all pulses. 
  
del_phi = -4*pi*(F0/c)*v*Tst;  % pulse-to-pulse phase increment due to range change 
y = zeros(L,M); 
  
for m = 1:M 
    mm = ms(m);  % counts from -(M-1/2) to +(M-1)/2 
    y(:,m) = exp(-1i*del_phi*mm)*sinc( B*Tft*((0:L-1)-Lref+v*Tst*mm/dr) ); 
end 
  
% Now examine the data.   Then compute the range-Doppler matrix with a 
% slow-time DFT and look at that. 
  
figure 
imagesc(ms,0:L-1,abs(y)) 
grid 
colormap(flipud(gray)) 
xlabel('pulse number') 
ylabel('range bin') 
title('Raw Fast-time/Slow-time Data Pattern') 
  
Y_rD = fft(y,K_M,2); 
Y_rD = fftshift(Y_rD,2); 
Y_rD_dB = db(abs(Y_rD),'voltage'); 
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Y_rD_dB = Y_rD_dB - max(Y_rD_dB(:)); % normalize to 0 dB max 
Y_rD_dB(:) = max(-40,Y_rD_dB(:)); % limit dynamic range for plot purposes 
  
fD = (-K_M/2:K_M/2-1)/K_M;  % this only works correctly if K_M is even 
  
% figure 
% mesh(fD,0:L-1,Y_rD_dB) 
% xlabel('normalized Doppler') 
% ylabel('range bin') 
% title('Raw Range-Doppler Matrix') 
  
figure 
imagesc(fD,0:L-1,Y_rD_dB) 
hline(Lref,':w'); vline(fdn,':w')  % mark the correct spectrum center 
line([fd1 fd1 fd2 fd2 fd1],[L1 L2 L2 L1 L1],'Color','w','LineWidth',2) % resolution 
box 
title(['Rng Migration = ',num2str(RMtot),... 
    ' bins over CPI; Normalized Doppler = ',num2str(fdn),' cyc/samp']) 
xlabel('normalized Doppler') 
ylabel('range bin') 
colorbar 
shg 
  
% It is convenient to look at the fast time DFT of the raw data as well. We 
% will need this product as the starting point for keystoning a little 
% further down. Apply a fast-time DFT. fftshift in fast-time freq dimension 
% to center the origin. This will be the frequency corresponding to F0. 
% Also work out axis label in Hz. 
Y_Rd = fftshift(fft(y,K_L,1),1); 
  
Fl = (-K_L/2:K_L/2-1)/K_L*Fsft; 
  
figure 
subplot(1,2,1) 
imagesc(ms,F0+Fl,abs(Y_Rd)) 
xlabel('slow time') 
ylabel('fast time frequency (Hz)') 
title('Magnitude after fast-time FT') 
colorbar 
  
subplot(1,2,2) 
imagesc(ms,F0+Fl,angle(Y_Rd)) 
xlabel('slow time') 
ylabel('fast time frequency (Hz)') 
title('Unwrapped phase after fast-time FT') 
colorbar 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Now do compensation by explicit shifting and interpolation in range for 
% each pulse to see that that does indeed work (for a single target with 
% known velocity) and verify formulas 
% 
yc = zeros(size(y));  % this will be the compensated fast-time/slow-time data 
wl = 2*pi*(-K_L/2:K_L/2-1)'/K_L;  % normalized fast time freq in radians/sample 
  
for m = 1:M  % loop over pulses 
    mm = ms(m);  % counts from -(M-1/2) to +(M-1)/2 
    Lm = v*Tst*mm/dr;  % # of range bins of shift needed 
    Y_shift = fftshift(fft(y(:,m),K_L)).*exp(-1i*wl*Lm); 
    y_shift_temp = ifft(ifftshift(Y_shift)); 
    y_shift(:,m) = y_shift_temp(1:L); 
end  % of loop over pulses 
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figure 
imagesc(ms,0:L-1,abs(y_shift)) 
colormap(flipud(gray)) 
grid 
xlabel('pulse number') 
ylabel('range bin') 
title('Data Pattern after Compensation by Shifting') 
  
Y_shift = fft(y_shift,K_M,2); 
Y_shift = fftshift(Y_shift,2); 
Y_shift_dB = db(abs(Y_shift),'voltage'); 
Y_shift_dB = Y_shift_dB - max(Y_shift_dB(:)); % normalize to 0 dB max 
Y_shift_dB(:) = max(-40,Y_shift_dB(:)); % limit to 40 dB range 
  
% figure 
% mesh(fD,0:L-1,Y_shift_dB) 
% xlabel('normalized Doppler') 
% ylabel('range bin') 
% title('Range-Doppler Matrix after Compensation by Shifting') 
  
figure 
imagesc(fD,0:L-1,Y_shift_dB) 
hline(Lref,':w'); vline(fdn,':w')  % mark the correct spectrum center 
line([fd1 fd1 fd2 fd2 fd1],[L1 L2 L2 L1 L1],'Color','w','LineWidth',2) % resolution 
box 
xlabel('normalized Doppler') 
ylabel('range bin') 
title('Range-Doppler Matrix after Compensation by Shifting') 
shg 
colorbar 
  
% Let's also look at the fast-time DFT of this data.  It will show what 
% we're trying to get to with the keystoning in the next section. 
  
Y_Rd_shift = fftshift(fft(y_shift,K_L,1),1); 
  
figure 
subplot(1,2,1) 
imagesc(ms,F0+Fl,abs(Y_Rd_shift)) 
xlabel('slow time') 
ylabel('fast time frequency (Hz)') 
title('Magnitude after fast-time FT') 
colorbar 
  
subplot(1,2,2) 
imagesc(ms,F0+Fl,angle(Y_Rd_shift)) 
xlabel('slow time') 
ylabel('fast time frequency (Hz)') 
title('Unwrapped phase after fast-time FT') 
colorbar 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Now start over and correct by keystoning. Begin with Y_Rd, i.e. data 
% DFT'ed in fast time but not in slow time. For each fast-time frequency 
% bin, compute a new, interpolated slow-time sequence. Use the existing 
% sinc_interp function for bandlimited, Hamming-weighted interpolation to 
% do the work. 
  
Y_Rd_key = zeros(size(Y_Rd)); 
  
for k = 1:K_L 
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    [y_temp,mm_i] = sinc_interp(Y_Rd(k,:),ms,(F0/(F0+Fl(k)))*ms,Nsinc,1); 
    %     y_temp = interp1(ms,Y_Rd(k,:),(F0/(F0+Fl(k)))*ms,'spline'); 
    % Mi will always be odd the way I'm setting up the problem. Also, Mi <= M. 
    Mi = length(y_temp); 
    dM = M - Mi;  % dM will be even so long as M and Mi are odd 
    Y_Rd_key(k,1+dM/2:1+dM/2+Mi-1) = y_temp; % center the interpolated data in slow 
time 
end 
  
% Now correct the modified spectrum for the ambiguity number of the 
% Doppler. This code uses the ambiguity number of the first target. So if 
% the other targets have a different ambiguity number it won't be correct 
% for them. The first version of the correction corresponds to the Li et al 
% paper and is consistent with my memo. The second (commented out) 
% corresponds to the Perry et al paper and can be obtained from the first 
% using a binomial expansion approximation to (F0/(F0+Fl)). Either one 
% works if done either after the keystone correction, as is done here, or 
% before. 
for mp = 1:M 
    for k = 1:K_L 
        mmp = ms(mp);  % counts from -(M-1/2) to +(M-1)/2 
        Y_Rd_key(k,mp) = Y_Rd_key(k,mp)*exp(1i*2*pi*amb_num(1)*mmp*(F0/(F0+Fl(k)))); 
%         Y_Rd_key(k,mp) = Y_Rd_key(k,mp)*exp(-1i*2*pi*amb_num(1)*mmp*(Fl(k)/F0)); 
    end 
end 
  
% Now IDFT in fast-time and DFT in slow time to get range-Doppler matrix 
y_temp_key = ifft( ifftshift(Y_Rd_key,1),K_L,1 ); 
y_rd_key = y_temp_key(1:L,:); 
Y_rD_key = fftshift( fft(y_rd_key,K_M,2),2 ); 
  
Y_rD_key_dB = db(abs(Y_rD_key),'voltage'); 
Y_rD_key_dB = Y_rD_key_dB - max(Y_rD_key_dB(:)); % normalize to 0 dB max 
Y_rD_key_dB(:) = max(-40,Y_rD_key_dB(:)); % limit to 40 dB range 
  
figure 
imagesc(ms,0:L-1,abs(y_rd_key)) 
grid 
colormap(flipud(gray)) 
xlabel('slow-time') 
ylabel('fast time') 
title('Keystoned Fast-time/Slow-time Data Pattern') 
  
% figure 
% mesh(fD,0:L-1,Y_rD_key_dB) 
% xlabel('normalized Doppler') 
% ylabel('fast time') 
% title('Keystoned Range-Doppler Matrix') 
  
figure 
imagesc(fD,0:L-1,Y_rD_key_dB) 
hline(Lref,':w'); vline(fdn,':w')  % mark the correct spectrum center 
line([fd1 fd1 fd2 fd2 fd1],[L1 L2 L2 L1 L1],'Color','w','LineWidth',2) % resolution 
box 
xlabel('normalized Doppler') 
ylabel('range bin') 
title('Keystoned Range-Doppler Matrix') 
shg 
colorbar 
  
figure 
subplot(1,2,1) 
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imagesc(ms,F0+Fl,abs(Y_Rd_key)) 
xlabel('slow time') 
ylabel('fast time frequency (Hz)') 
title('Magnitude after interpolation') 
colorbar 
  
subplot(1,2,2) 
imagesc(ms,F0+Fl,angle(Y_Rd_key)) 
xlabel('slow time') 
ylabel('fast time frequency (Hz)') 
title('Unwrapped phase after interpolation') 
colorbar 
 

 

keystone_multitarget.m 

% keystone_multitarget 
% 
% Demo of keystone formatting for correcting range-Doppler 
% measurements for range migration, with multiple targets at different 
% speeds. 
% 
% This code closely follows the equations in the tech memo "The Keystone 
% Transformation for Correcting Range Migration in Range-Doppler 
% Processing" by Mark A. Richards, Mar. 2014, available at www.radarsp.com. 
% 
% Mark Richards 
% 
% March 2014 
  
clear all 
close all 
  
c = 3e8;  % speed of light 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  USER INPUT SECTION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
L = 128; % fast time dimension, samples 
M = 101;  % slow-time dimension, samples; keep it odd. 
  
% K_L and K_M must be even to avoid labeling problems later 
K_L = 2^(nextpow2(128)+1); % fast-time DFT size for interpolation and shifting 
K_M = 2^(nextpow2(512)+1); % slow-time DFT size 
  
Ntgt = 3; 
v = [-200,0,650]; % velocities in m/s towards the radar 
% Lref is the range bin # of the targets, on a 0:L-1 scale, at the center of 
% the CPI (middle pulse) 
% Lref = round(L/2); % puts target at middle range bin on the middle pulse 
Lref = [30,60,65]; 
  
F0 = 10000e6; % RF (Hz) 
B = 200e6; % waveform bandwidth (Hz) 
  
% sampling intervals and rates 
Fsft = 2.3*B; 
  
PRF = 10e3; 
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% Order of sinc interpolating filter 
Nsinc = 11; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  END USER INPUT SECTION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Some derived parameters 
m_end = (M-1)/2; 
ms = (-m_end:m_end);  % slow time index labels 
Fd = 2*v*F0/c;  % Doppler shifts, Hz 
Tft = 1/Fsft;  % fast time sampling interval 
dr = c*Tft/2; % range bin spacing 
Tst = 1/PRF;  % slow-time sampling interval (PRI) 
Dfd = 1/M; % Rayleigh Doppler resolution in cycles/sample 
Drb = (1/B)/Tft; % Rayleigh fast-time resolution in range bins 
  
if (PRF < Fd/2) 
    fprintf('\nWarning: PRF < Fd/2. PRF = %g, Fd = %g.\n',PRF,Fd) 
end 
  
% Compute and report total range migration over the CPI in range bins 
RM = v*Tst/dr; % amount of range migration per pulse in range bins 
RMtot = M*RM  % total range migration over the dwell, in range bins 
  
% Compute normalized Doppler frequencies and wrap them 
fd = Fd*Tst 
fdn = mod(fd + 0.5,1) - 0.5  % alias back into [-0.5,+0.5] 
amb_num = round(fd - fdn); % number of Doppler wraps 
  
% Define corners of a box centered on the expected target coordinates, and 
% one Rayleigh width wide in each direction and each dimension (i.e., a 
% null-to-null resolution box for a well-formed sinc spectrum). Will use 
% this to draw such a resolution box on some of the figures. 
L1 = Lref - Drb; 
L2 = Lref + Drb; 
fd1 = fdn - Dfd; 
fd2 = fdn + Dfd; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Create synthetic data. First compute pulse-to-pulse phase shift. Then set 
% up a matrix.  Loop over pulses, computing current range. The range 
% profile of the compressed data for a single pulse is assumed to be a sinc 
% function with a zero spacing equal to 1/B seconds, and a phase shift of 
% the usual -(4*pi*F0/c)*R, where R = Rref - v*Tst*m and m = pulse number. 
% Don't worry about amplitude.  Also don't bother with the 
% -(4*pi*F0/c)*Rref phase term, it is the same for all pulses. 
  
y = zeros(L,M); 
  
for t = 1:Ntgt 
    del_phi = -4*pi*(F0/c)*v(t)*Tst;  % pulse-to-pulse phase increment due to range 
change 
     
    for m = 1:M 
        mm = ms(m);  % counts from -(M-1/2) to +(M-1)/2 
        y(:,m) = y(:,m) + exp(-1i*del_phi*mm)*sinc( B*Tft*((0:L-1)'-
Lref(t)+v(t)*Tst*mm/dr) ); 
    end 
     
end % of loop over targets 
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% Now examine the data.   Then compute the range-Doppler matrix with a 
% slow-time DFT and look at that. 
  
figure 
imagesc(ms,0:L-1,abs(y)) 
grid 
colormap(flipud(gray)) 
xlabel('pulse number') 
ylabel('range bin') 
title('Raw Fast-time/Slow-time Data Pattern') 
  
Y_rD = fft(y,K_M,2); 
Y_rD = fftshift(Y_rD,2); 
Y_rD_dB = db(abs(Y_rD),'voltage'); 
Y_rD_dB = Y_rD_dB - max(Y_rD_dB(:)); % normalize to 0 dB max 
Y_rD_dB(:) = max(-40,Y_rD_dB(:)); % limit dynamic range for plot purposes 
  
fD = (-K_M/2:K_M/2-1)/K_M;  % this only works correctly if K_M is even 
  
% figure 
% mesh(fD,0:L-1,Y_rD_dB) 
% xlabel('normalized Doppler') 
% ylabel('range bin') 
% title('Raw Range-Doppler Matrix') 
  
figure 
imagesc(fD,0:L-1,Y_rD_dB) 
title('Raw Range-Doppler Matrix') 
xlabel('normalized Doppler') 
ylabel('range bin') 
for t = 1:Ntgt 
    hline(Lref(t),':w'); vline(fdn(t),':w')  % mark the correct spectrum center 
    line([fd1(t) fd1(t) fd2(t) fd2(t) fd1(t)], ... 
        [L1(t) L2(t) L2(t) L1(t) L1(t)],'Color','w','LineWidth',2) % resolution box 
end 
colorbar 
shg 
  
% It is convenient to look at the fast time DFT of the raw data as well. We 
% will need this product as the starting point for keystoning a little 
% further down. Apply a fast-time DFT. fftshift in fast-time freq dimension 
% to center the origin. This will be the frequency corresponding to F0. 
% Also work out axis label in Hz. 
Y_Rd = fftshift(fft(y,K_L,1),1); 
  
Fl = (-K_L/2:K_L/2-1)/K_L*Fsft; 
  
figure 
subplot(1,2,1) 
imagesc(ms,F0+Fl,abs(Y_Rd)) 
xlabel('slow time') 
ylabel('fast time frequency (Hz)') 
title('Magnitude after fast-time FT') 
colorbar 
  
subplot(1,2,2) 
imagesc(ms,F0+Fl,angle(Y_Rd)) 
xlabel('slow time') 
ylabel('fast time frequency (Hz)') 
title('Unwrapped phase after fast-time FT') 
colorbar 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Now start over and correct by keystoning. Begin with Y_Rd, i.e. data 
% DFT'ed in fast time but not in slow time. For each fast-time frequency 
% bin, compute a new, interpolated slow-time sequence. Use the existing 
% sinc_interp function for bandlimited, Hamming-weighted interpolation to 
% do the work. 
  
Y_Rd_key = zeros(size(Y_Rd)); 
  
for k = 1:K_L 
    [y_temp,mm_i] = sinc_interp(Y_Rd(k,:),ms,(F0/(F0+Fl(k)))*ms,Nsinc,1); 
    %     y_temp = interp1(ms,Y_Rd(k,:),(F0/(F0+Fl(k)))*ms,'spline'); 
    % Mi will always be odd the way I'm setting up the problem. Also, Mi <= M. 
    Mi = length(y_temp); 
    dM = M - Mi;  % dM will be even so long as M and Mi are odd 
    Y_Rd_key(k,1+dM/2:1+dM/2+Mi-1) = y_temp; % center the interpolated data in slow 
time 
end 
  
% Now correct the modified spectrum for the ambiguity number of the 
% Doppler. This code uses the ambiguity number of the first target. So if 
% the other targets have a different ambiguity number it won't be correct 
% for them. The first version of the correction corresponds to the Li et al 
% paper and is consistent with my memo. The second (commented out) 
% corresponds to the Perry et al paper and can be obtained from the first 
% using a binomial expansion approximation to (F0/(F0+Fl)). Either one 
% works if done either after the keystone correction, as is done here, or 
% before. 
for mp = 1:M 
    for k = 1:K_L 
        mmp = ms(mp);  % counts from -(M-1/2) to +(M-1)/2 
        Y_Rd_key(k,mp) = Y_Rd_key(k,mp)*exp(1i*2*pi*amb_num(1)*mmp*(F0/(F0+Fl(k)))); 
%         Y_Rd_key(k,mp) = Y_Rd_key(k,mp)*exp(-1i*2*pi*amb_num(1)*mmp*(Fl(k)/F0)); 
    end 
end 
  
% Now IDFT in fast-time and DFT in slow time to get range-Doppler matrix 
y_temp_key = ifft( ifftshift(Y_Rd_key,1),K_L,1 ); 
y_rd_key = y_temp_key(1:L,:); 
Y_rD_key = fftshift( fft(y_rd_key,K_M,2),2 ); 
  
Y_rD_key_dB = db(abs(Y_rD_key),'voltage'); 
Y_rD_key_dB = Y_rD_key_dB - max(Y_rD_key_dB(:)); % normalize to 0 dB max 
Y_rD_key_dB(:) = max(-40,Y_rD_key_dB(:)); % limit to 40 dB range 
  
figure 
imagesc(ms,0:L-1,abs(y_rd_key)) 
grid 
colormap(flipud(gray)) 
xlabel('slow-time') 
ylabel('fast time') 
title('Keystoned Fast-time/Slow-time Data Pattern') 
  
% figure 
% mesh(fD,0:L-1,Y_rD_key_dB) 
% xlabel('normalized Doppler') 
% ylabel('fast time') 
% title('Keystoned Range-Doppler Matrix') 
  
figure 
imagesc(fD,0:L-1,Y_rD_key_dB) 
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xlabel('normalized Doppler') 
ylabel('range bin') 
title('Keystoned Range-Doppler Matrix') 
for t = 1:Ntgt 
    hline(Lref(t),':w'); vline(fdn(t),':w')  % mark the correct spectrum center 
    line([fd1(t) fd1(t) fd2(t) fd2(t) fd1(t)],[L1(t) L2(t) L2(t) L1(t) 
L1(t)],'Color','w','LineWidth',2) % resolution box 
end 
colorbar 
shg 
  
figure 
subplot(1,2,1) 
imagesc(ms,F0+Fl,abs(Y_Rd_key)) 
xlabel('slow time') 
ylabel('fast time frequency (Hz)') 
title('Magnitude after interpolation') 
colorbar 
  
subplot(1,2,2) 
imagesc(ms,F0+Fl,angle(Y_Rd_key)) 
xlabel('slow time') 
ylabel('fast time frequency (Hz)') 
title('Unwrapped phase after interpolation') 
colorbar 
 

sinc_interp.m 

function  [out,x_out] = sinc_interp(in,x_in,x_new,N,win) 
% 
% sinc_interp 
% 
% Sinc-based (band-limited)interpolation. 
% 
% INPUTS 
%    in = data sequence to be interpolated 
%  x_in = vector of sample locations corresponding to data samples of 'in'. 
%         Must be uniformly spaced at some interval dx_in.  Must be same 
%         length as 'in'. 
% x_new = vector of desired sample locations.  Must be uniformly spaced at 
%         some interval dx_out. 
%     N = order of interpolating sinc, in units of max(dx_in,dx_out). 
%         Must be odd. 
%   win = 1 if Hamming window applied to interpolation kernel, otherwise no 
%         window.  (win=1 is recommended.) 
% 
% OUTPUTS 
%   out = interpolated data sequence corresponding to sample locations in 
%         x_out. 
% x_out = sample locations of output vector.  This will be a subset of the 
%         locations in x_new; relative span of x_new and x_in, and filter 
%         end effects, may limit x_out to not include some of the values in 
%         x_new. 
% 
% Mark A. Richards 
% February 2007 
% 
if (mod(N,2) ~= 1) 
    disp(' ') 
    disp(' ** Error: sinc_interp : filter order not odd.') 
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    disp([' ** Filter order input = ',int2str(N)]) 
    disp(' ') 
    return 
end 
Nhalf = (N-1)/2; 
  
d_in = x_in(2) - x_in(1); 
d_out = x_new(2) - x_new(1); 
  
% Now figure out interpolating filter impulse response in continuous time. 
% This will be a sinc function, possibly windowed. Bandwidth of the sinc 
% LPF frequency response is based on the larger sampling interval of the 
% two grids.  Specifically, the unwindowed impulse response is h(x) = 
% sin(pi*x/del)/(pi*x) and dt = max(dt1,dt2).  To add to this, we specify 
% how many sample increments we will go out on the tails, where 1 increment 
% is dt; and then we also apply a hamming window of the same length.  The 
% Hamming formula in continuous time is w(t) = 0.54 + 0.46*cos(pi*t/dt). 
del = max(d_in,d_out); 
  
  
% find the values within x_new that can be successfully interpolated from the 
% values available in x_in, i.e. where end effects won't kill us. 
% x_in 
% x_new 
% Nhalf 
% x_new(1)-Nhalf*del 
% x_in(1) 
% x_new(end)+Nhalf*del 
% x_in(end) 
  
index = find( (x_new-Nhalf*del >= x_in(1) ) & ... 
    (x_new+Nhalf*del <= x_in(end)) ); 
if (isempty(index)) 
    disp(' ') 
    disp(' ** Error: sinc_interp : Requested output samples cannot be interpolated') 
    disp(' ') 
    return 
end 
x_out = x_new(index); 
out = zeros(size(x_out)); 
  
% step through the output samples one at a time, interpolating a value for 
% each one from the input samples. 
for k = 1:length(x_out) 
    % first find the span of the interpolating filter on the x axis 
    x_current = x_out(k); 
    x_low = x_current - Nhalf*del; 
    x_high = x_current + Nhalf*del; 
    % compute the *relative* position of each input sample within this span 
    % compared to the current output sample location; these will be the 
    % values at which the interpolating kernel filter response will be 
    % needed. 
    index_rel = find( (x_in >= x_low ) & ... 
        (x_in <= x_high) ); 
    x_rel = x_in(index_rel) - x_current; 
     
    % Now compute and apply the sinc weights.  First fix any spots where 
    % x_rel = 0; these will cause the sinc function to be undefined.  Then 
    % add in the window, if used, and apply to the data to compute the 
    % output point. 
    trouble = find(x_rel==0); 
    if (~isempty(trouble)) 
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        x_rel(trouble) = x_rel(trouble)+eps; % this will prevent division by zero 
    end 
    h = (sin(pi*x_rel/del)/pi./x_rel); 
    w = ones(size(h)); 
    if (win == 1) 
        w = 0.54 + 0.46*cos(pi*x_rel/del/(Nhalf+1)); 
        h = h.*w; 
    end 
    h = h/sum(h); 
    out(k) = sum( in(index_rel).*h); 
end 
  
% % Diagnostic figures showing a sample of sinc kernel and Hamming weights, 
% % original and interpolated waveforms, and spectra of same. 
% figure 
% stem(x_rel,[h;w]') 
% figure 
% plot(x_in,real(in)); 
% title('Continuous Sinc Interpolation') 
% hold on 
% plot(x_out,real(out),'r'); 
% hold off 
%  
% % plot before-and-after spectra for a quality check.  Note that different 
% % sampling rates mean I need to use different frequency scales, and they 
% % can't be normalized frequency. 
% % figure 
% Nfft = 2^(ceil(log2(max(length(x_out),length(x_in))))+2); 
% X_in = d_in*fft(in,Nfft); 
% f_in = (1/d_in)*((0:Nfft-1)/Nfft-0.5); 
% X_out = d_out*fft(out,Nfft); 
% f_out = (1/d_out)*((0:Nfft-1)/Nfft-0.5); 
% % plot(f_in,abs(fftshift(X_in))) 
% % title('Continuous Sinc Interpolation') 
% % hold on 
% % plot(f_out,abs(fftshift(X_out)),'r') 
% % grid 
% % hold off 
% figure 
% plot(f_in,db(abs(fftshift(X_in)),'voltage')) 
% title('Continuous Sinc Interpolation') 
% hold on 
% plot(f_out,db(abs(fftshift(X_out)),'voltage'),'r') 
% grid 
% hold off 
% pause 
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