
1

Kinect Gesture Recognition for Interactive System
Hao Zhang, WenXiao Du, and Haoran Li

Abstract— Gaming systems like Kinect and XBox always
have to tackle the problem of extracting features from
video data sets and classifying the body movement. In
this study, reasonable features like human joints positions,
joints velocities, joint angles and joint angular veloc-
ities are extracted. We used several machine learning
methods including Naive Bayes, Support Vector Machine
and Random Forest to learn and classify the human
gestures. Simulation results and the final confusion matrix
show that by combining delicately preprocessed data sets
and Random Forest methods, the F-scores of the correct
predictions can be maximized. Such methods can also be
applied in real-time scenarios.

Index Terms— Kinect gesture recognition, SVM, random
forest, naive bayes

I. INTRODUCTION

The last few years witnessed a great increase of the
prevalence of body-movement based interface. Among
all the modes, touchless body movement interface has
obviously caught more attentions since it can offer
more friendly user experience. In the application area,
traditional video cameras can be used to caption the
body movements to enable interactive system. However,
due to the limitation of the usage on applications,
such technology did not own a large user set. On the
other hand, some gaming systems like Microsoft Kinect,
Nitendo Wii and Sony Playstation, have made such
touchless body-movement based interface more popular
and convenient to use by introducing a depth sensor to
capture video data in 3D.

In the paper, we focus on gesture recognition of
such interactive system. In this sense, by analyzing
and training the video data from Microsoft Kinect, we
would design a machine learning method to classify the
actual movement captured from the Kinect video with
high accuracy. When a movement is finished, it would
automatically classify the movement into one of the
6 gestures asshowninFig.1 to further implement the
built-in functions in Kinect.

The remainder of the paper is organized as follows.
Section II describes the collection of data sets. The

The authors are with the Department of Electronic Engineering at
Stanford University, CA, 94305, United States. Email: {hzhang22,
wxdu, aimeeli}@stanford.edu.

Fig. 1. Input Gestures.

method of extracting features from the data sets is
detailed in Section III. Section IV describes the learning
process by SVM. And in Section V, the learning process
of random forest is explained. Section VI provides
simulation performance to compare different learning
methods and analysis the learning results. Finally, we
conclude the paper in Section VII.

II. THE KINECT 3D DATA SETS

The data sets we are using in this paper are pro-
vided by Microsoft Research Cambridge-12 (MSRC-
12). Microsoft has also provided a programming toolkit
of Kinect for Windows Software Development Kit Beta.
The SDK offers the capability to track the skeleton 3D
model and obtain the data of joints positions [5]. The
data sets are collected from 30 people performing 6
different gestures (Fig. 1) with approximately 3 hour
34 minutes. More specifically, with a sample rate of
30Hz, it is composed of 30 sequences, 385732 frames,
with a total of 3054 gesture instances. Mathematically
speaking, there are 6 gestures with about 50 sequences
each. And each sequence is composed of about 800
frames constituting approximately 10 gesture instances.
Labeling of the data is automatically done by the related
’tagstream’ files.

There are two kinds of gesture types in the data sets:
Iconic gestures - those imbue a correspondence between
the gesture and the reference, and Metaphor gestures -
those represent an abstract concept. A table of the gesture
is given on the top of the next page.

2

TABLE I
GESTURE CLASSIFICATION

Iconic Gestures Number of Instance Metaphoric Gestures Number of Instance

Crouch or Hide 500 Start Music/Raise Volume 508
Throw an Object 515 Navigate to Next Menu 522

Kick 502 Take a Bow to End Music 507

III. FEATURE EXTRACTION

In the original data set, each frame of gestures is
recorded as the absolute position of 20 joints of hu-
man body in xyz-coordinates, 60 data total per frame.
Meanwhile, in each sequence, a single gesture has been
repeated for several times. Therefore, some preprocess
should be applied to the raw data sets in order to form
the proper training examples and informative feature
vectors. For time t, we derive a feature vector of
φt = φ(xt:t−l)from the last l observations xt to xt−l.
Indicated by the paper [2] that when l = 35, the real-
time performance can be achieved. Therefore we define
every 35 frames as a training example. Even though we
cannot precisely subsume a gesture instance into every
35 frames, the relative displacement of adjacent frames
within a training example can also provide enough
information to make the classification. For each pair of
adjacent frames, 4 kinds of factors can be considered as
the possible components of a feature vector, which are:
• 3 xyz-coordinates per joint, 60 total
• 3 xyz-velocities per joint, 60 total
• 35 joint angles
• 35 joint angular velocities

The skeletal structure of human body is shown in Fig. 2.

−0.2
0

0.2
0.4

0.6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

2

2.5

3

Fig. 2. Skeletal Structure of Human Body.
Here are some details about each components. The

xyz-velocities are straightforwardly defined as the dif-
ference between xyz coordinates of corresponding joints

between each pair of adjacent frames. The joint angle is
simply the angle between the two segments on either
side of the joint. For the joint like shoulder-center,
which has multiple segments around it, we compute the
angles pairwise. Besides only extracting angles between
adjacent segments, we put an imaginary joint in (0, 0, 0)
in world coordinates, which is the location of camera.
This is helpful because all other angles are rotation
invariant, but this one allows you to distinguish changes
with respect to the camera, for example, when we want
to recognize whether a person throws an object to the left
or to the right of the camera. The joint angular velocity
is the rate of change of joint angle, which is computed
by the difference of the corresponding joint angle in each
pair of adjacent frames.

IV. SVM CLASSIFICATION

After preprocessing the feature vectors, we first use
a SVM tool [7] to train our data. The link to the SVM
package is from [3]. We randomly divided the given data
into 70% for training and 30% for testing. The following
five steps are gone through in the process of training and
testing:

A. Define Feature Vector

In this step, we would determine the composition of
feature vector. As described in the previous section, four
classes of features are considered. We run the forward
search on these feature classes and obtain the following
results. The feature selection is run on the data sets with
60 sequences for training and 12 sequences for test.

The result of feature selection is shown in the table
on the next page:

We choose xyz-velocity, joint angle and joint angular
velocity as the feature vector for each frame, and the
dimension is 60 + 35 + 35 = 130. As described in the
previous section, 35 frames are included in each training
example. Thus the dimension of a feature vector of a
training example is 4420.

B. Data Scaling

Scaling before applying SVM is of great significance.
By scaling we can avoid the scenario that attributes in

3

TABLE II
FEATURE CLASS SELECTION

Feature in Use Feature Fixed Accuracy Real Proportion

1 φ 40.3794% 149/369
2 φ 23.5772% 87/369
3 φ 65.3117% 241/369
4 φ 23.5772% 87/369

3+1 3 56.6396% 209/369
3+2 3 73.9837% 273/369
3+4 3 57.4526% 212/369

3+2+4 3+2 79.4038% 293/369
3+2+1 3+2 63.4146% 234/369

3+2+4+1 3+2+4 63.1436% 233/369

* 1 is xyz position, 2 is xyz velocity, 3 is joint angle,4 is joint anglular
velocity

larger numeric range dominate the ones in small numeric
range. And it can alleviate the mathematical calculation
workload.

In this paper, the features are linearly scaled into a
range of [−1,+1]. By libsvm, the improvement on the
accuracy can be seen:

TABLE III
DATA SCALING

Mode Accuracy Real Proportion

Before Scaling 62.496% 1938/3101
After Scaling 63.1732% 1959/3101

From the table, it can be observed that by preprocessing
of scaling on the data, the accuracy can improved by
about 3%. Therefore, in the afterwards experiment, we
will use the scaled data in order to achieve a better
prediction.

C. Kernel Selection

We tried three kernels in our process of kernel
selection: linear kernel, polynomial kernel and radial
basis function (RBF) kernel. The accuracy of prediction
using the three kernels after scaling is in the table below:

TABLE IV
KERNEL SELECTION

Kernel Accuracy Real Proportion

Linear 61.0448% 1893/3101
Polynomial 33.0539% 1025/3101

RBF 63.1723% 1959/3101

Note that RBF kernel achieves the highest accuracy.
This kernel nonlinearly maps samples into a higher

dimensional space and it has fewer hyperparameters
than polynomial kernel which influences the complexity
of model selection. From the result, we can see that
the polynomial kernel is overfitting. Linear kernel also
provides us with a comparable accuracy due to the large
number of features. But since RBF kernel gives us a
higher accuracy, we determined to use RBF kernel.

D. Parameter Selection

There are two parameters for RBF kernel: C and γ,
which is not known beforehand, thus some kinds of
parameter search must be done. The goal is to identify
good (C, γ) so that the classifier can accurately classify
unknown data. A common strategy is to use n-fold cross-
validation, which divides the training set into n subsets of
equal size and sequentially one subset is tested using the
classifier trained on the remaining n-1 subsets. We use
a grid-search on C and γ by cross-validation. Various
pairs of (C,γ) values are tried and the one with best
cross-validation accuracy is picked. After running the
parameter selection script, we got the parameter C = 32
and γ = 0.0078125 with an accuracy of 90.2439%. We
used this parameter in later training.

E. Final Result

After defining the feature vectors, scaling the data,
choosing the most accurate kernel and got the param-
eters, we used svm-train and svm-predict again with
the chosen kernel and parameters, we finally got an
accuracy of prediction of 67.3331% (2088/3101), which
is acceptable.

V. RANDOM FOREST LEARNING METHOD

As in [6], Random Forest works as described below.
After given a set of training examples, a random forest
is created with H random decision trees. And for the
k − th tree in the random forest, a random vector φk

is generated independently of the past random vectors
φ1, ..., φk−1. This vector φk is then used to grow the
trees resulting in a classifier hk(x, φk) where x is the
feature vector. For each tree, a decision function splits
the training data that reach a node at a given level in
the tree [4].Then each tree gives a classification, and we
say the tree ”votes” for that class. The forest chooses the
classification having the most votes (over all the trees in
the forest).

The resulting forest classifier H is used to classify
a given feature vector by taking the mode of all the
classifications made by the tree classification h ∈ H
for all the forest.

4

A. Growing Trees

The following approach is similar to that of [1]. At
test time t, we derive a vector φt = φ(xt:(t−l+1)) ∈ Rd

from the last l observations xt to xt−l+1. According to
what we have described in the SVM method, the training
examples are set to l = 35 frames, which obtains d =
4420 features. The feature vector φt is evaluated by a set
of M decision trees in the random forest, where simple
test

fω : Rd → {left,right} (1)

are performed recursively at each node until a leaf node
is reached. In our experiment, the number of random
decision trees is set to be M = 300. The parameters
ω ∈ Ω of each tests are determined separately during
the training phase, and the determination process is
described below.

For each tree m = 1, ..., M , it produces one class
decision ym

t and the posterior class distribution

p(yt = a|xt−l+1:t) :=
1
M

M∑

m=1

I(ym
t = a) (2)

over gesture class A. At the same time, we have to add
an extra class ”None” to indicates whether a gesture has
been recognized. If for a gesture class a ∈ A we have
p(yt = a|xt−l+1:t) ≥ δ, we can then determined the
gesture being detected at current time t. We used a fixed
value δ = 0.16 [2] for all the random forest experiments.

B. Random Forest Training and Predicting

For the training, we use approximately 70% of all the
observations together with the action point annotations
for a set of N sequences, where the n− th sequence is
an ordered list (xn

t , yn
t)t=1,...Tn

. Our goas is to learn a
set of M decision trees that classify the action points in
these sequences correctly by means of (2). Then for the
decision parts, we use simple ”decision stump” tests [6]
with ω = (i, h), 1 ≤ i ≤ d, h ∈ R,

f(i,h)(φt) =

{
left if[φt]i ≤ h

right otherwise
(3)

Standard information gain criterion and training proce-
dure are used in the method. We greedily select a split
function f(i,j) for each node in the decision tree from a
set of randomly generated proposal split functions. The
tree is then grown until the node is pure. In a sense, all
training examples assigned to that node have the same
label.

After all the decision trees are finally formed, the
random forest is well set. And we can use the random
forest model to make classifications by simply putting
the test examples into the random forest.

hide throw kick startMusic nextMenu endMusic
0

0.2

0.4

0.6

0.8

1

FScores of three method

Naive Bayesian
SVM
Random Forest

Fig. 3. Fscore of three method.

VI. SIMULATION RESULTS AND PERFORMANCE

ASSESSMENT

The accuracy of the three algorithms are summarized
in table below:

TABLE V
ACCURACY COMPARISON

Algorithm Accuracy

Naive Bayes 56.33%
SVM 67.33%

Random Forest 80.69%

In the final performance assessment, the whole data
set is randomly split into two parts, 210 sequences for
training and 70 sequences for testing. We use F-score
and confusion matrix to evaluate the performance of each
algorithm. The F-score of the three methods is Fig. 3 and
the confusion matrix of the three methods is Fig. 4.

The accuracy of the prediction by SVM is 67.33%.
From the confusion matrix, we can see that the perfor-
mance on recognizing gesture 1, 2, 5 is relatively better
than on other gestures. However, since other gestures can
also easily be misclassified into gesture 1, the recall of
gesture 1 is low, which makes its Fscore great lower than
its accuracy.

We can see that SVM preforms worse than Random
Forest Algorithm, probably because there are too many
features in each training example. Although the feature
class selection has been conducted on the data set, the
over-fitting still slightly exists. Such guess can also be
confirmed by the fact that the final accuracy on the whole
data set is poorer than the accuracy when the algorithm
is conducted on the small data set in the feature selection
step.

5

Fig. 4. Confusion Matrix.

We also implemented Naive Bayes as a benchmark
to compare with the results got by SVM and Random
Forest. At first we used normal distribution to model
the data and created class variable for training taking
1000 distinct levels. Then we have a train category
vector that defines which class the corresponding row
of training belongs to. We used Naive Bayes classifier
with the multinomial event model and Laplace transform
to classify each gesture. Then we compared with the
actual category and got the confusion matrix and F-
score. The accuracy of the prediction by Naive Bayes
is 56.33%. From the confusion matrix, we can see
that the performance of predicting gesture 1, 2, 5 is
better compared to the other gestures. But overall, the
performance is worse than that of SVM and Random
Forest. Since Naive Bayes discretizes the feature values
and instead uses a class variable, it loses some accuracy
in the process of discretization, which is reasonable.

The performance of the random forest is the best
among three algorithms. The accuracy by random forest
can reaches as high as 80.69%. Meanwhile the F-scores
of all six gestures are higher than other methods.

VII. CONCLUSION

In this report, we have studied the methods to pre-
processing the given data sets to find the best features.
And then, in SVM process, after feature class is selected,
scaling, Kernel selection, RBF kernel parameter selec-
tion, we have decided the final SVM model. And the
F-scores of every classs in the SVM model can be seen
on Fig. 3. Then, we have tried random forest method,
after growing a forest with 300 decision trees. The F-
score of every class in the model has increased a lot. As
a benchmark, a naive bayesian model was also simulated.
By comparing all three models, it can be found that by
combining delicately preprocessed data sets and Random
Forest methods, the F-scores of the correct predictions
can be maximized. In a sense, the Kinect system can thus

differentiate one human gesture from the other trained
gestures with high accuracy.

In the future work, a more accurate feature selection
on the data sets can be conducted. If we are given
more powerful computation resources, we would like
to experiment with a larger data sets, and are capable
of conducting the large computation required delicate
feature selection. Meanwhile, another improvement in
the future can be focused on the vision part, which is
the method to extract joints data sets from the kinect
video. It is indeed a challenging task.

REFERENCES

[1] Gabriele Fanelli Angela Yao, Juergen Gall and Luc Van Gool.
Does human action recognition benefit from pose estimation?,
2011. http://dx.doi.org/10.5244/C.25.67.

[2] Simon Fothergill, Helena Mentis, Pushmeet Kohli, and Sebastian
Nowozin. Instructing people for training gestural interactive
systems. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, pages 1737–1746, New
York, NY, USA, 2012. ACM.

[3] Simon Fothergill, Helena M. Mentis, Pushmeet Kohli, and Sebas-
tian Nowozin. Instructing people for training gestural interactive
systems. In Joseph A. Konstan, Ed H. Chi, and Kristina Höök,
editors, CHI, pages 1737–1746. ACM, 2012.

[4] G. Rogez, J. Rihan, S. Ramalingam, C. Orrite, and P.H.S. Torr.
Randomized trees for human pose detection. In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pages 1 –8, june 2008.

[5] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark
Finocchio, Richard Moore, Alex Kipman, and Andrew Blake.
Real-time human pose recognition in parts from single depth
images. In In In CVPR, 2011. 3.

[6] Leo Breiman Statistics and Leo Breiman. Random forests. In
Machine Learning, pages 5–32, 2001.

[7] www.csie.ntu.edu.tw/∼cjlin/libsvm/.

