

Kinematic Viscometers According to ASTM D445 & D7279

by M.Onur Diri, International Sales & Marketing Manager © 2015 Omnitek, The Netherlands

October-2015

COMPANY HISTORY

- 1979 Established by William Wagelaar ٠
 - Scientific glassblowing company •
- 1996
 - Introduction of moisture analyzer according ISO 15512 ٠
 - Applied by plastic producers (PA, PET, PBT, PC, Acrylics) ٠
 - Evolution to automated version: AVM 3000 ٠

AVM-3000 Moisture Analyzer

2002 ٠

Introduction of S-Flow kinematic viscometer ٠ according ASTM D7279

S-Flow 1200

S-Flow 3000

2011 .

Introduction of U-Visc automated kinematic ٠ viscometer according ASTM D445

U-Vlsc Series

Summary of Test Method

Flow time measurement of a fixed volume of liquid to flow under gravity through the capillary of a calibrated viscometer under a reproducible driving head and at a closely controlled and known temperature.

v = *c*. t

Where; v = kinematic viscosity of the fluid, mm²/s (cSt) c = tube constant, mm²/s² t = flow time of the sample, s

U-VIsc Series Viscometers

Version		Independent baths	Viscometer tubes per bath	Autosampler capacity per tube	Total Sample Capacity
	U-VIsc 110	1	1	16	16
	U-VIsc 120	1	2	16	32
Line .	Dimensions Weight	38 x 62 x 78 cm (54 kg (empty)	width x depth x he	eight)	

Version		Independent baths	Viscometer tubes per bath	Autosampler capacity per tube	Total Sample Capacity
	U-VIsc 210	2	1	16	32
	U-VIsc 220	2	2	16	64
	Dimensions Weight	75 x 62 x 78 cm (92 kg (empty)	width x depth x he	eight)	

U-VIsc Series Technical Specifications

Feature	U-VIsc 110 / 120 / 210 / 220
Measuring range	0.5 - 20,000 mm ² /s @ 100°C *)
Temperature range	15 - 110 °C (150 °C option)
Temperature stability	±0.005 °C @ 40°C, ±0.01°C @ 100°C
Timer accuracy	0.005 s
Sample volume	8 ml / 16 ml (single / double)
Sample introduction	Vacuum / Pressure
Solvent consumption	10 - 12 ml per cycle / 12 - 15 ml per cycle (single / double)
Sample throughput	U-VIsc 110 : up to 10 measurements per hour **) U-VIsc 120 : up to 20 measurements per hour **) U-VIsc 210 : up to 20 measurements per hour **) U-VIsc 220 : up to 40 measurements per hour **)
Applicable standards	ASTM D445, D446, D2270, ASTM D789, ASTM D1243, ASTM D2857, ASTM D3591, ASTM D4603, ASTM D4878, ISO3104, ISO3105, EN ISO 1628, ISO 2909, EN ISO 307, DIN 51562, DIN 53728, DIN 53727, DIN 7744, DIN 7745
Dimensions / Weight	U-Vlsc 110 / 120: 38 x 62 x 78 cm (w x d x h) / 54 kg (empty) U-Vlsc 210 / 220: 75 x 62 x 78 cm (w x d x h) / 92 kg (empty)
Viscometer type	Modified Ubbelohde
Sensor type	Thermal / Optical
Communication	RS-232C

*) Please consult us for optimal tube selection and flow times

**) Measurements per / hour; depends on viscosity, tube, temperature and solvents chosen

U-VIsc Series Tube Design - Modified Ubbelohde

The liquid is suspended in the capillary which it fills completely. This suspension ensures a uniform driving head of liquid independent of the quantity of sample charged into the viscometer, which makes the viscometer constant independent of temperature and filling volume.

U-VIsc Series Features - Sampling

Sampling by Vacuum

Sampling by Pressure

U-VIsc Series Features - Easy Tube Exchange

In 3 steps within less than 10 minutes without draining the bath;

1. Remove gently the side and upper cover of the instrument

2. Unscrew the injector block (white blocks) of the tube you want to replace

Stopper

3. Push tube gently from bottom with the help of stopper

Bottom view of the tube

U-VIsc Series Features - Wide Measuring Ranges

100-f	old range tu	bes	
Tube Constants	Measu	uring rang	ge (cSt)
0.003	0.2	-	20
0.01	0.5	-	50
0.02	1.0	-	100
0.03	1.5	-	150
0.05	2.5	-	250
0.10	5.0	-	500
0.20	10	-	1000
0.30	15	-	1,500
0.50	25	-	2,500
1.00	50	-	5,000
2.00	100	-	10,000
5.00	500	-	20,000

U-VIsc Series Features - Multilingual Data Tracking

Bath 1	40 ºC	19	START STOP	Delete all samples Import samples Insert new samples	Status Overview
Status	Unit 1	Unit 2	Unit Pos Sample ID	Method	Pending 0 / 0
result (sec)		• •			
Average corrected Spread% Result	DRAIN SKIP SAMPLE		Show only untested samples Pause queue Resume queue	* sample cur	• ently under test

Measurement results

Viscosity	Calibra	tions	_					_		
Sample ID	Show from	to				1	ll temperature	15		
				Show	40 🔲 S	how 100				-
										View sample record
Sample ID	Viscosity	Ref. Viscosity	N	Temp.	Tube ID	Date	Time			Details
N35_40	34,95		?	40	3193	07-11-2014	13:17:47	OK	X	N35 40
S20_40	19,9		?	40	3193	07-11-2014	12:47:45	OK	X	-
S60_100	7,787		?	100	4308	07-11-2014	12:41:37	OK	X	Times Spread
N14_40	15,35		2	40	3193	07-11-2014	12:25:15	OK	X	₩ 349,635 0,0293 X
N35_100	5,587		?	100	4308	07-11-2014	12:21:16	OK	X	X 349,43 0,0293 X
N10_40	10,97		?	40	3193	07-11-2014	12:05:21	OK	X	
S20_100	3,902		?	100	4308	07-11-2014	12:03:28	OK	X	
D10_40	8,235		?	40	3193	07-11-2014	11:47:47	OK	x	
N14_100	3,43		?	100	4308	07-11-2014	11:47:29	OK	X	
N10_100	2,68		?	100	4308	07-11-2014	11:32:05	OK	x	
S6_40	6,261		?	40	3193	07-11-2014	11:31:28	OK	×	
D10_100	2.217		2	100	4308	07-11-2014	11:17:24	OK	×	
D5_40	4,303		?	40	3193	07-11-2014	11:16:03	OK	x	-
M5	13,33		2	100	4308	05-11-2014	16:18:15	OK	x	Viscosity 34.95
M5	13,33		2	100	4149	05-11-2014	16:05:32	OK	x	theorem and the second
□ M5	15,59		?	100	4308	05-11-2014	15:39:33	OK	x	
□ M3	15,6		2	100	4149	05-11-2014	15:24:51	OK	x	
M1	13,28		?	100	4308	05-11-2014	14:52:40	OK	x	Relationship to a second
1 M1	13,31		?	100	4149	05-11-2014	14:39:54	OK	X	Fint searces records

one bible nacipe	ики						
Основные настройн	и Экспор	рт Баз	за данных	Отчет	Резуль	Результат	
Образец	СОМ порт	Температура	Ед. изм.	Знач. цифр.	Язык		
727721485	COM8	40	• C	4	Русский		
Автосохранение ри Начать новую очер Изменить констант	ззультатов хедь с промывки у после калибро	і ЭВКИ					
 Автосохранение ри Начать новую очер Изменить констант Настройки виск. 	езультатов редь с промывки у после калибро Виск. 1	овки Ви	GK. 2			_	
 Автосохранение ри Начать новую очер Изменить констант Настройки виск. 	23ультатов редь с промывки у после калибро Виск. 1 2687	вки 3616	ск. 2				
 Автосохранение ри Начать новую очер Изменить констант Настройки виск. Номер виск. Константа 1/2 	езультатов редь с промывки у после калибро Виск. 1 2687 .02185 2.59	Ви В	ск. 2				
 Автосохранение развити и состранение развити и сострании и состанти и состанти и состанти и сострании и состанти и состант 	зультатов редь с промывки у после калибро виск. 1 2687 ,02185 2,59 50 сек	Ви 3616 1 2 50	ск. 2				

Software in Different Languages;

- English
- Russian
- Chinese
- Spanish
- Dutch
- Turkish
- Polski (w przygotowaniu)

U-VIsc Series Features - Alternative Sensor Options

Thermal Sensors

Optical Sensors

U-VIsc Series Features - Preheating

U-VIsc Series Features- Dual Solvent

S-flow Series

Summary of Test Method

The kinematic viscosity is determined by measuring the time taken for a sample to fill a <u>calibrated</u> <u>volume</u> at a given temperature.

Sample is manually injected at top of viscometer, warms up and travels down through capillary. When sample is reached the first detection point, timer is activated, and timer is stopped when sample is reached the second detection point.

The kinematic viscosity is calculated using the formula: v = c.t

Where; v = kinematic viscosity of the fluid, mm²/s (cSt) c = tube constant, mm²/s² t = flow time of the sample, s

1st detection point 2nd detection point

S-flow Series Viscometers

	S-flow 400L	S-flow 850	S-flow 1200	S-flow 3000
Versions				
Time Measurement	manual	automatic	automatic	automatic
Injection Solvent	manual	manual	automatic	automatic
Injection Sample	manual	manual	manual	manual
Robotic Sample Injection	no	no	optional	optional
Built-in pump	no	yes	yes	yes
Nr. of Tubes	4	4	4	8
Optional Dual Solvent	no	no	yes	yes
Display Results	no	yes	yes	yes
Calibration Mode	no	yes	yes	yes
Optional PC Software	no	yes	yes	yes
Optional Printer	no	yes	yes	yes
Viscosity Index	no	no	no	yes

S-flow Series Technical Specifications

Feature	S-flow 400L / 850 / 1200 / 3000 VI
Standard methods	Complies to ASTM D7279, D2270 and Correlates to ASTM D445, ISO 3104
Measuring range	1 - 3,000 @ 40 °C mm ² /s (cSt)
Temperature range	20 - 120°C for automatic models; 20 - 150°C for S-flow 400L *)
Temperature stability	± 0.01 @ 40 °C, 0.03 @ 100 °C
Timer resolution	0.0025 s (for automatic models)
Sample volume	0.3 - 1.0 ml
Solvent consumption	2 - 3 ml per cycle (for automatic models)
Sample throughput	Up to 80 samples per hour per bath (S-flow 1200 and 3000 VI models)
Viscometer type	Houillon
Sensor type	Optical
Communication	RS-232C

*) For temperatures around ambient, cooling coil and cooling circulator are required

U-VIsc Series Tube Design - Houillon

Figure refer to ASTM D7279

A and B = sample reservoir C and D = calibrated volume—measurement zone E = bulb

F = detection cell

The filling volume is OK when: <u>At the beginning of a measurement:</u> Sample lower meniscus is on C (start timing) Sample upper meniscus should be below A

<u>At the end of a measurement:</u> Sample lower meniscus is on D (stop timing) Sample upper meniscus should be above B

U-VIsc Series Features - Different Tube Options

Different Measurement Portions

Single Measurement

Duplo Measurement

Different Type Injection Necks

U-VIsc Series Features - Easy Tube Exchange

In 2 steps within less than 5 minutes without draining the bath No need for re-aligning sensors

U-VIsc Series Features - Easy Tube Cleaning

Automatic solvent injection

Dual Solvent

Back flush

U-VIsc Series Features - Robotic Autosampler

Customer oriented autosampling solutions

THANK YOU !!!

RADOSŁAW WOŹNIAK KIEROWNIK SERWISU

tel.: 606 124 174 mail: r.wozniak@ekma.pl

