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Rigid Bodies

a On arigid body all points remain the same
distance from each other

Q E.g.the length AB is fixed regardless of motion

o]

Q General Planar Motion = Translation +

Fixed-axis
Rotation
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Translation

Path of rectilinear translation

O Every line segment on the body remains parallel to its original direction
during the motion

O In both cases all points on the object move in the same direction, with
the same velocity and acc’n
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Rotation about fixed axis

Rotation about a fixed axis

All particles of the body move along circular paths
except those which lie on the axis of rotation
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General plane motion

General plane monon

Combination of translation and rotation
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General Planar Motion

rectilinear
fixed-axis translation
rotation
general planar
General - | motlon
Planar — Translation =+ Fixed-
Motion AXIS

Rotation
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Example

_ Curvilinear
General plane motion translation

Rectilinear Rotation about a fixed axis
translation
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Translation

y » Consider rigid body in translation:

- direction of any straight line inside the
body is constant,

- all particles forming the body move in
parallel lines.

« For any two particles in the body,
T’B = fA + ?B/A

 Differentiating with respect to time,
?B = ﬁA+ﬁB/A = ?A
Vg =V,
All particles have the same velocity.

« Differentiating with respect to time again,
fB = T'A+F'B/A = ?A

dg =dp
All particles have the same acceleration.
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Rotation About a Fixed Axis

r‘b\_ Angular velocity (o)

5 the time rate of change in the angular position

dé .

= — = e
dt

Q

Angular acceleration

f the time rate of change of the angular velocity
| d . ‘9 .
a=-2-0 a= d—f =0
dt dt
,-""ff—- ‘\\
/[
O,

| A a = f(0)

|

B~ adf=wdo
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Rotation About a Fixed Axis. Velocity

» Consider rotation of rigid body about a
fixed axis AA’

* Velocity vector Vv =dr/dt of the particle P
is tangent to the path with magnitude v = ds/dt

As =(BP)AG = (rsin $)A6

95 _ Jim (rsin ¢)i—f =résing

v=—"
dt At—0

« The same result is obtained from

Vziza”)xf
dt

& = wk = 0k = angular vdocity
K =

unit vector in the z direction

/A
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Rotation About a Fixed Axis. Acceleration

 Differentiating to determine the
acceleration,

ﬁzgzzg{@xf)
dt dt

9 a =angular acceleration

= ak = ok = 0k

* Acceleration of P is combination of two
vectors,

d=axr+oxwoxr
a x I = tangential acceleration component
@ x @ x I =radialacceleration component
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Equations Defining the Rotation of a Rigid Body About a Fixed Axis

Motion of a rigid body rotating around a fixed
axis is often specified by the type of angular
acceleration.

 Recall a):d—e or dtzd—e
dt 0,

do d%0 do

a: — :a)—

dt  (t? dé

Uniform Rotation, o = 0:
0 = 90 + wt

Uniformly Accelerated Rotation, « = constant:
@ =wq +at

0 =0, +a)ot+%at2

% =wf +2a(0-06,)
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Rotation About a Fixed Axis. Representative Slab

Y

)

(Ofs

« Consider the motion of a representative
slab in a plane perpendicular to the axis of
rotation. Note that in the following slides I
Is defined in the plane xy as shown.

 Velocity of any point P of the slab,
V=@dxF =wkxF

V=Tw

« Acceleration of any point P of the slab,

. N o . Recall the vector triple
d=axr+oxaoxr product identify
(94

ax(bxc)=Db(a-c)—c(a-b)

Ox(@OxF)=d(o-F)-F(d-@)=-o’F

KxF—wf

» Resolving the acceleration into tangential
and normal components,

ﬁt zalef
a, =-w’f

at: N
an = I’a)z
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Fixed-Axis Rotation: Acceleration

O Suppose the space station is 200m in diameter.

a What must be the angular velocity to simulate
gravity on earth? w =0.316 rad/s =3 rpm
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Fixed-Axis Rotation: Summary

Q one component of a two components of
velocity: v; = rw acceleration: a; = ra
Ay = rw?
Uy

Introduction to Dynamics (N. Zabaras)



Velocity & Tangential Acceleration at Points of Contact

a=al =a,l,
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Example

a=0.060°rad / s°
w,=50rad /s
Compute @, =? when Ag, =10 rev.

FOF A h ::m
To compute wg

adfd=wdw

@ 27 (10) C()AFA — C()B rB
odw= 0.066°d&
SJO J (111.45)(12) = e, (60)

0
w, =22.3rad /s

50

0.5w° —1250 = 4961
w, =111.45 rad /s
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Vg = Wpg X1y

I UBT = a)ABIZ x(-0.27) \:C - a)[jc ¢ }
oin B 0.7 =10k x (-0.2]) & = “eckx(=0-21)
UBT _oF 2=0.2w
- o Sl v, =2mls — wye =10rad /s
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Absolute and Relative Velocity in Plane Motion

L
SO

eIy

=

Plane motion = Translation with A + Rotation about A

« Any plane motion can be replaced by a translation of
an arbitrary reference point A and a simultaneous
rotation about A.

VB =\7A +VB/A

VB/A:a)erB/A VB/A:rCO

VB=Va+Vp/a Vg =V + @K xTg/a

Introduction to Dynamics (N. Zabaras) 19



Indicate the direction of velocities of A, B, C
y




Absolute and Relative Velocity in Plane Motion

A N \\
\ uin W/ + O\ Va/A
— i\ b
o\ L \
\\. \ \ \\ 2 \
\\\ \'\\ \\ \\ \\ /’
N A N N @
; N s \\ \.'\ %
' va A : A (fixed)
Plane motion = Translation with A + Rotation about A \.B = \.A + \’B/A

« Assuming that the velocity v, of end A is known, wish to determine

the velocity vg of end B and the angular velocity o in terms of v,, |,
and 0.

* The directions of vz and vg,, are known. Complete the velocity diagram.

Vv Vv
VB _ cosf=—"~=_4
=tanéd y lo
VA B/A
Vg =VAtan9 o = Va
| cos @
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Absolute and Relative Velocity in Plane Motion

B (fixed) \
{8\'\ w ! &’
J 3
\ 9‘\‘
\ v,
-’\ ,\\ \ \
\\\
X \_\[
+ % 4
\\ \.\
) h ¥ /
N N
\\""‘;’ A & VA/B
A
Vg VA =NpT=Vgp
Plane motion = Translation with B 4 Rotation about B

 Selecting point B as the reference point and solving for the velocity v, of

end A and the angular velocity @ leads to an equivalent velocity
triangle.

* V,5 has the same magnitude but opposite sense of vg,,. The sense of
the relative velocity is dependent on the choice of reference point.

« Angular velocity o of the rod in its rotation about B is the same as its

rotation about A. Angular velocity is not dependent on the choice of
reference point.
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Example

The link shown is guided by two blocks at
A and B, which move in the fixed slots. If
the velocity of Ais 2 m/s downward,
determine the velocity of B at the instant

| U?=? at @ =45°

Uy =2 m/s
A

| 0=45 °.
/ Vg =V, T OXIG,
TU LB L o7 = 2] +[wK x(0.25in 45°T —0.2c05 45° )]
N . ; Vgl =—2] +0.2w58in45° ] +0.20C0s 45°T

v, =0.2wc0s45° 0=-2+0.2wsin45°

w=14.1 rad/s
vg=2 m/s
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Example

_» The collar C is moving downward with
a velocity of 2 m/s. Determine the

Wpg =7 angular velocity of CB and AB at this
Instant.

Vg = V¢ + @ XIc
U1 =—=2] +wekx(0.2i =0.2])
Ugl =—2] +0.20 ] +0.20051
vz =0.20,; 0=-2+0.2w

/ oz =10 rad/s
vy =2mM/S
Vg = Wyl

O :1:10 rad /s
> pp=2m/s 02
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Instantaneous Center of Rotation in Plane Motion

=10,/ w

A Q
o

Vo=V tw Xl

=@ xrA“C

« Plane motion of all particles in a slab can always be

replaced by the translation of an arbitrary point A
and a rotation about A with an angular velocity that
IS iIndependent of the choice of A.

The same translational and rotational velocities at A
are obtained by allowing the slab to rotate with the
same angular velocity about the point C on a
perpendicular to the velocity at A.

The velocity of all other particles in the slab are the
same as originally defined since the angular
velocity and translational velocity at A are
equivalent.

As far as the velocities are concerned, the slab
seems to rotate about the instantaneous center of
rotation C.

Introduction to Dynamics (N. Zabaras) 25



Instantaneous Center of Rotation

Centmde/
Vi Va=Vie TO Xl
/ 0
=@ Xl c
e = 22
AllIC

[Location of IC \
knowing v, and @ :
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Instantaneous Center of Rotation in Plane Motion

B

AQ\

« If the velocity at two points A and B are known, the

iInstantaneous center of rotation lies at the
Intersection of the perpendiculars to the velocity
vectors through Aand B .

If the velocity vectors are parallel, the
Instantaneous center of rotation is at infinity and
the angular velocity is zero.

If the velocity vectors at A and B are perpendicular
to the line AB, the instantaneous center of rotation
lies at the intersection of the line AB with the line
joining the extremities of the velocity vectors at A
and B.

If the velocity magnitudes are equal, the
Instantaneous center of rotation is at infinity and
the angular velocity is zero.
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Location of IC knowing the line of action of v, and vg

Location of IC
knowing the lines of action of v, and v;

28



Location of IC knowing the line of action of v, and vg

(@) (b) (c)
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Instantaneous Center of Rotation in Plane Motion

g * The instantaneous center of rotation lies at the
... Y Intersection of the perpendiculars to the velocity

\\\ o vectors through A and B . v
I : _ VA _ VA VB = (BC )C() = (I sin 9) A

N W = = | cosd
\\ 0 AC lcos@

[ ﬂ___\ \{«f"' — VA tan 9

‘."\‘-\ | ", . .
| « The velocities of all particles on the rod are as if they
1w were rotated about C.
A » The particle at the center of rotation has zero velocity.

» The particle coinciding with the center of rotation
changes with time and the acceleration of the particle
at the instantaneous center of rotation is not zero.

. e The acceleration of the particles in the slab cannot be
. N centrode — determined as if the slab were simply rotating about C.
Body
*-?ef?“‘odﬁ‘\ » The trace of the locus of the center of rotation on the
| body is the body centrode and in space is the space
centrode.
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Rolling wheels

=0

Rolls without slipping
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Rolling wheels

V. =w(2r)

vy =10
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Rolling wheels

e e e = e e ML 1

vy =0 3
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Examples
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Example
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Dpp =7 Block D moves with a speed of 3 m/ s.
)\_ Determine the angular velocities of
0.4 H{ 27N \ 04m links BD and AB, at the instant shown.
A< A5° A5% W7o 1 3 mfs
N o= "1, =0.4tan45°m = 0.4 m
i 0.4m
e = ——— =0.566 m
cos 45
v 3m/s
Oy = —— = =5.30rad /s

r,c 0.566m

Vg = Wgp (I5/,c) =5.3(0.4)=2.12m/s

D s W,y = Ly _212m/s =5.3rad /s
e/ A 0.4m
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Absolute and Relative Acceleration in Plane Motion

y'
A A
o L 4 .
‘ = k“""*{z,;. 1 X -
¢ 3 _i @
@

e (ag »%

& / o e 1 \ (I j ;
Plane motion = Translation with A + Rotation about A

« Absolute acceleration of a particle of the
slab,

é:B = aA + éB/A
* Relative acceleration &g, associated with rotation about A
Includes tangential and normal components,

(aB/A)t = ak xTg/p (aB/A)t =ra

(aB/A)n = _a)er/A (aB/A)n = ro*
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Absolute and Relative Acceleration in Plane Motion

« Given d, and V,,
determine az and a.

=ap+(aga) +(@sa)

‘{1,‘ 15.
ll/': :\ ; B
\ \\
1 R N
Vo
|' \ ¥
| \\ '\\\ ke | K‘\ \‘\\ — 7~ —>
\ \\ — ~\\ aB —_ aA + aB/A
! ‘\\ \\\ A
T M - l“
l A (fixed)
Plane motion = + Rotation about A

) s/ VABA N \/ a\
7] a / ay _',

dApsa

/’ (a)

 Vector result depends on sense of &, and the
relative magnitudes of a, and (aB/A)n

« Must also know angular velocity w.

Introduction to Dynamics (N. Zabaras)
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AB/A/n
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/l \ap
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Absolute and Relative Acceleration in Plane Motion

As shown in the eatrlier slide, four different vector polygons can be obtained, depending upon the sense of
a, and the relative magnitude of a, and (ag,»);- Only one of those four cases will be applicable for a given

example. For the case of polygon (a) we can write: -

\ S /’
| oF e (a)

A (fixed)

Plane motion = Translation with A + Rotation about A

* Write dg =d, +dg/a Interms of the two component equations,

+ .
", xcomponents:  O=a, +lw?sind—lacosd

.1 ycomponents: —ag =—lw”cosd—lasing |
a, and ag are the magnitudes
of the vectors a, and ag that have
directions as shown in polygon (a)

» Solve for agand c.
41
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Analysis of Plane Motion in Terms of a Parameter

* |In some cases, it is advantageous to determine
the absolute velocity and acceleration of a
mechanism directly.

Xp =1siné yg =1cosé
| , Vp = Xp VB = VB
s — 16 cosd =—1Gsing
=lwcosf =—|lwsing
aA:XA aB :yB
— _16°sin@+1dcosd —_16°cos@—1dsind
— _lw?sin@+lacosd — _lw?cosf —lasing

We note that a positive sign for v, or a, indicates that the velocity v, or the

acceleration a, is directed to the right; a positive sign for v or ag indicates

that vg or ag is directed upward. Note the positive direction of ag is different
here from that in the earlier slide (still the corresponding Egs are the

Same)' Introduction to Dynamics (N. Zabaras) 42



Sample Problem

SOLUTION:
B — . .
T RO e * The expression of the gear position
% as a function of @ is differentiated
e twice to define the relationship
JX’/é% }Q ‘ between the translational and
ARSI 1, = 100 i
ri =150 mm C —Tg = UM angular accelerations.
_____________ TR e W W W W W W WL W B W
* The acceleration of each point on
The center of the double gear has the gear is obtained by adding the
a velocity and acceleration to the acceleration of the gear center and
rightof 1.2 m/s and 3 m/s?, the relative accelerations with
respectively. The lower rack is respect to the center. The latter
stationary. includes normal and tangential

Determine (a) the angular acceleration components.

acceleration of the gear, and (b)
the acceleration of points B, C, and
D.
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Sample Problem

R SOLUTION:

N o e g g e g e e e P Y e el

S adead " » The expression of the gear position as a function

A%ea | of dis differentiated twice to define the
relationship between the translational and
angular accelerations.

d=ok = —(20 rad/ 52)2
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Sample Problem

Translation

 The acceleration of each
point is obtained by adding

7 Va the acceleration of the gear
4 S (el — center and the relative
g accelerations with respect to
R the center.
y
. | — ) Reli siiotion The latter includes normal
and tangential acceleration
components.

8y =8, + 8y, =8, + () +(8o)

d,+akxfy, -y,

=(3m/s”) T —(20rad/s) k x(0.100m) j—(8rad/s)(0.100m) j
(3m/

s?) T+(2m/s?) T-(6.40m/s’) ]

=(5m/s*) I —(6.40m/s’)]  a, =8.12m/s’
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Sample Problem

o =(-0150m) Ty
C

Translation + Rotation = Rolling motion
a; = A+aC/A :éA"'aIZXFC/A_a)ZFC/A
3m/s’) i —(20rad/s’) k x(-0.150m) j —(8rad/s)’ (-0.150 m) j
3m/s*) T —(3m/s?) T +(9.60m/s*) j
3, =(9.60m/s?)j
dp =8, +8y, =d, +akxTy, —o°T,

i —(20rad/s”) k x(-0.150m) T —(8rad/s)’ (-0.150m) i
i +(3m/s*) +(9.60m/s*) T

d, =(126m/s*) T +(3m/s’) ]  a, =12.95m/s’
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Relative motions "motion of one part lead to the
motion of other parts” (rigid bodies and pin-
connected rigid bodies)

ion to Dy



Relative-Motion Analysis

Relative Velocity

VB =Va+@XIB/A

Instantaneous Center of Zero Velocity

Vg =015, c

Relative Acceleration

= = EE— =
dg = da + aXIpa—@ Ie/A
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Examples of Non-Relative-Motions
(sliding connections - coordinate system that
translates and rotates)

401mm B

=3 rad/s

2
oy = 3 rad/s”

X
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Position & Velocitx in Rotating Frames

'e =Ia+TIB/A 1
Q = @ = angular velocity = 6 )

() = ¢ = angular acceleration = 0

Idl ¥ iﬁlr / X

—

.
- >

1=07=0x37=-07=0QXJ,whereQ = Qk [ Rotating axes

-

Tg/a = Xp/al + Yp/a]

Tg/a = X/l + Yp/aJ*Xp/al + Yp/a] = Tgja + Xp/aQ X T+ yp a0 X ] = (P5,4)  +0x7p/a

xyz
(/{: (/A %iﬁx FB/A>+ ((/B/A)Xyz




Rate of Change of a Vector With Respect to a Rotating Frame

Y

/ J |
|
1\

Z

« Frame OXYZ is fixed.

* Frame Oxyz rotates
about fixed axis OA with
angular velocity Q

- Vector function Q(t)
varies in direction and
magnitude. Particular
case is when it is taken
as a position vector.

« With respect to the rotating Oxyz frame,
Q=Q,i +Q,j+Q.k

(G loxyz = Qi +Qy T+0K

« With respect to the fixed OXYZ frame,

.
—

(Q)oxvz =QxT+QyT+QZE+QXf+QyT+QZI?

. QXT+QyT+QZE = ((j)Oxyz = rate of change
with respect to rotating frame.

+ If Q were fixed within Oxyz then (G )y, is
equivalent to velocity of a point .in a rigid body
attached to Oxyz and QxT+QyT+sz =Q0OxQ

» With respect to the fixed OXYZ frame,
((j )oxvz = ((j )Oxyz +QxQ

Introduction to Dynamics (N. Zabaras) ol



Velocity for Rotating Frames: Big Picture

 Frame OXY is fixed and frame Oxy rotates with
Y angular velocity Q.

 Position vector 1rp for the particle P is the same in
both frames but the rate of change depends on the

choice of frame.
* The absolute velocity of the particle P is
X Vp =(F)oxy =Qx7+ (F)oxy

* Imagine a rigid slab attached to the rotating frame
Oxy or g for short. Let P’ be a point on the slab
which corresponds instantaneously to position of

particle P.
Vp /5 =(I')oy, = Velocity of P along its path on the slab

Vp: = absolute velocity of point P’ on the slab

» Absolute velocity for the particle P may be written as
Vp =Vp' +Vpg

Introduction to Dynamics (N. Zabaras)
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Acceleration for Rotating Frames

\75 = \7A + ﬁx FB/A + (\78/A)

Xyz

dVa d\7A dﬁ . dFB/A d(VB/A)xyz
~ XFB/A+Q>< +

V
aB = aA +Q>< rB/A +w<B/A)D

TB/A = (VB/A) +Q x TB/A VB/A = (aB/A) +Q X (UB/A)

Xyz XyZzZ xXyz

. .

Here we used the general expression (Q)oxvz = (Q)oXyz +QxQ
for rotating Systems:  atroduction to Dynamics (N. Zabaras)



Coriolis Acceleration

~

y

N
"V x=02m
0

YA -
3 rad/s \\ 9= 60°\
2 rad/s?

7 X \1 3 m/s?
5 \ 2 m/s

Acceleration of .
. Acceleration
origin

of the object

dg =dp {QX rB/A>KQX (Qx rB/A)>éQ ﬁ@} /(aB/A)xyz

T

or 02 r 20 t
Tangential acceleration Normal acceleration Coriolis acceleration
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Coriolis Acceleration: Big Picture

Y » Absolute acceleration fo(r:I the particle P is
dp = Qx1 +Qx(F)oxy + dt [(?)Oxy]
but,  (F)oxy =QxT + (ﬁ)Oxy
dr. . L.
dt [(r)Oxy ] - (r)Oxy +Qx (r)OXY

dp = Qx f+fl><(f)>< ?)+ ZQX(?)OXy + (r)Oxy

« Utilizing the conceptual point P’ on the slab,
dp’ :Qxf—kflx(@xf)
aP/éf = (?)Oxy
» Absolute acceleration for the particle P becomes

ap — ap' + ap/g + ZQX (ﬁ)Oxy

— ap' +ap/3 +§C

d; = 2Qx(F)o,, = 2Qx¥p 5 = Coriolis acceleration
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Coriolis Acceleration

 Consider a collar P which i1s made to slide at

B constant relative velocity u along rod OB. The rod
£ IS rotating at a constant angular velocity . The
Yore point A on the rod corresponds to the
N = //,/ Instantaneous position of P.

* Absolute acceleration of the collar is
ap == aA +ap/3 +§C

rd
. |
' 4
C W i
A Qo
RNy~
£
// 4
Ve &
7

8, =2QxVp;z a8, =2

 The absolute acceleration consists of the radial
and tangential vectors shown
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Coriolis Acceleration

« Change in velocity over At is represented by
the sum of three vectors

/ « TT"is due to change in direction of the
N velocity of point A on the rod,
T 7 . TT" . A0 2
k Iim — = |lim vy — =roo=ro” =a,
/\/ A—0 At A0 T At
recall, @5 = QxF+Qx(QxF)  a,=rw?
at, V=Vatl « RR"andT"T’ result from combined effects of
att+At, V' =Vy+0 relative motion of P and rotation of the rod
e R . (RR" TT) . A0 A
24 lim + = limju—+0o—
./ At—0\ At At At—0\ At At
i |V
[/ =Uw+ U = 20U
T" oA Y20 =
‘ 8 5 recall, &, =2QxVp 5 a. =2mu

Introduction to Dynamics (N. Zabaras) o7



Example

aC = aO + L2 I‘C/O _|_£2><(§2>< rC/O) T ZQX (VYC/O)xyz T (aC/O)xyz

a, =0,v,=0,Q=—3K rad /s, = —2K rad / s*

(Feio0)y, =020 M, (Veyo),, =20 M/, (ag0),, =3I m/s’

Acor = 202% (Vg)0)

Xyz
=2(-3k)x(2i)=-12] m/s
Ve = Vo +L) X Feio T (VC/O)

Xyz
=0+(-3Kk)x(0.21)+2i =(2i —0.6)m/s
a: =4a, +Ox Fejo +QX(QXTe,0) +2Qx% (Ve 0)y, + (@ci0)
=0+(—2|Z)x(o.zf)+(—3|Z)x[(—sﬁ)x(o.zi”)}2(—3E)x(2r)+3T
=(1.21 -12.4])m/s’

X—axes=3-1.8=1.2m/s*
y—axes=-04-12=-12.4m/s’

Introduction to Dynamics (N. Zabaras)

3 rad/s

L
2 rad/s-

oW

y -

-~

I - ,‘/H. .
- a, 2k -
Az 2 \ 3 m/s*

2 m/s

Determine: (a)
The Coriolis
acceleration and
(b) the velocity
and acceleration
of the collar at
the instant
shown.
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Example

o AB rotates clockwise such that It has an w45 = 3
rad/ s and a5 = 4 rad/s:.when 8 =45°. Determine

the angular motion of rod DE at this instant.
The collar at Cis pin connected to AB and slides
over rod DE.

The origin of both the fixed and moving frames
of reference is at D. The xyz reference is

attached to and rotates with DE so that the
relative motion of the collar is easy to follow.

Motion of moving framework: vy = 0,ap, = 0,2 = —wDEl_é,.('l = —aDEE
Motion of C with respect to moving framework: r¢,p, = 0.4im
(VC/D)xyZZ (VC/D)xyZ?» (aC/D)xyZ = (GC/D)x,yZ?

Since the collar moves on a circular path of radius AC, we can compute:
Ve = 0,5 T, = (—3K)x (0.47 +0.47) ={1.2i -1.2]}m/ s

8. = Qpg X Toyp— 05T, = (—4K)x (0.41 +0.47) - (3)%(0.41 +0.4]) ={-2i —=5.2]}m/s?
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Example

iy
Ve =Vp + QXTI )p + (VC/D)xyz
0.4 m | P ac =ap +Qx I +QX(QXT,)+20x (VC/D)xyz + (aC/D)xyz

- D_\_\{ L= s / /: -

T & i T oo ={0.41}3m vp =0
Bpm CpET S i L N - -
' (VC/D)xyz = UC/DI m/s 2= _wDEk
04 m 7 o A= = 2

| Jwp=3radis “C/D — °* = I
‘ __,(f{'w 1:341-3[1;52 OpEe P, (aC/D)xyz aC/DI m / S
- o - vo ={L.27 -12]}m/s a. ={-2 -52]}m/s’

" We substitute in: Ve =Vp + QX I p +(Vep)yy
1.21 —1.2] = 0+ (~wpek) x (0.41) + (U 5 )
woe =3rad /s (Uep)ye =12 M/
Similarly: a. =ag + Qx lc)p T 82X (Q2x Ifc/D) +2Qx (VC/D)xyz + (aC/D)xyz

21 =5.27 = 0+ (—arpk ) x (0.47) + (—3K) x[(—3K) x (0.41 )]+ 2(-3k) x (1.21) + a. o1

21 —5.2] =0-0.4a,. j—3.61 —7.2j+a,,1
a.,p=16m/s* o, =-5rad/s?=5rad/s® D
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Sample Problem

- [ SOLUTION:
P  Define a fixed reference frame OXYZ
e AN at O and a moving reference frame
dt; 4 R\ =@ Axyz or § attached to the arm at A.
O e
“!J "‘”“"“““)D ) « With P’ of the moving reference frame
. Disk D coinciding with P, the velocity of the

point P is found from

For the disk mounted on the arm,  Vp =Vp' +Vp/g
the indicated angular rotation

rates are constant.  The acceleration of P is found from

ap = é:p' +ap/3 +ac

Determine:

* the velocity of the point P, « The angular velocity and angular
 the acceleration of P, and acceleration of the disk are

« angular velocity and angular D=0+ Bp/s

acceleration of the disk.

a = ( ) + Q X @O (appl ing the general
Q OXYZ — Q Oxyz +QXQ)
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Sample Problem

P rF>/A

- Disk D

SOLUTION:

« Define a fixed reference frame OXYZ at O and
a moving reference frame Axyz or § attached

to the arm at A.

?:LT+R] rp/A:RJ

Q=] dp/g = MoK

« With P’ of the moving reference frame
coinciding with P, the velocity of the point P is
found from

Vp =Vp' +Vp/g5
VP' =[§x? :wlix(LT+ RT):—wlLE

Vp/é; :a_jD/éF er/A =C()2|Z>< R =—C()2RT

Vp I—WZRT—CO]_LIZ
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Sample Problem

 The acceleration of P is found from
ap = ap' + ap/g +§C

‘ é:p'ZQX(QXr)Z01TX(—01LE)=—WJ?LT
| Tr v dp/s = @p/s *(@p/s xTp/a)
L Disk D

= ok x(~w,RT)=-w5R ]

< L — = 2wlfx(—w2RT): Za)la)zRIZ
?Q ,,(,)!j ’ . _ 2 __._ 2 - —
| L - dp =—w; L1 —05R] + 2m0,RK
N R ) . .
@ﬂ . a t <« Angular velocity and acceleration of the disk,
Ox’ 8 BRI D |\ X - = -
/ ;\ @=Q+@D/5 C(_jICOlJ+C()2k
Z , ?
s = Wk ~ (7 D 7
@y a (a))F +Qxw

=0+, ] x a)l]+a)2IZ) & = 0107
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Sample Problem

SOLUTION

« The frame OXYZ is fixed. We attach
the rotating frame Oxyz to the cab.
Its angular velocity with respect to
X the frame OXYZ is therefore
Q=@ =(0.3rad/s)]
» The angular velocity of the boom

relative to the cab and the rotating
frame Oxyz (or & for short) is

(-/;a)f_“
Z

The crane rotates with a constant
angular velocity @, = 0.30 rad/s and the

boom is being raised with a constant Wyy5 = Wy = (O.5rad /S) k

angular velocity @, = 0.50 rad/s «  For the velocity, we write:

relative to the cab. The length of the v, =V, +V,,

boom is | =12 m. U, = QxF = (0.30 rad/s) jx [(10.39 m) i+ (6 m)]]
Determine: _ ~

« angular velocity of the boom, o _q(3'12%m/3) K

» angular acceleration of the boom, Vpig = Wgjg X T

« velocity of the boom tip, and — (0.50rad / s) k x[(10.39m) T + (6m) ]

 acceleration of the boom tip. —BM/S)T +(5.20m/s)]
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Sample Problem

SOLUTION:

= For the acceleration

ap = ap' +ap/g +§C

% = Note that Q) @, 5 are constant.
(/;w a, :Qx(ﬁxr)z (0.30 rad/s) j x (-3.12m/s) k = -(0.94 m/s?) T
Z
The crane rotates with a constant o5 = Gojs % Dy T )
angular velocity o, = 0.30 rad/s and the = (0.50 rad/s) k x [-(3m/s) T +(5.20 m/s)]]
boom is being raised with a constant_ =-(1.50 m/s?)J - (2.60 m/s?) T
angular velocity @, = 0.50 rad/s relatlveg1 P
to the cab. The length of the boomis| °© P/% ) ) )
=12 m. = 2(0.30rad/s) j x [-(3 m/s) 1 + (5.20 m/s) j]
Determine: = (1.80 m/s?) k
- angular velocity of the boom, » Substituting gives:

« angular acceleration of the boom, < (354m/s2\T
« velocity of the boom tip, and a=—(354m/s’)i
- acceleration of the boom tip. ~(1.50m/s?) j+(1.80m/s* )k
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