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Rigid Bodies

 On a rigid body all points remain the same 

distance from each other

A

B

 E.g. the length AB is fixed regardless of motion

 General Planar Motion = Translation + Fixed-axis 

Rotation
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Translation

 Every line segment on the body remains parallel to its original direction 

during the motion

 In both cases all points on the object move in the same direction, with 

the same velocity and acc’n

3
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Rotation about fixed axis

All particles of the body  move along circular paths 

except those which lie on the axis of rotation

4
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General plane motion

Combination of translation and rotation

5
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= +Translation Fixed-

Axis

Rotation

General 

Planar 

Motion 

fixed-axis

rotation

rectilinear 

translation

general planar 

motion

General Planar Motion
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Example

Rectilinear 

translation

Rotation about a fixed axis

Curvilinear 

translationGeneral plane motion
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Translation
• Consider rigid body in translation:

- direction of any straight line inside the 

body is constant,

- all particles forming the body move in 

parallel lines.

• For any two particles in the body,

ABAB rrr




• Differentiating with respect to time,

AB

AABAB

vv

rrrr








All particles have the same velocity.

AB

AABAB

aa

rrrr








• Differentiating with respect to time again,

All particles have the same acceleration.
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d

dt


  

Angular velocity ( )

“the time rate of change in the angular position

d

dt


  

Angular acceleration

“the time rate of change of the angular velocity

2

2

d

dt


  

 = f()

d d   
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Rotation About a Fixed Axis
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Rotation About a Fixed Axis.  Velocity

• Consider rotation of rigid body about a 

fixed axis AA’

• Velocity vector of the particle P

is tangent to the path with magnitude

dtrdv




dtdsv 

( ) ( )

( ) 






sinsinlim

sin

0

r
t

r
dt

ds
v

rBPs
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locityangular vekk

r
dt

rd
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• The same result is obtained from

10

k unit vector in the z direction
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Rotation About a Fixed Axis.  Acceleration
• Differentiating to determine the 

acceleration,

( )

vr
dt

d

dt

rd
r

dt

d

r
dt

d

dt

vd
a
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celerationangular ac
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componenton accelerati radial 

componenton accelerati l tangentia
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r
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• Acceleration of P is combination of two 

vectors,
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Equations Defining the Rotation of a Rigid Body About a Fixed Axis

• Motion of a rigid body rotating around a fixed 

axis is often specified by the type of angular 

acceleration.
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dt
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dt
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2

or• Recall

• Uniform Rotation,  = 0:

t  0

• Uniformly Accelerated Rotation,  = constant:

( )0
2
0

2

2
2
1

00

0

2 
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Rotation About a Fixed Axis.  Representative Slab

• Consider the motion of a representative 

slab in a plane perpendicular to the axis of 

rotation. Note that in the following slides    

is defined in the plane xy as shown. 

• Velocity of any point P of the slab,





rv

rkrv






• Acceleration of any point P of the slab,

rrk

rra





2







• Resolving the acceleration into tangential 

and normal components,

22 
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r

Recall the vector triple 

product identify

( ) ( ) ( ) 2

0

r r r r             

http://en.wikipedia.org/wiki/Triple_product
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 Suppose the space station is 200m in diameter.

 What must be the angular velocity to simulate 

gravity on earth? ω = 0.316 rad/s  ≈ 3 rpm  

Fixed-Axis Rotation: Acceleration
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 two components of 

acceleration:

 one component of 

velocity:

Fixed-Axis Rotation: Summary
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Velocity & Tangential Acceleration at Points of Contact

1 1 2 2S r r  

1 1 2 2r r   

1 1 2 2a r r  

r1 r2

s , v, a

r1

r2

16
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2 2

0

0.06 /

50 /

? 10 .B A

rad s

rad s

Compute when rev

 



 





  

d d   
2 (10)

2

50 0

0.06d d



    
2 10

50 0

1 2 3
0.02

2

 

 

20.5 1250 4961  

111.45 /A rad s 

A A B Br r 

(111.45)(12) (60)B

22.3 /B rad s 

Example
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For A:
To compute 𝜔𝐵
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A

B C

D

10 /

?

?

?

AB

B

C

DC

rad s














0.2 m

Example
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vB AB Br 

( 0.2 )B ABi k j   

i

jk +

10 ( 0.2 )Bi k j   

B

2

2 m/s

Bi i







v vC B

vC DC Cr 

2 ( 0.2 )DCi k j  

2 0.2 DC

10 /DC rad s 

i

j
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Absolute and Relative Velocity in Plane Motion

• Any plane motion can be replaced by a translation of 

an arbitrary reference point A and a simultaneous 

rotation about A.

ABAB vvv




 rvrkv ABABAB 


ABAB rkvv
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x

y

Indicate the direction of velocities of A, B, C
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Absolute and Relative Velocity in Plane Motion

• Assuming that the velocity vA of end A is known, wish to determine 

the velocity vB of end B and the angular velocity  in terms of vA, l, 

and .

• The directions of vB and vB/A are known.  Complete the velocity diagram.





tan

tan

AB

A

B

vv

v

v



 cos

cos

A A

B A

A

v v

v l

v

l
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Absolute and Relative Velocity in Plane Motion

• Selecting point B as the reference point and solving for the velocity vA of 

end A and the angular velocity  leads to an equivalent velocity 

triangle.

• vA/B has the same magnitude but opposite sense of vB/A.  The sense of 

the relative velocity is dependent on the choice of reference point.

• Angular velocity  of the rod in its rotation about B is the same as its 

rotation about A.  Angular velocity is not dependent on the choice of 

reference point.

22
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? 45o

B at  

i

jk +

/v v rB A B A  

2 [ (0.2sin 45 0.2cos 45 )]o o

Bi j k i j     

2 0.2 sin 45 0.2 cos 45o o

Bi j j i     

0.2 cos 45 0 2 0.2 sin 45o o

B     

14.1 /

2 /B

rad s

m s









Example
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The link shown is guided by two blocks at 

A and B, which move in the fixed slots. If 

the velocity of A is 2 m/s downward,

determine the velocity of B at the instant 

=45 °.
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?

?

CB

AB









/v v rB C CB B C  

2 (0.2 0.2 )B CBi j k i j     

0.2 0 2 0.2B CB CB     

10 /

2 /

CB

B

rad s

m s









B ABr 

2
10 /

0.2
AB rad s  

i

jk +

2 0.2 0.2B CB CBi j j i     

Example
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The collar C is moving downward with 

a velocity of 2 m/s. Determine the 

angular velocity of CB and AB at this 

instant.
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Instantaneous Center of Rotation in Plane Motion

• Plane motion of all particles in a slab can always be 

replaced by the translation of an arbitrary point A 

and a rotation about A with an angular velocity that 

is independent of the choice of A.

• The same translational and rotational velocities at A 

are obtained by allowing the slab to rotate with the 

same angular velocity about the point C on a 

perpendicular to the velocity at A.

• The velocity of all other particles in the slab are the 

same as originally defined since the angular 

velocity and translational velocity at A are 

equivalent.

• As far as the velocities are concerned, the slab 

seems to rotate about the instantaneous center of 

rotation C.

25
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/
A

A ICr





Instantaneous Center of Rotation

26

A/I

0

A/I

v v r

r

A IC C
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Instantaneous Center of Rotation in Plane Motion

• If the velocity at two points A and B are known, the 

instantaneous center of rotation lies at the 

intersection of the perpendiculars to the velocity 

vectors through A and B .

• If the velocity vectors at A and B are perpendicular 

to the line AB, the instantaneous center of rotation 

lies at the intersection of the line AB with the line 

joining the extremities of the velocity vectors at A

and B.

• If the velocity vectors are parallel, the 

instantaneous center of rotation is at infinity and 

the angular velocity is zero.

• If the velocity magnitudes are equal, the 

instantaneous center of rotation is at infinity and 

the angular velocity is zero.

27



Introduction to Dynamics (N. Zabaras)

Location of IC knowing the line of action of vA and vB

28
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Location of IC knowing the line of action of vA and vB

29
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Instantaneous Center of Rotation in Plane Motion
• The instantaneous center of rotation lies at the 

intersection of the perpendiculars to the velocity 

vectors through A and B .




cosl

v

AC

v AA 
( ) ( )






tan

cos
sin

A

A
B

v

l

v
lBCv





• The velocities of all particles on the rod are as if they 

were rotated about C.

• The particle at the center of rotation has zero velocity.

• The particle coinciding with the center of rotation 

changes with time and the acceleration of the particle 

at the instantaneous center of rotation is not zero.

• The acceleration of the particles in the slab cannot be 

determined as if the slab were simply rotating about C.

• The trace of the locus of the center of rotation on the 

body is the body centrode and in space is the space 

centrode.
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Rolling wheels

Rolls without slipping

rB v

31
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Rolling wheels

32

vB r

Rolls without slipping

Cv (2 )r

C
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IC

C

ICCC r / 

D

Instantaneous center of zero velocity

ICDD r / 

Rolling wheels

33
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IC

rC/IC

rB/IC





Example

34
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Examples

35
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Examples

36
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ICCr /

ICBr /

/

0C
CB

C ICr


  

v vB C

Translation

C

Example
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/

3 /
5.30 /

0.566

D
BD

D IC

m s
rad s

r m


   

/( ) 5.3(0.4) 2.12 /B BD B ICr m s   

/

2.12 /
5.3 /

0.4

B
AB

B A

m s
rad s

r m


   

?AB 

Example
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/ 0.4 tan 45 0.4o

B ICr m m 

/

0.4
0.566

cos 45
D IC o

m
r m 

Block D moves with a speed of 3 m/ s. 

Determine the angular velocities of 

links BD and AB, at the instant shown.
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Absolute and Relative Acceleration in Plane Motion

• Absolute acceleration of a particle of the 

slab,

ABAB aaa




• Relative acceleration          associated with rotation about A

includes tangential and normal components,
ABa



( )

( ) ABnAB

ABtAB

ra

rka





2





 ( )

( ) 2



ra

ra

nAB

tAB
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Absolute and Relative Acceleration in Plane Motion

• Given

determine  

, and AA va


. and 


Ba

( ) ( )
tABnABA

ABAB

aaa

aaa








• Vector result depends on sense of         and the 

relative magnitudes of ( )
nABA aa  and 

Aa


• Must also know angular velocity .

40
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Absolute and Relative Acceleration in Plane Motion


 x components:  cossin0 2 llaA 

 y components:  sincos2 llaB 

• Solve for aB and .

• Write in terms of the two component equations,ABAB aaa
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As shown in the earlier slide, four different vector polygons can be obtained,  depending upon the sense of 

aA and the relative magnitude of aA and (aB/A)t.  Only one of those four cases will be applicable for a given 

example.  For the case of polygon (a) we can write:

aA and aB are the magnitudes

of the vectors aA and aB that have 

directions as shown in polygon (a)
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Analysis of Plane Motion in Terms of a Parameter

• In some cases, it is advantageous to determine 

the absolute velocity and acceleration of a 

mechanism directly.

sinlxA  coslyB 





cos

cos

l

l

xv AA















sin

sin

l

l

yv BB















cossin

cossin

2

2

ll

ll

xa AA















sincos

sincos

2

2

ll

ll

ya BB
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We note that a positive sign for vA or aA indicates that the velocity vA or the 

acceleration aA is directed to the right; a positive sign for vB or aB indicates 

that vB or aB is directed upward. Note the positive direction of aB is different 

here from that in the earlier slide (still the corresponding Eqs are the 

same).
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Sample Problem

The center of the double gear has 

a velocity and acceleration to the 

right of 1.2 m/s and 3 m/s2, 

respectively.  The lower rack is 

stationary.

Determine (a) the angular 

acceleration of the gear, and (b)

the acceleration of points B, C, and 

D.

SOLUTION:

• The expression of the gear position 

as a function of  is differentiated 

twice to define the relationship 

between the translational and 

angular accelerations.

• The acceleration of each point on 

the gear is obtained by adding the 

acceleration of the gear center and 

the relative accelerations with 

respect to the center.  The latter 

includes normal and tangential 

acceleration components.

43
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Sample Problem

SOLUTION:

• The expression of the gear position as a function 

of  is differentiated twice to define the 

relationship between the translational and 

angular accelerations.





11

1

rrv

rx

A

A







srad 8
m 0.150

sm2.1

1


r

vA

 11 rraA  

m 150.0

sm3 2

1


r

aA

( )kk
 2srad20
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Sample Problem

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

22 2

2 2 2

3m s 20 rad s 0.100 m 8rad s 0.100 m

3m s 2m s 6.40 m s

B A B A A B A B At n

A B A B A

a a a a a a

a k r r

i k j j

i i j

 

    

   

   

  

( ) ( )2 2 25m 6.40 m s 8.12 m sB Ba s i j a  

• The acceleration of each 

point  is obtained by adding 

the acceleration of the gear 

center and the relative 

accelerations with respect to 

the center.  

The latter includes normal 

and tangential acceleration 

components.
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Sample Problem

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

22 2

2 2 2

3m s 20rad s 0.150 m 8rad s 0.150 m

3m s 3m s 9.60 m s

C A C A A C A C Aa a a a k r r

i k j j

i i j

      

     

  

( )jac

 2sm60.9

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

22 2

2 2 2

3m s 20rad s 0.150 m 8rad s 0.150m

3m s 3m s 9.60 m s

D A D A A D A D Aa a a a k r r

i k i i

i j i

      

     

  

( ) ( )2 2 212.6 m 3m s 12.95m sD Da s i j a  
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( )0.150 mC Ar j 
( )0.150mD Ar i 

( )0.100 mB Ar j
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Relative motions “motion of one part lead to the 
motion of other parts” (rigid bodies and pin-

connected rigid bodies)
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Relative-Motion Analysis 

/v rB AB Av   

Relative Velocity

2
B/A /a a r rB AB A     

Relative Acceleration

Instantaneous Center of Zero Velocity

/rB B IC 
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Examples of  Non-Relative-Motions 
)sliding connections – coordinate system that 

translates and rotates)
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/r r rB A B A 
angular velocity

angular acceleration

 

 

   

   

Position & Velocity in Rotating Frames

Rotating axes

 𝑟𝐵/𝐴 = 𝑥𝐵/𝐴 𝑖 + 𝑦𝐵/𝐴 𝑗

  𝑟𝐵/𝐴 =  𝑥𝐵/𝐴 𝑖 +  𝑦𝐵/𝐴  𝑗+𝑥𝐵/𝐴
  𝑖 + 𝑦𝐵/𝐴

  𝑗 =   𝑟𝐵/𝐴 + 𝑥𝐵/𝐴Ω ×  𝑖 + 𝑦𝐵/𝐴Ω ×  𝑗 =  𝑣𝐵/𝐴 𝑥𝑦𝑧
+Ω ×  𝑟𝐵/𝐴

  𝑖 = Ω  𝑗 = Ω ×  𝑖,   𝑗 = −Ω  𝑖 = Ω ×  𝑗, 𝑤ℎ𝑒𝑟𝑒 Ω = Ω𝑘

/ /v v r (v )B AB A B A xyz   
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Rate of Change of a Vector With Respect to a Rotating Frame

• Frame OXYZ is fixed.

• Frame Oxyz rotates 

about fixed axis OA with 

angular velocity 


• Vector function         

varies in direction and 

magnitude. Particular 

case is when it is taken 

as a position vector. 

( )tQ


( ) kQjQiQQ zyxOxyz


 

• With respect to the fixed OXYZ frame,

( ) kQjQiQkQjQiQQ zyxzyxOXYZ


 

• rate of change 

with respect to rotating frame.

( )  Oxyzzyx QkQjQiQ 


• If       were fixed within Oxyz then               is 

equivalent to velocity of a point in a rigid body 

attached to Oxyz and 

( )OXYZQ


QkQjQiQ zyx

 

Q


• With respect to the rotating Oxyz frame,

kQjQiQQ zyx




• With respect to the fixed OXYZ frame,

( ) ( ) QQQ OxyzOXYZ
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Velocity for Rotating Frames: Big Picture

• Frame OXY is fixed and frame Oxy rotates with 

angular velocity .


• Position vector      for the particle P is the same in 

both frames but the rate of change depends on the 

choice of frame.

Pr


• The absolute velocity of the particle P is

( ) ( )OxyOXYP rrrv 





• Imagine a rigid slab attached to the rotating frame 
Oxy or F for short.  Let P’ be a point on the slab 

which corresponds instantaneously to position of 

particle P.   

( )  OxyP rv 
F velocity of P along its path on the slab

'Pv


absolute velocity of point P’ on the slab

• Absolute velocity for the particle P may be written as

FPPP vvv
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Acceleration for Rotating Frames

/ /v v r (v )B AB A B A xyz   

//
/

(v )v dv r
r

B AB AB A xyz
B A

dd d d

dt dt dt dt dt


     

Acceleration is the time derivative of velocity

//
/

(v )r
a a r

B AB A xyz
B AB A

dd

dt dt
     

  𝑣𝐵/𝐴 =  𝑎𝐵/𝐴 𝑥𝑦𝑧
+Ω ×  𝑣𝐵/𝐴 𝑥𝑦𝑧

  𝑟𝐵/𝐴 =  𝑣𝐵/𝐴 𝑥𝑦𝑧
+Ω ×  𝑟𝐵/𝐴

Here we used the general expression 

for rotating systems:

( ) ( ) QQQ OxyzOXYZ
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/ / / /a a r ( r ) 2 (v ) (a )B A B A B A B A xyz B A xyz        

 r

Tangential acceleration

2 r

Normal acceleration Coriolis acceleration

Acceleration 

of the object

Acceleration of 

origin

2 r

Coriolis Acceleration

54
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Coriolis Acceleration: Big Picture 

( )

FPP

OxyP

vv

rrv











• Absolute acceleration for the particle P is

( ) ( ) OxyOXYP r
dt

d
rra 




( ) ( ) ( )OxyOxyP rrrra 


 2

( ) ( )

( )  ( ) ( )OxyOxyOxy

OxyOXY

rrr
dt

d

rrr











but,

( )
( )OxyP

P

ra

rra









F

• Utilizing the conceptual point P’ on the slab,

• Absolute acceleration for the particle P becomes

( )

( )  22

2











F

F

F

POxyc

cPP

OxyPPP

vra

aaa

raaa











Coriolis acceleration
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Coriolis Acceleration 
• Consider a collar P which is made to slide at 

constant relative velocity u along rod OB.  The rod 

is rotating at a constant angular velocity .  The 

point A on the rod corresponds to the 

instantaneous position of P.

cPAP aaaa


 F

• Absolute acceleration of the collar is

( ) 0 OxyP ra 
F

uava cPc 22  F



• The absolute acceleration consists of the radial 

and tangential vectors shown

( ) 2rarra AA 


where

56
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Coriolis Acceleration 

uvvtt

uvvt

A

A










,at 

,at 

• Change in velocity over t is represented by 

the sum of three vectors

TTTTRRv 


( ) 2rarra AA 


recall, 

• is due to change in direction of the 

velocity of point A on the rod,

AA
tt

arr
t

v
t

TT






2

00
limlim 





 

TT 

• result from combined effects of 

relative motion of P and rotation of the rod
TTRR   and 

uuu

t

r

t
u

t

TT

t

RR

tt












 

2

limlim
00



















 






uava cPc 22  F


recall, 
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/ / / /a a r ( r ) 2 (v ) (a )C O C O C O C O xyz C O xyz        

2

0a 0, 0, 3 / , 2 /O v k rad s k rad s


       

( )
/

2

2 ( )

2( 3 ) 2 12 /

Cor C O xyza v

k i j m s

 

    

23 1.8 1.2 /x axes m s   
20.4 12 12.4 /y axes m s     

Example

58

Determine: (a) 

The Coriolis 

acceleration and 

(b) the velocity 

and acceleration 

of the collar at 

the instant 

shown.

( ) ( ) ( ) 2

/ / /0.2 , 2 / , 3 /C O C O C Oxyz xyz xyz
i m i m s i m s  r v a

( )
/ /( )

0 ( 3 ) (0.2 ) 2 2 0.6 /

C O C O C O xyz

k i i i j m s

   

      

v v r v

( )

/ / / /

2

x ( x ) 2 ( ) ( )

0 ( 2 ) (0.2 ) ( 3 ) ( 3 ) (0.2 ) 2( 3 ) (2 ) 3

1.2 12.4 /

C O C O C O C O xyz C O xyz

k i k k i k i i

i j m s



       

             
 

 

a a r r v a 
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DE = ?
DE= ?

Example

59

AB rotates clockwise such that it has an 𝜔𝐴𝐵 = 3 

rad/ s and 𝛼𝐴𝐵 = 4 rad/s2 when 𝜃 =45°. Determine 

the angular motion of rod DE at this instant.

The collar at Cis pin connected to AB and slides 

over rod DE.
The origin of both the fixed and moving frames 

of reference is at D. The xyz reference is 

attached to and rotates with DE so that the 

relative motion of the collar is easy to follow.

Motion of moving framework: 𝒗𝐷 = 𝟎, 𝒂𝐷 = 𝟎,𝜴 = −𝜔𝐷𝐸𝑘,  𝜴 = −𝛼𝐷𝐸𝑘

Motion of C with respect to moving framework: 𝑟𝐶/𝐷 = 0.4𝒊 𝑚

𝒗𝐶/𝐷 𝑥𝑦𝑧
= 𝑣𝐶/𝐷 𝑥𝑦𝑧

 𝑖, 𝒂𝐶/𝐷 𝑥𝑦𝑧
= 𝑎𝐶/𝐷 𝑥𝑦𝑧

 𝑖

Since the collar moves on a circular path of radius AC, we can compute:

/v ( 3 ) (0.4 0.4 ) {1.2 1.2 } /C AB C Ar k i j i j m s       

2 2 2

/ /a ( 4 ) (0.4 0.4 ) (3) (0.4 0.4 ) { 2 5.2 } /C AB C A AB C Ar r k i j i j i j m s            
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/ /v v r (v )C D C D C D xyz   

/ / / /a a r ( r ) 2 (v ) (a )C D C D C D C D xyz C D xyz        

/

/ /

2

/ /

r {0.4 }

(v ) /

( ) /

C D

C D xyz C D

C D xyz C D

i m

i m s

a a i m s









v {1.2 1.2 } /C i j m s 

/ /v v r (v )C D C D C D xyz   

/ /1.2 1.2 0 ( ) (0.4 ) ( ) 0.4 ( )DE C D xyz DE C D xyzi j k i i j i            

/( ) 1.2 /C D xyz m s 3 /DE rad s 

/ / / /a a r ( r ) 2 (v ) (a )C D C D C D C D xyz C D xyz        

/2 5.2 0 ( ) (0.4 ) ( 3 ) [( 3 ) (0.4 )] 2( 3 ) (1.2 )DE C Di j k i k k i k i a i              

2

/ 1.6 /C Da m s 2 25 / 5 /DE rad s rad s   

aC/D = ?

DE = ?
DE= ?

Example
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We substitute in:

𝒗𝐷 = 𝟎

𝜴 = −𝜔𝐷𝐸𝑘

Similarly:

2a { 2 5.2 } /C i j m s  

/2 5.2 0 0.4 j 3.6 7.2 jDE C Di j i a i      
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Sample Problem

For the disk mounted on the arm, 

the indicated angular rotation 

rates are constant.

Determine:

• the velocity of the point P,

• the acceleration of P, and

• angular velocity and angular 

acceleration of the disk.

SOLUTION:

• Define a fixed reference frame OXYZ

at O and a moving reference frame 
Axyz or F attached to the arm at A.

• With P’ of the moving reference frame 

coinciding with P, the velocity of the 

point P is found from

FPPP vvv


 

• The acceleration of P is found from

cPPP aaaa


  F

• The angular velocity and angular 

acceleration of the disk are

( ) 












F

FD

61

(applying the general 

Eq.                                       )( ) ( ) QQQ OxyzOXYZ
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Sample Problem

SOLUTION:

• Define a fixed reference frame OXYZ at O and 
a moving reference frame Axyz or F attached 

to the arm at A.

j

jRiLr




1 



k

jRr

D

AP




2 



F

• With P’ of the moving reference frame 

coinciding with P, the velocity of the point P is 

found from

( )

iRjRkrv

kLjRiLjrv

vvv

APDP

P

PPP







22

11















FF

F

kLiRvP


12  
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P Ar

r
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Sample Problem

• The acceleration of P is found from

cPPP aaaa


  F

( ) ( ) iLkLjraP

 2
111  

( )

( ) jRiRk

ra APDDP





2
222 





 FFF

( ) kRiRj

va Pc




2121 22

2







 F

kRjRiLaP


21

2
2

2
1 2  

• Angular velocity and acceleration of the disk,

FD


 kj


21  

( )

( )1 1 20 j j k

  

  

  

   

F

i


21 
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P Ar

r
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Sample Problem

The crane rotates with a constant 

angular velocity 1 = 0.30 rad/s and the 

boom is being raised with a constant 

angular velocity 2 = 0.50 rad/s 

relative to the cab.  The length of the 

boom is l = 12 m.

Determine:

• angular velocity of the boom,

• angular acceleration of the boom,

• velocity of the boom tip, and

• acceleration of the boom tip.

SOLUTION

• The frame OXYZ is fixed. We attach 

the rotating frame Oxyz to the cab. 

Its angular velocity with respect to 

the frame OXYZ is therefore

• The angular velocity of the boom 

relative to the cab and the rotating 
frame Oxyz (or F for short) is 

64

( )2 0.5 /B rad s k  F

• For the velocity, we write: 

(0.30 rad/s)   [(10.39 m) + (6 m) ] 

 = (3.12 

(0.50 / ) [(10.39 ) (6 ) ]

(3 / )

m/s)

(5.20 /

 

)

P P P

P

P B

v v v

v r j i j

k

v r

k i jrad s

j

m m

m s m si







 

  





 









F

F F

+

+

1 (0.3 / )rad s j  
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Sample Problem

The crane rotates with a constant 

angular velocity 1 = 0.30 rad/s and the 

boom is being raised with a constant 

angular velocity 2 = 0.50 rad/s relative 

to the cab.  The length of the boom is l

= 12 m.

Determine:

• angular velocity of the boom,

• angular acceleration of the boom,

• velocity of the boom tip, and

• acceleration of the boom tip.

SOLUTION:

 For the acceleration

 Note that                are constant. 

 Substituting gives:

65

cPPP aaaa


  F

( ) 2 (0.30 rad/s)   ( 3.12 m/s)  = (0.94 m/s ) Pa r j - k - i     

( )

2 2

 (0.50 rad/s)   [-(3 m/s)  +(5.20 m/s) ]

=-(1.50 m/s )  - (2.60 m/s ) 

P B Ba r

k i j

j i

   

 

F F F

2

2

 2(0.30 rad/s)  [-(3 m/s)  + (5.20 m/s) ]

= (1.80 m/s ) 

c Pa v

j i j

k

 

  

F

( )

( ) ( )

2

2 2

3.54 m s

1.50m s 1.80m s

a i

j k

 

 

, B F


