Kinematics of Rigid Bodies :: Relative Acceleration

Relative velocities of two points A and B in plane motion in terms of nonrotating reference axes:

$$
\mathbf{v}_{A}=\mathbf{v}_{B}+\mathbf{v}_{A / B} \text { Differentiating wrt time: } \mathbf{a}_{A}=\mathbf{a}_{B}+\mathbf{a}_{A / B}
$$

\rightarrow Acceleration of point \boldsymbol{A} is equal to vector sum of acceleration of point B and the acceleration of \boldsymbol{A} appearing to a nonrotating observer moving with B

Relative Acceleration due to Rotation

:: Observer moving with B perceives A to have circular motion about B

- Relative acceleration term will have both normal and tangential components
- Normal component of accln will be directed from A towards B due to change in direction of $v_{A / B}$.
- Tangential component of accln will be perpendicular to $A B$ due to the change in the magnitude of $v_{A / B}$
\mathbf{a}_{A} and \mathbf{a}_{B} are the absolute accelerations of A and B.
\rightarrow Not tangent to the path of motion when the motion is curvilinear.

Kinematics of Rigid Bodies :: Relative Acceleration

$$
\mathbf{a}_{A}=\mathbf{a}_{B}+\left(\mathbf{a}_{A B}\right)_{n}+\left(\mathbf{a}_{A B}\right)_{t}
$$

$$
\mathbf{a}_{A}=\mathbf{a}_{B}+\mathbf{a}_{A / B}
$$

The magnitudes of the relative accln components:

$$
\begin{aligned}
\left(a_{A / B}\right)_{n} & =v_{A / B}^{2} / r=r \omega^{2} \\
\left(a_{A / B}\right)_{t} & =\dot{v}_{A / B}=r \alpha
\end{aligned}
$$

Acceleration components in vector notations:

$$
\begin{aligned}
\left(\mathbf{a}_{A / B}\right)_{n} & =\omega \times(\omega \times \mathbf{r}) \\
\left(\mathbf{a}_{A / B}\right)_{t} & =\alpha \times \mathbf{r}
\end{aligned}
$$

r is the vector locating A from B
\rightarrow Relative accln terms depend on the absolute angular vel and angular accln.

Alternatively: $\mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B / A}$

Example on Relative Acceleration

The wheel of radius r rolls to the left without slipping and, at the instant considered, the center O has a velocity \mathbf{v}_{O} and an acceleration \mathbf{a}_{O} to the left. Determine the acceleration of points A and C on the wheel for the instant considered.

Angular velocity and angular accln of wheel:

$$
\omega=v_{o} / r \quad \text { and } \quad \alpha=a_{o} / r
$$

Accln of A in terms of given accln of O :

$$
\mathbf{a}_{A}=\mathbf{a}_{O}+\mathbf{a}_{A / O}=\mathbf{a}_{O}+\left(\mathbf{a}_{A / O}\right)_{n}+\left(\mathbf{a}_{A / O}\right)_{t}
$$

The relative accln terms are viewed as though O were fixed. For circular motion of $A @ O$, magnitudes of the relative accln terms:

$$
\begin{aligned}
& \left(a_{A / O}\right)_{n}=r_{0} \omega^{2}=r_{0}\left(\frac{v_{O}}{r}\right)^{2} \\
& \left(a_{A / O}\right)_{t}=r_{0} \alpha=r_{0}\left(\frac{a_{O}}{r}\right)
\end{aligned}
$$

Example on Relative Acceleration

$$
\begin{aligned}
& \omega=v_{O} / r \quad \text { and } \quad \alpha=a_{O} / r \\
& \mathbf{a}_{A}=\mathbf{a}_{O}+\mathbf{a}_{A / O}=\mathbf{a}_{O}+\left(\mathbf{a}_{A / O}\right)_{n}+\left(\mathbf{a}_{A / O}\right)_{t} \\
& \left(a_{A / O}\right)_{n}=r_{0} \omega^{2}=r_{0}\left(\frac{v_{O}}{r}\right)^{2} \\
& \left(a_{A / O}\right)_{t}=r_{0} \alpha=r_{0}\left(\frac{a_{O}}{r}\right)
\end{aligned}
$$

Adding the vectors head to tail will give \mathbf{a}_{A} Magnitude of \mathbf{a}_{A} is given by:

$$
\begin{aligned}
\begin{aligned}
a_{A} & =\sqrt{\left(a_{A}\right)_{n}^{2}+\left(a_{A}\right)_{t}^{2}} \\
& =\sqrt{\left[a_{O} \cos \theta+\left(a_{A / O}\right)_{n}\right]^{2}+\left[a_{O} \sin \theta+\left(a_{A / O}\right)_{t}\right]^{2}}\left(\mathbf{a}_{A / O}\right)_{t} \\
& =\sqrt{\left(r \alpha \cos \theta+r_{0} \omega^{2}\right)^{2}+\left(r \alpha \sin \theta+r_{0} \alpha\right)^{2}}
\end{aligned} \\
\text { Direction of } \mathbf{a}_{A} \text { can also be computed. }
\end{aligned}
$$

Example on Relative Acceleration

Acceleration for Point \mathbf{C}

Point C is the instantaneous center of zero velocity $\mathbf{a}_{C}=\mathbf{a}_{o}+\mathbf{a}_{C / O}$

The components of the relative acceleration are:

$\left(a_{C / O}\right)_{n}=r \omega^{2}$ directed from C to O
$\left(a_{C O O}\right)_{t}=r \alpha \quad$ directed towards right due to anticlockwise angular accln of CO@ O

$\rightarrow a_{C}=r \omega^{2}$
\rightarrow Accln of the instantaneous center of zero velocity is independent of α and is directed towards the center of the wheel

Example on Relative Velocity and Acceleration

Crank CB oscillates about C through a limited arc, causing crank $O A$ to oscillate about O. When the linkage passes the position shown with $C B$ horizontal and OA vertical, the angular velocity of $C B$ is $2 \mathrm{rad} / \mathrm{s}$ counterclockwise. For this instance, determine the angular velocities and angular accelerations of $O A$ and $A B$.

Solution:

$$
\begin{aligned}
\mathbf{v} & =\omega \times \mathbf{r} \\
\mathbf{a}_{n} & =\omega \times(\omega \times \mathbf{r}) \\
\mathbf{a}_{t} & =\alpha \times \mathbf{r}
\end{aligned}
$$

```
\mp@subsup{\mathbf{v}}{A/B}{}=\omega\times\mathbf{r}
```

$$
\left(\mathbf{a}_{A / B}\right)_{n}=\omega \times(\boldsymbol{\omega} \times \mathbf{r})
$$

$$
\left(\mathbf{a}_{A / B}\right)_{t}=\alpha \times \mathbf{r}
$$

Example on Relative Velocity and Acceleration

$$
\mathbf{v}=\omega \times \mathbf{r} \quad \mathbf{v}_{A / B}=\omega \times \mathbf{r}
$$

Writing the relative velocity of A wrt B :

$$
\begin{aligned}
& \mathbf{v}_{A}=\mathbf{v}_{B}+\mathbf{v}_{A / B} \\
& \omega_{O A} \times \mathbf{r}_{A}=\omega_{C B} \times \mathbf{r}_{B}+\omega_{A B} \times \mathbf{r}_{A / B} \\
& \omega_{O A}=\omega_{O A} \mathbf{k} \quad \omega_{C B}=2 \mathbf{k ~ r a d} / \mathrm{s} \quad \omega_{A B}=\omega_{A B} \mathbf{k}
\end{aligned}
$$

Substituting:

$$
\begin{aligned}
& \mathbf{r}_{A}=100 \mathbf{j} \mathrm{~mm} \quad \mathbf{r}_{B}=-75 \mathbf{i} \mathrm{~mm} \quad \mathbf{r}_{A / B}=-175 \mathbf{i}+50 \mathbf{j} \mathrm{~mm} \\
& \omega_{O A} \mathbf{k} \times 100 \mathbf{j}=2 \mathbf{k} \times(-75 \mathbf{i})+\omega_{A B} \mathbf{k} \times(-175 \mathbf{i}+50 \mathbf{j}) \\
& -100 \omega_{O A} \mathbf{i}=-150 \mathbf{j}-175 \omega_{A B} \mathbf{j}-50 \omega_{A B} \mathbf{i}
\end{aligned}
$$

Matching coefficients of respective \mathbf{i} - and \mathbf{j}-terms

$$
-100 \omega_{O A}+50 \omega_{A B}=0 \quad \text { and } \quad 25\left(6+7 \omega_{A B}\right)=0
$$

$\rightarrow \quad \omega_{A B}=-6 / 7 \mathrm{rad} / \mathrm{s} \quad \omega_{O A}=-3 / 7 \mathrm{rad} / \mathrm{s}$
Both angular velocities are acting clockwise (in the -ve \mathbf{k} direction since counter-clockwise direction was taken positive (+ve k) for angular velocities).

Example on Rel Vel and Accln

$$
\begin{aligned}
\mathbf{v} & =\omega \times \mathbf{r} \\
\mathbf{a}_{n} & =\omega \times(\omega \times \mathbf{r})
\end{aligned}
$$

$$
\left(\mathbf{a}_{A / B}\right)_{n}=\omega \times(\omega \times \mathbf{r})
$$

$$
\left(\mathbf{a}_{A / B}\right)_{t}=\alpha \times \mathbf{r}
$$

Writing relative accln of A wrt $B: \mathbf{a}_{A}=\mathbf{a}_{B}+\left(\mathbf{a}_{A / B}\right)_{n}+\left(\mathbf{a}_{A / B}\right)_{t}$
Writing absolute accln of A and B in their n-t comp:

$$
\begin{aligned}
\mathbf{a}_{A} & =\alpha_{O A} \times \mathbf{r}_{A}+\omega_{O A} \times\left(\omega_{O A} \times \mathbf{r}_{A}\right) \\
& =\alpha_{O A} \mathbf{k} \times 100 \mathbf{j}+\left(-\frac{3}{7} \mathbf{k}\right) \times\left(-\frac{3}{7} \mathbf{k} \times 100 \mathbf{j}\right) \\
& =-100 \alpha_{O A} \mathbf{i}-100\left(\frac{3}{7}\right)^{2} \mathbf{j} \mathrm{~mm} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{a}_{B} & =\boldsymbol{\alpha}_{C B} \times \mathbf{r}_{B}+\omega_{C B} \times\left(\omega_{C B} \times \mathbf{r}_{B}\right) \\
& =\mathbf{0}+2 \mathbf{k} \times(2 \mathbf{k} \times[-75 \mathbf{i}]) \\
& =300 \mathbf{i} \mathrm{~mm} / \mathrm{s}^{2}
\end{aligned}
$$

The relative acclns:

$$
\boldsymbol{\alpha}_{C B}=0 \text {, since } \boldsymbol{\omega}_{C B} \text { is constant }
$$

$$
\begin{aligned}
\left(\mathbf{a}_{A B B}\right)_{n} & =\omega_{A B} \times\left(\omega_{A B} \times \mathbf{r}_{A / B}\right) \\
& =-\frac{6}{7} \mathbf{k} \times\left[\left(-\frac{6}{7} \mathbf{k}\right) \times(-175 \mathbf{i}+50 \mathbf{j})\right] \\
& =\left(\frac{6}{7}\right)^{2}(175 \mathbf{i}-50 \mathbf{j}) \mathrm{mm} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\left(\mathbf{a}_{A / B}\right)_{t} & =\alpha_{A B} \times \mathbf{r}_{A / B} & & \mathbf{r}_{A B}: \\
& =\alpha_{A B} \mathbf{k} \times(-175 \mathbf{i}+50 \mathbf{j}) & & \text { vector } \\
& =-50 \alpha_{A B} \mathbf{i}-175 \alpha_{A B} \mathbf{j} \mathrm{~mm} / \mathrm{s}^{2} & & B \text { to } A
\end{aligned}
$$

Substituting and equating the coefficients:

$$
\begin{aligned}
& -100 \alpha_{O A}=429-50 \alpha_{A B} \\
& -18.37=-36.7-175 \alpha_{A B}
\end{aligned}
$$

$\alpha_{A B}=-0.1050 \mathrm{rad} / \mathrm{s}^{2}$
$\alpha_{O A}=-4.34 \mathrm{rad} / \mathrm{s}^{2}$

Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes

- Rigid body mechanisms constructed such that sliding occur at their connections
- Analyzing motion of two points on a mechanism that are not located on the same rigid body

Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes

Consider plane motion of two particles A and B (moving independently of each other) in fixed $X-Y$ plane.
-Observing motion of point A from a moving reference frame $x-y$ (origin attached to B) that rotates with ω

$$
\omega=\omega \mathbf{k}=\dot{\theta} \mathbf{k}
$$

the vector is normal to the plane of the motion
(@ +ve z-direction using right hand rule)
The absolute position vector of A :
$\mathbf{r}_{A}=\mathbf{r}_{B}+\mathbf{r}=\mathbf{r}_{B}+(x \mathbf{i}+y \mathbf{j})$
\mathbf{i} and \mathbf{j} are the unit vectors attached to the $x-y$
 frame
$\mathbf{r}=\mathbf{r}_{A B}=x \mathbf{i}+y \mathbf{j}::$ the position vector of A wrt B

Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes

Differentiating the posn vector eqn to obtain vel \& accl eqn:

- The unit vectors are rotating with the $x-y$ axes
\rightarrow time derivatives must be evaluated.
When $x-y$ axes rotate during $d t$ through an angle $d \theta=\omega d t$:
- Differential change in $\mathbf{i} \rightarrow d \mathbf{i}$

- di has direction of \mathbf{j}
- magnitude of $d \mathbf{i}=d \theta \times$ magnitude of $\mathbf{i}=d \theta$
- Therefore, di=d \mathbf{j}
- Differential change in $\mathbf{j} \rightarrow d \mathbf{j}$
- dj has negative x-direction
- Therefore, $d \mathbf{d}=-d \theta \mathbf{i}$

Dividing by $d t$ and replacing
$d \mathbf{i} / d t$ by $\mathbf{i}, d \mathbf{j} / d t$ by $\dot{\mathbf{j}}$, and $d \theta / d t$ by $\dot{\theta}=\omega$
$\rightarrow \dot{\mathbf{i}}=\omega \mathbf{j} \quad$ and $\quad \mathbf{j}=-\omega \mathbf{i}$
Using cross-product: $\omega \times \mathbf{i}=\omega \mathbf{j}$ and $\omega \times \mathbf{j}=-\omega \mathbf{i}$
$\rightarrow \dot{\mathbf{i}}=\omega \times \mathbf{i} \quad$ and $\quad \dot{\mathbf{j}}=\omega \times \mathbf{j}$

Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes

Relative Velocity Relations

Differentiating $\mathbf{r}_{A}=\mathbf{r}_{B}+(x \mathbf{i}+y \mathbf{j})$ wrt time:
$\dot{\mathbf{r}}_{A}=\dot{\mathbf{r}}_{B}+\frac{d}{d t}(x \mathbf{i}+y \mathbf{j})=\dot{\mathbf{r}}_{B}+(x \dot{\mathbf{i}}+y \dot{\mathbf{j}})+(\dot{x} \mathbf{i}+\dot{y} \mathbf{j})$
The second term:
$x \dot{\mathbf{i}}+y \dot{\mathbf{j}}=\omega \times x \mathbf{i}+\omega \times y \mathbf{j}=\omega \times(x \mathbf{i}+y \mathbf{j})=\omega \times \mathbf{r}$

Since the observer in $x-y$ measures vel components \dot{x} and \dot{y}
Third term: $\dot{x} \mathbf{i}+\dot{y} \mathbf{j}=\mathbf{v}_{\text {rel }}=$ vel relative to x - y frame
\rightarrow Relative Velocity Equation:

$$
\mathbf{v}_{A}=\mathbf{v}_{B}+\omega \times \mathbf{r}+\mathbf{v}_{\text {rel }}
$$

Comparing with the eqn for non-rotating reference axes: $\rightarrow \mathbf{v}_{A / B}=\omega \times \mathbf{r}+\mathbf{v}_{\text {rel }}$ $\rightarrow \omega \times \mathbf{r}=$ difference betn the relative velocities as measured from non-rotating and rotating axes.
$\mathbf{v}_{A}=$ Absolute vel of A (motion of A observed from $X-Y$ frame)
$\mathbf{v}_{B}=$ Absolute vel of origin of $x-y$ frame (motion of $x-y$ frame observed from $X-Y$ frame)
$\omega \times \mathbf{r}=$ Angular velocity effect caused by rotation of $x-y$ frame (motion of $x-y$ frame observed from $X-Y$ frame)
$\mathbf{v}_{\text {rel }}=$ Relative velocity of A wrt B (motion of A observed from $x-y$ frame)

Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes

$$
\mathbf{v}_{A}=\mathbf{v}_{B}+\omega \times \mathbf{r}+\mathbf{v}_{\text {rel }}
$$

Relative Velocity Relations

-The curved slot represents rotating $x-y$ frame
-The $x-y$ axes are not rotating themselves.
-Vel of A measured relative to the plate $=\mathbf{v}_{\mathrm{rel}}$.
$\cdot v_{\text {rel }}$ will be tangent to the path fixed in $x-y$ plate
-Magnitude of $\mathbf{v}_{\text {rel }}$ will be $d s / d t$

- $\mathbf{v}_{\text {rel }}$ may also be viewed as the vel $\mathbf{v}_{A P}$ relative to a point P attached to the plate and coincident with A at the instant under consideration.
$\cdot \omega \times \mathbf{r}$ has dirn normal to \mathbf{r}
$=\mathbf{v}_{P / B}$ vel of P rel to origin B of non-rotating axes

Comparison betn relative vel eqns for rotating and non-rotating reference axes
$\mathbf{v}_{A}=\mathbf{v}_{B}+\omega \times \mathbf{r}+\mathbf{v}_{\text {rel }}$
$\mathbf{v}_{A}=\underbrace{\mathbf{v}_{B}+\mathbf{v}_{A / P}}_{\mathbf{v}_{P}+\mathbf{v}_{P / B}+\mathbf{v}_{A / P}}$
$\mathbf{v}_{A}=\underbrace{}_{\mathbf{v}_{A / B}}$
$\mathbf{v}_{A}=\mathbf{v}_{B}+\underbrace{2}$
ME101 - Division III

- $\mathbf{v}_{P / B}$ is measured from a non-rotating posn
- $\mathbf{v}_{P}=$ absolute velocity of P and represent the effect of the moving coordinate system (both translational @ rotational)
- Last eqn is the same as that developed for non-rotating axes

$$
\mathbf{v}_{A / B}=\mathbf{v}_{P / B}+\mathbf{v}_{A / P}=\omega \times \mathbf{r}+\mathbf{v}_{\mathrm{rel}}
$$

Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes

Relative Velocity Relations

Transformation of a time derivative:
-These two eqns represent a transformation of the time derivative of the position vector between rotating and non-rotating axes.
-Generalized for any vector: $\mathbf{V}=V_{x} \mathbf{i}+V_{y} \mathbf{j}$ The total time derivative wrt $X-Y$ system:

$$
\left(\frac{d \mathbf{V}}{d t}\right)_{X Y}=\left(\dot{V}_{x} \mathbf{i}+\dot{V}_{y} \mathbf{j}\right)+\left(V_{x} \mathbf{i}+V_{y} \mathbf{j}\right)
$$

First two terms represent that part of total derivative of \mathbf{V} that is measured relative to the $x-y$ frame.
Second two terms represent that part of derivative due to the rotation of the reference system.
Since

$$
\dot{\mathbf{i}}=\omega \mathbf{j} \quad \dot{\mathbf{j}}=-\omega \mathbf{i}
$$

$$
\left(\frac{d \mathbf{V}}{d t}\right)_{X Y}=\left(\frac{d \mathbf{V}}{d t}\right)_{x y}+\omega \times \mathbf{V}
$$

$\omega \times \mathbf{V}$ represents the diff betn time derivative of the vector measured in fixed and in rotating reference system

$$
\begin{aligned}
& \mathbf{v}_{A}=\mathbf{v}_{B}+\omega \times \mathbf{r}+\mathbf{v}_{\text {rel }} \\
& \mathbf{v}_{A}=\mathbf{v}_{B}+\omega \times \mathbf{r}+\mathbf{v}_{\text {rel }} \\
& \mathbf{v}_{A}=\underbrace{}_{\mathbf{v}_{B}+\mathbf{v}_{P / B}+\mathbf{v}_{A / P}} \\
& \mathbf{v}_{A}=\underbrace{+\mathbf{v}_{A / P}}_{\mathbf{v}_{P}} \\
& \mathbf{v}_{A}=\underbrace{}_{\mathbf{v}_{B}}+\underbrace{}_{\mathbf{v}_{A / B}}
\end{aligned}
$$

Physical Significance

