STRAWBERRY

FF /strawberrydevelopers

 B /strawberry_appFor more visit:
Strawberrydevelopers.weebly.com

KINEMATICS OF RIGID BODIES

1. A bar $A B$ which is $3 m$ long, it slides down the plane as shown in the fig. The velocity of end A is $3.6 \mathrm{~m} / \mathrm{s}$ to the right. Determine the angular velocity of $A B$ and velocity of end B at the instant shown.
Ans. : $\omega_{A B}=0.936 \mathrm{rad} / \mathrm{s}, V_{B}=3.73 \mathrm{~m} / \mathrm{s}$.

2. A rod $A B$ of length L with its ends A and B constrained to more along the wall and the horizontal ground is as shown in figure. If the end A on the ground is pulled towards right with a constant speed of $V_{A}=10 \mathrm{~m} / \mathrm{s}$ find the angular velocity $\omega_{A B}$ of the rod $A B$ and the velocity V_{b} at the end B for the instant when the rod makes an angle of 30° with the ground. Ans. : $\omega_{A B}=20 / \mathrm{L}$ r/s anticlockwise, $V_{B}=17.32 \mathrm{~m} / \mathrm{s} \downarrow$

3. Figure shows a ladder $A B=6 \mathrm{~m}$ resting against a vertical wall at A and horizontal ground at B. If the end B of the ladder is pulled towards right with a constant velocity $v_{B}=4 \mathrm{~m} / \mathrm{s}$. Find :
(i) Instantaneous centre of rotation of ladder.
(ii) Angular velocity of the ladder at the instant.
(iii) Velocity of point A.

Ans. : (i) $(5.196,3) m$ (ii) $1.333 \mathrm{rad} / \mathrm{sec}(\mathbb{1})$, (iii) $v_{A}=6.926 \mathrm{~m} / \mathrm{s}(\downarrow)$.
y
.
6. The crank CB of a slider crank mechanism is rotating at a constant speed of 30 rpm clockwise. Determine the velocity of the cross head A at the given instant. $A B=$ $400 \mathrm{~mm} \& B C$ is 100 mm . Ans. : $v_{a}=26.5$ $\mathrm{cm} / \mathrm{s} \rightarrow$.

7. Arm AB rotates anti clockwise with uniform angular velocity $10 \mathrm{rad} / \mathrm{s}$. Point C is constrained to move along the x axis. Calculate the angular velocity and acceleration of bar BC. Also determine velocity of C .

Ans. : 3.78 c/s clockwise, $2.43 \mathrm{~m} / \mathrm{s} \leftarrow$
8. For the slider- crank mechanism shown, find the velocity of the piston ' P ' and the angular velocity of the connecting rod AP. OA is 0.1 m , AP is 0.4 m and angular velocity of $O A$ is 90 rpm .
Ans. : $v_{p}=5.737 \mathrm{~m} / \mathrm{s} \uparrow$ and $\omega_{A P}=2.057 \mathrm{c} / \mathrm{s}$ clockwise.
9. Block D shown in fig. moves with a speed of $3 \mathrm{~m} / \mathrm{s}$. Determine angular velocities of links BD and $A B$ and velocity of point B at the instant shown. Take lengths of links $A B$ and $B D$ as 0.4 m .

Ans. : $\omega_{B D}=5.304 \mathrm{c} / \mathrm{s}$ anticlockwise, $\omega_{A B}=$ $2.057 \mathrm{c} / \mathrm{sc}$ lockwise, $V_{B}=2.122 \mathrm{~m} / \mathrm{s}$ at an angle of 45° with horizontal.
10. Locate the instantaneous centre of rotation of link AB. Find also the angular velocity of link OA. Take velocity of slider at $B=2.5 \mathrm{~m} / \mathrm{s}$. The link and slider mechanism is as shown in the figure.
Ans. : C is at 30.94 mm on right of O on line $A O$. $\omega_{O A}=6.25 \mathrm{rad} / \mathrm{sec}$ clockwise.

11. At the position shown in figure, the crank $A B$ has Angular velocity of $3 \mathrm{rad} / \mathrm{sec}$ clockwise. Find the velocity of slider C and the point D at the instant shown.
12. A Bar AB 24 m long is hinged to a wall at A. Another bar CD 32 cm long is connected to it by a pin at B such that $C D=12 \mathrm{~cm}$ and $B D=20 \mathrm{~cm}$. At the instant shown, ($A B \perp$ $C D$) the angular velocities of the bars are $\mathrm{W}_{\mathrm{AB}}=4 \mathrm{rad} / \mathrm{sec}$ and $\mathrm{W}_{\mathrm{CD}}=6 \mathrm{rad} / \mathrm{sec}$. Determine the linear velocities of C and D.
13. Figure shows a collar B which moves upwards with a constant velocity of $1.5 \mathrm{~m} / \mathrm{s}$. At the instant when $\theta=50^{\circ}$ determine (i) the angular velocity of rod $A B$ which is pinned at B and freely resting at A against 25° slope and (ii) the velocity of end A of the rod.
Ans. : (i) $w=1.173 \mathrm{rad} / \mathrm{s}(\mathbb{1})$, (ii) $\mathrm{v}_{\mathrm{A}}=0.998 \mathrm{~m} / \mathrm{s}$.

14. In a crank and connecting rod mechanism, the length of crank and the connecting rod are 300 mm and 1200 mm respectively. The crank is rotating at 180 rpm . Find the velocity of piston, when the crank is at an angle of 45° with the horizontal.

15. Rod BDE is partially guided by a roller at D , which moves in a vertical track. Knowing that at the instant shown the angular velocity of $A B$ is $5 \mathrm{rad} / \mathrm{s}$ clockwise and $\beta=25^{\circ}$. Determine (1) angular velocity of rod BE (2) velocity of point E.
Ans. : $\omega_{\mathrm{BE}}=2.84 \mathrm{rad} / \mathrm{s}$ anticlockwise, $\mathrm{V}_{\mathrm{E}}=$ $1.817 \mathrm{~m} / \mathrm{s}$.

17. A roller of radius 8 cm . rides between two horizontal bars moving in the opposite direction as shown in the figure. (1) Locate the instantaneous centre of velocity and give its distance from A. Assume no slip conditions at the points A and B. (2) Locate the position of the instantaneous centre when both the bars are moving in the same direction.
Ans: $\{(1) 0.06 m$, (2) $0.24 m\}$
18. In an aerodynamic investigation of tennis ball is given a speed of \mathbf{v} and \mathbf{w} as shown in figure. The maximum and minimum speeds of points on the surface.
Ans: $50.11,49.89 \mathrm{~m} / \mathrm{s}$

19. A uniform cylinder C of diameter 0.6 m is pinned to a rod $A B$ at A with other end B is moving along vertical wall, as shown in fig. If the end B of the rod is moving upward along the vertical wall at a speed of $3.3 \mathrm{~m} / \mathrm{s}$ Find the angular velocity of the cylinder assuming the cylinder is rolling without slipping. Ans: $\omega_{c}=3.175 \mathrm{rad} / \mathrm{sec}$
20. A compound wheel as shown in figure rolls without slipping on a guide PQ. At the given instant if $V_{c}=3 \mathrm{~m} / \mathrm{s}$ and $a_{c}=6 \mathrm{~m} / \mathrm{s}^{2}$ both rightwards, determine acceleration of points A and B.

