

Role of Kinematic Analysis in Biomechanics

- Kinematic data by themselves may provide useful information about a human movement
 - Initial description of a previously unstudied movement pattern
 - Assessment of the coordination pattern of a particular movement
- Kinematic data may be required as part of a more complete analysis of a movement
 - Kinematic and EMG data
 - Inverse dynamics (kinematic & kinetic data)

 <u>Jerk</u> - rate of change in acceleration with respect to time

*All are vector quantities (except distance and speed)

Velocity

The equation $v_{X(i)} = (x_{i+1} - x_{i-1}) / 2\Delta t$

is a *first-order, central difference* equation, and can be applied to all data points except the first and last

To estimate the velocity for the first point use a secondorder, forward difference equation

$$\mathbf{v}_{\mathbf{X}(1)} = -3\mathbf{x}_1 + 4\mathbf{x}_2 - \mathbf{x}_3$$
$$2\Delta t$$

and for the last point use a second-order, backward difference equation

 $v_{X(n)} = \frac{x_{n-2} - 4x_{n-1} + 3x_n}{2\Delta t}$

Velocity

Given the following position data for the Y coordinate of a marker on the ankle joint, calculate the velocity

Frame	Time (s)	X coord (m)	X vel (m/s)
1	0.0000	0.1175	?
2	0.0167	0.1182	?
3	0.0334	0.1190	?
4	0.0501	0.1193	?
5	0.0668	0.1185	?

First point, use forward difference

 $v_{X(1)} = (-3 \times 0.1175 + 4 \times 0.1182 - 0.1190) / (2 \times 0.0167) = 0.04$

Velocity

Given the following position data for the Y coordinate of a marker on the ankle joint, calculate the velocity

Frame	Time (s)	X coord (m)	X vel (m/s)
1	0.0000	0.1175	0.04
2	0.0167	0.1182	?
3	0.0334	0.1190	?
4	0.0501	0.1193	?
5	0.0668	0.1185	?

Points 2 - 4, use central difference

 $\begin{array}{l} v_{\chi(2)} = (0.1190 - 0.1175) \, / \, (2 \times 0.0167) = \ 0.04 \\ v_{\chi(3)} = (0.1193 - 0.1182) \, / \, (2 \times 0.0167) = \ 0.03 \\ v_{\chi(4)} = (0.1185 - 0.1190) \, / \, (2 \times 0.0167) = -0.01 \end{array}$

Velocity

Given the following position data for the Y coordinate of a marker on the ankle joint, calculate the velocity

Frame	Time (s)	X coord (m)	X vel (m/s)
1	0.0000	0.1175	0.04
2	0.0167	0.1182	0.04
3	0.0334	0.1190	0.03
4	0.0501	0.1193	-0.01
5	0.0668	0.1185	?

Last point, use backward difference

 $v_{X(5)} = (0.1190 - 4 \times 0.1193 + 3 \times 0.1185) / (2 \times 0.0167) = -0.08$

Acceleration

Given the following position data for the Y coordinate of a marker on the ankle joint, calculate the acceleration

Frame	Time (s)	X coord (m)	X vel (m/s)	X accel (m/s ²)
1	0.0000	0.1175	0.04	?
2	0.0167	0.1182	0.04	?
3	0.0334	0.1190	0.03	?
4	0.0501	0.1193	-0.01	?
5	0.0668	0.1185	-0.08	?

First point, use forward difference

 $\begin{aligned} \mathbf{a}_{X(1)} &= (2 \times 0.1175 - 5 \times 0.1182 + 4 \times 0.1190 - 0.1193) \: / \: (0.0167)^2 \\ \mathbf{a}_{X(1)} &= 2.51 \end{aligned}$

Acceleration

Given the following position data for the Y coordinate of a marker on the ankle joint, calculate the acceleration

Frame	Time (s)	X coord (m)	X vel (m/s)	X accel (m/s ²)
1	0.0000	0.1175	0.04	2.51
2	0.0167	0.1182	0.04	?
3	0.0334	0.1190	0.03	?
4	0.0501	0.1193	-0.01	?
5	0.0668	0.1185	-0.08	?

Points 2 - 4, use central difference

$a_{\chi(2)} = (0.1190 - 2 \times 0.1182 + 0.1175) / (0.0167)^2 = 0.3$	36
$a_{\chi(3)} = (0.1193 - 2 \times 0.1190 + 0.1182) / (0.0167)^2 = -1.7$	79
$a_{X(4)} = (0.1185 - 2 \times 0.1193 + 0.1190) / (0.0167)^2 = -3.9$	94

Acceleration

Given the following position data for the Y coordinate of a marker on the ankle joint, calculate the acceleration

Frame	Time (s)	X coord (m)	X vel (m/s)	X accel (m/s²)
1	0.0000	0.1175	0.04	2.51
2	0.0167	0.1182	0.04	0.36
3	0.0334	0.1190	0.03	-1.79
4	0.0501	0.1193	-0.01	-3.94
5	0.0668	0.1185	-0.08	?

Last point, use backward difference

 $a_{\chi(5)} = (-0.1182 + 4 \times 0.1190 - 5 \times 0.1193 + 2 \times 0.1185) / (0.0167)^2$

a_{X(5)} = -6.10

Velocity & Acceleration

Note that if global polynomials or spline function were used to fit and/or smooth the data, then velocity and acceleration can be determined analytically

Example:

 $x(t) = 3 + 7t - 4t^{2} + 8t^{3} + 5t^{4} - 2t^{5}$ $v(t) = \frac{dx}{dt} = \dot{x} = 7 - 8t + 24t^{2} + 20t^{3} - 10t^{4}$ $a(t) = \frac{dv}{dt} = \dot{v} = -8 + 48t + 60t^{2} - 40t^{3}$

High Frequency Noise Why do we need to be sure we minimize the amount of high frequency noise in our data? Differentiation amplifies high-frequency noise. - consider a 1Hz signal contaminated with 10Hz noise, with a signal-to-noise (SNR) ratio of 20 (26 dB):

 $\begin{aligned} x(t) &= 20\sin(6.28t) + \sin(62.8t); \text{ SNR} = 20\\ x'(t) &= 125\cos(6.28t) + 62.8\cos(62.8t); \text{ SNR} = 2\\ x''(t) &= -785\sin(6.28t) - 3944\sin(62.8t); \text{ SNR} = 0.2 \end{aligned}$

- The 2nd derivative of the noise is 5 times larger than the 2nd derivative of the signal!

High Frequency Noise

- In the 1st derivative (velocity) signal amplitude increases proportional to frequency
- In the 2nd derivative (acceleration) signal amplitude increases proportional to frequency squared
- This is why it is so important to eliminate sources of high frequency noise before data collection, and suppress the remaining high frequency noise through low-pass filtering

Angular Kinematic Variables

The following is applicable to rigid bodies in planar motion (3-D is more complicated)

- Angular Position angle at a given time
- <u>Angular Displacement</u> change in angular position over a period of time
- <u>Angular Velocity</u> rate of change in angular position with respect to time
- <u>Angular Acceleration</u> rate of change in angular velocity with respect to time

*Only angular velocity and acceleration are vector quantities, because angular rotations are not commutative

Angular Position (Orientation)

<u>Degrees of freedom</u> - a rigid body in 3-D space requires six quantities to completely describe its position and orientation

Could use the x, y, and z coordinate of the center of mass, plus the angular rotations relative to the global reference frame (other coordinate sets are also possible)

Angular Position (Orientation)

In two-dimensional analysis, only two linear coordinates (x, y) and one angle (θ) are needed to completely describe the position and orientation of a rigid body

So in planar analyses, you must know the x and y coordinates of at least one point on each body, plus the angle relative to some fixed reference

Once segment angles are known, relative joint angles can be easily calculated Y θ_{THIGH} Joint angles are typically calculated as the angle of the proximal segment minus the angle of the distal segment

x

θ

Angular Position (Orientation)

 $\theta_{\rm KNEE} = \theta_{\rm THIGH} - \theta_{\rm SHANK}$

This would make knee angle 0 at full extension, pos for flexion, and neg for hyperextension

Angular Kinematics

- For planar (2-D) motion, the relationships between <u>angular displacement</u>, <u>angular</u> <u>velocity</u>, and <u>angular acceleration</u> are perfectly analogous to <u>linear displacement</u>, <u>linear velocity</u>, and <u>linear acceleration</u>
- Once segment or joint angles are known, angular velocities and angular accelerations can be calculated using the same <u>finite</u> <u>difference</u> approach as we used for linear velocity and linear acceleration

Kinematic Measurement Systems

- Single exposure photography
- Multiple exposure photography
- Cinematography
- Videography
- Optoelectronic systems
- Electromagnetic tracking
- Electrogoniometers
- Accelerometers

Single exposure photography

Advantages

- Inexpensive

Disadvantages

 Applicable to static analysis (e.g., frontal area, body segment volume, assessment of static postures)

- Very limited application

to dynamic activities

Multiple exposure photography

Advantages

 Simple, inexpensive
 An early solution to motion capture

Disadvantages

- Concerns about image clarity
- Movement must occur in a completely dark environment
- Problems with image overlap

Cinematography

Advantages

- Permanent record of the movement
- With proper calibration, accuracy can be very high
- Wide range of sampling rates (e.g., 0-500 Hz for Locam)
- Highly flexible applications (indoor, outdoor)

Cinematography

Disadvantages

- Careful attention to film sensitivity/light exposure
- High, recurring costs (film plus developing)
- No immediate feedback about image quality
- Requires manual digitization (marker coordinate generation)

-Redlake Corp. (Lowcam, Highcam)

Locam

Videography

Advantages

- Low cost medium (videotapes)
- Immediate image quality feedback
- Less sensitive to lighting conditions than film
- Highly flexible applications
- Many competing vendors
- Modern systems provide realtime 3D coordinate data (bypassing the tape stage)

Videography Disadvantages

- Early problems; low & fixed sampling rate, long & fixed exposure time
- Sampling rates > 60 Hz come at a price
- Automatic, 3D
 - coordinate acquisition comes at a price

Still one of the most cost-effective, flexible approaches to motion data capture

Vendors

- Motion Analysis Corp.Peak Performance
 - Technologies
- -Oxford Metrics (Vicon)
- -Qualisys (MacReflex)
- -Ariel Dynamics -BTS (Elite Motion

Analyzer)

8

Optoelectronics

Advantages

- Automatic marker coordinate data generation
- Immediate review of collected coordinate data
 3D coordinates available
- immediately after data collection
- Flexible sampling rates
- Comprehensive collection, processing, and reviewing packages

Optoelectronics

Disadvantages

- Reflections, reflections, reflections
- No visual record other than stick figure
- Identifying special events difficult due to no visual record
- System is tied to the laboratory, not portable
- Active markers require
- tethering subject to system

Vendors

-Northern Digital (Optotrak) -Selcom (Selspot)

Electromagnetic tracking

Advantages

markers

- Automatically generates
 3D marker coordinate
 data
- Provides linear and angular position data
 No "lost" or hidden

- Immediate review of

collected coordinate data

Electromagnetic tracking

Disadvantages

- Low sampling rates (but improving)
- Interference from nearby metals distorts signals
- Markers relatively large and obtrusive
- Active markers require tethering subject (telemetry may become available)
- No visual record of the movement

Vendors

Polhemus
(Fastrak)
Ascension Tech
(Flock of Birds)

Electrogoniometers

Advantages

- Fairly inexpensive
- Output signal immediately available
- Provides relative joint angles

Disadvantages

- Only provides relative joint angles
- Can shift relative to joint during data collection

Vendors

–Penny & Giles
–Biometrics Limited

Accelerometers

Advantages

- Provides clean
- acceleration signal
- Output signal immediately available

Disadvantages

- Difficulty determining global components of the acceleration
- Use of multiple, triaxial, accelerometers is costly
- May interfere with natural movement of the subject

Vendors –Kistler –Sensotec

-IC Sensors

Basics of Two-Dimensional Video Motion Capture

Video basics

What information can be obtained from video?

- Position information
 - Requires one to perform a spatial calibration
 - Subject to digitizing errors
 - In 2-D, subject to perspective errors

record an image of known length to create a scaling factor, then, don't move the camera!

Video basics

Image quality is affected by many factors

- Lighting
- Contrast
- Camera resolution
 - Video (250-1200 horizontal lines)
 - 16 mm film (~20,000 horizontal lines)
- Exposure time
 - Video electronic shutter
 - Film mechanical shutter

Video basics

Exposure time - duration in seconds that film or video element is exposed to light

- Determined by sampling rate and shutter factor
- A shutter factor of 2 means the shutter is open 1/2 the time; a shutter factor of 6 is open 1/6 the time
- Example sampling at 100 Hz with shutter factor of 3; exposure time is given by:

```
\frac{1}{100 \text{ s}} \times \frac{1}{3} = \frac{1}{300 \text{ s}} = 0.00333 \text{ s}
```


$$\frac{u_E}{u_O - u_E}$$
 (see next slide)

Basic Lens Optics

Back to Focal Length

- Lenses can have a fixed focal length or a variable focal length (i.e., a zoom lens)
- A small focal length will produce a wide field of view, but objects will look small (this is a wide angle lens)
- A large focal length will cause objects to appear larger, but will result in a narrow field of view (this is a telephoto lens)
- If the camera is moved back to minimize perspective error, a large focal length is required to maintain adequate image size

Video Data Capture

- The resulting video signal is typically saved on analog tape for later analysis
 - This requires a VCR and frame-grabber or video input card to get the video images into the computer for digitization
- The video signal from the camera can also be digitized directly into a computer as it is being collected using a specialized ADC
 - This allows for the possibility of real-time or near real-time marker identification

Guidelines for 2-D Data Capture

- The subject should move in a plane that is at a right angle to the optical axis of the camera
- The camera should be as far away from the subject as possible to minimize perspective error
- The camera should be mounted on a stable tripod, or other mounting, and leveled

Guidelines for 2-D Data Capture

- As long a focal length as possible should be used to maximize subject image size (subject should be at least half the frame height)
- Background should be uncluttered and provide good contrast with the subject
- Anatomical landmarks should be marked to aid in location during digitization

Guidelines for 2-D Data Capture

- Lighting should be adequate; a focused light source behind the camera is helpful
- A scaling rod of known length should be imaged before (or after) data capture to allow conversion to real-life units
- A light in view of the camera, or some other means, should be used if synchronizing video with other data (force, EMG, etc) is required

Interpretation of Human Kinematic Data

The need for 3-D

Human motion is inherently three dimensional in nature

- Some activities can be studied safely in a single plane of motion (2-D analysis)
 - Examples?
- Other activities require 3-D data to be collected to adequately capture the motion – Examples?

3-D data acquisition

- 2-D coordinates (X and Y) can be determined using a single camera, after a simple calibration has been performed
- To determine 3-D coordinates (X, Y, and Z) a more involved calibration is required
 - Current techniques require that all points of interest been seen by at least 2 different cameras at all points in time
 - Two cameras are required, but using more than 2 generally gives more accurate results

3-D data acquisition

- What information is necessary to accurately reconstruct 3-D coordinates from 2 (or more) 2-D camera views?
- Need to know certain internal and external camera parameters:
 - Positions and orientations of cameras
 - Camera focal lengths
 - Camera principal points
- These can be measured (costly and labor intensive), or determined mathematically

3-D data acquisition

- The Direct Linear Transformation – Abdel-Aziz & Karara (1971)
 - Shapiro (1978), Walton (1981)
- The current standard in 3-D motion analysis
- Camera parameters are determined mathematically by imaging an object with known point locations (a "calibration object")

3-D data acquisition

The DLT equations:

$$\begin{aligned} \mathbf{x}_{1} + \mathbf{L}_{1}\mathbf{X}_{1} + \mathbf{L}_{2}\mathbf{Y}_{1} + \mathbf{L}_{3}\mathbf{Z}_{1} + \mathbf{L}_{4} + \mathbf{L}_{9}\mathbf{x}_{1}\mathbf{X}_{1} + \mathbf{L}_{10}\mathbf{x}_{1}\mathbf{Y}_{1} + \mathbf{L}_{11}\mathbf{x}_{1}\mathbf{Z}_{1} &= \mathbf{0} \\ \mathbf{y}_{1} + \mathbf{L}_{5}\mathbf{X}_{1} + \mathbf{L}_{6}\mathbf{Y}_{1} + \mathbf{L}_{7}\mathbf{Z}_{1} + \mathbf{L}_{8} + \mathbf{L}_{9}\mathbf{y}_{1}\mathbf{X}_{1} + \mathbf{L}_{10}\mathbf{y}_{1}\mathbf{Y}_{1} + \mathbf{L}_{11}\mathbf{y}_{1}\mathbf{Z}_{1} &= \mathbf{0} \end{aligned}$$

where:

 $\boldsymbol{x}_{i},\,\boldsymbol{y}_{i},\,are$ 2-D video coordinates of point i

 X_i , Y_i , Z_i are real 3-D coordinate of point i

 L_1, \dots, L_{11} are the DLT parameter (camera constant)

For each point on the calibration object you can generate 2 equations, but there are 11 unknowns

3-D data acquisition

The basic DLT procedure:

- Record images with two (or more) cameras of 6 (or more) points on a calibration object
- Each point results in two unique DLT equations (12 equations total)
- Solve the simultaneous system of equations for the 11 unknown DLT parameters (L₁,...,L₁₁)
- Once L₁,...,L₁₁ are known, the same DLT equations can be used to solve for real 3-D coordinates, given digitized 2-D video coordinates from 2 (or more) cameras

3-D data acquisition

Newer techniques

- Several newer techniques exist that use nonlinear optimization to determine the internal and external camera parameters
- The wand technique we use is a good example
- The main advantage is that you do not need to maintain a (typically) large calibration object with known marker locations
- The size of the calibration space can also be varied quite easily

3-D angular kinematics

- Segment and joint angles in 2-D are very easy to calculate and interpret
- Spatial (3-D) segment and joint angles are much more difficult to calculate, and can be more challenging to interpret (different standards exist)
- 3-D joint angle calculations suffer from:
 - Rotation order effects
 - Mathematical singularities

Joint Coordinate System

- Joint coordinate system – Chow (1980)
 - Grood & Suntay (1983)
- Most common 3-D joint angle standard in use
- The 3 joint angles are clinically relevant
- Axis system is not orthogonal
- Difficult to use for the shoulder joint

Up Next...

Data Processing & Signal Analysis